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Abstract. We prove that a general polynomial F ∈ k[x0, ..., xn]d admits a decomposition as
sum of h = 2 powers of linear forms if and only if its second partial derivatives lie on a line. In
this way we work out set-theoretical equations for the variety of secant lines Sec2(V n

d ) of the
Veronese variety V n

d . In [Ka] V. Kanev, adopting a di�erent approach, proved that the same
equations cut out ideal-theoretically Sec2(V n

d ).
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Introduction

A variation on the Waring problem (coming from a question in number theory stated by E.

Waring in 1770, see [Wa], which states that every integer is a sum of at most 9 positive cubes)
asked which is the minimum positive integer h such that the generic polynomial of degree d on Pn
admits a decomposition as a sum of h d-powers of linear forms.
In 1995 J. Alexander and A. Hirshowitz solved completely this problem over an algebraically
closed base �eld k of characteristic zero, see [AH]. They proved that the minimum integer h is the

expected one h = b 1
n+1

(
n+d
d

)
c, except in the following cases:

n d h
n 2 2 ≤ h ≤ n
2 4 5
3 4 9
4 3 7
4 4 14

Polynomials often appear in issues of applied mathematics, As instance in signal theory [CM],
algebraic complexity theory [BCS], coding and information theory [Ro]. In particular issues related
to decompositions of homogeneous polynomials in sums of powers are of particular interest in signal
theory and clearly in pure mathematics. Indeed degree d homogeneous polynomials can be seen
as points if the projective space PN = Proj(k[x0, ..., xn]d), while d-powers of linear forms are

1These are notes for a seminar I gave on July 4, 2012 in Cortona during the summer school "Tensors: Geometric

Complexity Theory and Waring problems" held by J. M. Landsberg and Massimiliano Mella.
1
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parametrized by the Veronese variety V nd ⊂ PN . Therefore the geometric counterpart of this type
of problems is the study of secant varieties to Veronese varieties. There is a line of research that
studies varieties parametrizing decomposition of the form

F = Ld1 + ...+ Ldh

of a general homogeneous polynomial F ∈ k[x0, ..., xn]d. These varieties, called varieties of sums
of powers, V SP for short are the main object of a series of papers [DK], [IK], [RS], [MM] for a
birational approach, and [Do] for a survey on the theme.
However, for applied sciences, is more interesting to determine:

- whether a polynomial admits a decomposition into a number of linear forms,

- and eventually to calculate explicitly the decomposition.

We focus the attention on the case Sech(V nd ) $ PN and adopt the philosophy dictated by the
following trivial but crucial statement:

"If F =
∑h
i=1 λiL

d
i then its partial derivatives of order l lie in the linear space 〈Ld−l1 , ..., Ld−lh 〉 for

any l = 1, ..., d− 1."
In the case n = 2 we prove that in order to establish if a homogeneous polynomials F ∈ k[x0, x1]d
admits a decomposition as sum of h powers it is enough to verify that dim(H∂) ≤ h − 1, where
H∂ is the linear space spanned by the partial derivatives of order d − h of F . Furthermore, if
dim(H∂) = h− 1 we get a method to work out the linear forms related to F , 2.13. Finally trying
to extend the method in higher dimension we compute the dimension of the linear space of polyno-
mials whose (d− 1)-derivatives lie in a general linear subspace H ⊂ (PN )∗, this space is also called
the (d − 1)-prolongation of H. Consequently we �nd the formula for the dimension of Sech(V n2 ),
and the secant defect of V n2 . Furthermore we obtain a criterion to determine whether a polynomial
admits a decomposition in the cases d = 2 and d = 3, h = 2.
Finally, in theorem 3.1, we will prove that a general polynomial F ∈ k[x0, ..., xn]d admits a decom-
position as sum of h = 2 powers of linear forms if and only if its second partial derivatives lie on
a line. In [Ka] V. Kanev, adopting a di�erent approach, proved that the same conditions cut out
ideal-theoretically Sec2(V nd ).

