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Preface



Starting from the principle that a well made brain is better than a well filled

one, this book represents a selection of topics for a Linear Algebra course for Math-

ematics, Physics, and Engineering.

The first part is a sort of quick introduction to the basic notions of logic and

algebra; in the second part, the fundamental concepts and results of linear algebra

are introduced.

The third, fourth, and fifth parts, respectively on affine geometry, Euclidean

geometry, and the Jordan form, can be seen as applications of the second part.

In the first parts, various informal connections and comparisons with projective

geometry are made. These connections will be clarified and formalized in the sixth

part in which some fundamental topics of projective geometry, heavily relying on

notions of linear algebra covered in the previous parts, are developed.

The text contains 314 exercises, which are an essential part of the course.

Indeed, we believe that learning theory without practical application is a sterile

exercise.

Some texts, listed in the bibliography [Hal74], [Lan87], [Ser00], [DF04], were

consulted during the preparation of this book and can provide interested readers

with further insights into some of the covered topics.

Ferrara, May 2024

Philippe Ellia

Alex Massarenti



Part 1

Preliminaries



Among exact sciences mathematics is the only hypothetico-deductive science,

physics and chemistry, for instance, are experimental sciences. Therefore, starting

from statements which are assumed to be true (axioms) and proceeding by logical

deductions (proofs), we obtain other true statements (theorems). Then we start

again: using the axioms and theorems we prove new theorems.

Logical deductions are regulated by formal logic, axioms are not subject to any

truth conditions, they only need to be logically compatible that is not contradictory.

Therefore, there are different axiomatic systems, for instance mathematics with or

without the axiom of choice. There is no need to go into details here, let us just

say that the most used system is the Zermelo-Fraenkel system with the uncountable

axiom of choice. This system, that will be called in what follows mathematics,

responds well to our intuition and allows us to prove a great number of theorems.

However, we must recall that a famous result of Gödel states that it can not be

proved, with the tools of mathematics, that mathematics is not contradictory. But

do not worry, it has been going on like this for more than two thousand years, no one

has found the contradiction, the theorems keep accumulating and the applications of

mathematics are everywhere. Therefore we abandon the delicate questions relating

to the foundations of mathematics and adopt the more down-to-earth insider point

of view. From this perspective, a proof is exactly what the Ancient Greeks had

already established: a conscious effort to order the arguments in such a way that

the transition from one step to the next leaves no doubt, so that a virtual interlocutor

would be forced to agree.

The formal presentation should not be deceiving. Mathematical activity con-

sists of solving theoretical and practical problems, proving theorems and solving

exercises. The various theories are not sterile formal constructions but serve to

frame, in one fell swoop, a whole series of problems and therefore facilitate their

understanding and resolution.

Furthermore, the proof of a theorem, or the resolution of an exercise, does

not proceed in a rational, formal way, starting from the hypotheses and continuing

automatically until reaching the thesis. Instead, it seems that three phases can

be distinguished: two rational and one, the second and perhaps most important,

non-rational. In the first phase (analysis) we try to understand the question, the

problem (thesis). Once we have a good understanding of what we have to prove,

we look at what we have available (hypothesis). At this point both the arrival point

(thesis) and the starting point (hypothesis) are known. In the second phase, we

will try to connect these two points. Often, but not always, our brain will proceed

by analogy. Starting simultaneously from both the arrival point and the starting

point, it will begin taking already known paths, like exercises already done and

proofs already seen, until hopefully the connection is established between the thesis
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and the hypothesis. At this stage we have an idea of proof. The third and final

phase consists in verification and adjustment. We retrace the path in a rational

way and, starting from the hypotheses and proceeding by deductions, perhaps fixing

unclear passages, we reach the thesis. If a mistake comes up, do not be afraid to

start over. The last phase is the drafting.

The final version must be concise and clear, without obscure passages. It is

advisable to reread it with a critical eye and always remember that you write not

just for yourself but also to communicate with others, and this should be done in

such a way that a virtual interlocutor would be forced to agree. To achieve this

skill, since this is something one learns, the student is recommended to practice

solving the proposed exercises writing down complete solutions. Needless to say, it

is more important to know how to solve the exercises than knowing the theory, also

because it is often impossible to solve the exercises without knowing the theory.

In this first part we revise basic concepts of logic and set theory, and the main

algebraic structure which will be frequently referred to in the rest of this book.





Chapter 1

Numbers

We denote the set of natural numbers by N:

N = {0, 1, 2, · · · , n, · · · }

and by Z the integers:

Z = {· · · ,−n, · · · ,−2,−1, 0, 1, 2, · · · ,−n, · · · }.

There is no easy way to define N (the existence of an infinite set is an axiom).

Rational numbers are fractions of integers:

Q =
{a
b
such that a, b ∈ Z with b ̸= 0 and where

a

b
=
c

d
if and only if ad = bc

}
.

For example, the fractions 1
2 and 2

4 are different but represent the same rational

number 0.5. We will see later (equivalence relations) an algebraic way to construct

Q from Z.

There is no simple way to describe real numbers either. Morally, real numbers

are all the points on the real line! (This is not a definition). There is a not-too-

complicated process to construct R using Q (topological completion). This process

clearly shows that Q is dense in R meaning that any non-empty real interval, no

matter how small, contains a rational number (in fact, infinitely many rational

numbers).

Complex (or imaginary) numbers were invented in the Middle Ages for solving

cubic equations by Italian algebraists. Their problem was finding the square root of

a negative number, which was seemingly impossible. They realized that if −1 were

a square, it would solve the problem. So, they introduced the ”imaginary quantity”

i such that i2 = −1. Now,
√
−5 =

√
i25 = ±i

√
5. The interesting part is that in

their calculations, the imaginary quantity canceled out and did not appear in the

19



20 1. Numbers

final formula. For them, the symbol i was just a trick to make the calculations work.

Over time, imaginary numbers became complex numbers and are very useful, as we

will see. We have

C = {x+ iy | x, y ∈ R, i2 = −1}.
Here too, there is a simple algebraic construction to build C from R.

Summing up, we have

N ⊂ Z ⊂ Q ⊂ R ⊂ C

and if, as Kronecker said (look him up on Google), N is the work of God, once

we have N, it is not difficult, with mathematical constructions, to build all other

numbers but the rest is the work of man.

We will also see other types of numbers (algebraic, transcendental, modular).



Chapter 2

Propositional logic

2.0.1. Logical Connectives. A proposition is a statement of the considered

axiomatic theory. A proposition has a logical value that can be either T (true) or

F (false). There are no other possibilities. Given a proposition P, its negation, not

P (or ¬P), is false when P is true and true when P is false. This can be represented

by the following truth table:

P ¬P
T F

F T

Take two propositions P and Q, using logical connectives it is possible to create

others.

Definition 2.1 (And connective). Given two propositions P andQ, the proposition

P and Q (P ∧Q) is true if and only if both propositions are true.

Definition 2.2 (Or connective). Given two propositions P and Q, the proposition

P or Q (P ∨Q) is true if and only if one of the two propositions is true.

Definition 2.3 (Logical implication). Given two propositions P and Q, the propo-

sition ¬P∨Q (not P or Q) is denoted by P ⇒ Q (P implies Q) and is called logical

implication.

Definition 2.4. (Logical equivalence) Given two propositions P and Q, the logical

equivalence P ⇔ Q is true if and only if P and Q have the same logical value.

One can verify (using truth tables) that P ⇔ Q is the same as

(P ⇒ Q) ∧ (Q ⇒ P).

21



22 2. Propositional logic

Proposition 2.5. Given two propositions P and Q, we have:

(i) ¬(P ∧Q) ⇔ ¬P ∨ ¬Q;

(ii) ¬(P ∨Q) ⇔ ¬P ∧ ¬Q.

Proof. Let us prove the first statement. From the following truth table

P Q P ∧Q ¬(P ∧Q) ¬P ¬Q ¬P ∨ ¬Q
T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

we see that ¬(P ∧Q) and ¬P ∨¬Q are equivalent. The second claim can be proved

similarly. □

2.0.2. Quantifiers. If P is a proposition that depends on x, it will be denoted

by P(x) to highlight this dependence (x is a variable).

The symbol ∀ (Universal quantifier) means ”for every” or ”for all”. So, ”∀ x ∈
R, f(x) = x+ 3” means ”for every x in R, f(x) equals x+ 3”.

The symbol ∃ (Existential quantifier) means ”there exists”. To show that the

proposition ∃ x | P(x) (there exists an x such that P(x) is true), one needs to find

at least one x for which P(x) is true.

For example, to prove the proposition ”∃ x | 15 divides x” one simply needs to

exhibit a number which is divisible by 15, 15 itself for instance. Someone else could

propose 30, and that would also be fine because 30 is divisible by 15.

Sometimes, ∃! is used to indicate that the existing element is unique. For

example, ”∃! x | 1 < x < 5 and 4 divides x”. Indeed, 4 is the only integer between

1 and 5 that is divisible by 4.

The order in which quantifiers appear is very important. For example:

∃ e | ∀ g, ge = eg = g

means there exists an e such that for all g, ge = eg = g. While

∀ g, ∃ g−1 | gg−1 = g−1g = e

means for every g, there exists a g−1 such that gg−1 = g−1g = e. What is the

difference? In the first case, e is the same for all g while in the second case g−1

depends on g.

The logical negation of ∀ x, P(x) is ∃ x, ¬P(x). Similarly, ¬(∃ x, P(x)) is

∀ x, ¬P(x). So, the logical negation of ”all cars are red” is ”there exists a non red

car”.
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2.1. Axiomatic systems

Without going into too much detail, we can say that an axiomatic system consists

of basic symbols, axioms, and proof rules.

Definition 2.6. A proposition P is proved (it is also said that P is true) if it

can be included in a formalized text that starts with an axiom of the theory and

develops according to the rules of the theory.

Definition 2.7. (Decidability) Suppose P is a proposition of an axiomatic theory

T. If P is not true (that is P is not proved), it does not mean that P is false (which

means that not P is true). It can happen that in T it is not possible to prove that

either P or not P is true. In this case, the proposition P is called undecidable.

Saying that a proposition in theory T is undecidable means that the tools

available in T are insufficient to determine the logical value (true or false) of P. If

P is undecidable in T, we can consider the theory T′ = T + P, where the axioms

are those of T plus P. The theory T′ is as consistent as T. In T′ the proposition P
is true (it is an axiom). However, we can also consider the theory T′′ = T + ¬P,

and T′′ is as consistent as T, but in T′′ the proposition P is false.

In set theory, there exist undecidable relations (such as the continuum hypoth-

esis, which we will discuss later). In practice, we will not encounter undecidable

relations, and if this were to happen, we would immediately make them into axioms.

Definition 2.8. (Consistency) If there exists a proposition P in a formalized the-

ory T such that both P and not P are true, T is said to be contradictory (or

inconsistent). In this case, every proposition in T is both true and false, and the

theory loses all significance.

Let us assume that both P and not P are true, which is a contradiction. Now,

consider a proposition Q. The proposition ”not P implies (Q or not P)” is true

because not P is false (since P is true). Since not P is true, ”Q or not P” is true,

which implies that P implies Q is true. Since P is true, Q is true. Similarly, by

replacing Q with not Q, we can show that not Q is true.

We are confident that mathematics is consistent, so we will reject any contra-

diction!

2.2. Methods of proof

Now, we will discuss four methods of proof: direct proof, indirect proof, proof by

contradiction, and proof by induction.
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2.2.1. Direct proof. Direct proof is based on the idea that if P is true and

P ⇒ Q is true, then Q is necessarily true.

Let us suppose we have our hypothesis I and we need to prove the thesis T .

Obviously, the hypothesis I is true. We must then prove that the logical implication

I ⇒ T is true. As observed, this will result in T being true. We can break the

problem into easier problems:

I ⇒ P1 (so P1 is true);

P1 ⇒ P2 (so P2 is true);

P2 ⇒ P3 (so P3 is true);
...

Pk ⇒ T (so T is true, and we have proved our theorem).

2.2.2. Indirect proof. First of all, we need to observe that P ⇒ Q is logically

equivalent to ¬Q ⇒ ¬P. This can be seen with truth tables.

Sometimes, one may want to prove a logical implication P ⇒ Q that seems

challenging to approach directly. In such cases, it is advisable to try to prove

¬Q ⇒ ¬P instead.

Let us illustrate this with an example: Let n ∈ N, and let P be ”n2 is even”

and Q be ”n is even”. We want to prove P ⇒ Q. This is equivalent to prove that

¬Q, that is n is odd, implies ¬P, that is n2 is odd. But this is straightforward.

Let n = 2t+ 1 be an odd number. Then n2 = 4t2 + 1+ 4t = 2(2t2 + 2t) + 1 is also

odd. Can anyone see a direct proof?

2.2.3. Proof by contradiction. We want to prove the proposition P. In prac-

tice, the proof by contradiction proceeds as follows: Let us assume P is false (we

are adding ¬P to the axioms of mathematics), we reason with this hypothesis until

we identify a contradiction. Since we do not want any contradictions, we conclude

by saying ”But this is a contradiction, so P is true”.

Here is an example: We want to prove that
√
2 is irrational. Suppose

√
2 is

rational. Therefore,
√
2 = m

n . We can assume that n and m are coprime that

is their greatest common divisor is one. Indeed, if m = km′ and n = kn′ then
m
n = m′

n′ .

Squaring the equation we have 2n2 = m2. So, m2 is even. We have just seen

that this implies m is even. Therefore, m = 2t and m2 = 4t2. It follows that

2n2 = 4t2 that is n2 = 2t2. Therefore, n2 is even, so n is even. In conclusion, we

have shown that 2 divides both m and n, but this is a contradiction because we

had assumed that m and n are coprime. Therefore,
√
2 is irrational.
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The fact that
√
2 is irrational was known in the time of Pythagoras. More

generally, one can prove that if d ∈ N is not a perfect square then
√
d is irrational.

Another famous example of a proof by contradiction is the proof that the set

of prime numbers P is infinite. Recall that p ∈ N is a prime number if p > 1, and

the only divisors of p are 1 and p that is Div(p) = {1, p}, where Div(n) stands for

the set of divisors of n. We have that

P = {2, 3, 5, 7, 11, 13, 17, 19, . . . }.

We observe that the divisors of n are symmetric with respect to
√
n. If a|n (a

divides n), then n = ab (so b is also in Div(n)), and if a < b, then a <
√
n, and

b >
√
n. If a < b ≤

√
n, then n = ab < n, a contradiction. If

√
n ≥ a < b, then

n = ab > n. The only case in which equality can occur is when n is a perfect

square, and a = b =
√
n. In particular, the number of elements (the ”cardinality”)

of Div(n) is even unless n is a perfect square.

Lemma 2.9. Let n ∈ N, n > 1, and let Div(n) = {1, d2, d3, . . . , dr = n} with

1 < d2 < d3 < . . . < dr = n. Then d2 is a prime number. So, every n > 1 has a

prime divisor.

Proof. Let us assume, by contradiction, that d2 is not prime. Then, there exist

a and b such that 1 < a, b < d2 and d2 = ab. But if a divides d2, it also divides

n which contradicts the fact that d2 is the smallest divisor greater than 1 of n.

Therefore, d2 is prime. □

Theorem 2.10. The set of prime numbers P is infinite.

Proof. Let us assume, by contradiction, that P is finite: P = {p1, p2, . . . , pk}. Let
N = p1p2 . . . pk + 1. By Lemma 2.9, N has a prime divisor, which must be an

element of P . Let us call this prime divisor pi. We have:

N

pi
=
p1p2 . . . pi . . . pk

pi
+

1

pi
.

In the first term, p1p2...pi...pk

pi
, pi cancels out, and we get an integer (the product of

all primes except pi). By assumption, N/pi is an integer. Therefore, N
pi
− p1p2...pi...pk

pi

is an integer. But this is a contradiction since

N

pi
− p1p2 . . . pi . . . pk

pi
=

1

pi

and 1
pi

is not an integer. □

This proof can be found in Euclid’s elements. Do not confuse indirect proof

with proof by contradiction. In both cases, the thesis is negated, but in a indirect

proof there is no contradiction.



26 2. Propositional logic

2.2.4. Proof by induction. The proof by contradiction is very powerful, but

the proof by induction is the mathematician’s atomic bomb!

Peano’s axioms are an attempt to axiomatize the construction of natural num-

bers, the mathematician G. Peano formulated the following list of axioms. First,

there are three primitive terms: number, zero, successor. The axioms are as follows:

(1) Every number has a successor.

(2) Zero is not the successor of any number.

(3) Two distinct numbers can not have the same successor.

(4) Let F be a set of numbers such that: Zero belongs to F , and if a number

belongs to F , then its successor also belongs to F . Then, every number

belongs to F .

If we represent the successor of x as x+1, axiom (4), known as the induction axiom

or principle, can be reformulated as follows:

(0 ∈ F ) ∧ (x ∈ F ⇒ x+ 1 ∈ F ) ⇒ F = N.

Peano’s axioms themselves do not define N as they use the term ”set” without

providing a formal definition of what a set is. However, the fourth axiom, known

as the Induction Principle is one of the most powerful tools in mathematics (once

one has successfully defined N).

Let P(n) be a proposition that depends on the variable n ∈ N. The Induction

Principle allows one to prove P(n) by:

(1) Proving P(0).

(2) Proving that if P(n− 1) is true then P(n) is true as well.

The first step is called the initial case. The second step is known as the inductive

step.

Indeed, let us consider the set

X = {m ∈ N | P(m) is true}.

According to (1), 0 ∈ X. According to (2), if x ∈ X then x+1 ∈ X. Using Peano’s

Axiom (4) (the induction principle), we conclude that X = N. In other words,

P(n) is true for every n ∈ N, and the proposition is proved.

Let us make an example. We want to prove

P(n) : 1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.
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We have P(0) = 0. This is true because 0 = 0(0+1)
2 . Now, let us proceed with

the induction step. We have:

1 + 2 + · · ·+ n+ (n+ 1) = [1 + 2 + · · ·+ n] + (n+ 1) = P(n) + (n+ 1).

By the induction hypothesis: P(n) = n(n+1)
2 . Therefore

P(n+ 1) = P(n) + (n+ 1) =
n(n+ 1)

2
+ (n+ 1).

Since n(n+1)
2 + (n+ 1) = (n+1)(n+2)

2 the claim is proved.

The induction principle can be illustrated in the following way. Imagine you

have a ladder with rungs, and you want to make sure you step on all the rungs of

the ladder. To achieve this, you just need to do two things:

(1) Place your foot on the first rung.

(2) Whenever you are standing on one rung you must know how to step onto the

next rung.

The only problem is that our ladder is infinite, but that is another story.

In the induction step, P(n) ⇒ P(n+ 1), we can assume not only that P(n) is

true but also that P(k) is true for every k less than n+ 1.

It is not necessary to start from 0; starting from n0, we can prove a proposition

P (n) for every n ≥ n0. Let us go through an example.

Example 2.11. We are wondering whether 2n > n2 for all n ∈ N. If n = 0:

20 = 1 > 0, fine. If n = 1, 21 = 2 > 1. Let us try the induction step. So, we want to

prove: 2n+1 > (n+1)2 = n2+2n+1, knowing that 2n > n2 (induction hypothesis).

We have 2n+1 = 2 · 2n. By the induction hypothesis, 2 · 2n > 2n2 = n2 + n2. So, if

n2 > 2n + 1, we are fine. We have n2 − 2n = n(n − 2), and we see that if n ≥ 3,

n(n− 2) > 1. However, the inequality n(n− 2) > 1 is false for n = 2.

One might be tempted to say that the proposition is proved for n ≥ 3. Be

careful! In fact, 23 = 8 while 32 = 9. So, we can not start from 3 nor from 4

because 24 = 16 = 42. But for n = 5, it works because 25 = 32 > 52 = 25. In

conclusion, we have proved: If n ≥ 5, then 2n > n2. We have also proved: If n ≥ 4,

then 2n ≥ n2.

The proof by induction is a powerful method, but there is a small issue. Think

about the proof for 1 + 2 + . . .+ n = n(n+1)
2 . What is the problem?

The problem is that we need to know the formula. How do we find the formula?

This is where you need to use your imagination and creativity.
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First try : Consider a table with n× n cells, containing a total of n2 elements.

Let us focus on the elements that are on the diagonal and those below the diagonal:

⋆ . . . . . . . . . . . .

⋆ ⋆ . . . . . . . . .

⋆ ⋆ ⋆ . . . . . .
...

. . .
. . .

. . .
...

⋆ ⋆ ⋆ · · · ⋆

 .

So, we are considering the elements marked with stars (⋆). In the first row, there

is one, in the second row two, in the third three, and so on, up to the n-th row

where there are n stars. So, in total, we have 1+2+ · · ·+n elements of ⋆ type. On

the diagonal, we have D = n elements (one per row or column). The number of

elements strictly below the diagonal, denoted by s, is the same, due to symmetry,

as the number, S, of elements strictly above the diagonal. Since s + S +D = n2,

and we know s = S and D = n, it follows that s = n2−n
2 . Therefore, the number

of ⋆ elements, denoted by P(n) = 1 + 2 + ...+ n, which is equal to s+D, is given

by n2−n
2 + n = n(n+1)

2 .

Second try : Let us write our numbers 1, 2, ..., n, and then on the row below,

rewrite them in reverse order:

1 2 · · · · · · n− 1 n

n n− 1 · · · · · · 2 1

The sum of each column equals n+ 1. There are n columns, so 2P(n) = n(n+ 1),

which means P(n) = n(n+1)
2 .

This approach is inspired by the following anecdote: one day, the young Gauss’s

math teacher, wanting some time to read the newspaper in peace, asked the students

to calculate the sum: S = 1 + 2 + . . . + 100. The teacher had just managed to sit

down and open the newspaper when he heard young Gauss saying ”The answer is

5050”. How had he done it? He paired the numbers so that the sum of each pair

was 100: 0 with 100, 1 with 99, 2 with 98, and so on, up to 49 with 51. There

are 50 pairs with a total sum of 100 each, so their total sum is 100 × 50 = 5000.

To conclude, he added the single number 50, which was not paired with any other,

making S = 5050!

Example 2.12. Sometimes intuition and rigor complement each other. Let us try

to calculate S(n) = 12+22+ . . .+n2. If we consider P(n) = 1+2+ . . .+n = n(n+1)
2

we see that n(n+1)
2 is a degree two polynomial in n. One might think (by analogy?)

that S(n) is a degree three polynomial in n. Be careful! There is no mathematical

or scientific justification for this, it is just an attempt!
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So, let us assume S(n) = an3 + bn2 + cn+ d. Since S(0) = 02 = 0 we can see

that d should be 0. Similarly, we should have S(1) = 1 = a+ b+ c. From here you

can continue on your own (Exercise 2.15). The idea is to determine the coefficients

a, b, c and then verify, by induction, that the formula works (and it does).
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Exercises

Exercise 2.13. Using the prime factorization theorem, provide a direct proof of

the implication: n2 is even ⇒ n is even.

Exercise 2.14. For every n ∈ N, the factorial n! is defined as follows: 0! = 1 (this

is a convention), and if n > 0, n! := 1 · 2 · . . . · n.

(1) Compute 6!

(2) Show that if d > 1 divides n! + 1, then d > n.

Conclude that for every n, there exists a prime number p with p > n, and that the

set of prime numbers is infinite.

Exercise 2.15. Find a formula for S(n) = 12 + 22 + . . .+ n2.

Exercise 2.16. Prove by induction that for every n ∈ N:

∀x ∈ R \ {1} :

n∑
i=0

xi =
1− xn+1

1− x
(⋆).

Prove (⋆) without using induction.

Exercise 2.17. Let (un)n∈N be a sequence of elements in Z defined as u0 = 1, u1 =

4, and un+2 = 2un+1−un for all n ∈ N. Compute the first terms and guess a formula

for un that depends only on n (not on previous terms).

Prove the formula found by strong induction. Strong induction means that

we assume a proposition P(m) to be true for all m < n as opposed to the weak

induction we have introduced where we assume P(m) to be true just for m = n−1.



Chapter 3

Set theory and maps

The rigorous definition of set is beyond our scope, so we will settle for an intuitive

definition: A set is a collection of objects sharing a certain properties. If X is the

set, the objects are the elements of X. We write x ∈ X to say that x is an element

of X.

Given two sets X and Y , we can form their union and intersection:

• X ∩ Y = {z | z ∈ X ∧ z ∈ Y };

• X ∪ Y = {z | z ∈ X ∨ z ∈ Y }.

In addition, we have the notion of a subset: Y is a subset of X if every element in

Y belongs to X: Y ⊂ X ⇔ (y ∈ Y ⇒ y ∈ X).

With Y ⊂ X, we indicate an inclusion that can be either strict (Y ̸= X) or

non-strict (Y = X).

If Y ⊂ X, the complement, X \ Y , of Y in X is defined as:

X \ Y = {z ∈ X | z /∈ Y }.

Two sets are equal if they have the same elements, more precisely:

X = Y ⇔ (X ⊂ Y ) ∧ (Y ⊂ X).

This fact will be used repeatedly!

Proposition 3.1. (i) There exists a set, denoted by ∅, such that: ∀x, x /∈ ∅
(meaning ∅ has no elements).

(ii) For every set X we have ∅ ⊂ X.

(iii) The set ∅ is called the empty set and is a unique set satisfying properties (i)

and (ii).

31
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Proof. (i) Let X be any set. We have X ⊂ X (meaning X is a subset of itself),

and we can consider ∅ = X \X. If x ∈ ∅, then x ∈ X \X = {x | x ∈ X ∧x /∈ X}. If
A(x) is the proposition x ∈ X, then ¬A(x) is x /∈ X. The proposition A(x)∧¬A(x)
is always false. So, x /∈ ∅.

(ii) We need to prove the implication: ∀x, x ∈ ∅ ⇒ x ∈ X. Since x ∈ ∅ is

always false, the implication is true.

(iii) Let Z be a set that satisfies (ii). We have Z ⊂ ∅. But from (ii), we also

have ∅ ⊂ Z. Therefore, Z = ∅. □

Definition 3.2. The power set of a set X is denoted as ℘(X), and it consists of

all the subsets of X.

Let us illustrate this with an example. If X = {1, 2}, the power set is ℘(X) =

{∅, 1, 2, X}.

The cardinality of a finite set, which is the number of its elements, is denoted

as card(X) or ♯(X).

Lemma 3.3. If X is a finite set with n elements (n ∈ N) then ♯(℘(X)) = 2n.

Proof. We proceed by induction. If n = 0, then X = ∅ (by Proposition 3.1). We

have ℘(∅) = ∅, and since 20 = 1, we are done (in fact, 20 = 1 precisely because

♯(℘(∅)) = 1). If you are not convinced, we can start the induction from 1: if X has

just one element, then ℘(X) = {∅, X}, which has 21 = 2 elements.

Let us proceed with the induction step. We assume the lemma is true for n− 1

and prove it for n. Let X be a set with n > 1 elements. Take x0 ∈ X. The subsets

of X fall into two categories: (a) those that contain x0 and (b) those that do not

contain x0. Note that there is a perfect correspondence between subsets of type

(a) and those of type (b). Indeed, if A is of type (a), then A \ {x0} is of type

(b); if B is of type (b), then B ∪ {x0} is of type (a). So, the number of subsets

of type (a) is equal to the number of subsets of type (b). It follows that ♯℘(X) is

twice the number of subsets of type (b). But the subsets of type (b) are exactly the

subsets of Y := X \ {x0}. By the induction hypothesis, ♯℘(Y ) = 2n−1. Therefore,

♯℘(X) = 2 · 2n−1 = 2n and the lemma is proved. □

Definition 3.4. Let X and Y be two sets. There exists a set Z whose elements

are pairs of elements from X and Y :

Z = {(x, y) | x ∈ X, y ∈ Y }.

We denote this set as Z = X × Y , it is called the Cartesian product of X and Y .

If X = Y , we denote the Cartesian product of X and Y as X2 = X ×X. The

Cartesian coordinate system: in the plane of elementary geometry, let Ox and Oy
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be two axes. We choose units of length on these axes. Once this is done, every

point in the plane has two coordinates (a, b). Therefore, we can view our plane as

the Cartesian product R× R, which is denoted as R2.

Similarly, we can define the Cartesian product of n sets, E1 × E2 × . . . × En.

Note that A×B = ∅ ⇔ (A = ∅) ∨ (B = ∅).

Given two sets X and Y , a map f : X → Y is, morally speaking, a rule that

assigns to each element x of X one and only one element y of Y . We write y = f(x).

Of course, this is not a mathematical definition, but it conveys the idea well.

A rigorous formulation is as follows. A graph, G, from X to Y is a subset of X ×Y
that satisfies the following properties:

- {x ∈ X | ∃ y ∈ Y such that (x, y) ∈ G} = X (i.e. every element of X is in the

graph).

- For every x ∈ X, the set {y ∈ Y | (x, y) ∈ G} has a unique element.

Definition 3.5. A map f from X to Y is a triple (X,Y,G) where G ⊂ X × Y is a

graph. For every x ∈ X, the unique element y ∈ Y such that (x, y) ∈ G is denoted

by f(x), and y = f(x) is called the image of x through f .

In practice, we write f : X → Y and forget about the graph.

Definition 3.6. Let X and Y be two sets, and let f : X → Y be a map, X is

called the domain of the map f , and Y is called the codomain (We will also say

that X is the starting set, while Y is the target set).

Remark 3.7. There is no problem, a priori, in modifying the set Y (the codomain).

For example, if f : N → Z : n → 2n, we can consider f1 : N → R : n → 2n.

What is the difference between f and f1? A priori, none (they both assign 2n to

n). However, the codomain of f1 is different from that of f . Therefore, we must

conclude that f ̸= f1. In fact, changing the codomain can change the properties of

the map. A map f : E → F is a triple (E,F, f) (remember the graph).

Let us see some examples.

- The identity map. Let X be any set. In the Cartesian product X×X, there is

a distinguished subset, the diagonal, D, where D = {(x, x) | x ∈ X}. Clearly,
D is a graph, and therefore, it corresponds to a map from X to X. This map is

called the identity of X and is denoted by IdX . So, for all x ∈ X, IdX(x) = x.

This map may seem trivial, but it is actually very important!

- The constant map. Let y0 ∈ Y . The map f : X → Y such that for all

x ∈ X, f(x) = y0 is called the constant map with value y0. For example, the

zero map f : R → R : x→ 0 is a constant map with value 0.
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- Restriction. Let f : X → Y be a map and let Z ⊂ X. We can consider the

map Z → Y : z → f(z). This map is well-defined because Z ⊂ X (so we

know what f(z) is since z ∈ X), and it is called the restriction of f to Z. It is

denoted by f |Z . Clearly, if Z ̸= X, then f |Z ̸= f (they do not have the same

domain).

