THE 2-SECANT VARIETIES OF THE VERONESE EMBEDDING

ALEX MASSARENTI

Cortona - July 4, 201 $\underbrace{1}$

Abstract

We prove that a general polynomial $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ admits a decomposition as sum of $h=2$ powers of linear forms if and only if its second partial derivatives lie on a line. In this way we work out set-theoretical equations for the variety of secant lines $\operatorname{Sec}_{2}\left(V_{d}^{n}\right)$ of the Veronese variety V_{d}^{n}. In Ka V. Kanev, adopting a different approach, proved that the same equations cut out ideal-theoretically $\operatorname{Sec}_{2}\left(V_{d}^{n}\right)$.

Contents

Introduction 1

1. Preliminaries on secant varieties 2
2. Veronese embedding and homogeneous polynomials 3
2.1. Catalecticant Varieties 4
2.2. Secant varieties of rational normal curves 5
3. The first secant variety of V_{d}^{n} 8
References 10

Introduction

A variation on the Waring problem (coming from a question in number theory stated by E. Waring in 1770 , see Wa, which states that every integer is a sum of at most 9 positive cubes) asked which is the minimum positive integer h such that the generic polynomial of degree d on \mathbb{P}^{n} admits a decomposition as a sum of $h d$-powers of linear forms.
In 1995 J . Alexander and A. Hirshowitz solved completely this problem over an algebraically closed base field k of characteristic zero, see AH . They proved that the minimum integer h is the expected one $h=\left\lfloor\frac{1}{n+1}\binom{n+d}{d}\right\rfloor$, except in the following cases:

n	d	h
n	2	$2 \leq h \leq n$
2	4	5
3	4	9
4	3	7
4	4	14

Polynomials often appear in issues of applied mathematics, As instance in signal theory [CM, algebraic complexity theory $[$ BCS , coding and information theory [Ro]. In particular issues related to decompositions of homogeneous polynomials in sums of powers are of particular interest in signal theory and clearly in pure mathematics. Indeed degree d homogeneous polynomials can be seen as points if the projective space $\mathbb{P}^{N}=\operatorname{Proj}\left(k\left[x_{0}, \ldots, x_{n}\right]_{d}\right)$, while d-powers of linear forms are

[^0]ALEX MASSARENTI
parametrized by the Veronese variety $V_{d}^{n} \subset \mathbb{P}^{N}$. Therefore the geometric counterpart of this type of problems is the study of secant varieties to Veronese varieties. There is a line of research that studies varieties parametrizing decomposition of the form

$$
F=L_{1}^{d}+\ldots+L_{h}^{d}
$$

of a general homogeneous polynomial $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$. These varieties, called varieties of sums of powers, $V S P$ for short are the main object of a series of papers [DK], [IK], [RS, [MM] for a birational approach, and [Do for a survey on the theme.
However, for applied sciences, is more interesting to determine:

- whether a polynomial admits a decomposition into a number of linear forms,
- and eventually to calculate explicitly the decomposition.

We focus the attention on the case $\operatorname{Sec}_{h}\left(V_{d}^{n}\right) \varsubsetneqq \mathbb{P}^{N}$ and adopt the philosophy dictated by the following trivial but crucial statement:
"If $F=\sum_{i=1}^{h} \lambda_{i} L_{i}^{d}$ then its partial derivatives of order l lie in the linear space $\left\langle L_{1}^{d-l}, \ldots, L_{h}^{d-l}\right\rangle$ for any $l=1, \ldots, d-1$."
In the case $n=2$ we prove that in order to establish if a homogeneous polynomials $F \in k\left[x_{0}, x_{1}\right]_{d}$ admits a decomposition as sum of h powers it is enough to verify that $\operatorname{dim}\left(H_{\partial}\right) \leq h-1$, where H_{∂} is the linear space spanned by the partial derivatives of order $d-h$ of F. Furthermore, if $\operatorname{dim}\left(H_{\partial}\right)=h-1$ we get a method to work out the linear forms related to $F, 2.13$. Finally trying to extend the method in higher dimension we compute the dimension of the linear space of polynomials whose $(d-1)$-derivatives lie in a general linear subspace $H \subset\left(\mathbb{P}^{N}\right)^{*}$, this space is also called the $(d-1)$-prolongation of H. Consequently we find the formula for the dimension of $\operatorname{Sec}_{h}\left(V_{2}^{n}\right)$, and the secant defect of V_{2}^{n}. Furthermore we obtain a criterion to determine whether a polynomial admits a decomposition in the cases $d=2$ and $d=3, h=2$.
Finally, in theorem 3.1, we will prove that a general polynomial $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ admits a decomposition as sum of $h=2$ powers of linear forms if and only if its second partial derivatives lie on a line. In Ka] V. Kanev, adopting a different approach, proved that the same conditions cut out ideal-theoretically $\operatorname{Sec}_{2}\left(V_{d}^{n}\right)$.

1. Preliminaries on secant varieties

Let $X \subset \mathbb{P}^{N}$ be an irreducible and reduced non degenerate variety,

$$
\Gamma_{h}(X) \subset X \times \ldots \times X \times \mathbb{G}(h-1, N)
$$

the reduced closure of the graph of

$$
\alpha: X \times \ldots \times X \longrightarrow \mathbb{G}(h-1, N)
$$

taking h general points to their linear span $\left\langle x_{1}, \ldots, x_{h}\right\rangle$. Observe that $\Gamma_{h}(X)$ is irreducible and reduced of dimension $h n$. Let $\pi_{2}: \Gamma_{h}(X) \rightarrow \mathbb{G}(h-1, N)$ be the natural projection. Denote by

$$
\mathbb{S}_{h}(X):=\pi_{2}\left(\Gamma_{h}(X)\right) \subset \mathbb{G}(h-1, N)
$$