1. Preliminaries on secant varieties

Let X ⊂ PN be an irreducible and reduced non degenerate variety,

Γh(X) ⊂ X × ...×X ×G(h− 1, N),

the reduced closure of the graph of

α : X × ...×X 99K G(h− 1, N),

taking h general points to their linear span 〈x1, ..., xh〉. Observe that Γh(X) is irreducible and
reduced of dimension hn. Let π2 : Γh(X)→ G(h− 1, N) be the natural projection. Denote by

Sh(X) := π2(Γh(X)) ⊂ G(h− 1, N).

Again Sh(X) is irreducible and reduced of dimension hn. Finally let

Ih = {(x,Λ) | x ∈ Λ} ⊂ PN ×G(h− 1, N),

with natural projections πh and ψh onto the factors. Furthermore observe that ψh : Ih → G(h −
1, N) is a Ph−1-bundle on G(h− 1, N).

De�nition 1.1. Let X ⊂ PN be an irreducible and reduced, non degenerate variety. The abstract
h-Secant variety is the irreducible and reduced variety

Sech(X) := (ψh)−1(Sh(X)) ⊂ Ih.
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While the h-Secant variety is

Sech(X) := πh(Sech(X)) ⊂ PN .

It is immediate that Sech(X) is a (hn + h − 1)-dimensional variety with a Ph−1-bundle structure
on Sh(X). One says that X is h-defective if

dimSech(X) < min{dim Sech(X), N}.

2. Veronese embedding and homogeneous polynomials

Let ν : Pn → PNd be the d-Veronese embedding, and let V nd = ν(Pn) be its image. Let
[F ] ∈ PN = Proj(k[x0, ..., xn]d) be a degree d homogeneous polynomial. Fixed a positive integer
h such that Sech(V nd ) 6= PN we want to determine whether [F ] ∈ Sech(V nd ). We begin with the
following simple observation:

Remark 2.1. If F =
∑h
i=1 λiL

d
i then its partial derivatives of order l lie in the linear space

〈Ld−l1 , ..., Ld−lh 〉 for any l = 1, ..., d− 1.

The partial derivatives of order l are
(
n+l
l

)
homogeneous polynomials of degree d − l, so the

previous observation is meaningful when h <
(
n+l
l

)
and h <

(
d−l+n
n

)
. The latter condition ensures

that 〈Ld−l1 , ..., Ld−lh 〉 is a proper subspace of the projective space PNd−l parametrizing homogeneous

polynomials of degree d − l. Consider the partial derivatives F ll0,...,ln := ∂lF

∂x
l0
0 ,...,∂x

ln
n

and the

incidence variety

Il,h = {(F,H) | ∈ F ll0,...,ln ∈ H, ∀ l0 + ...+ ln = l} ⊂ PN ×G(h− 1, Nd−l)

PN G(h− 1, Nd−l)

π2π1

Let ShV nd−l ⊆ G(h− 1, Nd−l) be the abstract h-secant variety of V nd−l. Note that when h <
(
n+l
l

)
the map π1 is generically injective. Let Xl,h = π1(Il,h) ⊆ PN be its image. By remark 2.1 we have
Sech(V nd ) ⊆ Xl,h. We want to �nd cases when the equality holds in order to get a simple criterion
to establish whether [F ] ∈ Sech(V nd ).

Remark 2.2. The equality holds trivially when d = 2. Let F ∈ k[x0, ..., xn]2 be a polynomial and
let MF be the matrix of the quadratic symmetric form associated to F . Then F ∈ Sech(V n2 ) if
and only if rank(MF ) ≤ h. On the other hand the rows ofMF are exactly the partial derivatives
of F .

The Waring rank. Let h be the smallest integer such that Sech(V nd ) = PN . By a dimensions
computation we expect:

h =
⌈

1
n+1

(
n+d
d

)⌉
.