- Composition of maps. Let f : X → Y and g : Y → Z be two maps. From these

two maps, we can create a third one, g ◦ f : X → Z, defined as (g ◦ f)(x) =
g(f(x)). In other words, we first apply f to obtain f(x) ∈ Y , and then we

apply g to f(x). (Pay attention to the order when writing g ◦ f).

Lemma 3.8. Let f : X → Y , g : Y → Z, h : Z → T be maps. Then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Proof. We have (h ◦ (g ◦ f))(x) = h(g ◦ f)(x)) = h(g(f(x)) and ((h ◦ g) ◦ f)(x) =
(h◦g)(f(x)) = h(g(f(x)). Since this holds for every x, the two maps are equal. □

This is known as the associativity of the composition of maps.

Definition 3.9. Let f : X → Y be a map. The image set of f is defined as:

Im(f) = {y ∈ Y | ∃x ∈ X such that y = f(x)}.

In more concrete terms Im(f) = {f(x) | x ∈ X}.

Definition 3.10. A map f : X → Y is surjective if Im(f) = Y . In other terms f

is surjective if

∀y ∈ Y, ∃x ∈ X such that y = f(x).

Definition 3.11. Let f : X → Y be a map. The map f is injective if different

elements of X have different images:

x ̸= x′ ⇒ f(x) ̸= f(x′).

Said differently:

f(x) = f(x′) ⇒ x = x′.

The typical example of a surjective map is a projection p : X × X → X :

(x, y) → x. We also write p : X ↠ Y to highlight that p is surjective.

The typical example of an injective map is the inclusion: let Y ⊂ X, the

inclusion map is defined by i : Y → X : y → y. We also write i : Y ↪→ X to

highlight that i is injective.

Proposition 3.12. Let f : E → F be a map. The following are equivalent:

(1) f is injective;

(2) there exists a map h : F → E such that h ◦ f = IdE.
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Proof. (1) ⇒ (2). Let x0 be any element of E. Let y ∈ F . If y ∈ F \ f(E) we set

h(y) = x0. If instead y ∈ f(E), then y = f(x) and we set h(y) = x. This defines

h : F → E. In fact, if y ∈ f(E) there is a unique x such that y = f(x) because f

is injective. By construction we have h(f(x)) = x = IdE(x).

(2) ⇒ (1) If f(x) = f(x′) then h(f(x)) = h(f(x′)) and therefore x = x′ (since

h ◦ f = IdE). □

We observe that the map h, in general, is not uniquely determined (if f(E) ̸= F ,

i.e. if f is not surjective, we can choose the images of the elements of F \ f(E) as

we want).

The proof of the following proposition requires the use of the axiom of choice.

Axiom of choice: Let X,Y be two sets and let s : X → ℘(Y ) be such that ∀x ∈
X, s(x) ̸= ∅. Then there exists a map r : X → Y such that r(x) ∈ s(x), ∀x ∈ X.

The map r chooses an element in each of the subsets s(x) as x varies in X.

This choice is evident when X is a finite set but becomes more problematic when

X is an infinite set, not to mention uncountably infinite (more on that later).

Proposition 3.13. Let f : E → F be a map. The following are equivalent:

(1) f is surjective;

(2) there exists a map h : F → E such that f ◦ h = IdF .

Proof. (1) ⇒ (2). Intuitively it is clear what needs to be done. Let y ∈ F . Since f

is surjective the set {x ∈ E | f(x) = y} is non-empty. By the axiom above, we can

choose an x in this set and set h(y) = x. Then (f ◦ h)(y) = f(h(y)) = f(x) = y.

(2) ⇒ (1). Let y ∈ F . By hypothesis y = (f ◦h)(y), then y = f(h(y)), i.e. y = f(x)

with x = h(y); therefore f is surjective. □

We observe that the map h, in general, is not uniquely determined (if there

exists y such that {x ∈ E | f(x) = y} has more than one element, that is, if f is

not one-to-one, there are various choices of x in this set).

We now come to a very important class of maps:

Definition 3.14. A map f : E → F is bijective if it is injective and surjective.

Proposition 3.15. Let f : E → F be a map. The following are equivalent:

(1) f is bijective;

(2) there are maps h, g such that: h : F → E, f ◦ h = IdF , g : F → E and

g ◦ f = IdE.
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Furthermore, if conditions (1) and (2) are verified then g = h and g is the only

map from F to E such that g ◦ f = IdE and f ◦ g = IdF . The map g is called the

inverse map of f and is denote by g = f−1.

Proof. The existence of the maps h, g follows from what we saw before (Proposition

3.12, Proposition 3.13). Let (r, s) be a pair of maps from F → E such that f ◦
r = IdF , s ◦ f = IdE . We have s ◦ (f ◦ r) = s ◦ IdF = s. But we also have

s ◦ (f ◦ r) = (s ◦ f) ◦ r = IdE ◦ r = r. So s = r. Since (r, s) was any, this shows the

uniqueness of the inverse map: f−1 = s = r. □

Remark 3.16. In other words f is bijective if and only if there exists f−1 : F → E

such that: f ◦ f−1 = IdF and f−1 ◦ f = IdE .

So in practice we have two ways to prove that a map is bijective:

(a) show that f is injective and surjective;

(b) construct the inverse map f−1.

Remark 3.17. If f : E → F is bijective then f establishes a perfect correspondence

between the elements of E and the elements of F : to each element of E corresponds

one and a single element of F . Somehow, f identifies the set E with the set F :

everything that can be done in E can be ’transported’ into F . From the point of

view of set theory, E and F behave in the same way. We then say that they are

isomorphic (from Greek: they have the same shape).

3.0.1. Counterimage, a sad story. Let f : E → F be a map and let T ⊂ F

be a subset. The set f−1(T ) = {x ∈ E | f(x) ∈ T} is the counterimage of T via

the map f .

This notation is a catastrophe. In fact it is used even if f is not bijective! This

is one of the few cases in mathematics in which the same symbol is used for two

different things: the counterimage via any (not necessarily bijective) map and the

image of T via the inverse map of a bijective map f .

It is true that if f is bijective then the counterimage of T is the image of T

via the inverse map f−1 but in general, if f is not bijective, the map f−1 does not

exist!

Some authors use a different symbol to indicate the counter image. From a

formal, logical point of view they are right; unfortunately the use of the notation

f−1(T ) to indicate the counter image is now rooted everywhere, so in order not

to be misled when reading books and articles it is better to know (and use) this

terrible notation. That’s what we will do.

For example, the map f : R → R : x → x2 is not bijective, but if T = {4}, we
have f−1(T ) = {−2, 2}, while if R = [−2,−1], f−1(R) = ∅.
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3.0.2. Infinities. Let us begin with the following question:

Do there exist more numbers or more even numbers?

Let P ⊂ N be the set of even numbers. Since there are also odd numbers intuitively

one would say that there exist more numbers than even numbers. Consider the

map f : P → N : 2n → n. Note that the map f−1 : N → P : n → 2n is the

inverse of f . Therefore, there is a bijective correspondence between P and N, and
the answer to the previous question is:

There are just as many numbers as even numbers.

This fact is definitely very counter intuitive. Another example:

Are there more points in the segment A or in the segment B?

A

B

O

a

b

One would say that since B is longer than A there are more points in B than in

A. However, the projection from O establishes a bijective correspondence between

the points of A and those of B. Hence:

There are as many points in A as there are in B.

The problem we must face is the following: How do we count the infinities?

Definition 3.18. A set X is infinite if there exists a proper subset Y ⊊ X and a

bijective correspondence X → Y .

With this definition, taking into account the subset P ⊊ N of even numbers,

we see that N is infinite. The bijection

f : N → Z :

{
2n → n;

2n+ 1 → −n− 1.

shows that natural numbers are as many as the integers.
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An even more impressive fact is that rational numbers are as many as the

natural numbers. This can be seen via Cantor’s diagonal argument:

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 . . .

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 . . .

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 . . .

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 . . .

5/1 5/2 5/3 5/4 5/5 5/6 5/7 5/8 . . .

6/1 6/2 6/3 6/4 6/5 6/6 6/7 6/8 . . .

7/1 7/2 7/3 7/4 7/5 7/6 7/7 7/8 . . .

8/1 8/2 8/3 8/4 8/5 8/6 8/7 8/8 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

Following the path highlighted by the arrows and removing from it the fractions

that are not reduced we see that we can label every positive rational number with an

even integer, in exactly the same way we can label every negative rational number

with an odd integer and thus we have a bijection from N to Q.

Now, what about real numbers? Real numbers are ”more infinite” than inte-

gers. Let us prove that there exists no bijective correspondence between N and the

interval J =]0, 1[⊂ R following another argument due to Cantor. Any x ∈ J has a

decimal expansion of the form 0.a0a1 . . . an . . . with ai ∈ {0, 1, ..., 9}. Assume that

there is a bijection between N and J , it gives us a table like this:

N J

0 0.a0a1 . . . an . . .

1 0.b0b1 . . . bn . . .

2 0.c0c1 . . . cn . . .

. . . . . .

n 0.d0d1 . . . dn . . .

. . . . . .

Because of the bijection any x ∈ J appears in the right column. Now, consider

z = 0.e0e1 . . . en . . . with e0 ̸= a0, e0 /∈ {0, 9}, e1 ̸= b1, e1 /∈ {0, 9}, . . . , en ̸= bn, en /∈
{0, 9}. Note that:

- Since z ̸= 0 = 0.000 . . . and z ̸= 1 = 0.999 . . . we have that z ∈ J ;
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- z does not appear in the table since if z corresponded to n we would have

dn = en.

This proves that:

The infinity of R is ”greater” than the infinity of N.

Indeed, the map J → R : x→ 2x−1
x−x2 is bijective, and hence a bijection R → N would

yield a bijection J → N.

Definition 3.19. Two sets X and Y have the same cardinality if there exists a

bijective map X → Y .

If X is a finite set, card(X) (cardinality of X) is exactly the number of its

elements. When X is infinite it is another thing, a new kind of number (transfinite

cardinal).

Definition 3.20. Let X and Y be two sets. Then

- card(X) ≤ card(Y ) if and only if there is an injective map X → Y ;

- card(X) ≥ card(Y ) if and only if there is a surjective map X → Y ;

- card(X) = card(Y ) if and only if there is a bijective map X → Y .

The cardinality of N is denote by ℵ0 (aleph-zero). We will denote simply by c,

which stands for continuum, the cardinality of R.

The cardinal ℵ0 is the smallest transfinite cardinal. An informal proof goes as

follows. Let X be an infinite (hence non empty) set and take x0 ∈ X. The set

X \ {x0} is infinite, so we can choose x1 ∈ X \ {x0}. We go on this way: once we

have {x0, ..., xn} we take xn+1 ∈ X \ {x0, ..., xn}. We obtain an infinite sequence

{xi}i∈N of distinct elements of X showing that card(X) ≥ ℵ0. This is just an

informal sketch, to make it work properly we need the axiom of choice.

Definition 3.21. A set X is countable if it is finite or there exists a bijection

X → N that is if card(X) = ℵ0.

Hence, N,Z and Q are countable while R is not. We have that ℵ0 < c and we

say that R is uncountable.

Note that if α, β are cardinals such that α ≤ β and β ≤ α it is not immediate

that α = β. For this we need a theorem.

Theorem 3.22 (Cantor-Bernstein). Let X and Y be two sets such that card(X) ≤
card(Y ) and card(Y ) ≤ card(X) then card(X) = card(Y ).

This theorem says that if there exist f : X → Y injective and g : X → Y

surjective then there exists h : X → Y bijective. This is not obvious at all since a

priori there is no relation between f and g.
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So far we have proved that ℵ0 < c. Now, we look for an infinity greater than

c. We have seen that c = card(J) with J =]0, 1[. The natural candidate is the set

K =]0, 1[×]0, 1[⊂ R2.

We may associate to an element (x, y) = (0.a0a1 . . . an . . . , 0.b0b1 . . . bn . . . ) the

element 0.a0b0a1b1 . . . anbn · · · ∈ J . This yields an injective map K → J . However,

such map is not surjective: for instance 0.102010 . . . 1020 . . . does not belong to the

image since in this case it would be the image of (0.1212 . . . 12 . . . , 0.00 . . . 00 . . . )

which does not lie in K. Anyway, the map is injective and hence card(K) ≤
card(J) = c.

On the other hand, since the map J → K : x → (x, 12 ) is injective we get that

card(J) ≤ card(K), and the Cantor-Bernstein’s theorem yields that card(K) =

card(J) = c. Therefore, in order to construct a set of cardinality bigger than c we

need to come up with something more exotic. This will be the power set.

Theorem 3.23 (Cantor). Let X be a set (finite or infinite). There is no surjective

map X → P(X) from X to its power set P(X).

Proof. Assume that there exists a surjective map φ : X → P(X), and consider

the subset

D = {x ∈ X | x /∈ φ(x)} ⊂ X.

Since φ is surjective we have that D = φ(z) for some z ∈ X. First, assume that

z ∈ D. Then z /∈ φ(z) = D, a contradiction. Now, assume that z /∈ D. Then

z ∈ φ(z) = D, again a contradiction. We conclude that D does not belong to the

image of φ. □

Corollary 3.24. For any set X we have that card(X) < card(P(X)).

Proof. The map X → P(X) : x → {x} is injective. Therefore, to conclude it is

enough to apply Cantor’s theorem. □

We got that c = card(R) < card(P(R)), and more that this:

ℵ0 < c < card(P(R)) < card(P(P(R))) < card(P(P(P(R)))) < . . .

Remark 3.25. We have that card(P(N)) = c and we write 2ℵ0 = c.

We conclude with a crucial consequence of Cantor’s results. Let us assume

that there exists a set I of all sets, i.e. if x is a set, then x ∈ I. Observe that

P(I) ⊂ I. Indeed every element, x, of P(I) is a subset of the set I, hence x is a

set. By this inclusion we get card(I) ≥ card(P(I)), in contradiction with Cantor’s

theorem. Cantor noticed this contradiction in set theory in 1895.

The following is only way to get out of this contradiction:
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Theorem 3.26. The collection of all sets is not a set.

Another proof goes as follows. Assume I is a set and consider

X = {F ∈ I | F /∈ F}.

Since X is defined by a condition on the elements of a set, X is a set. Now, we ask

the crucial question (compare with the proof of Cantor’s theorem): does X belong

to itself?

- If X ∈ X, by definition of X, X /∈ X.

- If X /∈ X, by definition of X, X ∈ X.

In both cases we get a contradiction.

Now if the collection I is not a set, we can no longer say that X is a set and

wondering whether X belong to itself does not make sense.

This last proof is known as Russell’s paradox and it is often formulated as

follows:

In a village there is a barber who shaves only and all those who do not shave

themselves. Who shaves the barber?

If the barber shaves himself then the barber can not shave himself. If the barber

does not shave himself then he must shave himself.

As we have seen the only way to get out of this impasse is to decide that the

collection of all sets is not a set, it is something else (a proper collection).

But then what is a set? There are certain ”collections” that are sets and others

that are not. How does one decide? It can be done thanks to mathematical logic

but in general it is highly non-trivial.

We have seen that ℵ0 < c. It is natural to wonder if there is a cardinal ℵ1 in

between ℵ0 and c.

The continuum hypothesis, CH for short, states that there is no cardinal in

between ℵ0 and c.

In 1940 Gödel proved that it is not possible to prove that the continuum hypoth-

esis is false. In other words it is logically consistent with the axioms of mathematics.

But that does not mean it is true! In 1963 Cohen proved that it is not possible to

prove that the continuum hypothesis is true either.

Therefore the continuum hypothesis is undecidable: one can construct a math-

ematical theory in which it is true and another one where it is false, both of them

are equally valid!

Gödel himself proved later on a puzzling result: It is not possible (with the tools

of mathematics) to prove that mathematics is non-contradictory.
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So there is some uncertainty, someone might one day find a contradiction in

mathematics? Since theorems have been proved for more than two millennia, and

these theorems had, as Einstein said, an enormous impact on our understanding of

nature, the working mathematician sleeps peacefully.
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Exercises

Exercise 3.27. Let E,F be two sets. Show that E ⊂ F if and only if E ∩F = E,

and that E ∩ ∅ = ∅.

Exercise 3.28. List the elements of the set P(P(P(∅))).

Exercise 3.29. Let X be a finite set and f : X → X a map. Show that the

following are equivalent:

(i) f is injective;

(ii) f is surjective;

(iii) f is bijective.

Exercise 3.30. Let f : X → Y be a map, X ′ ⊂ X a subset ofX, and f|X′ : X ′ → Y

the restriction of f to X ′.

(i) Show that if f is injective then f|X′ is injective.

(ii) Assume f surjective. Is f|X′ necessarily surjective?

Now, consider the map f ′ : X → f(X) : x→ f(x). Show that f ′ is surjective, and

that if f is injective then f ′ is bijective.

Exercise 3.31. Let f : X → Y be a map. For y ∈ Y let

Xy := {x ∈ X | f(x) = y} ⊂ X

be the fiber of f over y ∈ Y . Show that if y ̸= y′ then Xy ∩Xy′ = ∅, and that

X =
⋃
y∈Y

Xy.

Exercise 3.32. Let E,F be two finite sets. Denote by A(E,F ) is the set of maps

from E into F . Show that card(A(E,F )) = fe where e = card(E), f = card(F )

(Do two proofs, one by induction on e and the other without induction).

Exercise 3.33. Let E,F1, ..., Fn be non-empty sets. For i, 1 ≤ i ≤ n we have

the map pi : F1 × · · · × Fn → Fi : (x1, ..., xn) → xi. This map is called the i-th

projection.

(i) Show that pi is surjective.

(ii) Let f : E → F1×· · ·×Fn be a map, and fi the map pi ◦f : E → Fi. Show that

the map Φ : A(E,F1 × · · · × Fn) → A(E,F1)× · · · × A(E,Fn) : f → (f1, ..., fn) is

bijective (A(X,Y ) is the set of maps from X to Y ). This means that to give a map

of E in F1 × · · · × Fn is equivalent to give n map fi : E → Fi, 1 ≤ i ≤ n.

(iii) Let f : E → F1 × · · · × Fn : x → (f1(x), ..., fn(x)). Show that if there exists i

such that fi is injective, then f is injective. Is it true that there exists i such that

fi is injective?
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(iv) Is it true that fi surjective ∀i implies f surjective?

(v) State whether the following maps are injective, surjective:

(a) f : R → R3 : x→ (1, 2x, x2);

(b) g : R → R3 : x→ (x− 1, x2 − x, x2).



Chapter 4

Algebraic structures

4.1. Equivalence relations

Intuitively a binary relation, R, on set E is a property concerning the pairs (x, y) ∈
E×E. Some couples are related, some are not. For example, the relation R on the

set of the Italian population xRy ⇔ x and y are married.

Another example: on the set R: xRy ⇔ x ≤ y. Then 1 R 2 is verified while

3 R 1 is not.

A more formal definition is the following: a binary relation on the set E is a

subset G of E × E. We have xRy ⇔ (x, y) ∈ G (be careful the order is important,

it is possible to have (x, y) ∈ G and (y, x) /∈ G).

Definition 4.1. A binary relation R on the set E is called an equivalence relation

if it satisfies:

(1) ∀x ∈ E, xRx (reflexivity);

(2) ∀(x, y) ∈ E2: xRy ⇒ yRx (symmetry);

(3) ∀(x, y, z) ∈ E3: (xRy) ∧ (yRz) ⇒ xRz. (transitivity)

For example, let us consider the property xRy ⇔ x and y have the same eye

color. Assuming that there are no people with eyes of different colors we can

partition the population according to various classes: Those who have blue eyes,

those who have green eyes, those who have brown eyes.

On any set E the relation xRy ⇔ x = y is an equivalence relation.

Let f : E → F be a map, the relation on E: xRy ⇔ f(x) = f(y) is an

equivalence relation.

45
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On R the relation xRy ⇔ x ≥ y is not an equivalence relation. Why?

On Z the relation nRm ⇔ n − m is divisible by a (where a ∈ N∗) is an

equivalence relation. Observe that being divisible by −a is equivalent to being

divisible by a: n = k(−a) = (−k)a. This relation can also be formulated by saying

that n and m have the same remainder when dividing by a. The relation is noted

n ≡ m (mod a) and reads: n is congruent to m modulo.

Definition 4.2. Let R be an equivalence relation on the set E and let x ∈ E. We

denote by R(x) (or x if there is no ambiguity) the equivalence class of x:

R(x) := {y ∈ E | xRy}.

Observe that ∀x ∈ E,R(x) ̸= ∅ because x ∈ R(x). Furthermore, if y, z ∈ R(x)

then yRz since yRx and xRz imply yRz. In particular, R(x) = R(y) = R(z).

Definition 4.3 (Partition). Let E be a set. A family (Xi)i∈I of distinct, non-

empty subsets of E is a partition of E if:

(1)
⋃
i∈I

Xi = E;

(2) Xi ∩Xj ̸= ∅ ⇒ Xi = Xj .

Lemma 4.4. To give an equivalence relation on the set E is equivalent to give a

partition of E.

Proof. (1) Let (Xi)i∈I be a partition of E. We define a relation by: xRy ⇔ ∃i
such that x ∈ Xi ∧ y ∈ Xi. It is easily verified that R is an equivalence relation.

(2) Let R be an equivalence relation on E. We show that the set of equivalence

classes (R(x))x∈E is a partition of E. The first condition of the Definition 4.3 is

verified because ∀x ∈ E, x ∈ R(x). Suppose R(x)∩R(y) ̸= ∅. Let z ∈ R(x)∩R(y).
We show that any element t ∈ R(y) belongs to R(x). We have tRz and zRx. By

transitivity tRx, i.e. t ∈ R(x). This shows R(y) ⊂ R(x). In the same way we prove

R(x) ⊂ R(y), so R(x) = R(y). □

Definition 4.5 (Quotient set). Let R be an equivalence relation on the set E. The

quotient set is the set whose elements are the equivalence classes of R. It is denoted

by E/R.

The map p : E → E/R : x→ R(x) is called the canonical map to the quotient.

The map p is always surjective (∀x, p(x) = R(x)) but it is not injective except

when R is the equality relation. Indeed p is injective ⇔ ∀x,R(x) = {x}.

Example 4.6. We denote Z∗ = {n ∈ Z | n ̸= 0}. On E := Z× Z∗ we consider the

relation (a, b)R (c, d) ⇔ ad − bc = 0. It can be verified that R is an equivalence
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relation. The quotient set is nothing but Q, the set of rational numbers. In fact

Z× Z∗ can be identified as the set of fractions: (a, b) ↔ a

b
and the relation R says

that
a

b
=
c

d
⇔ ad = bc. So a rational number is (the image in the quotient set) of

an equivalence class of fractions.

Example 4.7. Let us consider the relation n ≡ m (mod 3) on Z. So two integers

are related if they have the same remainder when divided by 3 (i.e. if 3 | n −m).

The quotient set is Z/R := Z/3Z. How many elements does Z/3Z have? The

possible remainders in division by three are 0, 1, 2. So Z/3Z has three elements.

It is customary to write Z/3Z = {0, 1, 2}. Note however that 6 ≡ 0 (mod 3), 5 ≡ 2

(mod 3) and 4 ≡ 1 (mod 3), so we also have Z/3Z = {6, 4, 5}. More generally

Z/nZ has n elements.

4.2. Groups

An internal composition law on the set E is essentially an operation which allows,

starting from two elements of E, to obtain a third one (the result of the operation)

for example: 2 + 4 = 6. From a more formal point of view:

Definition 4.8. An internal composition law on the set E is a map:

f : E × E → E.

For psychological and practical reasons it is preferable to write: x ⋆ y instead

of f(x, y) (or x · y, x+ y, xy, x ⊥ y, f ◦ g).

Definition 4.9 (Group structure). A group structure on the set E is an internal

composition law on E, ⋆, which satisfies the following conditions:

(1) ∀(x, y, z) ∈ E3: x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z (associativity);

(2) ∃e ∈ E | ∀x ∈ E: x ⋆ e = e ⋆ x = x (neutral element);

(3) ∀x ∈ E,∃x−1 ∈ E | x ⋆ x−1 = x−1 ⋆ x = e (symmetric element).

In practice, when the law is specified by the context, it is common to say

that E is a group, but it must be remembered that a group is a pair (E, ⋆). The

symmetric can be indicated in various ways: x′, x−1,−x. Note that the symmetric

of the symmetric of x is x: (x−1)−1 = x.

Definition 4.10 (Commutative group). Let (G, ⋆) be a group. If

∀(x, y) ∈ G2 : x ⋆ y = y ⋆ x

we say that G is a commutative group (it is also called abelian).
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The term abelian is in memory of the Norwegian mathematician Niels Henrik

Abel (1802-1829).

Example 4.11. On Z the addition is an internal composition law, it is easily

verified that (Z,+) is an abelian group. The neutral is 0 and the symmetric of n is

−n.

The same goes for Q,R,C (the symmetric of the complex number z = x + iy

is −z = −x− iy).

But (N,+) is not a group (symmetric elements are missing).

Example 4.12. The product is also an internal composition law on Z, but (Z, ·)
is not a group (symmetric elements are missing).

On Q the symmetric of x = a/b is (if x ̸= 0) 1/x = b/a. But (Q, ·) is not a

group. There is no way to have a symmetric for 0 (cannot divide by 0). However,

if we consider Q∗ := Q \ {0}, we see that (Q∗, ·) is an abelian group (the neutral is

1, the symmetric of x is 1/x).

The same goes for R∗ and C∗. The symmetric of the complex number z = x+iy

is (x− iy)/(x2 + y2) which is also denoted by z/|z|2, z = x− iy is the conjugate of

z and |z| =
√
x2 + y2 is the modulus of z.

Example 4.13. Let X be a set and let Σ(X) be the set of bijective maps from

X to X. On Σ(X) we set the map composition as the internal composition law.

Observe that the composition of two bijective maps is bijective. It is easily verified

that (Σ(X), ◦) is a group. The neutral element is IdX . The symmetric of f is f−1.

Example 4.14. We have defined Z/nZ (Example 4.7), let us now try to define an

addition on this set. The natural thing that comes to mind is to set: x+y := x+ y,

that is, the sum of the two classes is the class of the sum of the two representatives.

There is something to check. In fact, if a = x (i.e. a and x are equivalent) and if

b = y, then x + y = a + b and therefore for this law to be well defined we must

verify that x+ y = a+ b (otherwise we would have two different results for our

sum). But x = a means that n | a − x, so a − x = kn for some k ∈ Z. Therefore

a = x+ kn. In the same way b = y+ tn for a suitable t. So a+ b = x+ y+n(k+ t)

and n | (a + b) − (x + y), that is, a+ b = x+ y. This shows that our addition

(which we will denote by +) is well defined. It is easily verified that (Z/nZ,+) is

an abelian group.

Lemma 4.15. In a group (G, ⋆) the neutral element is unique.

Proof. Let e be the neutral element of (G, ⋆). Let e′ be such that e′ ⋆ x = x ⋆ e′ =

x, ∀x ∈ G. Then e ⋆ e′ = e but e ⋆ e′ = e′ because e is the neutral element, so

e = e′. □
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Lemma 4.16. Let (G, ⋆) be a group, then ∀x ∈ G, ∃!x−1 such that x ⋆ x−1 =

x−1 ⋆ x = e.

Proof. Let z ∈ G be such that z ⋆ x = x ⋆ z = e. We want to show that z = x−1.

We have (z ⋆ x) ⋆ x−1 = z ⋆ (x ⋆ x−1) = z ⋆ e = z. On the other hand, (z ⋆ x) = e

so (z ⋆ x) ⋆ x−1 = e ⋆ x−1 = x−1. We conclude that z = x−1 and the lemma is

proved. □

4.2.1. Subgroups. Let (G, ⋆) be a group and let H ⊂ G be a subset. We can

simply compose elements of H and ask whether (H, ⋆) is a group. A first condition

is: x, y ∈ H ⇒ x⋆y ∈ H, which is not obvious a priori. In fact H×H ⊂ G×G and

we can consider the map ⋆ restricted to H ×H but a priori the image is contained

in G, not in H. Another condition is e ∈ H. In fact the neutral element for ⋆ is

uniquely determined. Finally if x ∈ H, due to uniqueness of the symmetric, we

must have x−1 ∈ H.

Definition 4.17. Let (G, ⋆) be a group and let H ⊂ G be a subset. Let us assume

that the following conditions are satisfied:

(1) x, y ∈ H ⇒ x ⋆ y ∈ H;

(2) e ∈ H;

(3) x ∈ H ⇒ x−1 ∈ H.

Then the restriction of ⋆ to H defines a group structure on H; we say that H is a

subgroup of G.

For example (Z,+) is a subgroup of (Q,+).

Lemma 4.18. Let (G, ⋆) be a group and let H ⊂ G be a subset. The following are

equivalent:

(1) H is a subgroup of G;

(2) H is non-empty and ∀x ∈ H and ∀y ∈ H we have x ⋆ y−1 ∈ H.

Proof. (1) ⇒ (2). We observe that a group is never empty, in fact it always

contains at least one element: the neutral element. So if H is a subgroup it is

non-empty, furthermore if y ∈ H, then y−1 ∈ H (Definition 4.17, (3)). If x ∈ H

and y−1 ∈ H, then x ⋆ y−1 ∈ H (Definition 4.17 (1)).

(2) ⇒ (1). Since H is non-empty, the exists a ∈ H. We apply (2) with x = a,

y = a, a ⋆ a−1 = e ∈ H and the second condition of Definition 4.17 is verified. Let

x ∈ H. We have e ∈ H,x ∈ H, so by our hypothesis e⋆x−1 = x−1 ∈ H and the third

condition of Definition 4.17 is verified. Finally, for the first condition, let x, y ∈ H.

We have seen that y−1 ∈ H. For our hypothesis x ⋆ (y−1)−1 = x ⋆ y ∈ H. □
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4.2.2. Morphisms of groups. Let (G, ⋆) and (E, ◦) be two groups. Among the

maps f : G → E there are those that respect the group structure. What does

this mean? Taking two elements x, y ∈ G we can compose them in G and take

their image in E, we obtain f(x ⋆ y), or we can take the images in E and compose

them into E, we get f(x) ◦ f(y). We want these two things to give the same result:

f(x ⋆ y) = f(x) ◦ f(y); such a map will be called a group morphism.

Definition 4.19. Let (G, ⋆) and (E, ◦) be two groups. A map f : G → E is a

group morphism if:

∀x, y ∈ G, f(x ⋆ y) = f(x) ◦ f(y).

Proposition 4.20. Let (G, ⋆) and (E, ◦) be two groups with neutral elements e ∈
G, ε ∈ E. Let f : G→ E be a group morphism, then:

(1) f(e) = ε (the image of the neutral is the neutral);

(2) ∀x ∈ G, f(x−1) = f(x)−1 (the image of the symmetric is the symmetric of

the image).