Again $\mathbb{S}_{h}(X)$ is irreducible and reduced of dimension $h n$. Finally let

$$
\mathcal{I}_{h}=\{(x, \Lambda) \mid x \in \Lambda\} \subset \mathbb{P}^{N} \times \mathbb{G}(h-1, N)
$$

with natural projections π_{h} and ψ_{h} onto the factors. Furthermore observe that $\psi_{h}: \mathcal{I}_{h} \rightarrow \mathbb{G}(h-$ $1, N)$ is a \mathbb{P}^{h-1}-bundle on $\mathbb{G}(h-1, N)$.
Definition 1.1. Let $X \subset \mathbb{P}^{N}$ be an irreducible and reduced, non degenerate variety. The abstract h-Secant variety is the irreducible and reduced variety

$$
\operatorname{Sec}_{h}(X):=\left(\psi_{h}\right)^{-1}\left(\mathbb{S}_{h}(X)\right) \subset \mathcal{I}_{h} .
$$

While the h-Secant variety is

$$
\operatorname{Sec}_{h}(X):=\pi_{h}\left(\operatorname{Sec}_{h}(X)\right) \subset \mathbb{P}^{N}
$$

It is immediate that $\operatorname{Sec}_{h}(X)$ is a $(h n+h-1)$-dimensional variety with a \mathbb{P}^{h-1}-bundle structure on $\mathbb{S}_{h}(X)$. One says that X is h-defective if

$$
\operatorname{dim} \operatorname{Sec}_{h}(X)<\min \left\{\operatorname{dim}_{\operatorname{Sec}}^{h}(X), N\right\} .
$$

2. Veronese embedding and homogeneous polynomials

Let $\nu: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N_{d}}$ be the d-Veronese embedding, and let $V_{d}^{n}=\nu\left(\mathbb{P}^{n}\right)$ be its image. Let $[F] \in \mathbb{P}^{N}=\operatorname{Proj}\left(k\left[x_{0}, \ldots, x_{n}\right]_{d}\right)$ be a degree d homogeneous polynomial. Fixed a positive integer h such that $\operatorname{Sec}_{h}\left(V_{d}^{n}\right) \neq \mathbb{P}^{N}$ we want to determine whether $[F] \in \operatorname{Sec}_{h}\left(V_{d}^{n}\right)$. We begin with the following simple observation:
Remark 2.1. If $F=\sum_{i=1}^{h} \lambda_{i} L_{i}^{d}$ then its partial derivatives of order l lie in the linear space $\left\langle L_{1}^{d-l}, \ldots, L_{h}^{d-l}\right\rangle$ for any $l=1, \ldots, d-1$.

The partial derivatives of order l are $\binom{n+l}{l}$ homogeneous polynomials of degree $d-l$, so the previous observation is meaningful when $h<\binom{n+l}{l}$ and $h<\binom{d-l+n}{n}$. The latter condition ensures that $\left\langle L_{1}^{d-l}, \ldots, L_{h}^{d-l}\right\rangle$ is a proper subspace of the projective space $\mathbb{P}^{N_{d-l}}$ parametrizing homogeneous polynomials of degree $d-l$. Consider the partial derivatives $F_{l_{0}, \ldots, l_{n}}^{l}:=\frac{\partial^{l} F}{\partial x_{0}^{l_{0}}, \ldots, \partial x_{n}^{l_{n}^{n}}}$ and the incidence variety

$$
\mathcal{I}_{l, h}=\left\{(F, H) \mid \in F_{l_{0}, \ldots, l_{n}}^{l} \in H, \forall l_{0}+\ldots+l_{n}=l\right\} \subset \mathbb{P}^{N} \times \mathbb{G}\left(h-1, N_{d-l}\right)
$$

Let $\mathbb{S}_{h} V_{d-l}^{n} \subseteq \mathbb{G}\left(h-1, N_{d-l}\right)$ be the abstract h-secant variety of V_{d-l}^{n}. Note that when $h<\binom{n+l}{l}$ the map π_{1} is generically injective. Let $X_{l, h}=\pi_{1}\left(\mathcal{I}_{l, h}\right) \subseteq \mathbb{P}^{N}$ be its image. By remark 2.1 we have $\operatorname{Sec}_{h}\left(V_{d}^{n}\right) \subseteq X_{l, h}$. We want to find cases when the equality holds in order to get a simple criterion to establish whether $[F] \in \operatorname{Sec}_{h}\left(V_{d}^{n}\right)$.

Remark 2.2. The equality holds trivially when $d=2$. Let $F \in k\left[x_{0}, \ldots, x_{n}\right]_{2}$ be a polynomial and let \mathcal{M}_{F} be the matrix of the quadratic symmetric form associated to F. Then $F \in \operatorname{Sec}_{h}\left(V_{2}^{n}\right)$ if and only if $\operatorname{rank}\left(\mathcal{M}_{F}\right) \leq h$. On the other hand the rows of \mathcal{M}_{F} are exactly the partial derivatives of F.

The Waring rank. Let \bar{h} be the smallest integer such that $\operatorname{Sec}_{h}\left(V_{d}^{n}\right)=\mathbb{P}^{N}$. By a dimensions computation we expect:

$$
\bar{h}=\left\lceil\frac{1}{n+1}\binom{n+d}{d}\right\rceil .
$$

This is almost always true, J. Alexander and A. Hirschowitz in AH] proved that the following are the only exceptional cases:

d	n	\bar{h}
2	arbitrary	$n+1$
3	4	8
4	2	6
4	3	10
4	4	15

2.1. Catalecticant Varieties. Let us look closer at the variety $X_{l, h}$. This variety parametrizes polynomials $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ whose partial derivatives of order l span a $(h-1)$-plane. Let $\mathcal{M}_{l, h}$ be the $\binom{n+l}{l} \times\binom{ n+d-l}{d-l}$ matrix whose lines are the l-th derivatives of $F=\sum_{i_{0}+\ldots+i_{n}=d} \alpha_{i_{0}, \ldots, i_{n}} x_{0}^{i_{0}} \ldots x_{n}^{i_{n}}$. Then $X_{l, h}$ is the determinantal variety defined in \mathbb{P}^{N} by $\operatorname{rank}\left(\mathcal{M}_{l, h}\right) \leq h$, where the $\alpha_{i_{0}, \ldots, i_{n}}$ are the homogeneous coordinates on \mathbb{P}^{N}. Let \mathbb{P}^{M} be the projective space parametrizing $\binom{n+l}{l} \times\binom{ n+d-l}{d-l}$ matrices, and let $M_{h} \subset \mathbb{P}^{M}$ be the variety of matrices of rank less or equal than h. Then M_{h} is a irreducible variety of dimension $M-\left(\binom{n+l}{l}-h\right) \cdot\left(\binom{n+d-l}{d-l}-h\right)$. Clearly the variety $X_{l, h}$ is a special linear section of M_{h}.