This is almost always true, J. Alexander and A. Hirschowitz in [AH] proved that the following are
the only exceptional cases:

d n h
2 arbitrary n+ 1
3 4 8
4 2 6
4 3 10
4 4 15
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2.1. Catalecticant Varieties. Let us look closer at the variety Xl,h. This variety parametrizes
polynomials F ∈ k[x0, ..., xn]d whose partial derivatives of order l span a (h−1)-plane. LetMl,h be

the
(
n+l
l

)
×
(
n+d−l
d−l

)
matrix whose lines are the l-th derivatives of F =

∑
i0+...+in=d

αi0,...,inx
i0
0 ...x

in
n .

Then Xl,h is the determinantal variety de�ned in PN by rank(Ml,h) ≤ h, where the αi0,...,in are the

homogeneous coordinates on PN . Let PM be the projective space parametrizing
(
n+l
l

)
×
(
n+d−l
d−l

)
matrices, and let Mh ⊂ PM be the variety of matrices of rank less or equal than h. Then Mh is

a irreducible variety of dimension M −
((
n+l
l

)
− h
)
·
((
n+d−l
d−l

)
− h
)
. Clearly the variety Xl,h is a

special linear section of Mh.

Lemma 2.3. The varieties Xl,h and Xd−l,h are isomorphic.

Proof. The matrixMd−l,h whose lines are the (d−l)-th partial derivatives of F is the
(
n+d−l
d−l

)
×
(
n+l
l

)
matrix given by

Md−l,h =Mt
l,h,

whereMt
l,h is the transposed matrix ofMd−l,h. Then the assertion follows. �

Example 2.4. Consider a polynomial of degree three in three variables

F = a0x
3 + a1x

2y + a2x
2z + a3xy

2 + a4xyz + a5xz
2 + a6y

3 + a7y
2z + a8yz

2 + a9z
3.

The variety X1,2 is de�ned by

rank

 Fx
Fy
Fz

 = rank

 3a0 2a1 2a2 a3 a4 a5
a1 2a3 a4 3a6 2a7 a8
a2 a4 2a5 a7 2a8 3a9

 ≤ 2.

Consider the projective space P17 of 3× 6 matrix with homogeneous coordinates

X0,0, ..., X0,5, X1,0, ..., X1,5, X2,0, ..., X2,5.

The determinantal variety M2 de�ned by

rank

 X0,0 X0,1 X0,2 X0,3 X0,4 X0,5

X1,0 X1,1 X1,2 X1,3 X1,4 X1,5

X2,0 X2,1 X2,2 X2,3 X2,4 X2,5

 ≤ 2

is irreducible of dimension 17− 4 = 13. The linear space

H =



2X1,0 −X0,1 = 0,
2X2,0 −X0,2 = 0,
2X0,3 −X1,1 = 0,
X0,4 −X1,2 = 0,
2X0,5 −X2,2 = 0,
2X2,3 −X1,4 = 0,
2X2,4 −X1,5 = 0,
X0,4 −X2,1 = 0.

cuts out on M2 the variety X1,2, which is irreducible of dimension 5 = dim(Sec2(V 2
3 )).

Remark 2.5. Considering a polynomial F ∈ k[x, y, z]4 and proceeding as in example 2.4 one get
dim(X1,2) = 6, so

Sec2(V 2
4 ) $ X1,2.

Proposition 2.6. Let d = 2k be an even integer such that
(
n+k
k

)
≥ Nd−k, where Nd−k =

(
d−k+n
n

)
−

1. The variety Xk,Nd−k
is an irreducible hypersurface of degree

(
n+k
k

)
in PN .
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Proof. The map π2 : Ik,Nd−k
→ G(Nd−k − 1, Nd−k) ∼= PNd−k is dominant, so Ik,Nd−k

and Xk,Nd−k

are irreducible. The assertion follows observing that Xk,Nd−k
is de�ned by the vanishing of the

determinant of a
(
n+k
k

)
×
(
n+k
k

)
matrix. �

Let us look at some consequences of the previous proposition.