Proof. (1) We have f(x ⋆ e) = f(x) ◦ f(e). But x ⋆ e = x so f(x) = f(x) ◦ f(e).
Composing on the left with the symmetric (in E) of f(x): f(x)−1 ◦f(x) = f(x)−1 ◦
(f(x) ◦ f(e)). By associativity f(x)−1 ◦ (f(x) ◦ f(e)) = (f(x)−1 ◦ f(x)) ◦ f(e)) =
ε ◦ f(e) = f(e). Since f(x)−1 ◦ f(x) = ε we conclude that f(e) = ε.

(2) We have f(x ⋆ x−1) = f(x) ◦ f(x−1). But x ⋆ x−1 = e and f(e) = ε, so

ε = f(x) ◦ f(x−1). In a similar way we prove f(x−1) ◦ f(x) = ε. By uniqueness of

the symmetric we conclude that f(x−1) = f(x)−1. □

Lemma 4.21. Let (G, ⋆) and (E, ◦) be two groups and let f : G→ E be a morphism

of groups, then Im(f) = {f(x) | x ∈ G} ⊂ E is a subgroup of E.

Proof. We have (Proposition 4.20) f(e) = ε therefore ε ∈ Im(f). Let z = f(x), t =

f(y). We need to see z◦t−1 ∈ Im(f) (Lemma 4.18). We have z◦t−1 = f(x)◦f(y)−1.

We know that f(y)−1 = f(y−1) (Proposition 4.20) so we have z ◦ t−1 = f(x) ◦
f(y−1) = f(x ⋆ y−1) ∈ Im(f). Therefore, Im(f) is a subgroup of E. □

The kernel of a group morphism f : G → E, denote by Ker(f), is the set of

elements of G whose image is the neutral of E.

Definition 4.22. Let f : G→ E be a group morphism. We have

Ker(f) := {x ∈ G | f(x) = ε}

where ε is the neutral of E.

The kernel of a morphism is a very important object.
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Lemma 4.23. Let f : G→ E be a group morphism.

(1) Ker(f) ⊂ G is a subgroup of G;

(2) f is injective if and only if Ker(f) = {e} where e is the neutral of G.

Proof. (1) We know that e ∈ Ker(f) (Proposition 4.20). Let x, y ∈ Ker(f),

we must show x ⋆ y−1 ∈ Ker(f), i.e. f(x ⋆ y−1) = ε. We have f(x ⋆ y−1) =

f(x) ◦ f(y−1) = f(x) ◦ f(y)−1. By hypothesis f(x) = f(y) = ε and the thesis

follows.

(2) Suppose f is injective. Let x ∈ Ker(f). We have f(x) = ε = f(e), by

injectivity x = e, therefore Ker(f) = {e}.

Conversely, we assume Ker(f) = {e} and show that f is one-to-one. Suppose

f(x) = f(y). We have f(x) ◦ f(y)−1 = ε. So ε = f(x) ◦ f(y)−1 = f(x) ◦ f(y−1) =

f(x ⋆ y−1). It follows that x ⋆ y−1 ∈ Ker(f) = {e}. So x ⋆ y−1 = e and composing

on the right with y we get x = y. □

The two subgroups Im(f),Ker(f) tell us when f is surjective/injective; f is

surjective when Im(f) is as large as possible (Im(f) = E) and f is injective when

Ker(f) is as small as possible (Ker(f) = {e}).

4.2.3. Complements. Among the axioms of group structure, associativity may

seem of little influence. Meanwhile, we note that we have used it several times in

proofs. For example if x⋆g = y⋆g, then x = y. In fact, composing with g−1 we have:

(x⋆g) ⋆ g−1 = (y ⋆ g) ⋆ g−1. By associativity this implies x⋆ (g ⋆ g−1) = y ⋆ (g ⋆ g−1)

and therefore x = y.

In particular this proves the following.

Lemma 4.24. Let (G, ⋆) be a group and g ∈ G, then the map mg : G → G : x →
x ⋆ g is injective (just like the map mg : G → G : x → g ⋆ x). In particular if G is

finite, mg and mg are bijective.

In fact, if X is a finite set and if f : X → X then f injective ⇔ f is surjective

⇔ f bijective.

Another interest of associativity is that it allows us to define x1 ⋆ x2 ⋆ · · · ⋆ xn.
To simplify the writing we take a multiplicative notation i.e. we denote ⋆ by ·, so
we are in (G, ·). There is no ambiguity in defining x1 · x2 because we know how

to compose two elements. However, the writing x1 · x2 · x3 makes no sense a priori

because we do not know how to compose three elements. However, we can consider

(x1 ·x2) ·x3 but also x1 · (x2 ·x3). We are lucky because thanks to the associativity

(x1 ·x2)·x3 = x1 ·(x2 ·x3), therefore we can set x1 ·x2 ·x3 := (x1 ·x2)·x3 = x1 ·(x2 ·x3).
We define by induction x1 · · · · · xn := (x1 · · · · · xn−1) · xn.
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Let x1 · · · · · (xi · xi+1 · · · · · xk) · · · · · xn an expression containing parentheses

in any order. We prove by induction that this expression is equal to x1 · · · · · xn.
The case n = 3 has been done. Suppose the result is true for all m < n. Let

us set y = xi · · · · · xk. It is this is well defined because there are less than n

terms. Our expression becomes x1 · · · · · y · · · · · xn and perhaps contains more

parentheses but has fewer than n terms, so by induction hypothesis it is equal

to x1 · · · · · y · . . . xn := (x1 · . . . y · . . . xn−1) · xn. Entering the value of y gives

(x1 · . . . (xi · · · · ·xk) · · · · ·xn−1) ·xn. The first parenthesis collects less than n terms,

so by induction it equals (x1 · · · · · xn−1). This shows that our initial expression is

equal to (x1 · · · · · xn−1) · xn =: x1 · · · · · xn, i.e. we have defined the product of n

elements (and for this only associativity is needed). In particular, if the xi are all

equal to x, we have xn = x · · · · · x. In additive notation: nx := x+ · · ·+ x.

Let (G, ·) be a finite group. Is there a way to describe it? Classify it? One

possibility is to try to make a table of its law. For instance, let G be a group with

two elements: G = {x, y}. One of them is the neutral let us say x = e, the table

looks like this:

e y

e e · e e · y
y y · e y · y

Since e is the neutral: e · e = e, e · y = y · e = y. Now, Lemma 4.24 tells us that all

the elements of the group must appear in each row (and each column). So looking

for example at the second line we see that y · y = e. So the table is:

e y

e e y

y y e

There is only one possible table. In other words there is essentially a single group

with two elements. However, we know at least two: (Σ2, ◦) and (Z/2Z,+). The fact

is that these two groups are isomorphic i.e. there exists f : Σ2 → Z/2Z morphism

of groups, bijective. In the same way we can see that there is a single table for

groups with 3 elements.

4.3. Rings and fields

In this section we introduce more sophisticated algebraic structures, namely rings

and fields.

Definition 4.25. Let A be a set with two internal composition laws + and ·. The
triple (A,+, ·) is a ring structure on A if:

(1) (A,+) is an abelian group;
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(2) there is a neutral element 1 for ·: ∀x ∈ A, 1 · x = x · 1 = x;

(3) · is associative: x · (y · z) = (x · y) · z;

(4) · is distributive with respect to +: ∀(x, y, z) ∈ A3: x · (y + z) = x · y + x · z,
and (x+ y) · z = x · z + y · z.

Definition 4.26. If ∀x, y ∈ A we have x · y = y · x, then A is a commutative ring.

Remark 4.27. Let G be a group. If the law of G is commutative, by convention,

it is denoted +, while if the law is not commutative it is common to indicate it

with ·. The symmetric of x for + is −x while the symmetric of x for · is denoted

by x−1. However, these are just notations and everyone is free to choose their own

notations.

Example 4.28. (Z,+, ·), (Q,+, ·), (R,+, ·), (C,+, ·) are commutative rings. But

(N,+, ·) is not a ring. In fact (N,+) is not an abelian group.

In a ring A we have two neutral elements: 0 the neutral for +, and 1 the neutral

for the multiplication ·. If 1 = 0 then every element of A is equal to 0.

Lemma 4.29. Let (A,+, ·) be a ring, and 0 the neutral of the abelian group (A,+).

Then ∀x ∈ A, x · 0 = 0 · x = 0.

Proof. We have x = x · 1 = x · (1 + 0) = x · 1 + x · 0 = x + x · 0. So −x + x =

−x+(x+x ·0). By associativity −x+(x+x ·0) = (−x+x)+x ·0 = x ·0. Therefore
0 = x · 0. In the same way we show 0 = 0 · x. □

Lemma 4.30. Let A be a ring. If 0 = 1 then x = 0 ∀x ∈ A.

Proof. We have x = 1 · x = 0 · x = 0 where the last equality follows from the

previous lemma. □

The situation 1 = 0 is certainly not very interesting and therefore in what

follows we will always assume 1 ̸= 0.

Example 4.31. Consider Z be with the usual addition and multiplication oper-

ations: (Z,+, ·). Then it is easily verified that (Z,+, ·) is a commutative ring.

Observe that the only elements that have a symmetric for · are 1 and −1.

Example 4.32. We have seen (Example 4.14) how to define an addition in Z/nZ.
In the same way we can define a multiplication: x · y = xy. To see that this

multiplication is well defined we need to show that it does not depend on the choice

of representatives: if a = x and b = y, we must see that ab = xy. So we need to

show that ab − xy is a multiple of n. By hypothesis a − x = kn and b − y = tn,

therefore ab = (x+ kn)(y + tn) = xy + n(xt+ ky + ntk), and ab− xy is a multiple

of n. We then verify that (Z/nZ,+, ·) is a commutative ring.
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So far all the examples given are commutative rings, but we will see important

examples of non-commutative rings later.

In a ring not all elements have an inverse for ·. For example in (Z,+, ·), the
only invertible elements for · are ±1. However, there are rings where each non-zero

element has an inverse for multiplication. For example (Q,+, ·) is such a ring.

Definition 4.33. A field K is a set with two laws, +, ·, of internal composition

such that:

(1) (K,+) is an abelian group;

(2) (K∗, ·) is an abelian group, where K∗ = K \ {0};

(3) · is distributive with respect to +: ∀(x, y, z) ∈ K3, x · (y + z) = x · y + x · z
and (x · y) · z = x · z + y · z.

Observe that (2) implies 1 ̸= 0 (0 the neutral for +; 1 the neutral for ·).

Example 4.34. (Q,+, ·), (R,+, ·), (C,+, ·) are fields, while (N,+, ·), (Z,+, ·) are
not fields.

A more exotic example of a field is (Z/2Z,+, ·), we will see others of this type.

In fact, it can be shown that Z/nZ is a field if and only if n is prime (Exercise

4.49).

Observe that the field structure reflects all the calculation rules that we are

used to on R, for this reason we will consider the elements of a field as numbers

like real numbers.

Definition 4.35. Let A and B be two rings, a map f : A→ B is a ring morphism

if:

(1) f is a morphism of abelian groups: f : (A,+) → (B,+), i.e. ∀(x, y) ∈ A2 :

f(x+ y) = f(x) + f(y);

(2) ∀(x, y) ∈ A2 : f(xy) = f(x) · f(y);

(3) f(1A) = 1B .

We observe that the third condition does not follow from the second as hap-

pened in the case of groups. In fact the procedure was: f(1A · x) = f(x) =

f(1A) · f(x), now composing with f(x)−1 we get f(1A) = 1B . The problem is that

a priori there is no reason why there should be x ∈ A such that f(x) is invertible

with respect to the multiplication in B.

Let us see some calculation rules in a field.

Lemma 4.36. Let K be a field and let x, y ∈ K. If x · y = 0, then x = 0 or y = 0.
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Proof. Let x · y = 0. If x = 0 we are done. If x ̸= 0 these exists x−1 and we have:

x−1 · (x · y) = x−1 · 0 = 0. But x−1 · (x · y) = (x−1 · x) · y = 1 · y = y. In conclusion

y = 0. □

Remark 4.37. The previous lemma is not necessarily true in a ring (A,+, ·). For
example, let us consider (Z/4Z,+, ·): we have 2 · 2 = 4 = 0 and 2 ̸= 0. Instead in

the ring (Z,+, ·): n ·m = 0 ⇒ n = 0 or m = 0.

Definition 4.38. A ring that verifies the property of the Lemma 4.36 is called an

integral ring.

The binomial coefficient

(
n

k

)
is defined, for 0 ≤ k ≤ n, by(
n

k

)
:=

n!

k!(n− k)!
.

Remember that n! = 1 · 2 · 3 · · · · n with the convention: 0! = 1.

Let K be a field and x ∈ K. We have seen that the writing xn = x · · · · · x is

well defined thanks to the associativity of the product.

Proposition 4.39 (Binomial formula). Let K be a field and x, y ∈ K, then for

every integer n ≥ 1 we have:

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i.

This formula is proved by induction on n. Here we would like to draw the

attention to the fact that binomial coefficients are integers. In fact we have:

Lemma 4.40. For each 0 ≤ k ≤ n,

(
n

k

)
is the number of subsets with k elements

of a set with n elements. In particular

(
n

k

)
is an integer.

Proof. If we denote [n; k] the number of subsets with k elements of a set with

n elements we obviously have [n; 0] = 1, the empty set is the only subset with 0

elements); [n; 1] = n and [n;n] = 1. Clearly we also have [n, k] = [n;n−k]. In fact,

every time one chooses a subset, Z, with k elements of a set X with n elements,

one gets a subset with n − k elements: the complementary X \ Z, and vice versa.

Having said this it is not difficult to show that if k ≥ 1:

[n; k] = [n− 1; k] + [n− 1; k − 1]

In fact, let X = {1, 2, . . . , n}. The subsets of X with k elements are of two types:

(a) those that contain 1 and (b) those that do not contain 1. If Z is a subset

as in the case (a), then Z \ {1} ⊂ X \ {1} and we see that the number of such

subsets is equal to [n− 1; k − 1]. If Y is a subset as in case (b) then Y ⊂ X \ {1}
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and we see that the number of such subsets is equal to [n − 1; k]. In conclusion

[n; k] = [n − 1; k] + [n − 1; k − 1]. Now with this formula and the cases k = 0, 1, n

it is easily proved, by double induction, that

[n; k] =

(
n

k

)
.

A result that still follows from the proof by induction of the binomial formula, but

here too we need to know the formula. □

There is a more direct way to connect the two. What does it mean to calculate

(x+ y)n? It means to compute the product:

(x+ y)(x+ y) . . . (x+ y)

where there are n factors. To carry out this product we proceed as follows: in the

first factor (x + y) we choose either x or y, in the second factor we choose either

x or y and so on till the last factor and calculate the product of the chosen terms

(if we have chosen k times x we obtain xkyn−k). Then the operation is repeated

in all possible ways. For example, to compute (x + y)3 = (x + y)(x + y)(x + y),

we compute the product of the first two: x2 + xy + yx+ y2, and then we compute

(x2 + xy + yx+ y2) · (x+ y).

At this point we look at the coefficient of xkyn−k, it is exactly the number

we have chosen x exactly k times and therefore n − k times y. If we number the

n factors (x + y) with 1, 2, . . . , n, to choose k times x means to choose a subset

of {1, 2, . . . , n} with k elements. Therefore the coefficient of xkyn−k is [n; k] the

number of subsets with k elements of {1, 2, . . . , n}.
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Exercises

Exercise 4.41. Let f : X → Y be a map, Xy the fiber of f over y ∈ Y , and

consider the partition

X =
⋃
y∈Y

Xy

in Exercise 3.31. What equivalence relation does this partition represent?

Exercise 4.42. Let G be a group. Show that the map f : G→ G : x→ x2 = x · x
is a group morphism if and only if G is abelian.

Exercise 4.43. Let G be a group. Show that the map g : G → G : x → x−1 is a

group morphism if and only if G is abelian.

Exercise 4.44. Let G,H be two groups and f : G → H a bijective group mor-

phism. Show that f−1 : H → G is a group morphism.

Exercise 4.45. Let A be an integral, commutative ring. The set A is assumed to be

finite. Show that A is a field (Hint: if x ∈ A, x ̸= 0 consider mx : A→ A : a→ ax).

Exercise 4.46. Prove that any subgroup of (Z,+) is of the form

dZ = {dk | k ∈ Z}

with d ∈ N \ {0}.

Exercise 4.47. Let K,K ′ be two fields and f : K → K ′ be a morphism of rings.

(i) Show that f is injective.

(ii) Note that f(K), endowed with the restrictions of the operations of K ′, is a

field.

(iii) Show that there is no morphism of rings f : Z/2Z → R.

Exercise 4.48 (Characteristic of a field). Let K be a field and consider the map

f : Z → K : n→ n · 1K , where n · 1K = 1K + · · ·+ 1K (n times). Show that f is a

morphism of rings. Note that Ker(f) is a subgroup of Z and hence of the form dZ
for some d ∈ N \ {0} (Exercise 4.46).

Let char(K) be the smallest non negative element of Ker(f), char(K) is called

the characteristic of K.

Exercise 4.49. In this exercise we will use the following result:

Lemma 4.50 (Euclid). If p is prime and if p | ab, then p | a or p | b.
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Note that Lemma 4.50 is intuitively clear (p being prime can not be broken

into two factors, one dividing a and the other dividing b).

Let K be a field. Show that if char(K) ̸= 0 then char(K) is a prime number.

Using Lemma 4.50 and Exercise 4.45, prove that (Z/nZ,+, ·) is a field if and only

if n is prime. If p ∈ N is a prime number what is the characteristic of Z/pZ?



Part 2

Linear Algebra



Linear algebra is the branch of mathematics concerning linear equations and

the flat objects defined by them such as lines and planes.

It is crucial to several areas of mathematics. For instance, in modern presen-

tations of geometry, and in functional analysis, a branch of mathematical analysis,

in which linear algebra is applied to function spaces.

Linear algebra is also very useful in most sciences and fields of engineering. In

fact it allows modeling many natural phenomena, and computing efficiently with

such models. For nonlinear systems, which cannot be modeled with linear algebra,

it is often used for dealing with first-order approximations, using the fact that

the differential of a multivariate function at a point is the linear map that best

approximates the function near that point.



Chapter 5

Vector spaces

Let us do some physics. In the plane, a force applied to the point O is represented

by a vector v:

•O

v R

The line R, identified by v, together with the path going from O to the end of

the arrow is the direction of the vector v. The vector with the opposite direction

is denoted by −v, it has the same magnitude (length) but opposite direction:

•O
v

R

−v

Given two forces applied at O, their action is the same as that of the resultant

force obtained with the parallelogram rule:

•O

v

u

w

The resulting force is w = u + v. We have therefore defined an internal com-

position law on the set, F , of the forces applied in O. The zero force, 0, which

consists in doing nothing, verifies v + 0 = 0 + v = v and is the neutral element for

this law. The symmetric of v is −v. It is easily verified that (F ,+) is an abelian

group.

61
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Now, when we have a force v we can increase its magnitude, for example double

it, and we have 2v. For each α ∈ R the vector αv is the vector that has the same

direction as v if α > 0, opposite direction if α < 0, and magnitude |α|· length of

v. We have therefore defined a map: F × R → F : (v, α) → α · v, let us call it an

external multiplication:

•
O

v
2v

−3v

R

It is not too difficult to convince yourself that the external multiplication verifies

the following properties:

(1) ∀v ∈ F : 1 · v = v;

(2) ∀(α, β) ∈ R2,∀v ∈ F : (α+ β) · v = α · v + β · v;

(3) ∀α ∈ R,∀(v, w) ∈ F2: α · (v + w) = α · v + α · w;

(4) ∀(α, β) ∈ R2,∀v ∈ F : (αβ) · v = α · (β · v).

We then say that F , with these laws, is an R-vector space. More generally:

Definition 5.1. Let (E,+) be an abelian group and let (K,+, ·) be a field. We will

say that E is a K-vector space if there exists a map K × E → E (called external

multiplication)

K × E → E : (λ, v) → λ · v

such that:

(1) ∀v ∈ E: 1K · v = v;

(2) ∀(α, β) ∈ K2,∀v ∈ E: (α+ β) · v = α · v + β · v;

(3) ∀α ∈ K,∀(v, w) ∈ E2: α · (v + w) = α · v + α · w;

(4) ∀(α, β) ∈ K2,∀v ∈ E: (αβ) · v = α · (β · v).

To be more rigorous one should say that, given a field K, a structure of K-

vector space on the set E is a pair ((E,+), ·) where (E,+) is an abelian group

structure on E and where · is an external multiplication. We will say E is a K-

vector space (or a vector space on K), but we must always keep in mind that there

can be different vector space structures on the same set.

Usually, we will denote the elements of K with Greek letters and the elements

of the abelian group (E,+) with letters from our alphabet, for instance u, v, w, x, y.

The elements of E are vectors while those of K are numbers, also called scalars.

We have two abelian group structures: the one on E and the one on K, each

has its own composition law which we will however indicate with the same symbol:
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+. It would be more correct to write +E , +K but we won’t do that because the

context will always indicate which law it is. Both abelian groups have a neutral

element: 0E , 0K . The vector 0E (which is an important character in this story) is

called the null vector. We will denote the two neutrals with the same symbol 0,

once again the context will tell us whether it is the null vector or the null scalar.

We will also write 1 instead of 1K (there can be no ambiguity).

We have two multiplications: the internal one of K and the external one; the

first is denoted by αβ, the second by α · v, but there is no problem in indicating

the two operations in the same way, and we will write αv to indicate the external

multiplication as well.

Let (G,+) be an abelian group written in additive notation. The symmetric of

x is denoted as −x. Instead of writing y+(−x) we write y−x. Since (K,+), (E,+)

are abelian groups we will write α− β and u− v.

Example 5.2. The most basic example is the following: on E = R2 we define

an addition as follows: (x, y) + (z, t) = (x + z, y + t) (coordinate-by-coordinate

addition). This defines a + law on R2 = E. It is easily verified that with this

law (E = R2,+) is a commutative group. The neutral is (0, 0) (the origin); the

symmetric of (x, y) is (−x,−y).

Then we define an external multiplication as follows: R×R2 → R2 : (λ, (x, y)) →
(λx, λy).

It is verified that E = R2, with these operations, is an R-vector space. Actually,

if you think about it, this is nothing more than the example seen before of the

forces applied at a point. In fact, the construction of the parallelogram that gives

the resultant is nothing but the addition that we have defined: if u = (x, y) and

v = (x′, y′), the resulting vector u+ v corresponds to (x+ x′, y + y′).

Example 5.3. The previous example can be generalized further. Let E := Rn.

We define an addition on E as follows:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

It is verified that (E,+) is an abelian group. Then we define the external multipli-

cation as: R×Rn → Rn : (λ, (x1, . . . , xn)) → (λx1, . . . , λxn) and it is easily verified

that with these operations Rn is an R-vector space.

In the previous example R is nothing special, the vector space conditions check

works because R is a field; so we can generalize further.

Example 5.4. Let K be a field, on Kn we define an addition as follows:

(α1, . . . , αn) + (β1, . . . , βn) = (α1 + β1, . . . , αn + βn).
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Since K is a field, it is easy to verify that (Kn,+) is an abelian group. Then

we define an external multiplication via K × Kn → Kn : (λ, (α1, . . . , αn)) →
(λα1, . . . , λαn). Once again it is easily verified that with these operations Kn is

a K-vector space. You need to understand this example well because it is quite

fundamental. In particular, K is a K-vector space (this is the case n = 1).

Example 5.5. A field K is a vector space over each of its subfields K. We have

that (K,+) is an abelian group because K is a field. The external multiplication

is defined by K ×K : (α, u) → αu.

For example Q is a subfield of R, so R is a Q-vector space. We have that (R,+)

is an abelian group, furthermore Q × R → R : (α, x) → αx verifies all the axioms

of Definition 5.1.

In the same way R is an R-vector space, we will see that these two structures

are completely different.

Example 5.6. Let X be a set and K a field. Consider F = {f | f : X → K | f
is a map}. On the set F we define an internal composition law + by: if f, g ∈ F ,

then f + g ∈ F is defined by f + g : x → f(x) + g(x). The internal composition

law is well defined, i.e. f + g ∈ F . The neutral element is the constant map equal

to 0, i.e. 0 : X → K : x→ 0. The symmetric of the map f is −f where −f : X →
X : x → −f(x). With these definitions we derive that (F ,+) is an abelian group.

Now consider the following external multiplication: K × F → F : (λ, f) → λf ,

where (λf)(x) = λf(x). We observe that this definition makes perfect sense, in

fact f(x) ∈ K and λ ∈ K, so the product λf(x) is an element of K. It turns out

that with these definitions F is a K-vector space.

Example 5.7. Let E1, . . . , En be K-vector spaces. Let E = E1 × · · · × En be

the Cartesian product of the sets E1, . . . , En. On E an addition is defined by

(v1, . . . , vn) + (u1, . . . , un) = (v1 + u1, . . . , vn + un). Note that the + sign is used

to indicate different operations, the addition in E1 is not that in Ei, i > 1. It

is verified that (01, . . . , 0n) := 0 is the neutral element for this addition (here 0i

indicates the neutral for the addition of Ei; in the following we will omit the index).

We now define an external multiplication by: K ×E → E : (λ, v) → λv, where

if v = (v1, . . . , vn), we have λv = (λv1, . . . , λvn). Observe that for each i, there is

a specific law that tells us who λvi is; that is, for every i we have that λvi is an

internal operation on Ei and therefore we can handle it.

Example 5.8 (Polynomials in one variable). Let K be a field. A polynomial,

P (x), in the variable x, with coefficients in K, is an expression of the form:

P (x) = anx
n + · · · + a1x + a0, with ai ∈ K,∀i. More rigorously, a polynomial

is a sequence (a0, a1, . . . , an, . . . ) of elements of K, all zero except at most a finite
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number. With this writing, the variable x disappears (ai is the coefficient of xi).

Using the summation symbol we also write P (x) =

n∑
i=0

aix
i.

If P (x) = (a0, a1, . . . , ak, . . . ) is a non-zero polynomial, its degree is deg(P ) =

max {i | ai ̸= 0} (since the non-zero ai are finite in number, the max is well defined).

The null polynomial (ai = 0,∀i) has no degree (or sometimes, by convention, it has

degree −∞).

The set of polynomials in one variable with coefficients in K is usually denoted

by K[x].

On K[x] we define an addition as follows: if P (x) =
∑

i≥0 aix
i and Q(x) =∑

i≥0 bix
i, then P (x) +Q(x) is the polynomial

∑
i≥0(ai + bi)x

i. It is verified that

(K[x],+) is an abelian group, the neutral is the null polynomial and the symmetric

of P (x) = (a0, a1, . . . , ak, . . . ) is −P (x) = (−a0,−a1, . . . ,−ak, . . . ).

Finally, we define an external multiplication: K × K[x] → K[x] as follows:

λP (x) =
∑

i≥0(λai)x
i . With these operations, K[x] is a K-vector space.

The last example (for now):

Example 5.9 (Matrices). An n × m matrix with coefficients in K is a table of

elements of K with n rows and m columns.

For everything concerning matrices we will always put the index of the rows

first and the index of the columns after. So ai,j indicates the element that is at the

intersection of the row i with the column j.

Let Mn,m(K) be the set of matrices with n rows, m columns, and coefficients

in K. If

A =


a11 · · · a1m
...

. . .
...

an1 · · · anm

 ∈Mn,m(K),

we also write A = (aij), 1 ≤ i ≤ n, 1 ≤ j ≤ m. Let B = (bij), 1 ≤ i ≤ n, 1 ≤ j ≤ m

be another element of Mn,m(K), then A + B is defined by adding element by

element:

A+B =


a11 + b11 · · · a1m + b1m

...
. . .

...

an1 + bn1 · · · anm + bnm

 .

It is verified that (Mnm(K),+) is an abelian group (the neutral is the zero matrix:

aij = 0,∀i, j), the symmetric of the matrix A is the matrix −A = (−aij).
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An external multiplication K ×Mn,m(K) → Mn,m(K)) : (λ,A) → λA is then

defined as follows:

λA =


λa11 · · · λa1m
...

. . .
...

λan1 · · · λanm

 .

We observe that after having chosen an order (for example we write the elements

of the first row first, then those of the second, an so on) we can define a map:

f :Mn,m(K) → Knm : A→ (a11, . . . , a1m, . . . , an1, . . . , anm).

This map is obviously bijective (it is indeed something more because, as we will

see, it respects the structure of K-vector space) and we see that the addition and

external multiplication that we have defined on Mn,m(K) are nothing but the ones

we defined on Knm.

5.1. Some calculation rules in a vector space

In the following E will indicate a K-vector space and we will denote the external

multiplication simply by λu, λ ∈ K,u ∈ E.

Proposition 5.10. For every u, v ∈ E and for every λ, µ ∈ K we have:

(1) λ(u− v) = λu− λv;

(2) λ0E = 0E;

(3) λ(−v) = −(λv);

(4) (λ− µ)u = λu− µu;

(5) 0Ku = 0E;

(6) λ(−v) = −(λv) = (−λ)v.

Proof. (1) Using Definition 5.1 we have: λ(u − v) + λv = λ[(u − v) + v] = λ[u +

(v − v)] = λu. Summing −λv to the right gives the result. (2) Set u = v in (1).

(3) Set u = 0E in (1) and use (2). (4) Compute (λ − µ)u + µu = [(λ − µ) + µ]u

(use Definition 5.1). We have (λ − µ)u + µu = λu. (5) Set λ = µ in (4). (6) The

first equality was proved in (3). If we set λ = 0, µ = λ in (4), we obtain the second

equality. □

Remark 5.11. From (2) and (5) we see that there is no problem in denoting both

0E and 0K with 0. Furthermore, taking into account Definition 5.1, the calculations

in expressions containing scalars and vectors are done with the usual rules (which

we use with real numbers), as long as a vector is not added with a scalar and two

vectors are not multiplied (these operations are not defined).
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Lemma 5.12. Let E be a K vector space, then ∀λ ∈ K and ∀v ∈ E we have

λv = 0 ⇔ λ = 0 or v = 0.

Proof. We just show (⇒), the other implication follows from (2) and (5) of Propo-

sition 5.10. If λ = 0 we are done. Otherwise, there exists λ−1 and we have:

λ−1(λv) = λ−10 = 0. So 0 = λ−1(λv) = (λ−1λ)v = 1v = v. □

5.2. Subvector spaces

Let E be a K-vector space and let F ⊂ E be a subset. As usual, we would like

to know when the restrictions on F of the laws of E,K endow F with a K-vector

space structure.

A first condition is certainly that (F,+) is a subgroup of (E,+), so F is non-

empty and u, v ∈ F ⇒ u − v ∈ F . The other condition is that F is stable for

external multiplication: v ∈ F ⇒ λv ∈ F,∀λ ∈ K. We can summarize these three

conditions as follows:

Proposition 5.13. Let E be a K-vector space and let F ⊂ E be a subset. The

following are equivalent:

(1) F is a subvector space of E;

(2) the null vector belongs to F (0 ∈ F ) and ∀(λ, µ) ∈ K2, ∀(u, v) ∈ F 2 : λu+µv ∈
F .