Lemma 2.3. The varieties $X_{l, h}$ and $X_{d-l, h}$ are isomorphic.
Proof. The matrix $\mathcal{M}_{d-l, h}$ whose lines are the $(d-l)$-th partial derivatives of F is the $\binom{n+d-l}{d-l} \times\binom{ n+l}{l}$ matrix given by

$$
\mathcal{M}_{d-l, h}=\mathcal{M}_{l, h}^{t}
$$

where $\mathcal{M}_{l, h}^{t}$ is the transposed matrix of $\mathcal{M}_{d-l, h}$. Then the assertion follows.
Example 2.4. Consider a polynomial of degree three in three variables

$$
F=a_{0} x^{3}+a_{1} x^{2} y+a_{2} x^{2} z+a_{3} x y^{2}+a_{4} x y z+a_{5} x z^{2}+a_{6} y^{3}+a_{7} y^{2} z+a_{8} y z^{2}+a_{9} z^{3}
$$

The variety $X_{1,2}$ is defined by

$$
\operatorname{rank}\left(\begin{array}{c}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right)=\operatorname{rank}\left(\begin{array}{cccccc}
3 a_{0} & 2 a_{1} & 2 a_{2} & a_{3} & a_{4} & a_{5} \\
a_{1} & 2 a_{3} & a_{4} & 3 a_{6} & 2 a_{7} & a_{8} \\
a_{2} & a_{4} & 2 a_{5} & a_{7} & 2 a_{8} & 3 a_{9}
\end{array}\right) \leq 2
$$

Consider the projective space \mathbb{P}^{17} of 3×6 matrix with homogeneous coordinates

$$
X_{0,0}, \ldots, X_{0,5}, X_{1,0}, \ldots, X_{1,5}, X_{2,0}, \ldots, X_{2,5}
$$

The determinantal variety M_{2} defined by

$$
\operatorname{rank}\left(\begin{array}{cccccc}
X_{0,0} & X_{0,1} & X_{0,2} & X_{0,3} & X_{0,4} & X_{0,5} \\
X_{1,0} & X_{1,1} & X_{1,2} & X_{1,3} & X_{1,4} & X_{1,5} \\
X_{2,0} & X_{2,1} & X_{2,2} & X_{2,3} & X_{2,4} & X_{2,5}
\end{array}\right) \leq 2
$$

is irreducible of dimension $17-4=13$. The linear space

$$
H=\left\{\begin{array}{l}
2 X_{1,0}-X_{0,1}=0 \\
2 X_{2,0}-X_{0,2}=0 \\
2 X_{0,3}-X_{1,1}=0 \\
X_{0,4}-X_{1,2}=0 \\
2 X_{0,5}-X_{2,2}=0 \\
2 X_{2,3}-X_{1,4}=0 \\
2 X_{2,4}-X_{1,5}=0 \\
X_{0,4}-X_{2,1}=0
\end{array}\right.
$$

cuts out on M_{2} the variety $X_{1,2}$, which is irreducible of dimension $5=\operatorname{dim}\left(\operatorname{Sec}_{2}\left(V_{3}^{2}\right)\right)$.
Remark 2.5. Considering a polynomial $F \in k[x, y, z]_{4}$ and proceeding as in example 2.4 one get $\operatorname{dim}\left(X_{1,2}\right)=6$, so

$$
\operatorname{Sec}_{2}\left(V_{4}^{2}\right) \varsubsetneqq X_{1,2}
$$

Proposition 2.6. Let $d=2 k$ be an even integer such that $\binom{n+k}{k} \geq N_{d-k}$, where $N_{d-k}=\binom{d-k+n}{n}-$ 1. The variety $X_{k, N_{d-k}}$ is an irreducible hypersurface of degree $\binom{n+k}{k}$ in \mathbb{P}^{N}.

Proof. The map $\pi_{2}: \mathcal{I}_{k, N_{d-k}} \rightarrow \mathbb{G}\left(N_{d-k}-1, N_{d-k}\right) \cong \mathbb{P}^{N_{d-k}}$ is dominant, so $\mathcal{I}_{k, N_{d-k}}$ and $X_{k, N_{d-k}}$ are irreducible. The assertion follows observing that $X_{k, N_{d-k}}$ is defined by the vanishing of the determinant of a $\binom{n+k}{k} \times\binom{ n+k}{k}$ matrix.