Example 2.7. Consider a polynomial

F = a0x
4 + a1x

3y + a2x
3z + a3x

2y2 + a4x
2yz + a5x

2z2 + a6xy
3 + a7xy

2z + a8xyz
2

+a9xz
3 + a10y

4 + a11y
3z + a12y

2z2 + a13yz
3 + a14z

4.

The map π2 : I2,4 → G(3, 5) is dominant, so X2,4 is irreducible. Let Z0, Z1, Z2, Z3, Z4, Z5 be

homogeneous coordinates on P5 corresponding to x2, xy, xz, y2, yz, z2 respectively. To compute the

dimension of the general �ber of π2 we can take the 3− plane H = {Z0 = Z3 = 0} which intersect

V 2
2 in a subscheme of dimension zero. Computing the second partial derivatives of F it turns out

that

π−12 (H) = {a0 = a1 = a2 = a3 = a4 = a5 = a6 = a7 = a10 = a11 = a12 = 0}.
So dim(π−12 (H)) = 14− 11 = 3 and dim(X2,4) = 3 + 8 = 11. Since dim(Sec4V 2

4 ) = 11 we get

Sec4V 2
4 = X2,4.

Consider now π2 : I2,5 → P5. This map is dominant, so X2,5 is irreducible. We have dim(π−12 (H)) =
14− 6 = 8, where H = {Z0 = 0}. So dim(X2,5) = 13 and

Sec5V 2
4 = X2,5

is an hypersurface of degree 6 in P14.

Consider now the case d = 4, n = 3, h = 9 and the second partial derivatives. The map π2 :
I2,9 → P9 is dominant and X2,9 is irreducible. The general �ber of π2 has dimension 24. Then

dim(X2,9) = 24 + 9 = 33 and

Sec9V 3
4 = X2,9

is an hypersurface of degree 10 in P34.

Finally in the case d = 4, n = 4, h = 14 as before one can verify that X2,14 is irreducible of

dimension 68, so
Sec14V 4

4 = X2,14

is an hypersurface of degree 15 in P69.

Example 2.8. Consider now a polynomial F ∈ k[x, y, z]6 and the partial derivative of order 3.
For h = 8, 9 the map π2 is dominant, so X3,8 and X3,9 are irreducible. First let us take h = 8.

Proceeding as before we get dim(π−12 (H)) = 27 − 19 = 8 and dim(X3,8) = 24. So Sec8V 2
6 ⊂ X3,8

is a divisor.

In the case h = 9 we have dim(π−12 (H)) = 27− 10 = 17 and dim(X3,9) = 17 + 9 = 26. So

Sec9V 2
6 = X3,9

is an hypersurface of degree 10 in P27.

2.2. Secant varieties of rational normal curves. We begin with the simplest case n = 1. We
denote by Cd ⊂ Pd the degree d rational normal curve, in this case Sech(Cd) 6= Pd if and only if
h ≤ d

2 .

Lemma 2.9. Let F =
∑
i+j=d αi,jx

i
0x
j
1 ∈ k[x0, x1]d be a homogeneous polynomial, and let c =

c(αi,j) be the coe�cient of xh0 in the partial derivative ∂d−hF
∂xm

0 ∂x
s
1
, with h ≥ 1. Then c = C · αd−s,s,

where C is a constant.

Proof. Since the only monomial of F producing c is xd−s0 xs1 the assertion follows. �
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Theorem 2.10. For any h ≤ d
2 we have Sech(Cd) = Xd−h,h. Consequently if the partial derivatives

of order d− h of a homogeneous polynomial F ∈ k[x0, x1]d lie in a hyperplane of Ph then [F ] lies
in Sech(Cd).