Proof. (1) ⇒ (2): clear. (2) ⇒ (1): Since 0 ∈ F , F is non-empty. By setting

λ = 1, µ = −1 in (2), we obtain that (F,+) is a subgroup of (E,+). By setting

µ = 0, we see that F is stable for external multiplication. □

Example 5.14. Let E = Kn (Example 5.4) and let F ⊂ Kn be defined by F =

{(x1, . . . , xn) ∈ Kn | x1 = 0}. We show that F is a subvector space of E. We have

0 = (0, . . . , 0) ∈ F . Let u = (0, x2, . . . , xn), v = (0, y2, . . . , yn) be two elements

of F and λ, µ ∈ K. We have λu + µv = λ(0, x2, . . . , xn) + µ(0, y2, . . . , yn) =

(λ0 + µ0, λx2 + mGy2, . . . , λxn + µyn) = (0, λx2 + µy2, . . . , λxn + µyn) ∈ F . So F

is a subvector space of E.

Observe that G = {(x1, . . . , xn) ∈ Kn | x1 = 1} is not a subvector space of E.

Why?

Example 5.15. Let E = K[x] (Example 5.8). Let F ⊂ E be defined by F =

{P (x) | degree(P (x)) ≤ 3}. We show that F is a subvector space of E (we will

use the convention that the degree of the null polynomial is −∞). We therefore

have 0 ∈ F . Let P (x) =

3∑
i=0

aix
i, Q(x) =

3∑
i=0

bix
i be two elements of F and let
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λ, µ ∈ K. Then λP (x) + µQ(x) =

3∑
i=0

(λai + µbi)x
i is still an element of F . So F

is a subvector space of K[x].

It is clear that 3 has nothing special, in fact if d ∈ N the set of polynomials of

degree at most d is a subvector space of K[x].

Observe that G = {P (x) | degree (P (x)) = 3} ∪ {0} is not a subvector space of

K[x]. Why?

5.3. Linear combinations

Let E be a K-vector space and v1, . . . , vn ∈ E. The vector w ∈ E is a linear

combination of the vectors vi if there exist scalars λi ∈ K such that w = λ1v1 +

· · ·+ λnvn.

More generally, let A ⊂ E be a (non-empty) set, a linear combination of ele-

ments of A is a vector of the form λ1v1 + · · · + λtvt where vi ∈ A,∀i, ⟨A⟩ denotes
the set of all linear combinations of elements of A.

Remark 5.16. Proposition 5.13 can be reformulated as follows: F ⊂ E is a sub-

vector space if 0 ∈ F and if every linear combination of two elements of F is still

an element of F .

Remark 5.17. We have A ⊂ ⟨A⟩ since if a ∈ A then a = 1a ∈ ⟨A⟩.

Remark 5.18. More generally F ⊂ E is a subvector space if (a) 0 ∈ F and (b)

if v1, . . . , vn ∈ F then every linear combination of the vi belongs to F . In fact,

if (b) is verified, every linear combination of two elements of F is an element of

F and, taking (a) into account, F is a subvector space. Conversely, we show by

induction on n that if F is a subspace, then every linear combination of n vectors

of F is still a vector of F . The case n = 1 is clear: if v ∈ F , λv ∈ F because F is a

subvector space. Let us assume by induction that the statement is true for n − 1.

Set w = λ1v1 + · · ·+ λnvn. We have w = λ1v1 + (λ2v2 + · · ·+ λnvn). By induction

hypothesis u = λ2v2 + · · ·+ λnvn ∈ F . We have λ1v1 ∈ F , so w = λ1v1 + u ∈ F .

Proposition 5.19. Let E be a K-vector space and let A ⊂ E be a non-empty

subset. Then

(1) ⟨A⟩ is a subvector space of E;

(2) ⟨A⟩ is the smallest subvector space of E containing A. That is, if F ⊂ E is a

subvector space of E such that A ⊂ F , then ⟨A⟩ ⊂ F .

Proof. (1) Using the Proposition 5.13 we must verify two things: (a) 0 ∈ ⟨A⟩, (b)
if u, v ∈ ⟨A⟩ and if λ, µ ∈ K, then λu+ µv ∈ ⟨A⟩.



5.4. Subvector spaces of R2 and R3 69

(a) Since A ̸= ∅, ∃a ∈ A and 0a is a linear combination of elements of A, then

0a = 0 ∈ ⟨A⟩.

(b) Let u, v ∈ ⟨A⟩, for every λ, µ ∈ K, λu + µv is still a linear combination of

elements of A (a linear combination of linear combinations of elements of A is still

a linear combination of elements of A).

(2) Let w = λ1v1 + · · · + λnvn with vi ∈ A (so w ∈ ⟨A⟩). If A ⊂ F then

vi ∈ F,∀i. Since F is a subvector space, by Remark 5.18, w ∈ F . Since w is any

element of ⟨A⟩, this shows ⟨A⟩ ⊂ F . □

Definition 5.20. The subvector space ⟨A⟩ is called the subvector space generated

by the set A.

Saying that ⟨A⟩ is the smallest subspace containing A means that ⟨A⟩ is the

intersection of all subvector spaces of E containing A.

Definition 5.21. If A = {v1, . . . , vn} the subspace F := ⟨A⟩ = ⟨v1, . . . , vn⟩ is the
subspace generated by the vi, and we say that v1, . . . , vn are generators of F .

5.4. Subvector spaces of R2 and R3

First we observe that a K-vector space, E, always contains two trivial subspaces:

the null space {0} (there is only the null vector) and the space E.

Let us now consider E = R2 with its natural structure of R-vector space and try

to understand what its subvector spaces are. Let F ⊂ R2 be a non-zero subspace.

So there exists v ∈ F , v ̸= 0. Clearly, F contains all multiples (λv, λ ∈ R) of v, i.e.
F contains the subspace ⟨v⟩, generated by v. Graphically:

•
O

v
λv

⟨v⟩

If F does not contain any other vectors then F = ⟨v⟩ which is actually a

subvector space of R2. Now, suppose that F contains a vector w /∈ ⟨v⟩:

•O
v λv ⟨v⟩

w

So F contains ⟨v, w⟩ = {αv+ βw | α, β ∈ K}. We see that F = R2. In fact, let

u ∈ R2 be any vector and consider its projection on the line ⟨v⟩: we obtain a vector
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αv. Now let us consider its projection on the line ⟨w⟩: we obtain a vector βw. By

the parallelogram rule u = αv+ βw, i.e. every vector of R2 is a linear combination

of v, w, therefore ⟨v, w⟩ = R2.

•O
v λv ⟨v⟩

w

⟨w⟩

αv

βw

Finally, we have proved:

Lemma 5.22. The subvector spaces of R2 are: {0}, R2 and the lines that pass

through the origin.

Similarly we have:

Lemma 5.23. The subvector spaces of R3 are: {0}, R3, the lines passing through

the origin (⟨v⟩, v ̸= 0) and the planes that pass through the origin (⟨v, w⟩ with v ̸= 0

and w /∈ ⟨v⟩).

Proof. We reason as in the case of R2 the only thing to observe is that if a subvector

space F contains three vectors e1, e2, e3 such that e1 /∈ ⟨e2⟩ and e3 /∈ ⟨e1, e2⟩, then
F = R3. This can be seen as before, taking any vector u and projecting it onto

the plane ⟨e1, e2⟩ thus obtaining a vector v linear combination of e1, e2. Then u is

projected onto the line ⟨e3⟩ obtaining a vector λe3 such that u = v + λe3. □

5.5. Intersections, unions and sums

Let E be a K-vector space and let F,G ⊂ E be two subvector spaces. We ask

whether F ∩G is a subvector space of E.

Proposition 5.24. Let E be a K-vector space and F,G ⊂ E be subvector spaces.

Then F ∩G := H is still a subvector space of E.

Proof. We must verify (Proposition 5.13): (a) 0 ∈ H and (b) given any two vectors

in H, every linear combination of them is still an element of H = F ∩G. Regarding
(a) since (0 ∈ F ) ∧ (0 ∈ G), we have 0 ∈ F ∩G.

Let u, v ∈ H and α, β ∈ K. We have u, v ∈ F so αu + βv ∈ F , since F is a

K-vector space. In the same way αu+ βv ∈ G. So αu+ βv ∈ H = F ∩G. □

More generally, with a similar proof, we have:
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Lemma 5.25. Let E be a K-vector space and let (Fi)i∈I be a family of subvector

spaces of E. Then
⋂
i∈I

Fi is a subvector space of E.

What can we say about the union of two subvector spaces F,G ⊂ E? Is it still

a subvector space? The bad news is that, in general, F ∪ G, is not a subvector

space of E.

Let us take a simple example. In E = R2 let F = {(x, y) ∈ R2 | x = 0} and

G = {(x, y) ∈ R2 | y = 0}. Both are subvector spaces of R2, but F ∪ G is not

a subvector space of R2. In fact, let u = (0, 1) ∈ F and v = (1, 0) ∈ G. Then

w := u+ v = (1, 1) /∈ F ∪G since w /∈ F and w /∈ G. This can be understood very

well with a picture:

•O Gv

w = u+ v

F

u

This is a bit of a catastrophe because it would be nice if the fundamental

operations on sets (intersection, union) respected the vector space structure. We

would therefore like to have an analogue of the union that produces a subvector

space. We can consider the subvector space generated by the union i.e. ⟨F ∪ G⟩,
the smallest subvector space containing F ∪G.

Definition 5.26. Let E be a K-vector space and F,G ⊂ E two subvector spaces.

The subspace generated by F ∪G is denoted by F +G and is called the sum of F

and G.

Proposition 5.27. Let E be a K-vector space and F,G ⊂ E two subvector spaces.

We have

⟨F ∪G⟩ = F +G = {f + g | f ∈ F ∧ g ∈ G}.

Proof. A vector w ∈ F+G := ⟨F∪G⟩ is a linear combination of vectors in F∪G i.e.

w = λ1v1+· · ·+λnvn with vi ∈ F or vi ∈ G, since F,G are subvector spaces if vi ∈ F

then also λivi ∈ F (same thing for G). So we can rewrite w = u1 + · · · + un with

ui ∈ F ∪G. We arbitrarily decide to treat a vector of F ∩G as a vector of F . Once

this is done, each vector is a vector of F or a vector of G. We can therefore assume

(reordering the indexes if needed) that u1, . . . , ut ∈ F while ut+1, . . . , un ∈ G. We

have w = (u1 + · · · + ut) + (ut+1 + · · · + un) = f + g with f = u1 + · · · + ut,

g = ut+1 + · · ·+ un and f ∈ F, g ∈ G, since F,G are subvector spaces. □
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There is a particularly important situation when considering the sum of two

subspaces.

Definition 5.28. Let E be a K-vector space and F,G two subvector spaces of E.

If F ∩G = {0} we say that the sum F +G is direct and we write F ⊕G instead of

F +G.

The following proposition explains the importance of direct sum.

Proposition 5.29. Let E be a K-vector space and F,G two subvector spaces of E.

The following are equivalent:

(1) F ∩G = {0};

(2) each vector of F + G is written uniquely as the sum of a vector of F and a

vector of G;

(3) if u ∈ F and v ∈ G then u+ v = 0 ⇔ u = 0 ∧ v = 0.

Proof. (1) ⇒ (2). Suppose v = f + g = f ′ + g′ with f, f ′ ∈ F ; g, g′ ∈ G. We have

f − f ′ = g′ − g =: w. The vector w ∈ F since w = f − f ′ and F is a subvector

space. We also have w ∈ G since w = g′ − g and G is a subvector space. It follows

that w ∈ F ∩G, so w = 0. Therefore f = f ′ and g = g′.

(2) ⇒ (3). If u+ v = 0 then u+ v = 0+0 with 0 ∈ F, 0 ∈ G. By (2) u = 0 and

v = 0.

(3) ⇒ (1). Let v ∈ F ∩G. So v ∈ F and v ∈ G. We have −v ∈ G since G is a

subvector space. Now, v + (−v) = 0 with v ∈ F,−v ∈ G. From (3) it follows that

v = 0. □

Definition 5.30. Let E be a K-vector space and F,G two subvector spaces of E.

We say that F,G are supplementary spaces if F ⊕G = E.

The notion of direct sum can be extended to the case of more that two sub-

spaces.

Proposition 5.31. Let E be a K-vector space and F1, . . . , Ft subvector spaces of

E. The following are equivalent:

(1) Fi ∩

∑
j ̸=i

Fj

 = {0}, for every i;

(2) each vector, w, of F1+· · ·+Fn is written uniquely in the form w = v1+· · ·+vn
with vi ∈ Fi;

(3) if vi ∈ Fi, ∀i, then v1 + · · ·+ vn = 0 ⇔ vi = 0,∀i.

Proof. The proof is similar to that of Proposition 5.29. □
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Exercises

Exercise 5.32. State whether E is a subvector space of Rn (Rn with the natural

structure of R-vector space):
(a) E = {(x, y, z) ∈ R3 | x+ 2y − 3z = 0};
(b) E = {(x, y, z) ∈ R3 | x+ 2y − 3z = 0, e 2x− y + z = 0};
(c) E = {(x, y, z) ∈ R3 | x+ 2y − z = 1};
(d) E = {(x, y) ∈ R2 | x ≥ 0};
(e) E = {(x, y) ∈ R2 | x2 − y = 0}.

Exercise 5.33. State whether A is a subvector space of M2(R):

(a) A =

{(
a b

b a

)
| a, b ∈ R

}
;

(b) A =

{(
a a+ b

b 0

)
| a, b ∈ R

}
;

(c) A =

{(
a ab

b 0

)
| a, b ∈ R

}
;

(d) A =

{(
a 1

b a

)
| a, b ∈ R

}
.

Exercise 5.34. Let E be a C-vector space, and a, b two elements of E. We set

u = a+ b, v = a− b.

(i) Prove that the subspace ⟨a, b⟩ generated by a and b is equal to the subspace

⟨u, v⟩ generated by u and v.

(ii) Does (i) still hold if E is a Z/2Z-vector space?

Exercise 5.35. Let E be a K-vector space and F,G two subvector spaces of E.

Give a necessary and sufficient condition for F ∪G to be a subvector space of E.

Exercise 5.36. In R3 consider three pairwise non-proportional vectors v1, v2, v3.

Are the subspaces ⟨v1⟩, ⟨v1⟩, ⟨v1⟩ necessarily in direct sum? (Draw a picture).

Exercise 5.37. Let E be a K-vector space and F,G two subvector spaces of E.

Give a necessary and sufficient condition (on F and G), so that F ∪G is a subvector

space of E.

Exercise 5.38. (i) Let (G, ·) be a group and F,H two proper subgroups of G (i.e.

F ̸= G, H ̸= G). Show that F ∪H ̸= G.

(ii) Deduce from (i) that a K-vector space can not be written as the union of two

proper sub vector spaces.

(iii) Let K = F2 be the field with two elements. Consider E = K2 with its natural
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structure of K-vector space. Show that E can be written as the union of three

proper subvector spaces.



Chapter 6

Linear Maps

As in the case of groups, rings and fields, we consider maps that respect the algebraic

structure we are interested in.

Definition 6.1. Let E,F be two K-vector spaces and let f : E → F be a map.

We say that f is a K-linear map (we also say that f is a K-linear morphism) if:

(1) f is a morphism of groups, from the group (E,+) into the group (F,+), that

is f(u+ v) = f(u) + f(v),∀u, v ∈ E;

(2) f respects external multiplication that is f(λv) = λf(v),∀λ ∈ K,∀v ∈ E.

Remark 6.2. (i) These are also called K-linear operator. If K is clear from the

context we will call them linear maps.

(ii) Note that if f is linear, then f(λ1v+ · · ·+λnvn) = λ1f(v1)+ · · ·+λnf(vn).

Lemma 6.3 (Linearity criterion). Let E,F be two K-vector spaces. A map f :

E → F is linear if and only if:

∀u, v ∈ E,∀α, β ∈ K : f(αu+ βv) = αf(u) + βf(v).

Proof. If f satisfies the lemma condition by setting α = β = 1 we see that f

is a morphism of groups and by setting β = 0 we see that it respects external

multiplication.

Conversely, if f is a linear morphism, we have f(αu + βv) = f(αu) + f(βv)

(group morphism) and this is equal to αf(u) + βf(v) because f respects external

multiplication. □

So f is linear if the image of a linear combination is the linear combination of

the images.

75
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Example 6.4. (1) If f is linear, since it is a morphism of groups we have f(0) = 0.

(2) Let f : R → R be an R-linear map (here R is considered as a vector space

over itself). Since f respects the external multiplication (which in this case is

the usual multiplication in R), we have f(xy) = xf(y) = yf(x),∀x, y ∈ R. In
particular f(x) = f(x1) = xf(1). We see that f is completely determined by

f(1). So if f(1) = a, we have: f : R → R : x→ ax (the graph of this function

is a line passing through the origin).

(3) More generally if E is a K-vector space every linear map f : K → E is

completely determined by its value on a non-zero element α ∈ K. In fact

f(λ) = f(λα−1α) = λα−1f(α). Clearly we usually take α = 1.

(4) The map f : R2 → R2 : (x, y) → (ax+ by, cx+ dy) is a linear map.

Lemma 6.5 (Composition of linear maps). Let E,F,G be three K-vector spaces

and let f : E → F , g : F → G be two linear maps, then g ◦ f : E → G is linear.

Proof. It is a simple check, try. □

If f : E → F is a linear map, f is in particular a morphism of groups and we

have its kernel Ker(f) = {u ∈ E | f(u) = 0}.

Lemma 6.6. Let E,F be two K-vector spaces and f : E → F a linear map.

(1) Ker(f) ⊂ E is a subvector space;

(2) Im(f) ⊂ F is a subvector space;

(3) f is injective ⇔ Ker(f) = {0};

(4) f is surjective ⇔ Im(f) = F .

Proof. (1) Since f is a morphism of groups f(0) = 0, then 0 ∈ Ker(f). It remains

to show that if u, v ∈ Ker(f) then ∀α, β ∈ K, αu + βv ∈ Ker(f). By linearity

f(αu+ βv) = αf(u) + βf(v) = 0 (since f(u) = f(v) = 0 by hypothesis).

(2) Since f(0) = 0, 0 ∈ Im(f). Let x = f(u), y = f(v), we must see that

∀α, β ∈ K, αx + βy ∈ Im(f). We have αx + βy = αf(u) + βf(v) = f(αu + βv)

(the last step follows from the linearity of f). In conclusion αx+ βy ∈ Im(f).

(3) Follows from the fact that f is a morphism of groups.

(4) It is the definition. □

Proposition 6.7. Let E,F be two K-vector spaces and f : E → F a K-linear

morphism. If the map f is bijective, then f−1 : F → E is also a K-linear morphism.

Proof. We need to show f−1(αx+βy) = αf−1(x)+βf−1(y), ∀x, y ∈ F,∀α, β ∈ K.

Since f is bijective ∃u, v ∈ E such that x = f(u), y = f(v). So f−1(αx + βy) =
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f−1(αf(u) + βf(v)), by linearity of f this is equal to f−1(f(αu + βv)), which is

αu+ βv. Since u = f−1(x), v = f−1(y), the proposition is proved. □

A bijective linear map is called a linear isomorphism. In the situation of Propo-

sition 6.7 we say that E and F are isomorphic (asK-vector spaces); these two spaces

have the same properties, a linear algebra theorem proven for E translates, via f ,

into a theorem for F . Conversely, a theorem in F is transposed, via f−1, to E. As

far as linear algebra is concerned these two spaces can be identified.

We conclude this section with an important result.

Definition 6.8. A homogeneous degree one polynomial in the variables x1, . . . , xn,

with coefficients in the field K, is an expression of the form P (x1, . . . , xn) = a1x1+

· · ·+ anxn, with ai ∈ K, ∀i. In other words P (x1, . . . , xn) =

n∑
i=1

aixi.

It is called homogeneous because all the terms have the same degree.

Proposition 6.9. Every linear map f : Kn → Km is of the form

Kn → Km : (x1, . . . , xn) → (P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn))

where the Pi(x1, . . . , xn) are homogeneous polynomials of degree one in the variables

x1, . . . , xn.

Proof. Let us start with the case m = 1: f : Kn → K. Let u = (x1, . . . , xn) ∈ Kn.

We can write u = x1(1, 0, . . . , 0) + x2(0, 1, 0, . . . , 0) + · · ·+ xn(0, . . . , 0, 1). That is,

setting ei = (0, . . . , 1, . . . , 0) (all coordinates are zero except the i-th which is equal

to 1), u = x1e1 + · · ·+ xn.en =

n∑
i=1

xiei. By linearity:

f

(
n∑

i=1

xiei

)
=

n∑
i=1

xif(ei).

Let f(ei) = ai ∈ K (note that, by linearity, f is completely determined by

the scalars f(ei)). We set P (x1, . . . , xn) = a1x1 + · · · + anxn, then we have

f(x1, . . . , xn) = P (x1, . . . , xn) and the proposition is proved in the case m = 1.

We observe that the projection map pi : K
m → K : (y1, . . . , yi, . . . , ym) → yi

is a linear map.

As we know (Exercise 3.33), to give a map f : Kn → Km is equivalent to

give the m maps fi : Kn → K, where fi = pi ◦ f . As seen above, these maps

are linear and therefore are homogeneous polynomials of degree one in the xi:

fi(x1, . . . , xn) = Pi(x1, . . . , xn). This proves the statement in the general case. □



78 6. Linear Maps

Exercises

Exercise 6.10. State which of the following maps are linear:

(a) f : R2 → R2 : (x, y) → (2x− y, x+ 3y);

(b) g : R2 → R2 : (x, y) → (x+ y − 1, 2x− y);

(c) h : R2 → R2 : (x, y) → (x+ 3y,−x2 + y).

Exercise 6.11. Let f : R2 → R2 : (x, y) → (3x − y, x + y). Show that f is linear

and determine the kernel and image of f . Tell whether f is injective, surjective,

bijective.

Exercise 6.12. Let E be aK-vector space, F a set, and f : E → F a bijection. For

every x, y ∈ F we set x+y := f(f−1(x)+f−1(y)). Then we define m : F ×K → F

by m(x, α) = f(αf−1(x)).

Prove that these operations define on F a structure of K-vector space. Also

show that with respect to this structure f is a linear isomorphism between E and

F .

Exercise 6.13. Give an example of a non linear map f : R2 → R such that

f(λv) = λf(v) for any λ ∈ R, v ∈ R2.



Chapter 7

Finitely generated spaces

Let us now see a first approach to the notion of dimension of a K-vector space.

Definition 7.1. Let E be a K-vector space and A ⊂ E a subset. The elements of

A constitute a generator system of E if each vector of E can be written as a linear

combination of elements of A. In other words, the elements of A are a system of

generators of E if ⟨A⟩ = E.

We will also say that A generates E.

Example 7.2. Let A ⊂ R2, A = {u, v}, with u = (1, 0), v = (a, b) with b ̸= 0 then

A is a system of generators of R2 (since b ̸= 0, v /∈ ⟨u⟩).

Definition 7.3. Let E be a K-vector space. If there exists a finite subset, A ⊂
E, which generates E, we say that E has finite dimension (or that E is finitely

generated). If, however, no finite system of generators exists, we say that E has

infinite dimension and we write dimK E = +∞.

Remark 7.4. Every vector space E has a system of generators since obviously

E = ⟨E⟩.

In the rest of this book we will develop the theory essentially for finite dimen-

sional spaces. Almost all (but not all) of the results we will see are also valid for

spaces of infinite dimension but the proofs are technically more complicated.

Example 7.5. However, it is good to know that there are vector spaces of infinite

dimension which are natural mathematical objects.

(1) The vector space K[x] has infinite dimension. Why?

79
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(2) The vector space of maps (or continuous maps, differentiable maps) from R
to R has infinite dimension. Why?

(3) A more exotic example. Since Q ⊂ R we can consider R as a Q-vector space.

We have dimQ R = +∞. This follows from the fact that Q is countable, while

R is not.

Obviously R is also an R-vector space and since ⟨1⟩ = R, as R-vector
space, R has finite dimension.

We have R ⊂ C, so we can consider C as an R-vector space. We have

that, as R-vector space, C has finite dimension. Why?
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Exercises

Exercise 7.6. Prove that the vector space R[x] is not finitely generated (consider

the degree). Deduce from this that the real vector space of maps (resp. of contin-

uous maps, resp. of differentiable maps) from R in R is not finitely generated.

Exercise 7.7. Let K = Z/2Z. State whether the K-vector space K[x] is finitely

generated. Let A be the set of maps from K into K. Determine whether the K-

vector space A is finitely generated (Exercise 3.32). Do you see anything strange?

Exercise 7.8. Let E,F be two K-vector spaces and f : E → F a surjective linear

map. Prove that if E is finitely generated, then F is also finitely generated.





Chapter 8

Linear independence and

bases

Sometimes to explain what something is it is preferable to say what it is not.

Definition 8.1. Let E be a K-vector space and v1, . . . , vn vectors of E. The

vectors vi are linearly dependent if there exist scalars α1, . . . , αn not all zero such

that

α1v1 + · · ·+ αnvn = 0 (⋆)

The relation (⋆) is a linear dependence relation between the vectors vi.

The meaning of this definition is the following: since the αi are not all zero ∃j
such that αj ̸= 0. To simplify the writing we can assume j = 1, i.e. α1 ̸= 0. So we

can divide by α1 and write

v1 = −α2

α1
v2 − · · · − αn

α1
vn.

We see that given v2, . . . , vn we can obtain v1, i.e. v1 depends on v2, . . . , vn and this

dependence is linear because v1 is obtained as a linear combination of v2, . . . , vn.

In conclusion, if v1, . . . , vn are linearly dependent then one of them is a linear

combination of the others, i.e. the vectors are (linearly) related to each other.

The vectors v1, . . . , vn are linearly independent if they are not linearly depen-

dent.

Definition 8.2. The vectors v1, . . . , vn are linearly independent if and only if:

∀(α1, . . . , αn) ∈ Kn : α1v1 + · · ·+ αnvn = 0 ⇔ αi = 0,∀i = 1, . . . , n.
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It is clear that 0v1 + · · ·+0vn = 0 (whatever the vectors vi are); the definition

says that the vectors vi are linearly independent if this (trivial) linear combination

of the vi is the only one that gives the zero vector. That is, it is not possible to

find a linear combination α1v1 + · · ·+ αnvn equal to 0 with the αi not all zero.

Example 8.3. Let us take in R2, u = (1, 0) and v = (a, b) with b ̸= 0. If αu+βv =

0, then (α + βa, βb) = 0 = (0, 0), so βb = 0. Since b ̸= 0 this implies β = 0 and

looking at the first coordinate we have α = 0. We conclude that u and v are linearly

independent.

Example 8.4. Let us take in R2 two proportional vectors u and v = λu. We have

−λu+ 1v = 0, since 1 ̸= 0 we conclude that u and v are linearly dependent.

Note that in any vector space any two proportional vectors are always linearly

dependent.

Example 8.5. Let us see some examples of linear dependence.

(1) Let E be a K-vector space and let u ∈ E. The vector u is linearly independent

if and only if u ̸= 0. In fact λu = 0 ⇔ λ = 0 or u = 0.

(2) Let v1 = 0 and v2, . . . , vn ∈ E any vectors. Then v1, v2, . . . , vn are linearly

dependent. In fact 1 · 0 + 0v2 + · · ·+ 0vn = 0 is a linear dependence relation

between v1 = 0, v2, . . . , vn because 1 ̸= 0.

(3) Let v1 = v = v2 and v3, . . . , vn any n− 2 vectors of E. Then v1, v2, v3, . . . , vn

are linearly dependent. In fact 1v1 − 1v2 + 0v3 + · · · + 0vn = 0 is a linear

dependence relation because 1 ̸= 0 (also −1 ̸= 0 but a non-zero coefficient is

enough).

The above example shows that if v1, . . . , vn are linearly independent then they

are distinct and none of the vi is zero. Obviously, these are necessary but not

sufficient conditions.

The following two lemmas will be useful later.

Lemma 8.6. Let E be a K-vector space and v1, . . . , vn vectors of E. The vectors

vi are linearly dependent if and only if: n = 1 and v1 = 0; n > 1 and there exists

j, 1 ≤ j ≤ n such that vj is a linear combination of v1, . . . , vj−1, vj+1, . . . , vn.

Proof. We have already proved a part of this lemma. It remains to prove that if

vj is a linear combination of the other vectors, then the vectors are dependent. If

vj =
∑
i̸=j

λivi, then 1vj−
∑
i ̸=j

λivi = 0 is a linear dependence relation since 1 ̸=0. □

Lemma 8.7. Let E be a K-vector space and v1, . . . , vn linearly independent vectors

of E. Let w ∈ E be a vector such that v1, . . . , vn, w are dependent, then w is a linear

combination of the vi.
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Proof. If v1, . . . , vn, w are dependent, there exist scalars which are not all zero

α1, . . . , αn, β such that α1v1+· · ·+αnvn+βw = 0. If β = 0 then α1v1+· · ·+αnvn =

0. Since the vectors vi are independent this implies αi = 0,∀i, contradicting the

hypothesis. So β ̸= 0. This means we can divide by β and express w as a linear

combination of v1, . . . , vn. □

One last observation to conclude (for now) on the topic.

Remark 8.8. Let E be a K-vector space and v1, . . . , vn ∈ E.

(1) If v1, . . . , vn are dependent and if w ∈ E, are the vectors v1, . . . , vn, w depen-

dent or independent? Think about it for a moment.

The vectors v1, . . . , vn, w are dependent. In fact, by hypothesis we have

the existence of a linear dependence relation:
∑
λivi = 0 with the λi not

all zero. From this relation we deduce that:
∑
λivi + o.w = 0, i.e. a linear

dependence relation for the vectors v1, . . . , vn, w. So if we add a vector to

some dependent vectors, we get dependent vectors.

(2) If v1, . . . , vn are dependent and if we remove one of the vectors, say vj , are

the remaining vectors v1, . . . , vj−1, vj+1, . . . , vn dependent or independent?

It depends, they can be dependent or independent (give examples of both

cases).

(3) If v1, . . . , vn are independent and if w ∈ E, are the vectors v1, . . . , vn, w de-

pendent or independent?

Again it depends, they can be dependent or independent (give examples

for both cases).

(4) If v1, . . . , vn are independent and if we remove one of the vectors, say vj , are

the remaining vectors v1, . . . , vj−1, vj+1, . . . , vn dependent or independent?

The remaining vectors are independent. In fact, if
∑
i̸=j

λivi = 0, then∑
i ̸=j

λivi + 0vj = 0. Since v1, . . . , vn are independent, this implies λi = 0,∀i.