Let us look at some consequences of the previous proposition.
Example 2.7. Consider a polynomial

$$
\begin{aligned}
& F=a_{0} x^{4}+a_{1} x^{3} y+a_{2} x^{3} z+a_{3} x^{2} y^{2}+a_{4} x^{2} y z+a_{5} x^{2} z^{2}+a_{6} x y^{3}+a_{7} x y^{2} z+a_{8} x y z^{2} \\
& +a_{9} x z^{3}+a_{10} y^{4}+a_{11} y^{3} z+a_{12} y^{2} z^{2}+a_{13} y z^{3}+a_{14} z^{4}
\end{aligned}
$$

The map $\pi_{2}: \mathcal{I}_{2,4} \rightarrow \mathbb{G}(3,5)$ is dominant, so $X_{2,4}$ is irreducible. Let $Z_{0}, Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$ be homogeneous coordinates on \mathbb{P}^{5} corresponding to $x^{2}, x y, x z, y^{2}, y z, z^{2}$ respectively. To compute the dimension of the general fiber of π_{2} we can take the 3 - plane $H=\left\{Z_{0}=Z_{3}=0\right\}$ which intersect V_{2}^{2} in a subscheme of dimension zero. Computing the second partial derivatives of F it turns out that

$$
\pi_{2}^{-1}(H)=\left\{a_{0}=a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=a_{6}=a_{7}=a_{10}=a_{11}=a_{12}=0\right\}
$$

So $\operatorname{dim}\left(\pi_{2}^{-1}(H)\right)=14-11=3$ and $\operatorname{dim}\left(X_{2,4}\right)=3+8=11$. Since $\operatorname{dim}\left(\operatorname{Sec}_{4} V_{4}^{2}\right)=11$ we get

$$
\operatorname{Sec}_{4} V_{4}^{2}=X_{2,4}
$$

Consider now $\pi_{2}: \mathcal{I}_{2,5} \rightarrow \mathbb{P}^{5}$. This map is dominant, so $X_{2,5}$ is irreducible. We have $\operatorname{dim}\left(\pi_{2}^{-1}(H)\right)=$ $14-6=8$, where $H=\left\{Z_{0}=0\right\}$. So $\operatorname{dim}\left(X_{2,5}\right)=13$ and

$$
\operatorname{Sec}_{5} V_{4}^{2}=X_{2,5}
$$

is an hypersurface of degree 6 in \mathbb{P}^{14}.
Consider now the case $d=4, n=3, h=9$ and the second partial derivatives. The map π_{2} : $\mathcal{I}_{2,9} \rightarrow \mathbb{P}^{9}$ is dominant and $X_{2,9}$ is irreducible. The general fiber of π_{2} has dimension 24 . Then $\operatorname{dim}\left(X_{2,9}\right)=24+9=33$ and

$$
\operatorname{Sec}_{9} V_{4}^{3}=X_{2,9}
$$

is an hypersurface of degree 10 in \mathbb{P}^{34}.
Finally in the case $d=4, n=4, h=14$ as before one can verify that $X_{2,14}$ is irreducible of dimension 68, so

$$
\operatorname{Sec}_{14} V_{4}^{4}=X_{2,14}
$$

is an hypersurface of degree 15 in \mathbb{P}^{69}.
Example 2.8. Consider now a polynomial $F \in k[x, y, z]_{6}$ and the partial derivative of order 3 . For $h=8,9$ the map π_{2} is dominant, so $X_{3,8}$ and $X_{3,9}$ are irreducible. First let us take $h=8$. Proceeding as before we get $\operatorname{dim}\left(\pi_{2}^{-1}(H)\right)=27-19=8$ and $\operatorname{dim}\left(X_{3,8}\right)=24$. So $\operatorname{Sec}_{8} V_{6}^{2} \subset X_{3,8}$ is a divisor.
In the case $h=9$ we have $\operatorname{dim}\left(\pi_{2}^{-1}(H)\right)=27-10=17$ and $\operatorname{dim}\left(X_{3,9}\right)=17+9=26$. So

$$
\operatorname{Sec}_{9} V_{6}^{2}=X_{3,9}
$$

is an hypersurface of degree 10 in \mathbb{P}^{27}.
2.2. Secant varieties of rational normal curves. We begin with the simplest case $n=1$. We denote by $C_{d} \subset \mathbb{P}^{d}$ the degree d rational normal curve, in this case $\operatorname{Sec}_{h}\left(C_{d}\right) \neq \mathbb{P}^{d}$ if and only if $h \leq \frac{d}{2}$.

Lemma 2.9. Let $F=\sum_{i+j=d} \alpha_{i, j} x_{0}^{i} x_{1}^{j} \in k\left[x_{0}, x_{1}\right]_{d}$ be a homogeneous polynomial, and let $c=$ $c\left(\alpha_{i, j}\right)$ be the coefficient of x_{0}^{h} in the partial derivative $\frac{\partial^{d-h} F}{\partial x_{0}^{m} \partial x_{1}^{s}}$, with $h \geq 1$. Then $c=C \cdot \alpha_{d-s, s}$, where C is a constant.
Proof. Since the only monomial of F producing c is $x_{0}^{d-s} x_{1}^{s}$ the assertion follows.

Theorem 2.10. For any $h \leq \frac{d}{2}$ we have $\operatorname{Sec}_{h}\left(C_{d}\right)=X_{d-h, h}$. Consequently if the partial derivatives of order $d-h$ of a homogeneous polynomial $F \in k\left[x_{0}, x_{1}\right]_{d}$ lie in a hyperplane of \mathbb{P}^{h} then $[F]$ lies in $\operatorname{Sec}_{h}\left(C_{d}\right)$.
Proof. The partial derivatives of order $d-h$ of F are $d-h+1$ homogeneous polynomials of degree h. If $F=\sum_{i=1}^{h} \lambda_{i} L_{i}^{d}$ the partial derivatives lie in $\left\langle L_{1}^{h}, \ldots, L_{h}^{h}\right\rangle$ which is a hyperplane h-secant to C_{h}, but $\operatorname{deg}\left(C_{h}\right)=h$ and the latter condition is irrelevant. Let H be a general hyperplane in \mathbb{P}^{h}, forcing the partial derivatives of a degree d polynomial $G=\sum_{i+j=d} \alpha_{i, j} x_{0}^{i} x_{1}^{j} \in k\left[x_{0}, x_{1}\right]_{d}$ to lie in H gives $d-h+1$ linear equations in the coefficients of G. Without loss of generality we can suppose H to be the defined by the vanishing of the first homogeneous coordinate on \mathbb{P}^{h}, then by 2.9 the fiber of π_{2} is the linear subspace of \mathbb{P}^{N} defined by

$$
\pi_{2}^{-1}(H)=\left\{\alpha_{d-s, s}=0, \forall s=0, \ldots, d-h\right\}
$$

The equations of $\pi_{2}^{-1}(H)$ are independent so

$$
\operatorname{dim}\left(\pi_{2}^{-1}(H)\right)=d-(d-h+1)=h-1
$$

and the dimension of $X_{d-h, h}$ is

$$
\operatorname{dim}\left(X_{d-h, h}\right)=\operatorname{dim}\left(\mathcal{I}_{d-h, h}\right)=h-1+h=2 h-1
$$