Proof. The partial derivatives of order d−h of F are d−h+ 1 homogeneous polynomials of degree

h. If F =
∑h
i=1 λiL

d
i the partial derivatives lie in 〈Lh1 , ..., Lhh〉 which is a hyperplane h-secant to

Ch, but deg(Ch) = h and the latter condition is irrelevant. Let H be a general hyperplane in Ph,
forcing the partial derivatives of a degree d polynomial G =

∑
i+j=d αi,jx

i
0x
j
1 ∈ k[x0, x1]d to lie

in H gives d − h + 1 linear equations in the coe�cients of G. Without loss of generality we can
suppose H to be the de�ned by the vanishing of the �rst homogeneous coordinate on Ph, then by
2.9 the �ber of π2 is the linear subspace of PN de�ned by

π−12 (H) = {αd−s,s = 0, ∀ s = 0, ..., d− h}.

The equations of π−12 (H) are independent so

dim(π−12 (H)) = d− (d− h+ 1) = h− 1,

and the dimension of Xd−h,h is

dim(Xd−h,h) = dim(Id−h,h) = h− 1 + h = 2h− 1.

Finally dim(Sech(Cd)) = h+ h− 1 = 2h− 1 yields Sech(Cd) = Xd−h,h. �

Remark 2.11. The partial derivatives of order d − h of a homogeneous polynomial F ∈ k[x0, x1]d
depend on d + 1 parameters. We consider the matrix Md,h whose lines are the partial deriva-
tives. From 2.10 we get equations for Sech(Cd) imposing rank(Md,h) ≤ h, that is the classical
determinantal description of Sech(Cd).

Proposition 2.12. If [F ] ∈ Sech(Cd) is general then its decomposition in powers of linear forms

is unique.

Proof. Let H∂ ⊂ Ph be the hyperplane spanned by the partial derivatives of order d−h of F . Since
deg(Ch) = h and F is general we have H∂ · Ch = {Lh1 , ..., Lhh}. Then {L1, ..., Lh} is the unique
h-polyhedron of F . �

Theorem 2.10 and proposition 2.12 immediately suggest an algorithm.

Construction 2.13. Given F ∈ k[x0, x1]d to establish if F admits a decomposition in h ≤ d
2 linear

forms, and eventually to �nd it we proceed as explained in the following diagram.

{Compute dim(H∂)}

{F admits a h− polyhedron}

{Compute H∂ · Ch}{F does not admit a h− polyhedron}

dim(H∂)=h

dim(H∂)=h−1

Then H∂ · Ch = {Lh1 , ..., Lhh} and F =
∑h
i=1 λiL

d
i .

Example 2.14. Consider the case d = 4, h = 2 and write F =
∑
i0+i1=4 αi,jx

i
0x
j
1. Forcing

∂2F
∂x0∂x1

∈ 〈∂
2F
∂x2

0
, ∂

2F
∂x2

1
〉 we get

Sec2(C4) = {54α2
3,1α0,4 − 18α3,1α2,2α1,3 − 144α4,0α2,2α0,4 + 4α3

2,2 + 54α4,0α
2
1,3 = 0}.

Now consider the polynomial

F = 9(x40 + x30x1 + x20x1 + x0x
3
1) + 4x41.
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The second partial derivatives of F lie on the line

H∂ = {X0 − 3X1 + 3X2 = 0} ⊂ Proj(k[x0, x1]2).

Now we have to compute the intersection H∂ · C2, where C2 = {X2
1 − 4X0X2 = 0} is the conic

parametrizing squares of linear forms, we have

H∂ · C2 = {[15 + 6
√

6 : 6 + 2
√

6 : 1], [15− 6
√

6 : 6− 2
√

6 : 1]}.
Finally we compute the linear forms giving the decomposition

L1 = 5.44948x0 + x1 and L2 = 0.55051x0 + x1.

Now we consider the variety Xd−1,h. First we compute the dimension of the general �ber of
π2 : Id−1,h → G(h− 1, n).

Theorem 2.15. The �ber of π2 : Id−1,h → G(h− 1, n) on a general (h− 1)-plane H ∈ G(h− 1, n)
is a linear subspace of PN of dimension

dim(π−12 (H)) =

(
d+ h− 1

d

)
− 1.

Furthermore the dimension of Xd−1 is given by

dim(Xd−1,h) = h(n− h+ 1) +

(
d+ h− 1

d

)
− 1.