8.1. Bases

The following is a fundamental notion.

Definition 8.9. Let E be a K-vector space and v1, . . . , vn ∈ E be such that:

(1) v1, . . . , vn are linearly independent

(2) v1, . . . , vn generate E (i.e. ⟨v1, . . . , vn⟩ = E).

Then B = (e1, . . . , en) is a basis of E.

The importance of this notion arises from the following fact.
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Lemma 8.10. If B = (v1, . . . , vn) is a basis of E, then every w ∈ E can be written

uniquely as a linear combination of the vi.

Proof. Since ⟨v1, . . . , vn⟩ = E, each w ∈ E is written as a linear combination

of the vi. Suppose we have w = λ1v1 + · · · + λnvn = α1v1 + · · · + αnvn. Then

(λ1 − α1)v1 + · · · + (λn − αn)vn = 0. Since the vi are independent, this implies

λi − αi = 0,∀i and therefore the writing is unique. □

Remark 8.11.

(1) From Definition 8.9 it follows that E has finite dimension. There is a notion

of basis even for spaces of infinite dimension.

(2) A basis B = (v1, . . . , vn) is an n-tuple of vectors (there is an order on the set

{v1, . . . , vn}) . If B = (v1, v2, . . . , vn) is a basis then B′ = (v2, v1, . . . , vn) is

also a basis (the fact of being independent generators do not depend on the

order of the vectors); however B and B′ are two different bases.

This distinction is explained as follows. If B = (v1, . . . , vn) is a basis of

E, then each vector w ∈ E is uniquely written as w = λ1v1 + · · ·+ λnvn. We

can therefore identify the vector w with the coefficients (λ1, . . . , λn) ∈ Kn.

Conversely, to the element (α1, . . . , αn) ∈ Kn we can associate to the vector

u = α1v1 + · · · + αnvn. We say that (λ1, . . . , λn) are the coordinates of w in

the basis B.
Observe that the coordinates of w in the basis B′ are (λ2, λ1, . . . , λn). This

is why we say that B and B′ are two different bases.

(3) As already said, for vectors vi the fact of being linearly independent generators

of E does not depend on the order of the vectors. So if we do not want to

specify an order we will say that the vectors vi form (in some order) a basis.

We now show some characteristic properties of a basis, but first we need a

definition.

Definition 8.12. Let E be a K-vector space and e1, . . . , en ∈ E.

(1) The vectors (ei) form a minimal system of generators of E if ⟨e1, . . . , en⟩ = E

and if ∀j, 1 ≤ j ≤ n, the vectors e1, . . . , ej−1, ej+1, . . . , en no longer generate

all the space E.

(2) The vectors (ei) form a maximal system of independent vectors, if they are

independent and if ∀w ∈ E, the vectors e1, . . . , en, w are linearly dependent.

Proposition 8.13. Let E ̸= {0} be a K-vector space and e1, . . . , en vectors of E.

The following are equivalent:

(1) e1, . . . , en form a basis of E;
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(2) G = {e1, . . . , en} is a minimal system of generators;

(3) G is a maximal system of independent vectors.

Proof. (1) ⇒ (2). By hypothesis ⟨G⟩ = E. If G is not a minimal system of

generators, there exists j such that G \ {ej} generates E; in particular ej is a

linear combination of the other ei. This implies (Lemma 8.6) that e1, . . . , en are

dependent, a contradiction since the vectors ei form a basis.

(2) ⇒ (3). We show that the vectors ei are independent. If n = 1, since

E ̸= {0}, e1 ̸= 0 and e1 is independent. Suppose n > 1. If the vectors ei are

dependent one of them, ej , is a linear combination of the others (Lemma 8.6). In

this case we have ⟨e1, . . . , en⟩ = ⟨e1, . . . , ej−1, ej+1, . . . , en⟩ and G is not a minimal

system of generators, a contradiction. So the vectors ei are independent. Let

w ∈ E, since ⟨G⟩ = E by hypothesis, w is a linear combination of the ei, therefore

(Lemma 8.6) e1, ..., en, w are dependent. This shows that G is a maximal system

of independent vectors.

(3) ⇒ (1). The vectors ei are independent by hypothesis, we show that they

generate E. Let w ∈ E. Since G is a maximal system of independent vectors,

e1, . . . , en, w are dependent. This implies (Lemma 8.7) that w is a linear combina-

tion of the ei, therefore ⟨G⟩ = E and e1, . . . , en form a basis of E. □

Remark 8.14. If E = {0}, then 0 is a minimal system of generators of E but 0 is

dependent. We will see later how to fix this situation.

Our aim now is to show that every finitely generated K-vector space admits a

basis. This is a fundamental result.

Theorem 8.15. Let E be a K-vector space and A, A′ two non-empty finite subsets

of E such that A ⊂ A′. Suppose that the vectors of A are linearly independent and

that the vectors of A′ generate E. Then there exists B, A ⊂ B ⊂ A′ such that the

vectors of B form a basis of E.

Proof. Let F := {X | A ⊂ X ⊂ A′ and such that the vectors of X are linearly

independent}. We observe that F is non-empty (A ∈ F), furthermore F is a finite

set (because it is contained in the power set A′ and A′ is finite). Let B ∈ F be

such that: ∀X ∈ F , card(X) ≤ card(B) (B exists, perhaps not unique, because

F is finite). By construction the vectors of B are linearly independent. We show

that they generate E. Let v ∈ A′, v /∈ B, the vectors of B′ = B ∪ {v} are

linearly dependent (otherwise we will have B′ ∈ F with card(B′) > card(B)).

Therefore (Lemma 8.7) v is a linear combination of the vectors of B. This shows

that ⟨A′⟩ = ⟨B⟩. Since ⟨A′⟩ = E by hypothesis, the vectors of B form a basis of

E. □
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Corollary 8.16. Let E be a finite-dimensional K-vector space. If E ̸= {0} then

E admits a basis.

Proof. By definition E is generated by a finite, non-empty set, A′, of vectors (E

is finitely generated). Since E ̸= {0}, there exists v ∈ A′ with v ̸= 0, so v is

independent. We conclude by applying Theorem 8.15 with A = {v} ⊂ A′. □

Remark 8.17. Let E = {0}. The space E is finitely generated (from the vector

0) but has no non-empty basis because the unique vector in E is dependent. By

convention the empty set is said to be a basis of E. With this convention every

finite-dimensional K-vector space admits a basis.

It can be shown that every vector space of infinite dimension admits a basis. In

this case a basis is an infinite set of vectors (ei)i∈I such that every finite number of

these vectors are linearly independent and such that every vector in the space is a

linear combination of a finite number of these vectors. For example the polynomials

xn with n ∈ N form a basis of K[x].

A reformulation of Theorem 8.15:

Corollary 8.18. Let E be a K-vector space. If v1, . . . , vk generate E, then the set

{v1, . . . , vk} contains a basis of E.

An important consequence of Theorem 8.15:

Corollary 8.19 (Incomplete basis theorem). Let E be a finitely generated (i.e.

finite-dimensional) K-vector space and v1, . . . , vp linearly independent vectors of

E. Then there exists a basis of E containing v1, . . . , vp.

Proof. Let us set A = {v1, . . . , vp}. Since E is finitely generated there is a finite

set, G, which generates E. We set A′ = G∪A. Clearly A′ generates E and A ⊂ A′.

We conclude by Theorem 8.15. □

8.2. Infinite-dimensional vector spaces

We have seen in Corollary 8.16 that all finite-dimensional vector spaces admit a

basis. This is true also for vector spaces of infinite dimension. The proof of this

fact requires Zorn’s lemma which is equivalent to the axiom of choice.

Zorn’s lemma states that a partially ordered set containing upper bounds for ev-

ery chain necessarily contains at least one maximal element. The lemma was proved,

assuming the axiom of choice, by Kazimierz Kuratowski in 1922 and independently

by Max Zorn in 1935. This is why it is also known as the Kuratowski–Zorn lemma.
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Zorn’s lemma is equivalent to the well-ordering principle and to the axiom of

choice. Within the Zermelo–Fraenkel set theory any one of the three is sufficient

to prove the other two.

The well-ordering principle states that every non-empty set of positive integers

contains a least element that is an element smaller than every other of its elements.

The axiom of choice states that for any family (Si)i∈I of non-empty sets there

exists a set (si)i∈I such that si ∈ Si for all i ∈ I. Informally, this says that given any

collection of sets, even infinite, each containing at least one element it is possible

to construct a new set by arbitrarily choosing one element from each set.

We refer to [Hal74, Sections 15, 16, 17] for a comprehensive treatment of these

topics. In order to state Zorn’s lemma we need to introduce some preliminary

notions.

8.2.1. Partially ordered sets. A partially ordered set is a set P equipped with

a binary relation ≤ that is reflexive (x ≤ x for all x ∈ P ), antisymmetric (if x ≤ y

and y ≤ x then x = y), and transitive (if x ≤ y and y ≤ z then x ≤ z).

In a partially ordered set there might be pairs of elements that are not com-

parable, the word partial is meant to highlight this fact. An ordered set in which

every pair of elements is comparable is called a totally ordered set.

A subset P ′ of a partially order set P is itself a partially ordered set whit

respect to the order relation inherited from P . It is called a chain of P if it is

totally ordered with respect to the inherited order.

An element m ∈ P is maximal if for any x ∈ P with x ̸= m we have x ≤ m.

A partially ordered set may have any number of maximal elements. However, a

totally ordered set can have at most one maximal element.

If P ′ is a subset of P an element b ∈ P is an upper bound of P ′ if x ≤ b for all

x ∈ P ′. In particular, any element of P ′ is required to be comparable with b. Note

that b is not required to belong to P ′.

Lemma 8.20 (Zorn’s Lemma). Let P be a partially ordered set such that any chain

of P has an upper bound in P . Then P contains at least one maximal element.

Proof. See [Hal74, Section 16]. □

Now, we are ready to prove that any vector space, also of infinite dimension,

has a basis.

Theorem 8.21. Let E be a K-vector space. If E ̸= {0} then E admits a basis.

Proof. Let F be the set of all linearly independent subsets of E. Note that F is

partially ordered by the inclusion ⊆. Let Y be a subset of F that is totally ordered
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and consider

BY =
⋃
S∈Y

S.

Let F be a finite subset of BY . Since Y is totally ordered we have that F ⊆ S

for some S ∈ Y which is a linearly independent subset of E. Hence, BY ∈ F .

Summing-up BY is an element of F that contains any element of Y that is BY is

an upper bound for Y .

By Lemma 8.20 there exists and element M ∈ F such that if M ⊂ S for some

S ∈ F then M = S. We now prove that M is a basis of E.

Since M ∈ F we already know that M is linearly independent. Assume that

there exists a vector v ∈ E such that v /∈ ⟨M⟩. Then v /∈ M . Set Mv = M ∪ {v}.
Since v /∈ ⟨M⟩ we have that Mv /∈ F . On the other hand, M ⊆ Mv and M ̸= Mv

since v /∈M , contradicting the maximality of M . We then conclude that M spans

E. □

Vector spaces of infinite dimension arise naturally in mathematics. We have

already seen the K-vector space K[x] of polynomials in x with coefficients in K

a basis of which is given by {1, x, x2, . . . , xd, . . . }. Similarly, we can consider the

K-vector space K[x1, . . . , xn] of polynomials in several variables with coefficients

in K.

Another example is given by the R-vector space Ch(R), where h ∈ N is a fixed

natural number, of functions f : R → R whose derivatives of order up to h are

continuous.

For any natural number p ≥ 1 the space

Lp(R) =

{
f : R → R such that

(∫ +∞

−∞
|f(x)|pdx

)1/p

<∞

}
is an R-vector space of infinite dimension. These are examples of Banach spaces.

We will see later the notion of inner product. One can prove that Lp(R) admits

an inner product if and only if p = 2, and hence L2(R) furnishes an example of

Hilbert space. Banach and Hilbert spaces are the fundamental objects of study of

functional analysis.
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Exercises

Exercise 8.22. Tell whether the following vectors of R3 are linearly independent.

(a) v1 = (1,−1, 0), v2 = (2, 0, 1), v3 = (1, 1, 1).

(b) v1 = (1,−1, 0), w = (3, 0, 1), v3 = (1, 1, 1).

Exercise 8.23. Let E be a K-vector space and w, v1, . . . , vk ∈ E, where v1, . . . , vk

are linearly independent. Show that w, v1, . . . , vk are linearly independent if and

only if w /∈ ⟨v1, . . . , vk⟩.

Exercise 8.24. In R3 consider the vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (2, 1, 0).

Show that these vectors are two by two linearly independent. Show that e1, e2, e3

are not linearly independent (Exercise 5.36). Let v = (4, 3, 0). Write v as a linear

combination of e1, e2, e3 in two different ways.

Exercise 8.25. Let E be a finitely generated K-vector space and ei vectors such

that ⟨e1, . . . , ek⟩ = E. We can assume ei ̸= 0, ∀i. Let us take e1 and con-

sider the two vectors e1, e2. If e1 and e2 are dependent then ⟨e1, e2, e3, . . . , ek⟩ =
⟨e1, e3, . . . , ek⟩ and we can discard e2 (and keep e1). If the two vectors are indepen-

dent we keep e1 and e2. Continuing the procedure, prove the existence of a basis

contained in {e1, . . . , ek}.

Exercise 8.26. Let E be a finite-dimensional K-vector space. We assume E =

F⊕G where F,G are two subvector spaces of E. Let x1 = f1+g1, . . . , xn = fn+gn

be vectors of E where fi ∈ F, gi ∈ G. Show that:

1) If f1, . . . , fn are linearly independent, then x1, . . . , xn are linearly independent.

2) Give examples where x1, . . . , xn are linearly independent, f1, . . . , fn are linearly

dependent and where g1, . . . , gn are

(a) linearly dependent;

(b) linearly independent.

3) If x1, . . . , xn are linearly independent then f1, . . . , fn are linearly independent

⇔ ⟨f1, . . . , fn⟩ ∩G = {0}. Is this equivalence still true if x1, . . . , xn are not linearly

independent?

Exercise 8.27. Let E be a K-vector space and F , G two subvector spaces of E.

Give a necessary and sufficient condition (on F,G) such that F ∪G is a subvector

space of E.

Exercise 8.28. (i) Let G be a group and F,H two proper subgroups of G. Show

that F ∪H ̸= G.

(ii) Deduce from (i) that a K-vector space can not be written as the union of two
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proper subvector spaces.

(iii) Let K = F2 be the field with two elements and consider E = K2 with its

natural structure of K-vector space. Show that E can be written as the union of

three proper subvector spaces.

Exercise 8.29. Let E be a finite-dimensional K-vector space. We assume E =

E′ ⊕ E′′. Let

x1 = x′1 + x′′1 , . . . , xn = x′n + x′′n

be vectors of E, with x′i ∈ E′, x′′i ∈ E′′.

(i) Prove that if the x′i are independent then also the xi are independent.

(ii) Give examples where x1, . . . , xn are independent, x′1, . . . , x
′
n are dependent and

x′′1 , . . . , x
′′
n are

(a) linearly dependent;

(b) linearly independent.

(iii) Prove that if x′1, . . . , x
′
n and x′′1 , . . . , x

′′
n are dependent then x1, . . . , xn are not

necessarily dependent.

Exercise 8.30. Let E be a finite-dimensional K-vector space. Assume E = E′ ⊕
E′′. Let x1 = x′1 + x′′1 , . . . ,xn = x′n + x′′n be vectors of E (x′i ∈ E′, x′′i ∈ E′′).

(1) Show that if x′1, . . . , x
′
n are independent then x1, . . . , xn are also independent.

(2) Give examples where x1, . . . , xn are linearly independent, x′1, . . . , x
′
n are lin-

early dependent and where x′′1 , . . . , x
′′
n are

(a) linearly dependent;

(b) linearly independent.

(3) Show that if x′1, . . . , x
′
n and x′′1 , . . . , x

′′
n are linearly dependent, then x1, . . . , xn

are not necessarily dependent.

Exercise 8.31. Let E be a finite-dimensional K-vector space, and assume that

E = E′⊕E′′. Let x1 = x′1 + x′′1 , . . . ,xn = x′n + x′′n be vectors of E (x′i ∈ E′,

x′′i ∈ E′′). It is assumed that x1, . . . , xn are linearly independent, show that:

x′1, . . . , x
′
n are linearly independent ⇔ ⟨x1, . . . , xn⟩ ∩ E′′ = {0}.



Chapter 9

Bases, dimension and linear

maps

9.1. Dimension

So far we have shown that every finite-dimensional K-vector space, E, admits a

basis B. If B = (e1, . . . , en) each vector can be written via its coordinates in the

basis B. This creates a bijection between E and Kn. What if there was now a basis

of E, C = (v1, . . . , vt) with t ̸= n? Could a vector be identified with n coordinates

or with t coordinates?

Fortunately, as we will see, the problem does not arise. Let us highlight a result

that we have in a certain way already used.

Lemma 9.1. Let E be a K-vector space and g1, . . . , gt, u vectors of E.

(1) If u ∈ ⟨g1, . . . , gt⟩ and if g1 is a linear combination of u, g2, . . . , gt (i.e. g1 ∈
⟨u, g2, . . . , gt⟩), then ⟨g1, g2, . . . , gt⟩ = ⟨u, g2, . . . , gt⟩.

(2) In particular if E = ⟨g1, . . . , gt⟩ and g1 ∈ ⟨u, g2, . . . , gt⟩ then E = ⟨u, g2, . . . , gt⟩.

Proof. 1) We show A := ⟨u, g2, . . . , gt⟩ ⊂ ⟨g1, g2, . . . , gt⟩ =: B. A vector w ∈ A is

a linear combination of u, g2, . . . , gn. Since u is a linear combination of the gi, w is

a linear combination of the gi, and hence A ⊂ B.

Take now v ∈ B. Then v is a linear combination of the gi. Since g1 is a

linear combination of u, g2, . . . , gn, we can express v as a linear combination of

u, g2, . . . , gn.

Finally 2) follows from 1). □

93
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Proposition 9.2. Let E be a K-vector space. Let g1, . . . , gt be vectors of E such

that ⟨g1, . . . , gt⟩ = E (the vectors gi generate E) and let e1, . . . , en be vectors of E

such that e1, . . . , en are linearly independent. Then n ≤ t.

Proof. Since ⟨g1, . . . , gt⟩ = E, e1 is a linear combination of the vectors gi: e1 =∑
αigi. One of the αi is non-zero otherwise we would have e1 = 0 and this is not

possible because the vectors e1, . . . , en are independent. By rearranging the indexes

if needed we can assume α1 ̸= 0. Then we have g1 = e1 −
∑

i>1(αi/α1)gi. That is,

g1 ∈ ⟨e1, g2, . . . , gt⟩. By Lemma 9.1, E = ⟨e1, g2, . . . , gt⟩, that is, we replaced one

of the generators gj with one of the ei. We can repeat this operation until we have

used all the ei.

In fact, suppose we have E = ⟨e1, . . . , ei−1, gi, . . . , gt⟩. Then ei =
∑i−1

k=1 λkek +∑t
k=i µkgk. We observe that one of the µk is non-zero. In fact, otherwise we would

have that ei is a linear combination of e1, . . . , ei−1 but this is not possible because

the ei are linearly independent. By rearranging the indexes if needed we can assume

µi ̸= 0. This implies that gi is a linear combination of e1, . . . , ei, gi+1, . . . , gt. By

Lemma 9.1 we have E = ⟨e1, . . . , ei, gi+1, . . . , gt⟩.

If n > t we get E = ⟨e1, . . . , et⟩ with et+1 linear combination of e1, . . . , et. This

is not possible because the ei are independent. So n ≤ t. □

Theorem 9.3. Let E be a K-vector space and let (e1, . . . , en), (v1, . . . , vp) be two

bases of E. Then n = p. So all bases of E have the same number of elements.

Proof. Since the ei generate E and since the vj are independent, we have (Proposi-

tion 9.2) n ≥ p. But we also have that the vj generate E and the ei are independent,

so p ≥ n. □

This allows us to define the notion of dimension.

Definition 9.4. Let E be a finitely generated K-vector space. The dimension of

E (over K) is the number of vectors of a basis of E.

Remark 9.5. This definition makes perfect sense because every K-vector space of

finite dimension admits a basis (Corollary 8.16, Observation 8.17) and because two

bases of E have the same number of elements (Theorem 9.3).

The dimension of E (over K) is denoted by dimK(E) (or simply by dimE).

The unique basis of E = {0} is the empty set that has zero elements so

dim{0} = 0 and this reflects our intuition that a point has dimension zero (while a

line has dimension one, a plane has dimension two, and so on).

Example 9.6 (Canonical basis of Kn). In Kn consider the following vectors: e1 =

(1, 0, . . . , 0), . . . , ei = (0, . . . , 0, 1, 0, . . . 0), . . . , en = (0, . . . , 0, 1). These vectors are
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independent because
∑
λiei = 0 ⇔ (λ1, . . . , λn) = (0, . . . , 0) ⇔ λi = 0,∀i. Further-

more, since (λ1, . . . , λn) =
∑
λiei, the vectors ei generate K

n. So B = (e1, . . . , en)

is a basis of Kn. In particular, dimKn = n.

The basis B = (e1, . . . , en) is called the canonical basis of Kn. This comes from

the fact that if we take a vector (λ1, . . . , λn) ∈ Kn we just need to look at it to get

its coordinates in the basis B.

The following result is very useful in practice.

Proposition 9.7. Let E be a K-vector space of dimension n.

(1) If p > n, p vectors of E are always linearly dependent;

(2) n vectors of E form a basis of E if and only if they are linearly independent.

Proof. (1) Let p > n and assume v1, . . . , vp linearly independent. By the In-

complete Basis Theorem (Theorem 8.19) there exists a basis of E containing the

vi. This is a contradiction because all bases of E have n elements. So the vi are

dependent.

(2) If e1, . . . , en are independent, then ∀w ∈ E the vectors e1, . . . , en, w are

dependent (by (1)). Therefore (Lemma 8.7) w is a linear combination of the ei, i.e.

⟨e1, . . . , en⟩ = E. □

The following is another very useful result.

Proposition 9.8. Let E be a K-vector space of dimension n and F ⊂ E a subvector

space of E. Then dimF is finite and dimF ≤ dimE, with equality if and only if

F = E.

Proof. If F = {0} the result is trivial. Then consider the case F ̸= {0}. If

f1, . . . , fp are p vectors of F with p > n, then f1, . . . , fp are linearly dependent.

Let r be the maximum number of independent vectors of F , if v1, . . . , vr are r

independent vectors of F , then these vectors are a maximal system of independent

vectors of F hence a basis of F . This shows dimF ≤ n.

If dimF = n a basis of F is also a basis of E (Proposition 9.7) then F = E

(every u ∈ E is a linear combination of the basis vectors and therefore it belongs

to F ). □

Remark 9.9. We therefore have two ways to show that two subvector spaces

F,G ⊂ E are equal:

(1) Show that F ⊂ G and G ⊂ F ;

(2) Show that F ⊂ G and dimF = dimG.
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9.2. Bases and linear maps

Regarding linear maps there is only one thing to know.

Theorem 9.10. Let E,F be two K-vector spaces, B = (e1, . . . , en) a basis of E

and f1, . . . , fn some vectors of F . Then

(1) there exists one and only one linear map φ : E → F such that φ(ei) =

fi,∀i, 1 ≤ i ≤ n;

(2) the map φ is injective if and only if the vectors fi are independent;

(3) the map φ is surjective if and only if ⟨f1, . . . , fn⟩ = F (the vectors fi generate

F );

(4) the map φ is bijective if and only if (f1, . . . , fn) is a basis of F .

Proof. (1) Let v ∈ E, then v can be written in the basis B, that is: v =
∑n

i=1 αiei.

Since we want φ to be linear we set φ(v) =
∑

i αiφ(ei) =
∑

i αifi. In conclusion

we define φ : E → F as follows if v =
∑
αiei, then φ(v) =

∑
αifi.

This is well defined since each v ∈ E is written uniquely as a linear combination

of the ei. The application is clearly linear.

Uniqueness of φ: let ψ : E → F be a linear map such that ψ(ei) = fi. If

v ∈ E, v =
∑
λiei, ψ(v) = ψ(

∑
λiei), but by linearity of ψ we have

∑
i λiψ(ei).

Since ψ(ei) = fi, we get ψ(v) =
∑
λifi. But this last expression is nothing but

φ(v). We conclude that ψ = φ.

(2) Suppose φ is injective and show that the vectors fi are linearly independent.

Let
∑

i αifi = 0. This can be rewritten as follows:
∑

i αiφ(ei) = 0. By linearity of

φ:
∑

i αiφ(ei) = φ(
∑

i αiei). So the vector u :=
∑

i αiei belongs to Ker(φ). But

since φ is injective, Ker(φ) = {0}. So u :=
∑

i αiei = 0. Since the vectors ei are

independent, this implies αi = 0,∀i. In conclusion
∑

i αifi = 0 implies αi = 0,∀i,
this shows that the vectors fi are linearly independent.

Now we assume the vectors fi to be linearly independent. Let v ∈ Ker(φ),

then v =
∑
αiei and φ(v) =

∑
αifi = 0. Since the vectors fi are independent this

implies αi = 0,∀i. So v = 0, i.e. Ker(φ) = {0} and φ is injective.

(3) We show that φ surjective implies ⟨f1, . . . , fn⟩ = F . Let f ∈ F . Since φ is

surjective, there exists v ∈ E such that φ(v) = f . If v =
∑
αiei, φ(v) =

∑
αifi. So

f =
∑
αifi. This shows that every vector of F is linear combination of f1, . . . , fn.

Conversely we show that ⟨f1, . . . , fn⟩ = F implies that φ is surjective. Let

f ∈ F , by hypothesis f =
∑
αifi. Since fi = φ(ei) we can write f =

∑
αiφ(ei).

By linearity of φ: f = φ(
∑
αiei). This shows that every vector of F belongs to

Im(φ), so φ is surjective.
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(4) is a consequence of (2) and (3). □

Remark 9.11. Point (1) of the Theorem 9.10 can be reformulated as follows: a

linear map is completely determined by its values on the elements of a basis.

Remember that an isomorphism f : E → F is a bijective linear map (we know

that f−1 is linear).

Corollary 9.12. (1) Two K-vector spaces are isomorphic if and only if they have

the same dimension.

(2) Every K-vector space of dimension n is isomorphic to Kn.

Proof. (1) Suppose E and F are isomorphic. If E = {0} then F = {0} and

dimE = dimF . If E ̸= {0} let B = (e1, . . . , en) be a basis of E. Then if f : E → F

is an isomorphism, by Theorem 9.10 (4), (f(e1), . . . , f(en)) is a basis of F . So

n = dimE = dimF .

Suppose dimE = dimF = n > 0. Let (e1, . . . , en) be a basis of E, (f1, . . . , fn)

a basis of F and define φ : E → F by φ(ei) = fi,∀i. From Theorem 9.10 it follows

that φ is linear and bijective, so E and F are isomorphic.

(2) Follows from (1). □

The Corollary 9.12 completes the classification of the K-vector spaces of finite

dimension on a field K, that is, it describes, up to isomorphisms, all K-vector

spaces.

Completing the classification of a class of mathematical objects is always a

great achievement for mathematics.

However, bear in mind that the classification of finite groups has not been

completed yet!

9.3. Rank theorem and Grassmann relation

Needless to say, the two main results of this section are fundamental. Let us start

with a simple lemma.

Lemma 9.13. Let E,F be two K-vector spaces and f : E → F a linear map. Let

A ⊂ E such that ⟨A⟩ = E, then f(A) generates Im(f).

Proof. Let v = f(u) ∈ Im(f). We have u =
∑
αiwi where wi ∈ A, ∀i because,

by hypothesis, every vector of E is a linear combination of vectors of A, so v =

f(u) =
∑
αif(wi) and each element of Im(f) is a linear combination of elements

of f(A). □
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Theorem 9.14 (Rank theorem). Let f : E → F be a linear map between two

K-vector spaces, E is assumed to be of finite dimension. Then Im(f) has finite

dimension and:

dimE = dim Im(f) + dimKer(f).

Proof. If (e1, . . . , en) is a basis of E, by Lemma 9.13, the vectors f(e1), . . . , f(en)

generate Im(f), so Im(f) has finite dimension.

Let (v1, . . . , vp) be a basis of Ker(f) (the basis is empty if f is injective). By the

Incomplete Basis Theorem there exists a basis B containing the vectors v1, . . . , vp:

B = (v1, . . . , vp, vp+1, . . . , vn). We have ⟨f(vi)⟩ = ⟨f(vp+1, . . . , f(vn)⟩ = Im(f)

(because f(vi) = 0 if 1 ≤ i ≤ p). We show that f(vp+1), . . . , f(vn) form a basis

of Im(f). This will prove the theorem because dimE = n, dimKer(f) = p and

dim Im(f) = n− p.

To show that f(vp+1), . . . , f(vn) form a basis of Im(f) it is enough to show that

they are linearly independent because we already know that they generate Im(f) .

Let αp+1f(vp+1+· · ·+αnf(vn) = 0 be a linear combination equal to the zero vector,

we must show αi = 0,∀i. By linearity of f we have 0 = αp+1f(vp+1+ · · ·αnf(vn) =

f(αp+1vp+1 + · · · + αnvn). Therefore, w = αp+1vp+1 + · · · + αnvn ∈ Ker(f).

Since (v1, . . . , vp) is a basis of Ker(f), we have w = α1v1 + · · · + αpvp. Putting

it all together αp+1vp+1 + · · · + αnvn = w = α1v1 + · · · + αpvp. In conclusion

α1v1 + · · · + αpvp − (αp+1vp+1 + · · · + αnvn) = 0. Since the vectors v1, . . . , vn are

independent this implies α1 = · · · = αn = 0. In particular, αp+1 = · · · = αn = 0

and the theorem is proved. □

Remark 9.15. In Theorem 9.14 F is not assumed to be of finite dimension. The

rank theorem is also called the rank-nullity theorem.

Corollary 9.16. Let f : E → F be a linear map between two vector spaces with

dimE = dimF . The following are equivalent:

(1) f is injective;

(2) f is surjective;

(3) f is bijective.

Proof. (1) ⇒ (2). If f is injective then Ker(f) = {0} and by Theorem 9.14

dimF = dimE = dim Im(f). So Im(f) ⊂ F and dimF = dim Im(f). We conclude

(Remark 9.9) F = Im(f), so f is surjective.

(2) ⇒ (1) If f is surjective dim Im(f) = dimF = dimE and from Theorem

9.14 it follows that dimKer(f) = 0, so f is injective.

So (1) and (2) are equivalent and it is clear that (1) and (2) ⇔ (3). □
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Remark 9.17. Actually you do not need the Rank Theorem to prove this corollary.

Just use Theorem 9.10. Suppose f is injective. Let (e1, . . . , en) be a basis of E.