Finally $\operatorname{dim}\left(\operatorname{Sec}_{h}\left(C_{d}\right)\right)=h+h-1=2 h-1$ yields $\operatorname{Sec}_{h}\left(C_{d}\right)=X_{d-h, h}$.
Remark 2.11. The partial derivatives of order $d-h$ of a homogeneous polynomial $F \in k\left[x_{0}, x_{1}\right]_{d}$ depend on $d+1$ parameters. We consider the matrix $\mathcal{M}_{d, h}$ whose lines are the partial derivatives. From 2.10 we get equations for $\operatorname{Sec}_{h}\left(C_{d}\right)$ imposing $\operatorname{rank}\left(\mathcal{M}_{d, h}\right) \leq h$, that is the classical determinantal description of $\operatorname{Sec}_{h}\left(C_{d}\right)$.

Proposition 2.12. If $[F] \in \operatorname{Sec}_{h}\left(C_{d}\right)$ is general then its decomposition in powers of linear forms is unique.

Proof. Let $H_{\partial} \subset \mathbb{P}^{h}$ be the hyperplane spanned by the partial derivatives of order $d-h$ of F. Since $\operatorname{deg}\left(C_{h}\right)=h$ and F is general we have $H_{\partial} \cdot C_{h}=\left\{L_{1}^{h}, \ldots, L_{h}^{h}\right\}$. Then $\left\{L_{1}, \ldots, L_{h}\right\}$ is the unique h-polyhedron of F.

Theorem 2.10 and proposition 2.12 immediately suggest an algorithm.
Construction 2.13. Given $F \in k\left[x_{0}, x_{1}\right]_{d}$ to establish if F admits a decomposition in $h \leq \frac{d}{2}$ linear forms, and eventually to find it we proceed as explained in the following diagram.

Then $H_{\partial} \cdot C_{h}=\left\{L_{1}^{h}, \ldots, L_{h}^{h}\right\}$ and $F=\sum_{i=1}^{h} \lambda_{i} L_{i}^{d}$.
Example 2.14. Consider the case $d=4, h=2$ and write $F=\sum_{i_{0}+i_{1}=4} \alpha_{i, j} x_{0}^{i} x_{1}^{j}$. Forcing $\frac{\partial^{2} F}{\partial x_{0} \partial x_{1}} \in\left\langle\frac{\partial^{2} F}{\partial x_{0}^{2}}, \frac{\partial^{2} F}{\partial x_{1}^{2}}\right\rangle$ we get

$$
\operatorname{Sec}_{2}\left(C_{4}\right)=\left\{54 \alpha_{3,1}^{2} \alpha_{0,4}-18 \alpha_{3,1} \alpha_{2,2} \alpha_{1,3}-144 \alpha_{4,0} \alpha_{2,2} \alpha_{0,4}+4 \alpha_{2,2}^{3}+54 \alpha_{4,0} \alpha_{1,3}^{2}=0\right\}
$$

Now consider the polynomial

$$
F=9\left(x_{0}^{4}+x_{0}^{3} x_{1}+x_{0}^{2} x_{1}+x_{0} x_{1}^{3}\right)+4 x_{1}^{4}
$$

The second partial derivatives of F lie on the line

$$
H_{\partial}=\left\{X_{0}-3 X_{1}+3 X_{2}=0\right\} \subset \operatorname{Proj}\left(k\left[x_{0}, x_{1}\right]_{2}\right) .
$$

Now we have to compute the intersection $H_{\partial} \cdot C_{2}$, where $C_{2}=\left\{X_{1}^{2}-4 X_{0} X_{2}=0\right\}$ is the conic parametrizing squares of linear forms, we have

$$
H_{\partial} \cdot C_{2}=\{[15+6 \sqrt{6}: 6+2 \sqrt{6}: 1],[15-6 \sqrt{6}: 6-2 \sqrt{6}: 1]\}
$$

Finally we compute the linear forms giving the decomposition

$$
L_{1}=5.44948 x_{0}+x_{1} \text { and } L_{2}=0.55051 x_{0}+x_{1}
$$

Now we consider the variety $X_{d-1, h}$. First we compute the dimension of the general fiber of $\pi_{2}: \mathcal{I}_{d-1, h} \rightarrow \mathbb{G}(h-1, n)$.
Theorem 2.15. The fiber of $\pi_{2}: \mathcal{I}_{d-1, h} \rightarrow \mathbb{G}(h-1, n)$ on a general $(h-1)$-plane $H \in \mathbb{G}(h-1, n)$ is a linear subspace of \mathbb{P}^{N} of dimension

$$
\operatorname{dim}\left(\pi_{2}^{-1}(H)\right)=\binom{d+h-1}{d}-1
$$

Furthermore the dimension of X_{d-1} is given by

$$
\operatorname{dim}\left(X_{d-1, h}\right)=h(n-h+1)+\binom{d+h-1}{d}-1
$$

Proof. We can suppose $H=\left\{X_{0}=\ldots=X_{n-h}=0\right\}$, where $\left\{X_{0}, \ldots, X_{n}\right\}$ are homogeneous coordinates on \mathbb{P}^{n}. We write a general polynomial $[F] \in \mathbb{P}^{N}$ in the form

$$
F=\sum_{i_{0}+\ldots+i_{n}=d} \alpha_{i_{0}, \ldots, i_{n}} x_{0}^{i_{0}} \ldots x_{n}^{i_{n}}
$$