Proof. We can suppose H = {X0 = ... = Xn−h = 0}, where {X0, ..., Xn} are homogeneous
coordinates on Pn. We write a general polynomial [F ] ∈ PN in the form

F =
∑

i0+...+in=d

αi0,...,inx
i0
0 ...x

in
n .

The �ber π−12 (H) is the linear subspace of PN de�ned by the vanishing of the coe�cients of
x0, ..., xn−h in the derivatives of F . Many of these equations are redundant, the di�culty is in

counting the exact number of independent equations. We prove that this number is
(
d+n−1
d−1

)
+(

d+n−1
d

)
−
(
d+h−1
d

)
by induction on n−h. If n−h = 0 then H is an hyperplane and the condition on

the derivatives are all independent, so the number of conditions is exactly the number of derivatives(
d−1+n
d−1

)
. Furthermore our formula for n−h = 0 gives

(
d+n−1
d−1

)
+
(
d+n−1

d

)
−
(
d+n−1

d

)
=
(
d+n−1
d−1

)
, and

the case n− h = 0 is veri�ed. Consider now the general case, let H = {X0 = ... = Xn−h−1 = 0},
let Cn−h−1 the number of independent conditions obtained forcing the partial derivatives to lie in
H. Adding the condition {Xn−h = 0} gives new equations coming from the coe�cients of the form
α0,...,0,in−h,in−h+1,...,in , with in−h 6= 0. These corresponds to monomials of degree d in the variables
xn−h, ..., xn that contain the variable xn−h. Now the monomials of degree d not containing xn−h
are the monomials of degree d in xn−h+1, ..., xn. So in the �nal step we are adding(

d+ h

d

)
−
(
d+ h− 1

d

)
conditions. Then the number if independent equations is Cn−h = Cn−h−1 +

(
d+h
d

)
−
(
d+h−1
d

)
, by

induction hypothesis

Cn−h−1 =

(
d+ n− 1

d− 1

)
+

(
d+ n− 1

d

)
−
(
d+ n− (n− h− 1)− 1

d

)
.

So Cn−h =
(
d+n−1
d−1

)
+
(
d+n−1

d

)
−
(
d+n−(n−h−1)−1

d

)
+
(
d+h
d

)
−
(
d+h−1
d

)
=
(
d+n−1
d−1

)
+
(
d+n−1

d

)
−
(
d+h−1
d

)
.

Finally we have dim(Xd−1,h) = dim(G(h− 1, n)) + dim(π−12 (H)) = h(n−h+ 1) +
(
d+h−1
d

)
− 1. �

Proposition 2.16. If h ≤ n. The variety X1,h is irreducible.
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Proof. By Lemma 2.3 it is equivalent to prove that Xd−1,h is irreducible. Consider the map
π2 : Id−1,h → G(h − 1, n). By Theorem 2.15 the general �ber of π2 is a linear subspace of

PN of dimension dim(π−12 (H)) =
(
d+h−1
d

)
− 1 and π2 is surjective on G(h − 1, n), so Xd−1,h is

irreducible. �

In the cases d = 2 and d = 3, h = 2 we have that dim(X1,h) = dim(Sech(V nd )), since X1,h is
irreducible we get Sech(V nd ) = X1,h. So if the �rst partial derivatives of a polynomial F span a
linear space of dimension h− 1 then F can be decomposed into a sum of h powers of linear forms.

Remark 2.17. Consider the case d = 2. By Alexander-Hirshowitz theorem, see [AH], Sech(V n2 ) 6=
PN if and only if h ≤ n. By theorem 2.15 and remark 2.2 we recover the e�ective dimension of
Sech(V n2 ),

dim(Sech(V n2 )) =
2nh− h2 + 3h− 2

2
,

and consequently the formula for the h-secant defect of V n2 ,

δh(V n2 ) =
h(h− 1)

2
.

Up to now we have a complete description for polynomials of arbitrary degree in two variables
and for polynomials of degree two in any number of variables. So we concentrate on the case n ≥ 2
and d ≥ 3.