Since f is injective, the vectors f(e1), . . . , f(en) are independent (Theorem 9.10).

We therefore have n independent vectors in a space of dimension n, these vectors

form a basis of F . Therefore f is bijective (Theorem 9.10).

Suppose f is surjective. The vectors f(e1), . . . , f(en) generate F . We have n

vectors that generate a space of dimension n, these vectors are independent. In

fact, otherwise one of them would be a linear combination of the others and F

would be generated by less than n vectors, but this is impossible (because every

system of generators contains a basis). So (f(e1), . . . , f(en)) is a basis of F and f

is bijective (Theorem 9.10).

For the next application we need a lemma that is nevertheless interesting in

itself.

Lemma 9.18. Let E,F be two K-vector spaces of finite dimension. We have

dimE × F = dimE + dimF.

Proof. Let (e1, . . . , en) be a basis of E and let (v1, . . . , vp) be a basis of F . It is

easily verified that the vectors (e1, 0), . . . , (en, 0), (0, v1), . . . , (0, vp) form a basis of

E × F . □

Theorem 9.19 (Grassmann relation). Let E be a K-vector space of finite dimen-

sion and F,G ⊂ E two subvector spaces of E. Then

dim(F +G) = dimF + dimG− dim(F ∩G).

Proof. Consider the map φ : F ×G→ E : (f, g) → f + g. It is easily verified that

φ is linear. Clearly Im(φ) = F +G. If (f, g) ∈ Ker(φ), then f = −g. So f ∈ F ∩G.
In conclusion Ker(φ) = {(f,−f) | f ∈ F ∩G} (it is clear that if f ∈ F ∩G, (f,−f) ∈
Ker(φ)). It follows that dimKer(φ) = dim(F ∩ G) (a basis of F ∩ G gives a basis

of Ker(φ)). By Theorem 9.14 dim(F ×G) = dim(F +G)+dim(F ∩G). The result

follows from Lemma 9.18. □

Theorem 9.19 can be proved in another way (without using the Rank Theorem).

Alternative proof of the Theorem 9.19. Let e1, . . . , ep be a basis of F ∩ G.

The vectors e1, . . . , ep are p independent vectors of F and therefore, by the Incom-

plete Basis Theorem, they can be completed to a basis (e1, . . . , ep, fp+1, . . . , fn)

of F . We observe that fi /∈ F ∩ G. If this were not the case, we would have

fi =
∑
λjej and the vectors e1, . . . , ep, fp+1, . . . , fn would not be independent.
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In the same way the vectors e1, . . . , ep are p independent vectors of G and there-

fore, by the Incomplete Basis Theorem, they can be completed to a basis of G:

(e1, ..., ep, gp+1, . . . , gm).

As before gj /∈ F ∩ G. The vectors e1, . . . , ep, fp+1, . . . , fn, gp+1, . . . , gm are

p+ (n− p) + (m− p)) = (n+m)− p = dimF + dimG− dim(F ∩G). It remains

to show that B = (e1, . . . , ep, fp+1, . . . , fn, gp+1, . . . , gm) is a basis of F +G.

It is clear that ⟨e1, . . . , ep, fp+1, . . . , fn, gp+1, . . . , gm⟩ = F +G because F +G =

{f + g | f ∈ F, g ∈ G}. So f is a linear combination of the basis vectors of F and

g is a linear combination of the basis vectors of G, putting everything together we

get a vector of ⟨e1, . . . , ep, fp+1, . . . , fn, gp+1, . . . , gm⟩. Vice versa it is clear that a

vector of this space is a vector of F + G. It remains to show that the vectors are

independent.

Let
∑

i λiei +
∑

j µjfj +
∑

k αkgk = 0. We have w :=
∑

i λiei +
∑

j µjfj =

−
∑

k αkgk. Since −
∑

k αkgk ∈ G and
∑

i λiei +
∑

j µjfj ∈ F , we see that w ∈
F∩G, so w is linear combination of the vectors ei and we have:

∑
i λiei+

∑
j µjfj =∑

i βiei. So
∑

i(λi−βi)ei+
∑

j µjfj = 0. Since the vectors (ei, fj) are independent

(they form a basis of F ) we obtain αi = βi and µj = 0, ∀j. Going back to the

initial relation we have
∑

i λiei+
∑

k αkgk = 0. Since (ei, gk) is a basis of G we get

λi = 0, ∀i and αk = 0, ∀k and the theorem is proved. □

9.4. Ring of endomorphisms, linear group

Let us start with a definition.

Definition 9.20. If E,F are two K-vector spaces we denote by LK(E,F ) (or

L(E,F ) if there is no risk of confusion) the set of linear maps from E to F :

LK(E,F ) := {f : E → F | f is K − linear}.

Now, we define an addition on L(E,F ) via f + g : E → F : v → f(v) + g(v)

and an external multiplication with λf : E → F : v → λf(v).

Remark 9.21. It can be verified that with these two operations L(E,F ) is a

K-vector space.

If E and F have finite dimension, it is legitimate to ask whether L(E,F ) also
has finite dimension.

As we have seen a linear map is completely determined by its values on the

elements of a basis. Therefore, let B = (e1, . . . , en) be a basis of E. A linear map

f ∈ L(E,F ) is therefore completely determined by the vectors f(e1), . . . , f(en) ∈ F .
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A vector of F is completely determined by its coordinates in a basis of F . Let

C = (v1, . . . , vp) be a basis of F and write the vectors f(ei) in this basis:

f(e1) = α11v1 + α21v2 + · · ·+ αp1vp;

f(e2) = α12v1 + α22v2 + · · ·+ αp2vp;
...

f(en) = α1nv1 + α2nv2 + · · ·+ αpnvp.

We conclude that the map f is completely determined by the np scalar αij . We

can arrange these scalars in a matrix like this:

M =


α11 α12 · · · α1n

α21 α22 · · · α2n

...
...

. . .
...

αp1 αp2 · · · αpn

 .

The j-th column of the matrix contains the coordinates of f(ej) in the basis C.

The matrix M is the matrix associated to f with respect to the bases B of E

and C of F .

In conclusion, the matrix M completely determines the linear application f .

Conversely, a matrix N with p rows and n columns determines a linear application

g : E → F . If N = (βij), then g is defined as g(ej) =

p∑
i=1

βijvi. We have therefore

defined a map:

Mat(−;B, C) : L(E,F ) →Mp,n(K) : f →M.

Since a linear map is uniquely determined by its values on the vectors of a basis and

since a vector is uniquely determined by its coordinates with respect to a basis, we

conclude that the map Mat(−;B, C) is bijective. Furthermore, it is easy to verify

that the application is linear. Taking into account that Mp,n(K) is isomorphic to

Kpn and therefore has dimension np, we have proved:

Proposition 9.22. With the previous notations LK(E,F ) is isomorphic toMp,n(K).

In particular

dimL(E,F ) = dimE × dimF.

Let us now move on to the special case E = F .

Definition 9.23. A linear map f : E → E is also called an endomorphism of E

and L(E,E) is denoted by End(E).

This case is interesting because on End(E) there is a further operation: ◦, the
composition of maps. In fact, if f, g ∈ End(E), f ◦ g ∈ End(E). The neutral

element for this operation is the identity, the composition of maps is associative
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and distributive with respect to the addition: f ◦ (g + h) = f ◦ g + f ◦ h and

(f + g) ◦ h = f ◦ h+ g ◦ h. This tells us that (End(E),+, ◦) is a ring.

In general this ring is not commutative (∃f, g ∈ End(E) with f ◦ g ̸= g ◦f) and
it is not integral (∃f ̸= 0, g ̸= 0 with f ◦ g = 0).

So we have two algebraic structures on End(E):

(1) (End(E),+, ·λ) is a K-vector space (here ·λ denotes external multiplication).

(2) (End(E),+, ◦) is a ring.

Furthermore, the three operations are compatible with each other (λ(f ◦ g) =
(λf) ◦ g = f ◦ (λg). This gives to End(E) a structure of K-algebra.

Among the endomorphisms of E we can distinguish the bijective ones, such

endomorphisms are called automorphisms.

Definition 9.24. An automorphism of the K-vector space E is a bijective endo-

morphism of E, i.e. a bijective linear map f : E → E.

The set of automorphisms of E is denoted by Aut(E) or also Gl(E).

The composition of maps is an internal composition law on Aut(E) = Gl(E).

It is verified that (Gl(E), ◦) is a group; this group is called the General linear group

of E.

Finally, the last interesting special case is when F = K. That is, we are

considering L(E,K). This space is called the dual of E and is denoted by E∗. We

will talk about it in the next chapter.
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Exercises

Exercise 9.25. Let E be a K-vector space and F ⊂ E subvector space. Show

that F admits a supplementary i.e. there exists a subvector space G ⊂ E such that

E = F ⊕G (Hint: take a basis of F and use the Incomplete Basis Theorem).

In the real plane E = R2 describe the supplementary spaces of the line F =

{(x, y) | x = 0}.

Exercise 9.26. We denote by F2 the field Z/2Z. Let E = F2×F2. In this exercise

E is considered as a F2-vector space.

(1) What is the dimension of E?

(2) What is the cardinality of E?

(3) Let v, w be any two non-zero vectors of E. Show that v and w are linearly

independent.

(4) List all subvector spaces of E.

(5) Let u ∈ E, u = (1, 0) and let F = ⟨u⟩. Make a list of all the supplementary of

F .

Exercise 9.27. In R3 let F = {(x, y, z) | x+ y + z = 0 and 2x− z = 0}.
1) Prove that F is a subvector space of R3. Determine a basis of F (and therefore

the dimension of F ).

2) Find a supplementary of F (let C be the canonical basis and B the basis of F

from the previous point, then C ∪B generates R3. Find a basis of R3 containing B).

Exercise 9.28. Let E be aK-vector space. We assume E = F⊕G where F,G ⊂ E

are two subvector spaces of E. Let (f1, . . . , fr) be a basis of F and (g1, . . . , gt) a

basis of G. Show that (f1, . . . , fr, g1, . . . , gt) is a basis of E.

Exercise 9.29. LetK[x]≤n be the subvector space ofK[x] of polynomials of degree

at most n (by convention the zero polynomial has degree −∞).

1) Determine the dimension of K[x]≤n.

2) Let V ⊂ K[x]≤n, V = {a0 + a1x+ · · ·+ anx
n ∈ K[x]≤n |

∑
0≤i≤n ai = 0}. Show

that V is a subvector space of K[x]≤n and determine its dimension (begin with the

case n = 2 and then generalize).

Exercise 9.30. Does there exist a linear map g : R2 → R3 such that g((1, 1)) =

(1, 0, 3), g((0,−2)) = (4,−1, 0) and g((2, 6)) = (−6, 3, 6)?

Exercise 9.31. Let f : R3 → R3 : (x, y, z) → (x+ 2y + z,−x+ y, y − z).

1) Show that f is linear.
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2) State whether f is surjective (consider f(ei) where C = (ei) is the canonical basis

of R3).

Exercise 9.32. In R3 let F = {(x, y, z) | 2x− y + z = 0}.
1) Consider f : R3 → R : (x, y, z) → 2x− y + z and conclude that f is a subvector

space of R3.

2) Prove that there exists a linear map g : R3 → R3 such that Ker(g) = F and

g((1, 0, 0)) = (1, 1, 1). Determine dim(Im(g)).

Exercise 9.33. Redo point 2) of Exercise 9.29 using the Rank Theorem.

Exercise 9.34. Let Mn(K) be the vector space of n×n matrices with coefficients

in K. Let T = {A ∈ Mn(K) | A = (aij and Tr(A) := a11 + · · · + ann = 0}. So T
is the set of matrices whose sum of the elements on the diagonal is zero. The sum

of the elements on the diagonal of A is called the trace and is denoted by Tr(A).

Prove that T is a subvector space of Mn(K) and determine its dimension (use the

Rank Theorem).

Exercise 9.35. Redo Exercise 9.31 using the Rank Theorem.

Exercise 9.36. Let f : R3 → R2, g : R2 → R3 be two linear maps. Show that

g ◦f : R3 → R3 is neither injective nor surjective. Can f ◦ g : R2 → R2 be injective,

surjective, bijective?

Exercise 9.37. Let E be a K-vector space and F ⊂ E a subvector space. Let

H ⊂ E be a hyperplane (i.e. dim(H) = dim(E) − 1). Show that if F ⊂ H then

dim(H ∩ F ) = dim(F ), while if F ̸⊂ H, dim(H ∩ F ) = dim(F ) − 1 (use the

Grassmann relation).

Exercise 9.38. Let E be a finite-dimensional K-vector space of dimension at least

two. Show that there exists f ∈ End(E) such that f ̸= 0 and f2 := f ◦ f = 0 (use

9.10 Theorem). This shows that the ring End(E) is not integral.

Exercise 9.39. Let E be a K-vector space of dimension at least two. Show that

the ring (End(E),+, ◦) is not commutative.

Exercise 9.40. Let E be a K-vector space. Show that (Gl(E),+) is not a group.

Exercise 9.41. Let φ : E → F be a linear map between K-vector spaces. Let E1,

E2 be two subvector spaces of E, such that the sum E1 + E2 is direct.

(1) Show that (E1 ⊕ E2) ∩Ker(φ) = {0} ⇒ the sum φ(E1) + φ(E2) is direct.

(2) Is the vice versa true? That is, if E1, E2 and φ(E1), φ(E2) are in direct sum,

then (E1 ⊕ E2) ∩Ker(φ) = {0}?
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Exercise 9.42. Let f, g be two endomorphisms of the K-vector space E. Show

that: rk(f ◦ g) ≥ rk(f) + rk(g) − dim(E), where rk(f) is the dimension of Im(f)

(consider the restriction of f to the image of g).

Exercise 9.43. Let E be a K-vector space, f ∈ End(E) an endomorphism of E

and V ⊂ E a subvector space.

(i) Show that f−1(V ) is a subvector space of E.

(ii) Show that dim(f−1(V )) ≤ dim(Ker(f)) + dim(V ).

(iii) Let h, g be two endomorphisms of E. Describe Ker(g ◦ h) and using (ii) show

that

dim(Ker(g ◦ h)) ≤ dim(Ker(g)) + dim(Ker(h)).

Conclude that rk(g ◦ h) ≥ rk(g) + rk(h)− dim(E).

Exercise 9.44. (i) Let E be a K-vector space, f ∈ End(E) an endomorphism of

E and V ⊂ E a subvector space.

Show that dim(f−1(V )) = dim(Ker(f))+dim(ℑ(f)∩V ). Find the inequality from

Exercise 9.43.

(ii) Let h, g be two endomorphisms of E. Show that:

rk(g ◦ h) = rk(h)− dim(Ker(g) ∩ ℑ(h)).

Find the inequality from Exercise 9.43.

Exercise 9.45. Let E be a K-vector space of dimension n and f ∈ End(E).

(i) The following are equivalent:

(1) Im(f) = Ker(f);

(2) f2 = 0 and dim Im(f) = n
2 (in particular n is even).

(ii) Infer from (i) that the following are equivalent:

(1) Im(f) = Ker(f);

(2) there exists a basis B of E such that

Mat(f ;B,B) =

(
0 A

0 0

)
where A is an invertible matrix of order n

2 and where the zeros indicate null

matrices of order n
2 (in particular n is even).

Exercise 9.46. Let E be a K-vector space and f an endomorphism of E. Show

that:

rk(f) = rk(f2) ⇔ Im(f)⊕Ker(f) = E.

Exercise 9.47. Let E be a K-vector space and f ∈ End(E). For every integer

m ≥ 0 we set Jm = Im(fm), Km = Ker(fm) (by convention f0 = Id).
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(1) Show that Jp ⊂ Jp−1, ∀p ≥ 1. Observe that the sequence (Jm)m≥0 is sta-

tionary (i.e. there exists K such that Jm = Jk if m ≥ k). More precisely, let

s := min{p | Jp = Jp+1}, show that Jp = Js, ∀p ≥ s. Observe that s ≤ n.

(2) Show thatKm−1 ⊂ Km, ∀m ≥ 1 and that the sequence (Km)m≥0 is stationary.

(3) Show that Ks = Ks+1 (s as in (1)); furthermore Kr−1 ̸= Kr if s ≥ r.

(4) Show that E = Ks ⊕ Js.

(5) Show that Km & Km+1 ⇒ Km ∩ Jm ̸= {0}. Conclude that s = min{m |
Km ⊕ Jm = E}. Deduce that rk(f) = rk(f2) ⇔ Im(f)⊕Ker(f) = E.



Chapter 10

Duality

In mathematics duality is synonymous with we pay one and we get two, that is, we

prove a theorem and we have, by duality, two theorems. Let us take an example.

(1) One and only one straight line passes through two distinct points.

(2) In the plane two distinct lines meet at a point.

While statement (1) is true, we know that (2) is not always true (parallel

lines). Let us pretend for a while that (2) is true. In this scenario we see that

by exchanging ’pass’ with ’meet’ and ’point’ with ’line’, the two statements are

equivalent. Therefore every theorem proven on points/lines becomes a theorem on

lines/points. That is, if we have proved a theorem on ’points/lines’, by duality, we

have another on ’lines/points’.

Nice, unfortunately it is not true that two lines meet (always) in one point

(consider two parallel lines).

Well it is not true in Euclidean geometry, but it is true in projective geometry.

Projective geometry was born from the effort of painters to represent on a canvas

(therefore a plane, of dimension two) the reality of space (of dimension three).

There are various ways of representing a 3-dimensional object on a sheet of

paper. The most realistic and most used by painters of the Middle Ages (and not

only) is perspective. In this technique, parallel lines in reality are represented as

lines passing through a point (vanishing point). The classic example is when you

draw a road (or tracks) the edges of the road (or tracks) appear to be approaching

in the distance. The width of the road becomes smaller and smaller.

107
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A classic example: The Last Supper by Leonardo da Vinci (central perspective,

the vanishing point is the head of Christ). Today, especially in comics, it is common

to make drawings with more than one vanishing point.

Painters found the rules of perspective empirically, by trial and error, even

building mechanical machinery to project the 3-dimensional space onto a plane.

The mathematical theory capable of explaining the constructions of perspective

arrived well after the first paintings that used this technique. In fact, it was only in

1639 that Desargues published the first treatise on projective geometry (Desargues

was an architect). This theory was not understood by contemporaries (with the

exception of Pascal). The theory was taken up more successfully by Poncelet (1822).

Let us quickly see what this mathematical model (the projective plane) consists of.

Let us try to explain, in almost mathematical language, the projective plane

model. Imagine having our eye positioned at the origin, O, of space. Our eye is

represented by a sphere centered on the origin. Taking a point m in space, the line,

R, passing through the origin and the point m intersects the sphere at a point p, its

projection (from O) onto the sphere. But all the points of the line R are projected

into p. For our eye (the sphere) all the points of the line R identify with the point

p (in particular the line has ’lost a dimension’).

Similarly, a plane passing through the origin intersects the sphere in a great

circle (i.e. a circumference with the origin as its center, therefore having a diameter

equal to that of the sphere). Now, two planes passing through the origin intersect in

a line passing through the origin and in fact two great circles on the sphere always

intersect (in the ’projective’ plane two straight lines always meet at a point, there

is no is more parallelism, and the principle of duality is always valid).

Ah! But the intersection is made by two points!? Yes, but they are antipodal

points and therefore they are identified in the projective plane. In fact, from a

set-theoretic point of view, the real projective plane is in bijection with the set of

lines of R3 that pass through the origin. Therefore a point of the real projective

plane, denoted by P2
R or simply P2, corresponds to a line passing through the origin.

How can we represent this?

Let us take our sphere centered at the origin. Every line through the origin

intersects the sphere at two antipodal points; we only keep the one in the upper

hemisphere. This works except for the lines of the equatorial plane which have their

two points of intersection in the upper (and also lower) hemisphere. In conclusion

P2, the projective plane, is the upper semi-sphere with the antipodal points of the

base circle identified.

What kind of geometric entity is this? Well it is a bit complicated to visualize

(one can represent it as a subset of R3, the Boy’s surface).
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From an algebraic point of view the projective plane has a simple description as

a quotient set. On (R3)∗ = R3 \{O} (R3 minus the origin) we consider the relation

(x, y, z) ∼ (x′, y′, z′) ⇔ ∃λ such (λx, λy, λz) = (x′, y′, z′) or u = (x, y, z) ∼ v =

(x′, y′, z′) if and only if u ∈ ⟨v⟩ (the three points u, v and O are collinear. Then ∼
is an equivalence relation and the quotient set is nothing other than the projective

plane P2.

This construction generalizes to any K-vector space E. On E∗ the relation

u ∼ v ⇔ u ∈ ⟨v⟩ is an equivalence relation and the quotient set is P(E) the

projective space associated with E. At this point we see that projective geometry

’derives’ from linear algebra. We will see that the same happens for affine geometry

and Euclidean geometry (a bit of multilinear algebra is also needed here).

To conclude, let us say that our perception of the world is closer to the ’pro-

jective space’ than to the ’Euclidean space’. In fact, if we look at the tracks in any

station our visual impression will be that these tracks tend to get closer and closer

in the distance. If we stand under a very tall building and look up, the walls of the

structure will seem closer and closer. We actually live in a projective world! Where

there are no parallels.

Therefore, in the projective plane the principle of duality applies: we can ex-

change point with line and line with point. This principle of projective duality is a

translation of vector duality which states that given a K-vector space E, of finite

dimension, there exists a canonical isomorphism E ≃ E∗∗, i.e. E is canonically

isomorphic to its bi-dual (the dual of the dual).

10.1. Dual space

We all know that a line in the plane passing through the origin has an equation of

the form y = ax. Said like this, it is not entirely correct, we are missing the y axis

which has the equation x = 0 (it is not a graph). For this reason we prefer to say

that every line in the plane passing through the origin has an equation of the form

ax + by = 0. If b ̸= 0 we can rewrite y = cx with c = −a/b; if b = 0 (and a ̸= 0)

we find the equation x = 0. Actually, a line through O has infinite equations: if

ax+ by = 0 is an equation of the line R, then also α(ax+ by) = 0 with α ̸= 0, is an

equation of R. We also know that ax + by = 0 and a′x + b′y = 0 define the same

line if and only if there exists λ such that a = λa′, b = λb′.

Now, we will see that the same thing happens for planes in R3 and more

generally for hyperplanes in any vector space E, where:

Definition 10.1. Let E be a K-vector space. A hyperplane of E is a subvector

space of E of dimension dimE − 1.
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First we need to get acquainted with dual spaces.

Definition 10.2. A linear map φ : E → K is called a linear form on E. The set

of all linear forms on E is called the dual space of E and is denoted by E∗. In other

words

E∗ = {φ : E → K | φ is linear}.

Given a K-vector space E, the bi-dual of E is the space E∗∗ := (E∗)∗.

Remark 10.3. We have E∗ = L(E,K) so dimE∗ = dimE × dimK = dimE.

Proposition 10.4. Let E be a finite-dimensional K-vector space with basis B =

(e1, · · · , en). Then

(1) there exists a basis (e∗1, · · · ., e∗n) of E∗, such that e∗i (ej) = δi,j (here δij is the

Kronecker symbol which is 1 if i = j and 0 if i ̸= j);

(2) dimE = dimE∗ = dimE∗∗.

Proof. (1). Let B = (e1, · · · , en) be a basis of E. We define e∗i : E → K via

the images of the elements of the basis B (Theorem 9.10). More specifically we set

e∗i (ej) = δij .

We show that e∗1, · · · , e∗n are independent. Let
∑
λie

∗
i = 0. Then

∑
λie

∗
i (ek) =

0. Since e∗i (ek) = δik, we have
∑
λie

∗
i (ek) = λk = 0. Since this is true for every K,

we conclude that the vectors e∗i are linearly independent. Since dimE∗ = n we can

already conclude that (e∗i ) is a basis of E∗. We nevertheless show that the vectors

(e∗i ) are a system of generators. Let φ ∈ E∗. Let φ(ei) = λi. Then φ =
∑

i λie
∗
i .

In fact (
∑

i λie
∗
i )(ek) =

∑
i[(λie

∗
i )(ek)] = λk = φ(ek). So

∑
i λie

∗
i and φ coincide

on the basis vectors ei and therefore are equal (because a linear map is completely

determined by its values on the elements of a basis; if these values are the same,

the maps are the same).

(2) Follows from (1). □

Definition 10.5. With the notations of the Proposition 10.4, the basis (e∗i ) is

called the dual basis of (ei).

Remark 10.6. The linear form e∗i is nothing other than the i-th coordinate func-

tion with respect to the basis B = (ei): if (λ1, · · · , λi, · · · , λn) are the coordinates

of v in the basis B, then e∗i (v) = λi.

Lemma 10.7. Let φ ∈ E∗, φ ̸= 0. Then φ is surjective and Ker(φ) is a hyperplane

of E.

Proof. We have φ : E → K. Since φ ̸= 0 there exists v ∈ E such that φ(v) ̸= 0.

This implies dim Im(φ) ≥ 1 (Im(φ) contains a non-zero vector). Since Im(φ) ⊂ K
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and dimK = 1, we have Im(φ) = K. By the rank theorem dimKer(φ) = dimE−1.

That is, Ker(φ) is a hyperplane. □

Proposition 10.8. Let E be a K-vector space of dimension n.

(1) If H ⊂ E is a hyperplane of E then there exists a linear form φ ∈ E∗ such

that Ker(φ) = H.

(2) Two linear forms φ,ψ are proportional (φ = λψ) if and only if Ker(φ) =

Ker(ψ).

Proof. (1) Let (e1, · · · , en−1) be a basis of H. By the Incomplete Basis Theorem

we can complete it to a basis of E: B = (e1, · · · , en−1, en). We define φ : E → K by

its values on the elements of B as follows: φ(ei) = 0 for 1 ≤ i ≤ n−1 and φ(en) =1.

Then φ ̸= 0 and H ⊂ Ker(φ). Since dimH = dimKer(φ) we have H = Ker(φ).

(2) It is clear that if φ = λψ, then Ker(φ) = Ker(ψ). Conversely, suppose

Ker(φ) = Ker(ψ) =: H. Let (e1, · · · , en−1) be a basis of H and complete it (In-

complete Basis Theorem) to a basis of E: B = (e1, · · · , en−1, en). Let φ(en) = α

and ψ(en) = β. We have αβ ̸= 0 because the two forms are non-zero. Let λ = α/β,

then φ(en) = λψ(en). Therefore φ(ei) = λψ(ei), ∀i, 1 ≤ i ≤ n (φ(ei) = ψ(ei) = 0

if i < n) and hence φ = λψ, the two forms are proportional. □

Let B = (e1, · · · , en) be a basis of E and let ψ : E → K be a linear form. We

set ψ(ei) = ai. If v = x1e1 + · · ·+ xnen is a vector of E, ψ(v) = a1x1 + · · ·+ anxn

and we see that ψ is a homogeneous polynomial of degree one in x1, · · · , xn. The

equation ψ(v) = 0 becomes a1x1 + · · ·+ anxn = 0 and defines Ker(ψ).

We have seen that every hyperplane has an equation of the form ψ(v) = 0, that

every equation ψ(v) = 0 defines a hyperplane and that two linear forms define the

same hyperplane if and only if they are proportional.

This can be formulated as follows:

Corollary 10.9. Let Gr(1, E∗) be the set of (vector) lines of the dual E∗ and

Gr(n− 1, E) the set of hyperplanes of E. The map

d : Gr(1, E∗) → Gr(n− 1, E) : ⟨φ⟩ → Ker(φ)

is a bijection.

Proof. The application is injective because if d(⟨ψ⟩) = d(⟨φ⟩) then Ker(ψ) =

Ker(φ) and this implies ((2) of Proposition 10.8) that ψ and φ are proportional i.e.

⟨ψ⟩ = ⟨φ⟩. The application is surjective due to (1) of Proposition 10.8. □

Now, we want to do something similar for subvector spaces F ⊂ E of any

dimension and this is where the duality theorem comes into play.
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10.2. The duality theorem

We have seen that if E is a finite-dimensional K-vector space then dimE =

dimE∗ = dimE∗∗, so these three spaces are isomorphic. To establish an iso-

morphism between E and its dual E∗ we can do this: take a basis of E, B = (ei)

and consider the dual basis B∗ = (e∗i ) then f : E → E∗ : ei → e∗i is an isomor-

phism. In the same way we can construct an isomorphism between E∗ and E∗∗

and then, by composing we obtain an isomorphism between E and its bi-dual E∗∗.

However, there is a canonical isomorphism, ’better than the others’ between E and

E∗∗, the canonical isomorphism is more natural because it can be defined without

using bases, i.e. it does not depend on the choice of bases.

An element, Θ, of E∗∗ is a linear map Θ : E∗ → K : φ → Θ(φ). Let u ∈ E, if

φ ∈ E∗ we can consider the value of φ in u: φ(u) ∈ K. If we let φ vary in E∗ we

obtain an evaluation map in u: νu : E∗ → K : φ → φ(u). It is easily verified that

the map νu is linear. So νu ∈ E∗∗.

This allows us to define a map: ν : E → E∗∗ : u→ νu. We will verify that this

map is linear.

Theorem 10.10 (Duality theorem). Let E be a finite-dimensional K-vector space.

The map

ν : E → E∗∗ : u→ νu

is a linear isomorphism.

Proof. Since dimE = dimE∗∗ it suffices to show that ν is injective (Corollary

9.16). Suppose νu = 0. Then φ(u) = 0,∀φ ∈ E∗. Geometrically this means that

the vector u belongs to every hyperplane of E. Let B = (e1, · · · , en) be a basis

of E and let u = α1e1 + · · · + αnen be the writing of u on this basis. We have

e∗i (u) = αi = 0, ∀i, so u = 0. So Ker(ν) = {0} and ν is injective and therefore

bijective. □

Remark 10.11.

(1) As promised the ν isomorphism was defined without using bases.

(2) The theorem is false in infinite dimension. In that case the map ν is always

injective but never surjective.

(3) Another way of formulating the theorem: every linear map Θ : E∗ → K is

evaluation map in u for some vector u ∈ E (i.e. there exists u ∈ E such that

Θ = νu).

(4) Theorem 10.10 is the principle of duality which can be stated like this: if we

have proved a result for (E,E∗) then we have this result for (E∗, E∗∗). But

since E ≃ E∗∗ canonically, we have the result for (E∗, E).
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Definition 10.12 (Orthogonal space). Let F ⊂ E be a subvector space of the

K-vector space E. We define the orthogonal (or conjugate) of F as the subvector

space, F ◦ ⊂ E∗, defined by

F ◦ = {ψ ∈ E∗ | ψ|F = 0} = {ψ ∈ E∗ | ψ(v) = 0, ∀v ∈ F}.

Remark 10.13. Stated differently F ◦ = {ψ ∈ E∗ | F ⊂ Ker(ψ)}, i.e. F ◦ is the

space of equations of hyperplanes containing F .