The fiber $\pi_{2}^{-1}(H)$ is the linear subspace of \mathbb{P}^{N} defined by the vanishing of the coefficients of x_{0}, \ldots, x_{n-h} in the derivatives of F. Many of these equations are redundant, the difficulty is in counting the exact number of independent equations. We prove that this number is $\binom{d+n-1}{d-1}+$ $\binom{d+n-1}{d}-\binom{d+h-1}{d}$ by induction on $n-h$. If $n-h=0$ then H is an hyperplane and the condition on the derivatives are all independent, so the number of conditions is exactly the number of derivatives $\binom{d-1+n}{d-1}$. Furthermore our formula for $n-h=0$ gives $\binom{d+n-1}{d-1}+\binom{d+n-1}{d}-\binom{d+n-1}{d}=\binom{d+n-1}{d-1}$, and the case $n-h=0$ is verified. Consider now the general case, let $\bar{H}=\left\{X_{0}=\ldots=X_{n-h-1}=0\right\}$, let C_{n-h-1} the number of independent conditions obtained forcing the partial derivatives to lie in \bar{H}. Adding the condition $\left\{X_{n-h}=0\right\}$ gives new equations coming from the coefficients of the form $\alpha_{0, \ldots, 0, i_{n-h}, i_{n-h+1}, \ldots, i_{n}}$, with $i_{n-h} \neq 0$. These corresponds to monomials of degree d in the variables x_{n-h}, \ldots, x_{n} that contain the variable x_{n-h}. Now the monomials of degree d not containing x_{n-h} are the monomials of degree d in x_{n-h+1}, \ldots, x_{n}. So in the final step we are adding

$$
\binom{d+h}{d}-\binom{d+h-1}{d}
$$

conditions. Then the number if independent equations is $C_{n-h}=C_{n-h-1}+\binom{d+h}{d}-\binom{d+h-1}{d}$, by induction hypothesis

$$
C_{n-h-1}=\binom{d+n-1}{d-1}+\binom{d+n-1}{d}-\binom{d+n-(n-h-1)-1}{d}
$$

So $C_{n-h}=\binom{d+n-1}{d-1}+\binom{d+n-1}{d}-\binom{d+n-(n-h-1)-1}{d}+\binom{d+h}{d}-\binom{d+h-1}{d}=\binom{d+n-1}{d-1}+\binom{d+n-1}{d}-\binom{d+h-1}{d}$. Finally we have $\operatorname{dim}\left(X_{d-1, h}\right)=\operatorname{dim}(\mathbb{G}(h-1, n))+\operatorname{dim}\left(\pi_{2}^{-1}(H)\right)=h(n-h+1)+\binom{d+h-1}{d}-1$.
Proposition 2.16. If $h \leq n$. The variety $X_{1, h}$ is irreducible.

Proof. By Lemma 2.3 it is equivalent to prove that $X_{d-1, h}$ is irreducible. Consider the map $\pi_{2}: \mathcal{I}_{d-1, h} \rightarrow \mathbb{G}(h-1, n)$. By Theorem 2.15 the general fiber of π_{2} is a linear subspace of \mathbb{P}^{N} of dimension $\operatorname{dim}\left(\pi_{2}^{-1}(H)\right)=\binom{d+h-1}{d}-1$ and π_{2} is surjective on $\mathbb{G}(h-1, n)$, so $X_{d-1, h}$ is irreducible.

In the cases $d=2$ and $d=3, h=2$ we have that $\operatorname{dim}\left(X_{1, h}\right)=\operatorname{dim}\left(\operatorname{Sec}_{h}\left(V_{d}^{n}\right)\right)$, since $X_{1, h}$ is irreducible we get $\operatorname{Sec}_{h}\left(V_{d}^{n}\right)=X_{1, h}$. So if the first partial derivatives of a polynomial F span a linear space of dimension $h-1$ then F can be decomposed into a sum of h powers of linear forms.

Remark 2.17. Consider the case $d=2$. By Alexander-Hirshowitz theorem, see AH, $\operatorname{Sec}_{h}\left(V_{2}^{n}\right) \neq$ \mathbb{P}^{N} if and only if $h \leq n$. By theorem 2.15 and remark 2.2 we recover the effective dimension of $\operatorname{Sec}_{h}\left(V_{2}^{n}\right)$,

$$
\operatorname{dim}\left(\operatorname{Sec}_{h}\left(V_{2}^{n}\right)\right)=\frac{2 n h-h^{2}+3 h-2}{2}
$$

and consequently the formula for the h-secant defect of V_{2}^{n},

$$
\delta_{h}\left(V_{2}^{n}\right)=\frac{h(h-1)}{2}
$$

Up to now we have a complete description for polynomials of arbitrary degree in two variables and for polynomials of degree two in any number of variables. So we concentrate on the case $n \geq 2$ and $d \geq 3$.
Theorem 2.18. Let $n \geq 2, d \geq 3, h \leq n$ be positive integers. Then $\mathbb{S e c}_{h}\left(V_{d}^{n}\right)$ is a subvariety of $X_{d-1, h}$ of codimension

$$
\operatorname{codim}_{\operatorname{Sec}_{h}\left(V_{d}^{n}\right)}\left(X_{d-1, h}\right)=\binom{d+h-1}{d}-h^{2}
$$

Proof. Since $n \geq 2, d \geq 3$, and $h \leq n$, by Alexander-Hirshowitz theorem the effective dimension of $\operatorname{Sec}_{h}\left(V_{d}^{n}\right)$ is the expected one

$$
\operatorname{dim}\left(\operatorname{Sec}_{h}\left(V_{d}^{n}\right)\right)=\min \left\{h n+(h-1), N_{d}\right\}
$$

Furthermore $n \geq 2, d \geq 3, h \leq n$ implies $h n+(h-1)<N_{d}$. So

$$
\operatorname{dim}\left(\operatorname{Sec}_{h}\left(V_{d}^{n}\right)\right)=h n+(h-1)
$$