Theorem 2.18. Let n ≥ 2, d ≥ 3, h ≤ n be positive integers. Then Sech(V nd ) is a subvariety of

Xd−1,h of codimension

codimSech(V n
d )(Xd−1,h) =

(
d+ h− 1

d

)
− h2.

Proof. Since n ≥ 2, d ≥ 3, and h ≤ n, by Alexander-Hirshowitz theorem the e�ective dimension
of Sech(V nd ) is the expected one

dim(Sech(V nd )) = min{hn+ (h− 1), Nd}.
Furthermore n ≥ 2, d ≥ 3, h ≤ n implies hn+ (h− 1) < Nd. So

dim(Sech(V nd )) = hn+ (h− 1).

Finally codimSech(V n
d )(Xd−1,h) = h(n− h+ 1) +

(
d+h−1
d

)
− 1− hn− (h− 1) =

(
d+h−1
d

)
− h2. �

Corollary 2.19. If d = 3 then Sec2(V n3 ) = X2,2 for any n ≥ 2. Consequently if the second

partial derivatives of a homogeneous polynomial F ∈ k[x0, ..., xn]3 lie in a line of Pn then [F ] lies
in Sec2(V n3 ).

Proof. For h = 2, d = 3 we have
(
d+h−1
d

)
− h2 = 0. We conclude by theorem 2.18. �

3. The first secant variety of V nd

We focus on the case h = 2 without any assumptions on d and n. We will use the equality
n∑
k=0

(
d− 1 + k

d− 1

)
=

(
d+ n

d

)
,

which can be easily proved by induction on n.

Theorem 3.1. If h = 2 for the �rst secant variety of V nd we have

Sec2(V nd ) = X2,d−2

for any n and d ≥ 3.
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Proof. Consider the diagram

I2,d−2 = {(F,H) | ∈ F ll0,...,ln ∈ H, ∀ l0 + ...+ ln = d− 2} ⊂ PN ×G(1, N2)

PN G(1, N2)

π2π1

clearly S2V n2 ⊆ Im(π2). Let F ∈ k[x0, ..., xn]d be a polynomial whose partial derivatives of order
d− 2 lie on a line H ⊂ PN2 . The derivatives of order d− 3 of F are cubic polynomials whose �rst
partial derivatives are collinear. By 2.19 X2,1 = X2,2 = Sec2V n3 , so if we denote by G a partial
derivative of order d− 3 of F we get a decomposition G = L3

1 + L3
2. Then Gx0

, ..., Gxn
(which are

partial derivatives of order d−2 of F ) lie on the line 〈L2
1, L

2
2〉, and so the line containing the partial

derivative of order d− 2 of F is exactly the secant line to V n2 given by 〈L2
1, L

2
2〉. This means that

S2V n2 = Im(π2).

Since the �ber of π2 are linear spaces we conclude that I2,d−2 and X2,d−2 are irreducible.
We compute now the dimension of the �ber of π2. We �x on PN2 homogeneous coordinates
Z0, ..., ZN2 corresponding to the monomials in lexicographic order x20, x0x1, ..., x

2
n, and consider

the line H = {Z0 = Z1 = ... = ZN2−2 = 0}.
First consider monomials containing x0. Forcing the derivatives to lie in {Z0 = 0} we get

(
d−2+n
n

)
conditions (the monomials containing x20, whose number is equal to the number of degree d −
2 monomials in x0, ..., xn). Imposing {Z1 = 0} we get

(
d−2+n−1
n−1

)
conditions (the monomials

containing x0x1, whose number is equal to the number of degree d − 2 monomials in x1, ..., xn).