We have F ◦ ⊂ E∗ and we can consider F ◦◦ := (F ◦)◦ ⊂ E∗∗. Now since

E∗∗ ≃ E i.e. since E∗∗ canonically identifies with E, we can consider F ◦◦ as a

subspace of E.

If Θ ∈ F ◦◦, then Θ(ψ) = 0,∀ψ ∈ F ◦. But Θ = νu ((3) of Remark 10.11). So

νu(ψ) = 0, ∀ψ ∈ F ◦. Since νu(ψ) = ψ(u), we see that

F ◦◦ ≃ {u ∈ E | ψ(u) = 0,∀ψ ∈ F ◦}.

In other words F ◦◦ is the intersection of all hyperplanes containing F . Clearly

F ⊂ F ◦◦.

Theorem 10.14. Let E be a finite-dimensional K-vector space and F ⊂ E a

subvector space.

(1) We have dimF + dimF ◦ = dimE;

(2) F = F ◦◦.

Proof. (1) Let (e1, · · · , ep) be a basis of F (so dimF = p). by the Incomplete

Basis Theorem we can complete it to a basis of E: B = (e1, . . . , ep, ep+1, . . . , en).

Let us consider the dual basis B∗ = (e∗i ). We show that (e∗p+1, . . . , e
∗
n) is a basis of

F ◦. The vectors e∗p+1, . . . , e
∗
n are obviously independent (because B∗ is a basis), so

it is enough to show that they generate F ◦. Let ψ ∈ F ◦, then ψ is written on the

basis B∗: ψ = α1e
∗
1 + · · ·+ αne

∗
n. We have ψ(ei) = 0 if 1 ≤ i ≤ p because ψ ∈ F ◦.

We have ψ(ei) = (α1e
∗
1 + · · · + αne

∗
n)(ei) = αi. So αi = 0 if 1 ≤ i ≤ p, therefore

ψ = αp+1e
∗
p+1 + · · ·+ αne

∗
n. This shows F

◦ = ⟨e∗p+1, · · · , e∗n⟩ and dimF ◦ = n− p.

(2) Applying (1) to F ◦ ⊂ E∗, we have dimF ◦ + dimF ◦◦ = dimE∗ = dimE .

It turns out that dimF = dimF ◦◦. Since F ⊂ F ◦◦ (after canonically identifying

F ◦◦ with a subspace of E), we conclude that F = F ◦◦. □

We have therefore proved the following: A subvector space is equal to the

intersection of all hyperplanes containing it.

Definition 10.15. Let E be a K-vector space of dimension n. For every r, 1 ≤
r ≤ n the set of subvector spaces of dimension r of E is called the Grassmannian
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of the subspaces of dimension r and is denoted by Gr(r, E). So

Gr(r, E) = {F ⊂ E such that F is a vector subspace of dimension r}.

Remark 10.16. We have P(E) = Gr(1, E); the projective space is a special case

of Grassmannian. We will study Grassmannians in more detail in Chapter 34.

Theorem 10.17 (Duality). Let E be a K-vector space of dimension n. For every

r, 1 ≤ r ≤ n there exists a natural bijection given by:

d : Gr(r, E) → Gr(n− r, E∗) : F → F ◦

Proof. The inverse application is given by: d : Gr(n − r, E∗) → Gr(r, E) : X →
X◦, after canonically identifying E∗∗ with E. In fact F ◦◦ = F . □

10.3. Cartesian equations of subvector spaces

Let E be aK-vector space of dimension n and F ⊂ E a subvector space of dimension

p. The space F ◦ ⊂ E∗ has dimension n − p. Let (ψ1, · · · , ψn−p) be a basis of F ◦.

We have F ◦◦ = {v ∈ E | ψi(v) = 0, ∀i, 1 ≤ i ≤ n − p}. But, as we have just seen,

F ◦◦ = F , we conclude that F = {v ∈ E | ψi(v) = 0, ∀i,≤ i ≤ n − p}. In other

words F is the solution set of the linear system:
ψ1(v) = 0;
...

ψn−p(v) = 0.

We conclude that the subspace F , of dimension p, can be defined by n − p

linearly independent equations.

We observe that F can not be defined by less than n− p equations, in fact in

this case we would have F ◦ = ⟨φ1, . . . , φr⟩ with r < n− p and therefore F ◦◦ would

have dimension n− r > p.

On the other hand, if ψ1(v) = 0, . . . , ψn−r(v) = 0 define F then also ψ1(v) =

0, . . . , ψn−r(v) = 0,
∑
λiψi(v) = 0 define F , in fact the last equation is a combina-

tion of the previous ones.

Proposition 10.18. Let E be a K-vector space of dimension n, and F ⊂ E a

subvector space with dimF = p.

(1) There exist n − p linearly independent linear forms ψi, 1 ≤ i ≤ n − p, such

that F = {v ∈ E | ψi(v) = 0, 1 ≤ i ≤ n− p};
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(2) If r < n − p and φ1, . . . , φr are r linear forms, the solution set, G, of the

linear system: 
φ1(v) = 0;
...

φr(v) = 0;

is such that G ̸= F .

Proof. (1) As seen above dimF ◦ = n − p and if (ψ1, . . . , ψn−p) is a basis of F ◦,

then F = {v ∈ E | ψi(v) = 0, 1 ≤ i ≤ n− p}.

(2) If r < n− p the solution set G is ⟨φ1, . . . , φr⟩◦ which has dimension n− s

with s ≤ r . So n− s ≥ n− r > p. Therefore G ̸= F . □

Remark 10.19. The equations ψi(v) = 0 that define a subvector space F are not

uniquely determined, in fact the subspace F ◦ has many different bases.

To conclude (at least for now) with duality we would say that there is only one

thing that you absolutely need to know and that is: In a vector space of dimension n

a subspace of dimension p is defined by n−p linear, linearly independent, equations.

10.4. Homogeneous linear systems and duality

A linear system of type

S =


a11x1 + · · ·+ a1nxn = 0;
...

ap1x1 + · · ·+ apnxn = 0;

with aij ∈ K is called a homogeneous linear system. A solution of the system S
is an element b = (b1, · · · , bn) ∈ Kn that verifies all the equations. For example,

0 = (0, · · · , 0) is always a solution of a homogeneous linear system. Let Σ be the

set of solutions of S, we have:

Lemma 10.20. The set Σ ⊂ Kn is a subvector space.

Proof. It is clear that 0 ∈ Σ and it is easily verified that if b, c are two elements of

Σ then every linear combination of these two vectors is still an element of Σ. □

Let us now see a more interesting proof of the previous lemma.

Proof. Let us consider the maps ψi : K
n → K : (x1, . . . , xn) → ai1x1+ · · ·+ainxn,

we know that ψ1, ..., ψp are linear forms. Let Y = ⟨ψ1, . . . , ψp⟩ ⊂ (Kn)∗. Then

Σ = Y ◦ and therefore S is a subvector space. Another way of saying this is as

follows: f : Kn → Kp : (x1, . . . , xn) → (ψ1(x1, . . . , xn), . . . , ψp(x1, . . . , xn)), then
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f is linear because it is given by homogeneous polynomials of the degree one. The

solution set is given by Σ = Ker(f) and therefore is a subvector space of Kn. □

Definition 10.21. With the previous notations r := dimY is called the rank of

the system S.

Proposition 10.22. The solution set Σ is a subvector space of dimension n− r.

Proof. Since Σ = Y ◦ this follows from Theorem 10.14. □

Remark 10.23. We observe that r = dimY ≤ p, where p is the number of

equations. So if n > p (i.e. if the number of unknowns is strictly greater than the

number of equations, then dimΣ > 0, i.e. there exists a non-trivial solution. In

fact, since p ≥ r, we have n− r > 0.

We also observe that dimΣ ≤ n (Σ ⊂ Kn) and the equality holds if and only if

r = 0 i.e. if and only if all the equations are zero, therefore for a non-trivial system

dimΣ ≤ n− 1.
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Exercises

Exercise 10.24. State whether the linear forms φ,ψ on R3 are linearly independent

or not where:

φ : R3 → R : (x, y, z) → x+ 2y − z;

ψ : R3 → R : (x, y, z) → −x+ y + 2z.

Exercise 10.25. In R2 consider the vectors u = (1,−1), v = (1, 1).

1) Show that B = (u, v) is a basis of R2.

2) Determine the dual basis B∗.

Exercise 10.26. Let E,F be K-vector spaces and f : E → F a linear map.

1) Prove that f is not surjective ⇔ there exists a non-zero linear form ϕ ∈ F ∗ such

that ϕ ◦ f = 0.

2) More precisely if dim(Im(f)) = dim(F ) − r, there exist r linear, linearly inde-

pendent forms, ϕi ∈ F ∗, such that ϕi ◦ f = 0, ∀i.

Exercise 10.27. In R3 let v = (1,−1, 2). Find Cartesian equations of the line ⟨v⟩.
Let w = (1, 0, 1). What is the dimension of V = ⟨v, w⟩? Give a Cartesian represen-

tation of V (i.e. give Cartesian equations of V ).

Exercise 10.28. Let V ⊂ R4 be defined by the equations


x+ y − z + t = 0;

5x− y + z − t = 0;

2x− y + z − t = 0.

Determine dim(V ).

Exercise 10.29. Show that duality reverses inclusions, i.e. if V,W ⊂ E are sub-

vector spaces with V ⊂W , then W ◦ ⊂ V ◦.

Exercise 10.30. Let E be a K-vector space of dimension n, and H ⊂ E a hyper-

plane. Show that there are n− 1 hyperplanes H2, · · · , Hn such that dim(H ∩H2 ∩
· · · ∩Hn) = 0.

Exercise 10.31. Let E be aK-vector space of dimension n. Show that two distinct

hyperplanes intersect in a vector subspace of dimension n − 2 (Exercise 9.37). In

particular, in R3 two distinct planes through the origin intersect in a line.
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Exercise 10.32. In the R-vector space R[x] consider the vectors

P1(x) = πx3 − 3x2 + x+ 7;

P2(x) = x3 − 7x+ 1;

P3(x) =
√
2x3 − 3x2 + 11x− 2;

P4(x) = π
√
2x3 + 2x+ 4;

P5(x) = x3 − 3x2 + 27x− 11.

State whether these vectors are linearly independent.

Exercise 10.33. For each α ∈ R let Sα be the subvector space of R3 defined by

the linear system {
3αx− 4y + αz = 0;

x− 2αy + 3αz = 0.

Determine dim(Sα) for any α ∈ R.



Chapter 11

Linear maps and matrices

11.1. Matrix writing of linear maps

Let f : E → F be a linear map between two K-vector spaces. Let B be a basis

of E and C a basis of F . The basic principle is that f is completely determined

by the vectors f(ei) (B = (e1, . . . , en)) which in turn are completely determined by

their coordinates in the basis C = (v1, . . . , vp). So if f(ei) = a1iv1 + · · ·+ apivp, the

associated matrix, M , is the matrix with p rows and n columns whose i -th column

is formed by the coordinates of f(ei) in the basis C:

M =


a11 · · · a1n
...

. . .
...

ap1 · · · apn

 .

We insist on the fact that the i-th column vector of M is given by the coordi-

nates in the base C of the vector f(ei).

Definition 11.1. With the previous notations the matrix M is the matrix associ-

ated to the map f with respect to the bases B, C.

In this way we get a map

Mat(−;B, C) : L(E,F ) →Mpn(K) : f →M.

So Mat(f ;B, C) =M . The map Mat(−;B, C) is a linear isomorphism.

Let f : E → F be a linear map between the two K-vector spaces E,F , B,
C bases of E,F , M = Mat(f ;B, C) and u ∈ E, u = α1e1 + · · · + αnen, where

B = (e1, . . . , en).

119
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We have

f(u) = f(
∑

αiei) =
∑

αif(ei) =
∑
i

αi(
∑
k

akivk) =
∑
k

(
∑
i

αiaki)vk.

In other words, the j-th coordinate of f(u) in the basis C is

aj1α1 + · · ·+ ajnαn.

Let us introduce a definition.

Definition 11.2. Let x = (x1, . . . , xn) ∈ Kn, y = (y1, . . . , yn) ∈ Kn. The scalar

product, (x | y), is equal, by definition, to x1y1 + · · ·+ xnyn.

We will indicate this scalar product as follows:

(x | y) = (x1, . . . , xn) ·


y1
...

yn

 := x1y1 + · · ·+ xnyn.

The j-th coordinate of f(u) in the basis C is the scalar product of the j-th row

of M = Mat(f ;B, C) with (α1, . . . , αn), the coordinate vector of u in the basis B.

So if f(u) = b1v1 + · · ·+ bpvp we have:

(11.1) bj = (aj1, . . . , ajn) ·


α1

...

αn

 := aj1α1 + · · ·+ ajnαn.

As we will now see, this is a special case of matrix product.

Definition 11.3. Let A be a matrix of type (m,n) (m rows, n columns) with

coefficients in K and let B be a matrix of type (t, p) with coefficients in K.

(1) The row-by-column product AB is defined if and only if n = t.

(2) If n = t the product AB is a matrix D of type (m, p).

(3) If AB = D = (dij) then dij is equal to the scalar product of the i-th row of A

with the j-th column of B:

dij = (Ri(A) | Cj(B)).

The matrix, M , of f is a matrix of type (p, n). If u = α1e1 + · · ·+ αnen) and

f(u) = b1v1 + · · ·+ bpvp then

M · u =


a11 · · · a1n
...

. . .
...

ap1 · · · apn

 ·


α1

...

αn

 =


b1
...

bp

 .
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Example 11.4. Let A be the following matrix of type (3, 2):

A =

 1 0

2 −1

0 3


and B be the following matrix (2, 2):

B =

(
1 2

0 −2

)
.

The product AB is the following matrix of type (3, 2):

AB =

 1 = 1 · 1 + 0 · 0 2 = 1 · 2 + 0 · (−2)

2 = 2 · 1 +−1 · 0 6 = 2 · 2 + (−1) · (−2)

0 = 0 · 1 + 3 · 0 −6 = 0 · 2 + 3 · (−2)

 .

The product BA however is not defined.

This row-by-column product definition does not fall from the clouds.

Proposition 11.5. Let E,F,G be three K-vector spaces and f : E → F , g : F → G

two linear maps. Set h = g ◦ f : E → G.

Let B = (e1, ..., en), C = (v1, ..., vp) and D = (w1, ..., wt) be bases of E,F,G.

Finally, let A = Mat(f ;B, C), B = Mat(g; C,D). Then

Mat(g ◦ f ;B,D) = BA.

Proof. Let C = Mat(g ◦ f ;B,D), C = (cij). Note that cij is the i-th coordinate

in the basis D of (g ◦ f)(ej) = g(f(ej)). But f(ej) is the vector of F whose

coordinates in the basis C are given by the j-th column of the matrix A. So

g(f(ej)) is the vector of G whose i-th coordinate is given by the scalar product of

the i-th row of B = Mat(g; C,D) with the coordinate vector of f(ej) in the basis C,
i.e. cij = (Ri(B) | Cj(A)). This shows that C = BA. □

Remark 11.6. Pay attention to the order, it is BA and not AB, this is because

in g ◦ f the first map that is applied is f . If u ∈ E, u = α1e1 + · · ·+αnen then the

coordinates of g(f(u)) are obtained by the matrix product BAu := B(Au).

Remark 11.7. The matrix product has all the good properties of the composition

of linear maps for instance A(B + C) = AB +AC.

11.2. Matrices associated with endomorphisms

Let E be a K-vector space of dimension n and f ∈ End(E). If B, C are two bases

of E, A = Mat(f ;B, C) ∈Mn(K) is a square matrix of type (n, n).
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If g ∈ End(E) and B = Mat(g;B, C), then it is not true that Mat(g ◦ f ;B, C) =
BA. In fact we are in the following situation:

EB
f→ EC , EB

g→ EC .

Here EB means E with the basis B. The problem is that in the middle space

Proposition 11.5 does not apply. To be able to apply the Proposition 11.5 we must

have B = C.

For this reason, when studying the endomorphisms of a space E we will tend to

take the same basis in the domain and in the codomain, in fact if A = Mat(f ;B,B)
and if B = Mat(g;B,B) then Mat(g ◦ f ;B,B) = BA. Thus the isomorphism of

K-vector spaces

Mat(−;B,B) : End(E) →Mn(K)

is an isomorphism of K-algebras. That is, it is also a ring isomorphism for the ring

structures (End(E),+, ◦) and (Mn(K),+, ·) where · denotes the row-by-column

product of the matrices. Indeed (Mn(K),+, ·) is a ring.

Lemma 11.8. Let E be a K-vector space of dimension n. For every basis B of E

we have

Mat(IdE ;B,B) = In :=


1 0 · · · 0

0 1 · · · 0
...

. . .
. . .

...

0 · · · 0 1

 .

That is, In = (aij), with aij = δij, where δij is the Kronecker symbol (equal to 1 if

i = j, equal to 0 otherwise).

Proof. It follows from B = (ei), IdE(ei) = ei. □

Remark 11.9. The previous lemma shows that the identity element for the row-by-

column product is the matrix In. The fact that Mat(−;B,B) is a ring isomorphism

explains why for every basis B the image of IdE (the neutral) is always the same

matrix In (the neutral of Mn(K) for the row-by-column product).

A first application of what we have seen so far:

Proposition 11.10. Let M ∈ Mn(K) be a square matrix. The following are

equivalent:

(1) M is invertible

(2) There exists N ∈Mn(K) such that MN = In;

(3) There exists Q ∈Mn(K) such that QM = In.

If these conditions are verified then N = Q =M−1.



11.2. Matrices associated with endomorphisms 123

Proof. (1) ⇒ (2). Just take N =M−1.

(2) ⇒ (3). Let B be a basis of E. We have the isomorphism Mat(−;B,B) :

End(E) → Mn(K). Let f, g be the endomorphisms corresponding to M,N . The

matrix relation becomes f ◦ g = IdE . This implies that f is surjective. Since f is

an endomorphism of a finite-dimensional vector space, if f is surjective, then it is

also bijective. So there exists f−1 such that f ◦ f−1 = f−1 ◦ f = IdE . Translating

into matrix terms via the isomorphism Mat(−;B,B) we obtain the existence of Q

(and we also see that Q = N).

(3) ⇒ (1). The proof is similar to the previous one. This time we get h such

that h◦f = IdE . We conclude that f is injective and therefore an isomorphism. □

Definition 11.11. The invertible square matrices of type (n, n) form a group for

the matrix product, isomorphic to the group AutK(E) . This group is called the

general linear group and is noted as Gln(K).

Let us see some notable matrices.

- Transpose matrix. Let A ∈ Mp,n(K), A = (aij). The transpose of A is

denoted by tA. Is is the matrix of type (n, p) whose rows are the columns of

A (and whose columns are the rows of A). If tA = (bkl), then bkl = alk. The

transposition Mn,p(K) →Mp,n(K) : A→ tA is a linear isomorphism.

- Symmetric matrices. A square matrix M ∈ Mn(K) is symmetric if M =
tM ; that is, if M = (aij), M is symmetric if and only if aij = aji (symmetry

with respect to the diagonal).

- Antisymmetric matrices. A square matrix M ∈Mn(K) is anti-symmetric

if M = tM , i.e. aij = −aji, where as usual M = (aij). This is a notion that

depends on the field K we are working on. In fact (i = j) we have aii =

−aii ⇔ 2aii = 0. If 2 ̸= 0 in K then we can conclude that aii = 0, otherwise

we can not conclude anything. This happens for example if K = Z/2Z where

2 = 0.

- Triangular matrices. A square matrix is upper triangular if all elements

under the diagonal are zero. That is, aij = 0 if i > j (M = (aij)). Similarly

we have the notion of lower triangular matrix.

- Diagonal matrices. They are the most interesting matrices for us. A matrix

M = (aij) is diagonal if aij = 0 when i ̸= j: outside the diagonal all coefficients

are zero (this does not prevent coefficients on the diagonal from being zero).
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11.3. Base changes

Let E be a K-vector space and B = (e1, ..., en), C = (v1, ..., vn) two bases of E.

Consider the map IdE : E → E and try to associate to it a matrix taking B as the

basis in the domain and C as the basis in the codomain: P = Mat(IdE ;B, C). So

the columns of P are the components of IdE(ej) = ej in the basis C.

If IdE(ej) = ej = β1jv1+ · · ·+βnjvn, we have P = (βij). We observe that this

matrix is very different from the In matrix (Lemma 11.8).

Example 11.12. Let E = R2, B = (e1, e2) with e1 = (1, 1), e2 = (0, 1); C =

(v1, v2), with v1 = (1,−1), v2 = (1, 0). Check that B, C are indeed bases. We have

e1 = −v1 + 2v2, e2 = −v1 + v2. So in this case the matrix P is equal to(
−1 −1

2 1

)
.

Let v = α1e1 + · · · + αnen. To get the coordinates of v in the basis C = (vi)

just do the row-by-column product of the matrix P with the matrix

X =


α1

...

αn

 .

The result is a matrix of type (n, 1) giving the coordinates in the basis C of the

vector IdE(v) = v. Note that

(11.2) P ·


α1

...

αn

 =


γ1
...

γn


where v = γ1v1 + · · · + γnvn. In other words γi = (Ri(P ) | X) =

∑
j βijαj . This

formula expresses the coordinates of v in the basis C as a function of its coordinates

in the basis B. For this reason the matrix P is called the change of basis matrix

from the basis B to the basis C.

We observe that the matrix P is invertible, in fact its inverse is Mat(IdE ; C,B).
This is perhaps clearer by looking at the diagram:

EB
IdE→ EC

IdE→ EB.

The composition is EB
IdE→ EB whose matrix is In. It follows from Proposition

11.10 that P−1 = Mat(IdE ; C,B). Obviously P−1 does the reverse job: given the

coordinates (γi) in the basis C it allows us to recover the coordinates (αi) in the

basis B.

Let E,F be two K-vector spaces and f : E → F a linear map. Let B be a basis

of E and C a basis of F . Then we have A = Mat(f ;B, C). Suppose we change base
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in both E and F . Let B′, C′ be the new bases. We have A′ = Mat(f ;B′, C′). What

is the connection between A and A′?

The answer is given by a simple diagram:

(11.3) EB′
IdE→ EB

f→ FC
IdF→ FC′ .

The composition is EB′
f→ FC′ , whose matrix is A′. So if P = Mat(IdE ;B′,B)

and if Q = Mat(Idf ; C, C′), then:

(11.4) QAP = A′.

Once again pay attention to the order. The first map that acts is Mat(IdE ;B′,B).

On the set Mp,n(K) of matrices with p rows and n columns, we define the

binary relation M ∼ N if and only if there exist square, invertible matrices, A,B,

such that N = AMB.

Verify that ∼ is an equivalence relation on the set Mp,n(K).

Definition 11.13. Two matrices M,N ∈ Mp,n(K), are said to be equivalent if

M ∼ N .

What does it mean that two matrices are equivalent?

Proposition 11.14. Two matrices M,N ∈ Mp,n(K) are equivalent if and only if

they represent the same linear map in different bases. More precisely M ∼ N ⇔
there exist two vector spaces E,F of dimension n, p, a linear map f : E → F , bases

B,B′, of E and C, C′ of F such that

M = Mat(f ;B, C), N = Mat(f ;B′, C′).

Proof. (1) Suppose we have N = AMB, with N,M ∈ Mp,n(K), B ∈ Mn(K),

A ∈ Mp(K), A and B invertible. Let E,F be K-vector spaces of dimensions n, p.

Let B = (ei) be a basis of E and C = (vk) a basis of F . Using the isomorphism

Mat(−;B, C) : L(E,F ) →Mp,n(K) we define f with Mat(f ;B, C) =M . Let e′i ∈ E

be the vectors whose coordinates in the basis B are given by the columns of the

matrix B. The vectors (e′1, . . . , e
′
n) form a basis, B′, of E because B is invertible

(B is the matrix of a bijective linear map which, thus, transform a basis into a

basis). We have Mat(IdE ;B′,B) = B. Now let v′1, . . . , v
′
p be the vectors whose

coordinates in the basis C are the columns of A−1. The vectors v′k form a basis C′

(because A−1 is invertible). We have Mat(IdF ; C, C′) = A, and (Proposition 11.5)

AMB = Mat(f ;B′, C′) = N .

(2) Conversely, suppose we have M = Mat(f ;B, C) and N = Mat(f ;B′, C′). If

B = Mat(IdE ;B′,B) and if A = Mat(IdF ; C, C′), then N = AMB. □
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In a similar way we define on Mn(K) the binary relation M ≈ N ⇔ ∃P ∈
Mn(K) invertible such that N = P−1MP . It turns out that the relation ≈ is an

equivalence relation.

Definition 11.15. Two matrices M,N ∈Mn(K) are similar if M ≈ N .

Proposition 11.16. Two matrices M,N ∈Mn(K) are similar if and only if they

represent the same endomorphism, with the same basis in the domain and in the

codomain. More precisely, M and N are similar if there exists a K-vector space E,

and bases B, C of E and f ∈ End(E) such that

M = Mat(f ;B,B) and N = Mat(f ; C, C).

Proof. We reason as in the the proof of the previous proposition. □

In the next paragraphs we will give a complete description of the quotient set

Mn,p(K)/ ∼. The description of the quotient set Mn(K)/ ≈ is out of our reach for

the moment.

Let us take a trivial example in dimension one. Saying that x ≈ y means:

∃z ̸= 0 such that x = z−1yz i.e. x = y. So, x, the equivalence class of x is equal to

{x} and K/ ≈ = K.

Saying that x and y are equivalent means that there exist a, b such that x = ayb.

If y ̸= 0 (and therefore also x ̸= 0) we take b = 1/y, a = x and conclude x ∼ y, that

is, two non-zero elements are always equivalent i.e. ∀x ̸= 0, x ∼ 1. Instead, the

only element equivalent to 0 is 0 because 0 = x(ab) implies x = 0 (because ab ̸= 0).

We thus see that the quotient set has two elements: K/ ∼= {0, 1}.

11.4. Rank of a matrix

We have already encountered the notion of rank (rank of a homogeneous linear

system), it is an important notion in linear algebra.

Definition 11.17. Let E be aK-vector space and v1, . . . , vp vectors of E. The rank

of the vectors vi is the dimension of the subspace they generate: dim⟨v1, . . . , vp⟩.
Let f : E → F be a linear map. The rank of f is the dimension of Im(f).

We see that if (e1, . . . , en) is a basis of E then rk(f), the rank of f , is equal to

dim⟨f(e1), . . . , f(en)⟩. In fact we know that the vectors f(ei) generate Im(f). This

explains why the rank theorem is called that: it gives the rank of f as a function

of dimE and dimKer(f).

Definition 11.18. Let M ∈ Mp,n(K). The rank of the matrix M is the rank of

the column vectors (seen as vectors of Kp).
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Remark 11.19. The column vectors of the matrix M are n vectors of Kp, so

rk(M) ≤ min {n, p}.

One might ask why column vectors and not row vectors? This choice is moti-

vated by the following:

Lemma 11.20. Let f : E → F be a linear map between two K-vector spaces

E,F . Let B, C be the bases of E,F and M = Mat(f ;B, C). Under these conditions

rk(f) = rk(M).

Proof. We have rk(f) = dim⟨f(e1), ..., f(en)⟩ = dim⟨C1, ..., Cn⟩, where Ci is the

i-th column of the matrix M . It follows that rk(f) = rk(M). □

We will now see that the rank by columns is equal to the rank by rows. For this

we need some tools.

Definition 11.21. Let f : E → F be a linear map between two K-vector spaces.

The transposed map, tf , is defined by: tf : F ∗ → E∗ : φ→ φ ◦ f .

A diagram helps to understand:

E F

K

f

φ◦f
φ

An element φ ∈ F ∗ is a linear map from F to K, composing with f we get

φ ◦ f , a linear map from E to K, i.e. an element of E∗. It turns out that tf is a

linear map.

Proposition 11.22. With the previous notations:

(1) Ker(tf) = Im(f)◦;

(2) dim(Im(tf) = dim(Im(f)).

Proof. (1) We have

Ker(tf) = {φ ∈ F ∗ | φ ◦ f = 0} = {φ ∈ F ∗ midφ(f(E)) = {0}}

that is

Ker(tf) = {φ ∈ F ∗ | Im(f) ⊂ Ker( fG)} = Im(f)◦.

(2) From the Rank Theorem it follows that dimF ∗ = dimKer(tf)+dim Im(tf).

So, for (1): dimF ∗ = dim Im(f)◦+dim Im(tf). Now (Theorem 10.14): dim Im(f)◦+

dim Im(f)◦◦ = dimF ∗. We conclude by observing that dim Im(f) = dim Im(f)◦◦,

because Im(f) = Im(f)◦◦ (after the canonical identification, Theorem 10.14). □

Let us go back to our matrices.
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Lemma 11.23. Let f : E → F be a linear map between two K-vector spaces, B, C
bases of E,F . Let A = Mat(f ;B, C) and consider the dual bases B∗, C∗ of E∗, F ∗.

Then Mat(tf ; C∗,B∗) = tA.

Proof. Let B = (e1, ..., en), C = (v1, ..., vp) and M = Mat(tf ; C∗,B∗). The co-

efficient mij of M is, by definition of a matrix associated with a linear map,

the i-th coordinate of tf(v∗j ) in the basis B∗. We have tf(v∗j ) =
∑

kmkje
∗
k. So

tf(v∗j )(ei) =
∑

kmkje
∗
k(ei) = mij . On the other hand tf(v∗j )(ei) = v∗j (f(ei)). By

definition of a matrix associated with a linear map, f(ei) is the n-th column vector

of the matrix A, i.e. f(ei) =
∑

t ativt. Therefore v∗j (f(ei)) = v∗j (
∑

t ativt) = aji.

In conclusion mij = aji. This shows that M = tA. □

Finally, we arrive at the desired result.

Corollary 11.24. Let M ∈ Mp,n(K). The rank of M is equal to the rank of tM .

That is, the column rank of M is equal to the row rank of M .

Proof. We can see M , after choice of bases B, C in E,F , as the matrix of a linear

map f : E → F . We therefore have Mat(f ;B, C) =M . The rank of f is dim(Im(f))

and is the column rank of the matrix M .

If we consider tf : F ∗ → E∗, then Mat(tf ; C∗,B∗) = tM (Lemma 11.22) and its

rank is dim(Im(tf)), the rank of the columns of tM , i.e. the rank of the rows of M .

But for the Proposition 11.22 dim(Im(f)) = dim(Im(tf)). So the column rank of

M is equal to the row rank of M . □

The rank is an important invariant that allows us, among other things, to

describe the quotient set Mp,n(K)/ ∼.

Proposition 11.25. Let f : E → F be a linear map between two K-vector spaces.

Then rk(f) = r if and only if there exist bases B, C of E,F such that Mat(f ;B, C) =
Mr where:

Mr =

(
Ir 0

0 0

)
.