Finally $\operatorname{codim}_{\operatorname{Sec}_{h}\left(V_{d}^{n}\right)}\left(X_{d-1, h}\right)=h(n-h+1)+\binom{d+h-1}{d}-1-h n-(h-1)=\binom{d+h-1}{d}-h^{2}$.
Corollary 2.19. If $d=3$ then $\operatorname{Sec}_{2}\left(V_{3}^{n}\right)=X_{2,2}$ for any $n \geq 2$. Consequently if the second partial derivatives of a homogeneous polynomial $F \in k\left[x_{0}, \ldots, x_{n}\right]_{3}$ lie in a line of \mathbb{P}^{n} then $[F]$ lies in $\operatorname{Sec}_{2}\left(V_{3}^{n}\right)$.
Proof. For $h=2, d=3$ we have $\binom{d+h-1}{d}-h^{2}=0$. We conclude by theorem 2.18 .

3. The first secant variety of V_{d}^{n}

We focus on the case $h=2$ without any assumptions on d and n. We will use the equality

$$
\sum_{k=0}^{n}\binom{d-1+k}{d-1}=\binom{d+n}{d}
$$

which can be easily proved by induction on n.
Theorem 3.1. If $h=2$ for the first secant variety of V_{d}^{n} we have

$$
\operatorname{Sec}_{2}\left(V_{d}^{n}\right)=X_{2, d-2}
$$

for any n and $d \geq 3$.

Proof. Consider the diagram

clearly $\mathbb{S}_{2} V_{2}^{n} \subseteq \operatorname{Im}\left(\pi_{2}\right)$. Let $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ be a polynomial whose partial derivatives of order $d-2$ lie on a line $H \subset \mathbb{P}^{N_{2}}$. The derivatives of order $d-3$ of F are cubic polynomials whose first partial derivatives are collinear. By $2.19 X_{2,1}=X_{2,2}=\operatorname{Sec}_{2} V_{3}^{n}$, so if we denote by G a partial derivative of order $d-3$ of F we get a decomposition $G=L_{1}^{3}+L_{2}^{3}$. Then $G_{x_{0}}, \ldots, G_{x_{n}}$ (which are partial derivatives of order $d-2$ of F) lie on the line $\left\langle L_{1}^{2}, L_{2}^{2}\right\rangle$, and so the line containing the partial derivative of order $d-2$ of F is exactly the secant line to V_{2}^{n} given by $\left\langle L_{1}^{2}, L_{2}^{2}\right\rangle$. This means that

$$
\mathbb{S}_{2} V_{2}^{n}=\operatorname{Im}\left(\pi_{2}\right)
$$

Since the fiber of π_{2} are linear spaces we conclude that $\mathcal{I}_{2, d-2}$ and $X_{2, d-2}$ are irreducible.
We compute now the dimension of the fiber of π_{2}. We fix on $\mathbb{P}^{N_{2}}$ homogeneous coordinates $Z_{0}, \ldots, Z_{N_{2}}$ corresponding to the monomials in lexicographic order $x_{0}^{2}, x_{0} x_{1}, \ldots, x_{n}^{2}$, and consider the line $H=\left\{Z_{0}=Z_{1}=\ldots=Z_{N_{2}-2}=0\right\}$.
First consider monomials containing x_{0}. Forcing the derivatives to lie in $\left\{Z_{0}=0\right\}$ we get $\binom{d-2+n}{n}$ conditions (the monomials containing x_{0}^{2}, whose number is equal to the number of degree $d-$ 2 monomials in x_{0}, \ldots, x_{n}). Imposing $\left\{Z_{1}=0\right\}$ we get $\binom{d-2+n-1}{n-1}$ conditions (the monomials containing $x_{0} x_{1}$, whose number is equal to the number of degree $d-2$ monomials in x_{1}, \ldots, x_{n}). Proceeding in this way forcing $\left\{Z_{n}=0\right\}$ we get $\binom{d-2+n-n}{n-n}=1$ condition (the monomials containing $x_{0} x_{n}$, whose number is equal to the number of degree $d-2$ monomials in x_{n}). Up to now we have

$$
\sum_{k=0}^{n}\binom{d-2+k}{k}=\binom{d-1+n}{d-1}
$$

conditions.
Consider now the monomials containing x_{1}. Forcing $\left\{Z_{n+1}=0\right\}$ we get $\binom{d-2+n-1}{n-1}$ conditions (the monomials containing x_{1}^{2}, whose number is equal to the number of degree $d-2$ monomials in x_{1}, \ldots, x_{n}). Imposing $\left\{Z_{n+2}=0\right\}$ we get $\binom{d-2+n-2}{n-2}$ conditions (the monomials containing $x_{1} x_{2}$, whose number is equal to the number of degree $d-2$ monomials in x_{2}, \ldots, x_{n}). Proceeding in this way we get

$$
\sum_{k=0}^{n-1}\binom{d-2+k}{k}=\binom{d-1+n-1}{d-1}
$$

conditions.
At the step x_{n-2} we have

$$
\sum_{k=0}^{2}\binom{d-2+k}{k}=\binom{d-1+2}{d-1}
$$

more conditions. At the step x_{n-1} we have only to force $\left\{Z_{N_{2}-2}=0\right\}$, and we get $\binom{d-1}{1}=d-1$ conditions.
Summing up the fiber $\pi_{2}^{-1}(H)$ is a linear subspace of \mathbb{P}^{N} defined by

$$
\sum_{k=2}^{n}\binom{d-1+k}{d-1}+d-1=\sum_{k=0}^{n}\binom{d-1+k}{d-1}-1-d+d-1=\binom{d+n}{d}-2
$$

equations. So the fiber has dimension

$$
\operatorname{dim}\left(\pi_{2}^{-1}(H)\right)=N-\binom{d+n}{d}+2=\binom{d+n}{d}-1-\binom{d+n}{d}+2=1
$$