Proceeding in this way forcing {Zn = 0} we get
(
d−2+n−n
n−n

)
= 1 condition (the monomials containing

x0xn, whose number is equal to the number of degree d− 2 monomials in xn). Up to now we have

n∑
k=0

(
d− 2 + k

k

)
=

(
d− 1 + n

d− 1

)
conditions.
Consider now the monomials containing x1. Forcing {Zn+1 = 0} we get

(
d−2+n−1
n−1

)
conditions

(the monomials containing x21, whose number is equal to the number of degree d − 2 monomials

in x1, ..., xn). Imposing {Zn+2 = 0} we get
(
d−2+n−2
n−2

)
conditions (the monomials containing x1x2,

whose number is equal to the number of degree d− 2 monomials in x2, ..., xn). Proceeding in this
way we get

n−1∑
k=0

(
d− 2 + k

k

)
=

(
d− 1 + n− 1

d− 1

)
conditions.
At the step xn−2 we have

2∑
k=0

(
d− 2 + k

k

)
=

(
d− 1 + 2

d− 1

)
more conditions. At the step xn−1 we have only to force {ZN2−2 = 0}, and we get

(
d−1
1

)
= d− 1

conditions.
Summing up the �ber π−12 (H) is a linear subspace of PN de�ned by

n∑
k=2

(
d− 1 + k

d− 1

)
+ d− 1 =

n∑
k=0

(
d− 1 + k

d− 1

)
− 1− d+ d− 1 =

(
d+ n

d

)
− 2
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equations. So the �ber has dimension

dim(π−12 (H)) = N −
(
d+ n

d

)
+ 2 =

(
d+ n

d

)
− 1−

(
d+ n

d

)
+ 2 = 1.

Finally we look at the map π2 : I2,d−2 → S2V n2 , since π2 is dominant we have

dim(X2,d−2) = dim(I2,d−2) = 2n+ 1.

Since dim(Sec2V nd ) = 2n+ 1 the assertion follows. �

The case n = 2, h = 4. In the same spirit of Theorem 3.1 we obtain the following result.

Theorem 3.2. If n = 2, h = 4 for the variety of 4-secant 3-planes of V 2
d we have

Sec4(V 2
d ) = X4,b d2 c

for any d ≥ 2.

Proof. The case d = 4 is example 2.7. Consider now the case d = 5. The map π2 : I4,3 → G(3, 5)
is dominant, so X4,3 and hence X4,2 are irreducible. Let F ∈ k[x, y, z]5 be a polynomial, looking
at the proof of theorem 3.1 we get that forcing the partial derivatives of order 3 of F to lie in
{Z0 = Z3 = 0} gives(

5− 2 + 2

2

)
+

(
5− 2 + 2

2

)
− ]{monomials containing x2y2} = 20− 3 = 17

conditions. Since dim(X4,2) = dim(X4,3) = 20− 17 + dim(G(3, 5)) = 11 we conclude

Sec4(V 2
5 ) = X4,2.

Consider the case d = 6 and the partial derivative of order 3. If the 3-th derivatives of F lie
in a 3-plane then the �rst partial derivative of F are degree 5 polynomials whose second partial
derivatives lie in a 3-plane. By the same trick of Theorem 3.1 we prove that the 3-plane containing
the 3-th partial derivative has to be 4 secant to V 2

3 . So X4,3 is irreducible, and as usual by counting
dimension we get the equality

Sec4(V 2
6 ) = X4,3.

Now we treat the general case by induction on d. Let F ∈ k[x, y, z]d be a polynomial whose
bd2c-th derivative lies in a 3-plane. Then the �rst partial derivative of F are polynomials of degree

d − 1 whose bd−12 c-th derivatives lie in a 3-plane. So Fx, Fy, Fz can be decomposed as sums of
four powers of linear forms. As before we conclude that the map π2 : I4,b d2 c → G(3, Nd−b d2 c

) is

dominant, so X4,b d2 c
is irreducible. By combinatorial calculations similar to previous we compute

dim(X4,b d2 c
) = dim(Sec4(V 2

d )). �

Remark 3.3. In a completely analogous way one can show that Sec5(V 2
d ) is de�ned by size 6 minors

of the matrix of partial derivatives of order bd2c for d = 4 and d ≥ 6.
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