Finally we look at the map $\pi_{2}: \mathcal{I}_{2, d-2} \rightarrow \mathbb{S}_{2} V_{2}^{n}$, since π_{2} is dominant we have

$$
\operatorname{dim}\left(X_{2, d-2}\right)=\operatorname{dim}\left(\mathcal{I}_{2, d-2}\right)=2 n+1
$$

Since $\operatorname{dim}\left(\operatorname{Sec}_{2} V_{d}^{n}\right)=2 n+1$ the assertion follows.
The case $n=2, h=4$. In the same spirit of Theorem 3.1 we obtain the following result.
Theorem 3.2. If $n=2, h=4$ for the variety of 4-secant 3-planes of V_{d}^{2} we have

$$
\operatorname{Sec}_{4}\left(V_{d}^{2}\right)=X_{4,\left\lfloor\frac{d}{2}\right\rfloor}
$$

for any $d \geq 2$.
Proof. The case $d=4$ is example 2.7. Consider now the case $d=5$. The map $\pi_{2}: \mathcal{I}_{4,3} \rightarrow \mathbb{G}(3,5)$ is dominant, so $X_{4,3}$ and hence $X_{4,2}$ are irreducible. Let $F \in k[x, y, z]_{5}$ be a polynomial, looking at the proof of theorem 3.1 we get that forcing the partial derivatives of order 3 of F to lie in $\left\{Z_{0}=Z_{3}=0\right\}$ gives

$$
\binom{5-2+2}{2}+\binom{5-2+2}{2}-\sharp\left\{\text { monomials containing } x^{2} y^{2}\right\}=20-3=17
$$

conditions. Since $\operatorname{dim}\left(X_{4,2}\right)=\operatorname{dim}\left(X_{4,3}\right)=20-17+\operatorname{dim}(\mathbb{G}(3,5))=11$ we conclude

$$
\operatorname{Sec}_{4}\left(V_{5}^{2}\right)=X_{4,2}
$$

Consider the case $d=6$ and the partial derivative of order 3. If the 3 -th derivatives of F lie in a 3-plane then the first partial derivative of F are degree 5 polynomials whose second partial derivatives lie in a 3 -plane. By the same trick of Theorem 3.1 we prove that the 3-plane containing the 3 -th partial derivative has to be 4 secant to V_{3}^{2}. So $X_{4,3}$ is irreducible, and as usual by counting dimension we get the equality

$$
\operatorname{Sec}_{4}\left(V_{6}^{2}\right)=X_{4,3}
$$

Now we treat the general case by induction on d. Let $F \in k[x, y, z]_{d}$ be a polynomial whose $\left\lfloor\frac{d}{2}\right\rfloor$-th derivative lies in a 3-plane. Then the first partial derivative of F are polynomials of degree $d-1$ whose $\left\lfloor\frac{d-1}{2}\right\rfloor$-th derivatives lie in a 3-plane. So F_{x}, F_{y}, F_{z} can be decomposed as sums of four powers of linear forms. As before we conclude that the map $\pi_{2}: \mathcal{I}_{4,\left\lfloor\frac{d}{2}\right\rfloor} \rightarrow \mathbb{G}\left(3, N_{d-\left\lfloor\frac{d}{2}\right\rfloor}\right)$ is dominant, so $X_{4,\left\lfloor\frac{d}{2}\right\rfloor}$ is irreducible. By combinatorial calculations similar to previous we compute $\operatorname{dim}\left(X_{4,\left\lfloor\frac{d}{2}\right\rfloor}\right)=\operatorname{dim}\left(\operatorname{Sec}_{4}\left(V_{d}^{2}\right)\right)$.
Remark 3.3. In a completely analogous way one can show that $\operatorname{Sec}_{5}\left(V_{d}^{2}\right)$ is defined by size 6 minors of the matrix of partial derivatives of order $\left\lfloor\frac{d}{2}\right\rfloor$ for $d=4$ and $d \geq 6$.

References

[AH] J. Alexander, A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4, 2, (1995), 201-222.
[BCS] P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory, volume 315 of Grund. der Math. Wiss. Springer, Berlin, 1997.
[CM] P. Comon, B. Mourrain, Decomposition of quantics in sums of power of linear forms, Signal Processing, 53(2):93-107, 1996. Special issue on High-Order Statistics.
[Do] I. Dolgachev, Dual homogeneous forms and varieties of power sums, Milan Journal of Mathematics, 99.
[DK] I. Dolgachev, V. Kanev, Polar covariants of plane cubics and quartics, Adv. in Math. 98 (1993), 216301.
[IK] A. Iarrobino, V. Kanev, Power Sums, Gorenstein Algebras and Determinantal Loci, Lecture notes in Mathematics, 1721, Springer, 1999.
[Ka] V. Kanev, Chordal varieties of Veronese varieties and catalecticant matrices, J. Math. Sci. (New York) 94 (1999), no. 1, 1114-1125, Algebraic geometry, 9. MR MR1703911 (2001b:14078)
[MM] A. Massarenti, M. Mella, Birational aspects of the geometry of Varieties of Sum of Powers, arXiv:1010.1707v2 [math.AG].
[RS] K. Ranestad, F.O. Schreier, Varieties of Sums of Powers, J. Reine Angew. Math, 525, 2000.
[Ro] S. Roman, Coding and Information Theory, Springer, New York, 1992.
[Wa] E. Waring, Meditationes Algebricae, Cambridge: J. Archdlated from the Latin by D.Weeks, American Mathematical Sociey, Providence, RI, 1991.

Alex Massarenti, SISSA, via Bonomea 265, 34136 Trieste, Italy
E-mail address: alex.massarenti@sissa.it

[^0]: ${ }^{1}$ These are notes for a seminar I gave on July 4, 2012 in Cortona during the summer school "Tensors: Geometric Complexity Theory and Waring problems" held by J. M. Landsberg and Massimiliano Mella.