Here Ir is the identity matrix r × r and the zeros indicate null matrices of the

appropriate size.

Proof. (1) Suppose rk(f) = r. From the Rank Theorem dimKer(F ) = n−r, where
n := dimE. Let (er+1, . . . , en) be a basis of Ker(f). By the incomplete basis theo-

rem we can complete this basis to a basis of E: B = (e1, . . . , er, er+1, . . . , en). We

know that f(e1), . . . , f(er) is a basis of Im(f) (see the proof of the Rank Theorem).

These vectors can be completed to a basis of F : C = (f(e1), . . . , f(er), fr+1, . . . , fp).

At this point it is clear that Mat(f ;B, C) =Mr.
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(2) If Mat(f ;B, C) =Mr then the rank of f is the column rank of Mr and this

rank is clearly equal to r. □

We can now describe the quotient set Mp,n(K)/ ∼.

Corollary 11.26. Two matrices M,N ∈ Mp,n(K) are equivalent if and only if

they have the same rank.

Proof. (1) If M ∼ N then M and N represent the same linear map f : E → F in

different bases. Therefore rk(M) = rk(f) = rk(N) (Lemma 11.20).

(2) Conversely, suppose rk(M) = rk(N) =: r. In this case we have M ∼ Mr

and N ∼ Nr (in fact we can associate to M,N linear maps f, g of rank r and just

apply Proposition 11.25), therefore M ∼ N since ∼ is an equivalence relation. □

The rank of a matrix of Mp,n(K) is always at most m := min {p, n} and we

have

(11.5) Mp,n(K)/ ∼ = {0, 1, ...,m}.

We highlight another difference between equivalence and similarity of matrices. In

Mn(K) a matrix is equivalent to In if and only if it has rank n i.e. if and only if it

is invertible, it is the generic case because n random vectors in Kn will in general

be linearly independent (this will become clearer shortly). Instead, if M ≈ In then

by definition ∃P ∈ Mn(K) invertible such that M = P−1InP = In, therefore the

similarity class of In is {In}.
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Exercises

Exercise 11.27. Let f : R3 → R2 : (x, y, z) → (2x− z + y, y − z).

1) Write the matrix of f in the canonical bases.

2) Give a system of generators of Im(f).

3) In R3 consider the vectors u = (1, 1, 0), v = (−1, 0, 0), w = (2, 0, 1). Show that

B = (u, v, w) is a basis of R3. Determine Mat(B, C) (C denotes the canonical basis

of R2).

Exercise 11.28. Let g : R2 → R2 : (x, y) → (x − y, y). Determine M =

Mat(g, C, C) (C is the canonical basis). State whether M is invertible and if the

answer is affirmative, compute M−1.

Exercise 11.29. Let E be a K-vector space of dimension n. Let f ∈ End(E) be

such that there exist two linearly independent vectors u, v ∈ E (hence n ≥ 2) such

that f(u) = v.

1) Show that there exists g ∈ End(E) such that g(u) = g(v) = u.

2) Show that f and g do not commute (i.e. f ◦ g ̸= g ◦ f).
3) So if an endomorphism h commutes with all the other endomorphisms, we must

have h(u) and u linearly dependent ∀u ∈ E, i.e. h(u) = αuu.

Let B = (ei) be a basis of E (assume n ≥ 2). Considering the vector u :=

e1+ · · ·+en, conclude that h = α ·Id (i.e. the proportionality factor between u and

h(u) does not depend on u). In conclusion, the only endomorphisms that commute

with all the other endomorphisms are all and only those of the form α · Id.
4) Let A ∈Mn(K), conclude that AM =MA, ∀M ∈Mn(K) ⇔ A = αIn for some

α ∈ K .

Exercise 11.30 (Magic matrices). A matrix M = (aij) ∈ M3(R) is said to be

magic if the eight sums of the coefficients of the three rows, the three columns and

the two diagonals are equal. So M is magic (of sum s(M) = α) if:
∑3

i=1 aij = α,∑3
j=1 aij = α, for each i, j,

∑3
i=1 aii = α and a13 + a22 + a31 = α. We denote by

M the set of magic matrices:

M = {M ∈M3(R) | ∃α ∈ R,M is magic with s(M) = aG}.

1) Prove that M is a subvector space of M3(R).
2) If M ∈M3(R)

M =

 a11 a12 a13

a21 a22 a23

a31 a32 a33
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we set

σ(M) =

 a13 a12 a11

a23 a22 a21

a33 a32 a31


(the first and third columns have been permuted). Observe that if M is magic,

then σ(M) is also magic. We therefore have a map σ : M → M. Tell whether this

map is: a) linear, b) injective, c) surjective.

3) We denote by M− the set of antisymmetric magic matrices (aij = −aji). If

M ∈ M−, what is the value of s(M)?

4) Determine M−, show that it is a subvector space of M and determine its di-

mension.

5) Conclude that dim(M) ≥ 2.

Exercise 11.31. Consider the following vectors of R3 (coordinates in the canonical

basis C): v1 = (1, 1, 0), v2 = (0, 1, 1), v3 = (−1, 0, 2), u = (1,−1,−2).

(1) Show that B = (v1, v2, v3) is a basis of R3.

(2) Let f : R3 → R3 be the linear map such that

Mat(f ;B, C) =

 0 1 2

−1 0 0

1 1 0

 .

Determine the coordinates of f(u) in the basis B.

(3) Determine Mat(f ; C, C).

Exercise 11.32. In R2 let v1 = (1, 1), v2 = (0,−1) (coordinates in the canonical

basis C).

(1) Show that B = (v1, v2) is a basis of R2.

(2) Let f : R2 → R2 be the linear map such that

Mat(f ; C,B) =

(
−1 1

0 1

)
.

Show that f is bijective.

(3) Determine Mat(f−1;B, C), Mat(f−1; C, C).

Exercise 11.33. In the notations of Exercise 11.32 let g : R2 → R2 such that

Mat(g; C,B) =

(
2 1

−1 0

)
.

Determine Mat(f ◦ g;B, C).

Exercise 11.34. For α ∈ R consider the vectors of R3: uα = (−1, 2α,−1), vα =

(1, α, 0), wα = (0, 1, 2α). For each α ∈ R determine the rank of (uα, vα, wα).
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Exercise 11.35. Let M ∈Mn,p(K) be such that rk(M) = r and

V = {B ∈Mp,m(K) |MB = 0}.

Prove that V is a subvector space of Mp,m(K) and determine its dimension.

Exercise 11.36. Consider the following vectors of R3 (coordinates in the canonical

basis C):

v1 = (1, 1, 0), v2 = (0, 1, 1), v3 = (−1, 0, 2), u = (1,−1,−2).

(1) Show that B = (v1, v2, v3) is a basis of R3.

(2) Let f : R3 → R3 be the linear map such that

Mat(f ;B, C) =

 0 1 2

−1 0 0

1 1 0

 .

Determine the coordinates of f(u) in the basis B.

Exercise 11.37. (1) Does there exist a linear map g : R2 → R3 such that:

g((1, 1)) = (1, 0, 3), g((0,−2)) = (4,−1, 0) and g((2, 6)) = (−6, 3, 6)?

(2) Show that ∀A ∈M2,3(K), B ∈M3,2(K) there exists X =

 x

y

z

, X ̸= 0 such

that BAX = 0.

Exercise 11.38. Let E be a K-vector space of dimension three and V,W ⊂ E two

subvector spaces of dimension two. Show that there exists a linear automorphism,

f , of E such that f(V ) =W and f(W ) = V .

Exercise 11.39. Let K be a field. In K4, with coordinates (x, y, z, t) (in the

canonical basis), let W ⊂ K4 be the subvector space of equations x = 0 = y. So

W =




0

0

z

t

 | z, t ∈ K

 .

Let V ⊂ K4 be a 2-dimensional subvector space such that V ∩ W = {0}. We

assume

det

(
x z

y t

)
= 0
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for every (x, y, z, t) ∈ V . Show that V has a basis of the form

w1 =


1

0

λ

0

 , w2 =


0

1

0

λ


with λ ∈ K.

Exercise 11.40. Let E be a 2-dimensional K-vector space and f ∈ End(E). Let

C =

(
a

b

)
∈M2,1(K).

(1) Show that if f is not a homothety (i.e. f is not of the form λIdE for λ ∈ K)

and if b ̸= 0, then there exists a basis B of E such that Mat(f ;B,B) has C as its

first column.

(2) Show that the assumption b ̸= 0 is essential.





Chapter 12

Determinants

We have already seen that in an n-dimensional vector space E, n vectors v1, . . . , vn

form a basis if and only if they are linearly independent. We want to associate a

number, D, to n vectors that tells us whether or not the vectors are independent.

For example, the vectors are linearly independent if and only if D ̸= 0.

Let us consider the case n = 2, E = R2. Let v = (a, b), u = (c, d). We know

that v and u are linearly dependent if and only if they are proportional i.e. if and

only if
a

b
=
c

d
. We are assuming bd ̸= 0. To avoid having to distinguish the cases

b = 0, d = 0 it is preferable to rewrite the relation in this form: ad = bc. We can

conclude that the vectors v = (a, b) and u = (c, d) are linearly independent if and

only if D := ad− bc ̸= 0.

In these terms, however, it is not clear how to generalize to the case n = 3. We

look for a geometric interpretation of our number D = ad− bc.

If u, v are independent, |ac − bd| is the area of the parallelogram constructed

on u, v. It is an exercise in analytic geometry in the plane that perhaps you did in

high school. Here is a proof in the case b = 0:

d
u u+ v

a
v

c a+ c

135
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Let D = (0, d), M = (a+ c, 0), S = (a+ c, d), and O = (0, 0). The area of the

rectangle OMSD is d(a+ c). To get the area of the parallelogram built on v, u you

need to remove the area of the two right triangles ODu and vMS, they have the

same area dc
2 ; so the searched area is ad.

Hence, we can visualize our number D, and in fact two vectors are dependent

if and only if they are aligned and in this case the parallelogram is degenerated, its

area is equal to zero.

Well this gives us the idea we should generalize. For three vectors in R3 we

consider the volume of the parallelepiped constructed on the three vectors: the

vectors are independent if and only if this volume is not zero. In fact, the three

vectors are dependent if and only if they are contained in a plane and in this case

the parallelepiped is degenerated, its volume is equal to zero.

We take this opportunity to underline the following fact: in a space E of

dimension n, p vectors v1, . . . , vp are linearly independent if and only if dimF = p,

where F = ⟨v1, . . . , vp⟩. This comes from the fact that every system of generators

contains a basis. If dimF < p it is possible to extract from v1, . . . , vp a basis with

less than p elements and one of the vi will be a linear combination of the others:

the vectors are dependent. If dimF = p, no vi is a linear combination of the others:

the vectors are independent.

Now, we have an idea on how to associate a number D to n vectors of a space

of dimension n that detects whether or not these vectors are independent. This

number is called the determinant of the n vectors. However, we will not look for

complicated analytic formulas, we will instead approach the question in a more

abstract and elegant way.

12.1. Multilinear maps and forms

Let E1, . . . , En, F be sets, E := E1×· · ·×En their Cartesian product and f : E →
F : (x1, . . . , xn) → f(x1, . . . , xn) a map.

If we fix the variables x1, . . . , xi−1, xi+1, . . . , xn (all except xi) for example

x1 = a1, . . . , xi−1 = ai−1, xi+1 = ai+1, . . . , xn = an, we obtain a map fi : Ei →
F : xi → f(a1, . . . , ai−1, xi, ai+1, . . . , an). It would have been more precise to write

fa1,...an
instead of fi because the map depends on the ai but for simplicity of

notation we will settle for fi.

Definition 12.1. The map fi is the partial map from Ei to F relative to the values

assigned to the variables x1, . . . , xi−1, xi+1, . . . , xn.

Now, suppose that E1, . . . , En, F are K-vector spaces.
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Definition 12.2. With the previous notations the application f is multilinear if

for every i, 1 ≤ i ≤ n, the partial map fi : Ei → F is linear.

In the following we will be interested in the case E1 = · · · = En and F = K.

Then we will consider multilinear maps f : En → K. Such a map is called a n-

linear form (or multilinear form). If n = 2 it is called bilinear form (and trilinear

if n = 3).

Remark 12.3. Be careful not to confuse linear applications and n-multilinear

applications. If f : E1 × E2 → F is bilinear then

(1) f((x1 + x2, y1 + y2)) = f(x1, y1) + f(x1, y2) + f(x2, y1) + f((x2, y2);

(2) f(λ(x, y)) = f(λx, λy) = λ2f(x, y).

If instead f is linear then

(1) f((x1 + x2, y1 + y2) = f((x1, y1) + (x2, y2)) = f(x1, y1) + f(x2, y2);

(2) f(λ(x, y)) = λf(x, y).

Example 12.4. (1) The map f : R× R → R : (x, y) → xy is a bilinear map.

(2) The map E × E∗ → K : (v, φ) → φ(v) is bilinear.

Proposition 12.5. The set of multilinear maps from E1 × · · · × En to F is a

K-vector space for the usual addition and external multiplication operations.

Proof. Verification is left to the reader. □

From now on we will only be interested in the case of multilinear forms f :

En = E × · · · × E → K : (u1, . . . , un) → f(u1, . . . , un).

Definition 12.6. A multilinear form f : En → K is called alternating if ui = uj

implies f(u1, . . . , ui, . . . , uj , . . . , un) = 0.

So if f is alternating and if two of the vectors u1, . . . , un are equal, we have

f((u1, . . . , un) = 0.

Lemma 12.7. Let f : En → K be an alternating multilinear form, then:

f(u1, . . . , ui, . . . , uj , . . . , un) = −f(u1, . . . , uj , . . . , ui, . . . , un).

Proof. Consider f(u1, . . . , ui + uj , . . . , uj + ui, . . . , un). Since the i-th coordinate

ui+uj is equal to the j-th uj+ui, we have f(u1, . . . , ui+uj , . . . , uj+ui, . . . , un) = 0.

By multilinearity f(u1, . . . , ui + uj , . . . , uj + ui, . . . , un) = f(u1, . . . , ui, . . . , uj +

ui, . . . , un) + f(u1, . . . , uj , . . . , uj + ui, . . . , un). In fact, if we fix all the variables

except the i-th one we are left with a partial linear map. Let us look at the first

term from the member on the right.
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By fixing all the variables except the j-th one we have a linear partial map.

Note that f(u1, . . . , ui, . . . , uj + ui, . . . , un) is equal to

f(u1, . . . , ui, . . . , uj , . . . , un) + f(u1, . . . , ui, . . . , ui, . . . , un)

which in turn is equal to f(u1, . . . , ui, . . . , uj , . . . , un). In fact

f(u1, . . . , ui, . . . , ui, . . . , un) = 0

since f is alternating.

Now, f(u1, . . . , uj , . . . , uj + ui, . . . , un) equals to

f(u1, . . . , uj , . . . , uj , . . . , un) + f(u1, . . . , uj , . . . , ui, . . . , un)

which in turn is equal to f(u1, . . . , uj , . . . , ui, . . . , un). Finally, 0 = f(u1, . . . , ui +

uj , . . . , uj+ui, . . . , un) = f(u1, . . . , ui, . . . , uj , . . . , un) +f(u1, . . . , uj , . . . , ui, . . . , un)

and the lemma is proved. □

A multilinear form that verifies the lemma property is called antisymmetric.

Lemma 12.8. Let f : En → K be an alternating multilinear form. If the vectors

u1, . . . , un are linearly dependent, then f(u1, . . . , un) = 0.

Proof. If the vectors are dependent, one of them is written as a linear combina-

tion of the others. Reordering the indexes, if needed, we can assume u1 = α2u2 +

· · ·+αnun. So f(u1, . . . , un) = f(α2u2 + · · ·+αnun, u2, . . . , un). By multilinearity

f(α2u2 + · · ·+ αnun, u2, . . . , un) = α2f(u2, u2, . . . , un) + · · ·+ αnf(un, u2, . . . , un).

We see that in each term there are two equal variables therefore, since f is alter-

nating, α2f(u2, u2, . . . , un) + · · ·+ αnf(un, u2, . . . , un) = 0. □

Remark 12.9. So if there exists an alternating p-form f such that f(v1, . . . , vp) ̸=
0, the vectors v1, . . . , vp are linearly independent. This is pretty much what we are

looking for.

Definition 12.10. We will denote by Ap(E) the set of alternating multilinear

p-forms on E. It is easily verified that Ap(E) is a K-vector space.

As a consequence of Lemma 12.8 we have:

Corollary 12.11. Let E be a K-vector space of dimension n. If p > n then

AP (E) = {0}.

Proof. In fact p vectors of E are always dependent if p > n. □

We are looking for a criterion to test the independence of n vectors in a vector

space of dimension n. Due to Remark 12.9 it seems natural to consider An(E)

where n = dimE.
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We observe that A1(E) = E∗ and that, according to the corollary just seen,

An(E) is the last space Ai(E) that perhaps is not trivial.

For these reasons we will not develop the complete theory of alternating forms

in all generality but we will limit ourselves to the case n = dimE.

12.2. Alternating 2-forms

Let E be a 2-dimensional K-vector space, we want to describe A2(E). Let B =

(e1, e2) be a basis of E and f ∈ A2(E). Taking u, v ∈ E how do we compute

f(u, v)?

We write the vectors on the basis B: u = ae1 + be2, v = ce1 + de2. Then

f(u, v) = f(ae1+be2, ce1+de2). If we fix the second variable we are left with a linear

map, therefore: f(u, v) = f(ae1 + be2, ce1 + de2) = af(e1, ce1 + de2) + bf(e2, ce1 +

de2). Now, by fixing the first variable we are left with a linear map of the second

variable f(u, v) = acf(e1, e1)+adf(e1, e2)+bcf(e2, e1)+bdf(e2, e2). But f(e1, e1) =

f(e2, e2) = 0 because f is alternating. So f(u, v) = adf(e1, e2)+bcf(e2, e1). Finally,

using the Lemma 12.7:

f(u, v) = (ad− bc)f(e1, e2).

Look who is back, ad − bc, our old determinant. The moral of this calculation is

that f is completely determined by f(e1, e2). Knowing f(e1, e2) we can compute

f(u, v) for every pair (u, v) of vectors of E.

Proposition 12.12. Let E be a 2-dimensional K-vector space. We have:

(1) dimA2(E) = 1.

(2) If B = (e1, e2) is a basis of E there exists an unique alternating bilinear

form, f , such that f(e1, e2) = 1. This form is denoted detB and is called the

determinant in the basis B.

Proof. (1) Let f, g ∈ A2(E) be two non zero elements. Set f(e1, e2) = α,

g(e1, e2) = β. Then αβ ̸= 0 and f(u, v) = α
β g(u, v) for every u, v ∈ E, so f = α

β g.

This shows A2(E) = ⟨g⟩.

(2) It follows from the discussion in the beginning of this section. □

Proposition 12.13. Let E be a K-vector space of dimension two.

(1) Two vectors u, v ∈ E are linearly independent if and only if f(u, v) ̸= 0,

∀f ∈ A2(E), f ̸= 0.

(2) The vectors u, v are linearly independent if and only if there exists a basis B
of E such detB(u, v) ̸= 0.
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Proof. (1) If u and v are independent they form a basis C = (u, v) and detC(u, v) =

1 ̸= 0. Now if f ∈ A2(E), f ̸= 0, then f = λ detC (λ ̸= 0) and f(u, v) = λ.

Conversely, if g(u, v) ̸= 0 for every g ∈ A2(E), g ̸= 0 (actually one is enough),

then u and v are linearly independent (Remark 12.9).

(2) It follows from (1) and the fact that dimA2(E) = 1. □

We therefore have a way to see whether two vectors of E are independent: we

take their coordinates in a basis B = (e1, e2): u = ae1 + be2, v = ce1 + de2 and

calculate their determinant in the basis B. Let us look at a way of representing all

of this: Consider the matrix whose column vectors are the components of u, v:(
a c

b d

)
.

We have that detB(u, v) is the difference of the cross products. The determinant is

represented in the form of a table but to distinguish it from matrices, slashes are

used instead of brackets:

detB(u, v) =

∣∣∣∣∣ a c

b d

∣∣∣∣∣ := ad− bc.

It would be more correct to write∣∣∣∣∣ a c

b d

∣∣∣∣∣
B

because the determinant of the two vectors depends on the chosen basis but is not

used in practice (the coordinates indicate the basis).

Well, now we have to repeat everything in the general case dimE = n. We

proceed exactly the same way, the math is just a little more complicated.

12.3. Alternating n-forms

Let E be a K-vector space of dimension n with a basis B = (e1, . . . , en) and

u1, . . . , un vectors of E. Let us consider the coordinates of these vectors in the

basis B:
u1 = ξ11e1 + · · ·+ ξ1nen;
...

un = ξn1 e1 + · · ·+ ξnnen.

Let f : En → K be an alternating n-form from En into K and let us compute

f(u1, . . . , un). We have f(u1, . . . , un) = f(ξ11e1 + · · ·+ ξ1nen, . . . , ξ
n
1 e1 + · · ·+ ξnnen).

If we expand the right hand side, using the multilinearity of f , we obtain a sum

of terms of the form:

ξ1i1 . . . ξ
n
inf(ei1 , . . . , ein).
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It is like in the expansion of the binomial, for the first vector ξn1 e1+· · ·+ξnnen we

have to choose one of the terms, say ξ1i1ei1 , for the second vector one of the terms of

the sum ξ21e1+· · ·+ξ2nen, say ξ2i2ei2 and so on, up to the last vector ξn1 e1+· · ·+ξnnen
which gives us ξninein . So we have f(ξ1i1ei1 , . . . , ξ

n
in
ein) = ξ1i1 . . . ξ

n
in
.f(ei1 , . . . , ein).

And we must do this in every possible way.

We observe that i1, . . . , in correspond to an application from X = {1, 2, . . . , n}
into itself: X → X : j → ij . We have card(A(X,X)) = nn, where A(X,X) denotes

the set of all maps from X to itself. The sum therefore contains nn terms. In the

case n = 2 we had four terms (corresponding to f(e1, e1), f(e1, e2), f(e2, e1), f(e2, e2).

But since f is alternating if ik = it, the value is zero and we can leave out this

term. Said differently we must consider only the maps X → X which are injective.

Since X is finite an injective map X → X is bijective. That is, we only have to

look at the permutations of X. Therefore, let

Sn = {σ : X → X | σ is bijective}

be the symmetric group on n elements. We have:

(12.1) f(u1, . . . , un) =
∑
σ∈Sn

ξ1σ(1) . . . ξ
n
σ(n).f(eσ(1), . . . , eσ(n)).

This sum contains n! terms (in the case n = 2 they correspond to f(e1, e2), f(e2, e1)).

Now, the idea is to express everything as a function of f(e1, . . . , en). In fact

we know that f(. . . , ei, . . . , ej , . . . ) = −f(. . . , ej , . . . , ei, . . . ) (Lemma 12.7); that is,

when two variables exchange, the sign changes.

Starting from f(eσ(1), . . . , eσ(n)), with subsequent exchanges we put the indexes

back in place and if the number of exchanges is even, the sign does not changes, if

it is odd the sign changes.

For example, if we have (n = 3) f(e2, e3, e1), we swap e2 and e3: f(e2, e3, e1) =

−f(e3, e2, e1). Now we exchange e3 and e1: −f(e3, e2, e1) = f(e1, e2, e3) and con-

clude that f(e2, e3, e1) = f(e1, e2, e3).

Observe that we could have done it differently: starting from (2, 3, 1) (we sim-

plify the writing) we can exchange 2 and 3: (3, 2, 1), then 2 and 1: (3, 1, 2), then 1

and 3: (1, 3, 2) and finally 3 and 2: (1, 2, 3). The number of exchanges is still even.

On the other hand, it can not be otherwise. If there exists an alternating non-

zero f then f(e2, e3, e1) equals to f(e1, e2, e3) or −f(e1, e2, e3), but it can not be

equal f(e2, e3, e1) at a time and −f(e2, e3, e1) at another.

The problem is that we do not yet know that there is a non-zero alternating

n-form. Let us try to summarize what we have said so far.
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Definition 12.14. A permutation τ ∈ Sn is a transposition if it exchanges two

elements while leaving the others unchanged. That is, τ(i) = k, τ(k) = i and

τ(m) = m if m /∈ {i, k}.

Lemma 12.15. Each permutation σ ∈ Sn is written as a product of at most n− 1

transpositions.

Proof. Let us write a permutation σ ∈ Sn as follows:(
1 · · · n

σ(1) · · · σ(n)

)
.

Putting the indexes (σ(1), . . . , σ(n)) back means applying σ−1. We then show that

σ−1 is a product of at most n − 1 transpositions. Since every permutation is the

inverse of a permutation (σ = (σ−1)−1) this proves the lemma. If σ(1) ̸= 1, we look

for 1 and exchange it with σ(1). Now, 1 is in place and we move to second index.

If σ(1) = 1 we move to σ(2). After at most n− 1 such operations 1, 2, . . . , n− 1 are

in place and therefore also n is. □

Lemma 12.16. Let σ ∈ Sn be a permutation. We have seen that σ is written as

a product of transpositions. Let σ = τ1 ◦ · · · ◦ τr; and σ = θ1 ◦ · · · ◦ θt, where τi, θj
are transpositions. Then r ≡ t (mod 2), i.e. r and t have the same parity.

Proof. This is an algebra result. Let us give an idea of the proof.

(1) If f : En → K is antisymmetric and if σ = τ1 ◦ · · · ◦ τr is a decomposition of

σ into a product of transpositions then we have

f(xσ(1), . . . , xσ(n)) = (−1)rf(x1, . . . , xn).

The proof is by induction on r. The initial case r = 1 is true because f is

antisymmetric. Then we write σ = τ ◦ ν, with τ = τ1, ν = τ2 ◦ · · · ◦ τn
and set yi = xτ(i). We have xσ(i) = yν(i). Therefore f(xσ(1), . . . , xσ(n)) =

f(yν(1), . . . , yν(n)) = (−1)r−1f(y1, . . . , yn), by induction hypothesis. Now

f(y1, . . . , yn) = f(xτ(1), . . . , xτ(n)). But since τ is a transposition and since f

is antisymmetric f(xτ(1), . . . , xτ(n)) = −f(x1, ..., xn) and we have the result.

(2) Then we show that

g : Rn → R : (x1, . . . , xn) →
∏

1≤i<j≤n

(xi − xj)

is antisymmetric. It is a bit boring but not hard, left to the reader.

(3) Let σ = τ1 ◦ · · · ◦ τt = ξ1 ◦ · · · ◦ ξt be two decompositions of σ as a product

of transpositions. By (1) we have g(xσ(1), . . . , xσ(n)) = (−1)rg(x1, . . . , xn) =

(−1)tg(x1, . . . , xn). So r and t have the same parity

For details we refer to [DF04, Section 1.3]. □



12.3. Alternating n-forms 143

Definition 12.17. Let σ ∈ Sn be a permutation. If σ = τ1◦· · ·◦τr, where τ1, . . . , τr
are transpositions, the signature of σ is ε(σ) := (−1)r.

Remark 12.18. We observe that the signature is well defined due to Lemma 12.16.

Having said this we can rewrite (12.1) as follows:

(12.2) f(u1, . . . , un) =
∑
σ∈Sn

ε(σ)ξ1σ(1) . . . ξ
n
σ(n).f(e1, . . . , en).

At this point we see that f is completely determined by f(e1, . . . , en) as in the

case n = 2. Therefore we have:

Proposition 12.19. Let E be a K-vector space of dimension n. Then

(1) The vector space An(E) has dimension one.

(2) If B = (e1, . . . , en) is a basis of E, there exists an unique alternating multi-

linear form f such that f(e1, . . . , en) = 1; this form f is denoted by detB. So

detB(e1, . . . , en) = 1.

Proof. The proof is analogous to that of Proposition 12.12. □

We therefore see that if B = (ei) is a basis of E and if uj =
∑

i ξ
j
i ei we have:

(12.3) det B(u1, . . . , un) =
∑
σ∈Sn

ε(σ)ξ1σ(1) . . . xi
n
σ(n).

The scalar detB(u1, . . . , un) is the determinant of the vectors u1, . . . , un with respect

to the basis B. As in the case n = 2 we have:

Proposition 12.20. Let E be a K-vector space of dimension n, and u1, . . . , un

vectors of E. Then u1, . . . , un are linearly independent if and only if one of the

following two equivalent conditions is satisfied:

(1) ∀f ∈ An(E), f ̸= 0, f(u1, . . . , un) ̸= 0;

(2) there exists a basis B such that detB(u1, . . . , un) ̸= 0.

Proof. At this point the proof of this proposition is a simple generalization of that

of Proposition 12.13. □

As in the case n = 2 it is customary to write the determinant as an n×n table

where the j-th column is made up of the coordinates of the j-th vector, uj :

det
B
(u1, . . . , un) =

∣∣∣∣∣∣∣∣
ξ11 · · · ξn1
...

...
...

ξn1 · · · ξnn

∣∣∣∣∣∣∣∣ :=
∑
σ∈Sn

ε(σ)ξ1σ(1) . . . ξ
n
σ(n).
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At this point we have proved for any n the results shown in the case n = 2. The

only thing we do not know how to do is calculate an n× n determinant effectively.

For this some preliminaries are needed.

12.4. The determinant of an endomorphism

The determinant of n vectors of E (dimE = n) depends on a basis B of E. We

now show that there exists, for an endomorphism f : E → E, a determinant that

does not depend on the choice of a basis of E.

Proposition 12.21. Let E be a finite-dimensional K-vector space and u ∈ End(E).

There exists a unique scalar det(u), such that for every (x1, . . . , xn) ∈ En and for

every f ∈ An(E) we have:

f(u(x1), . . . , u(xn)) = det(u)f(x1, . . . , xn).

Proof. Let f ∈ An(E) and set fu : En → K : (x1, . . . , xn) → f(u(x1), . . . , u(xn)).

We have that fu is multilinear alternating. In fact, by fixing all the variables

except the i-th one, the corresponding partial application is fi ◦u which is linear as

composed of two linear applications (here fi is the partial application with respect

to u(x1), . . . u(xn), without u(xi)).

The map is alternating because f is alternating. Since dimAn(E) = 1, fu is

proportional to f that is fu = λf . This will be true for f ∈ An(E). We show

that the proportionality coefficient is constant (i.e. it does not depend on f). Let

g ∈ An(E). Then g = ξf (because dimAn(E) = 1). We have gu = (ξf)u = ξfu =

ξ(λf) = λ(ξf) = λg. We conclude by setting det(u) = λ. □

Remark 12.22. The scalar detu is called the determinant of the endomorphism

u, detu does not depend on the choice of a basis.

Let B = (e1, . . . , en) be a basis of E. We use Proposition 12.21 with f = detB,

xi = ei to get detB(u(e1, . . . , u(en)) = det(u).

Let M = Mat(u;B,B), M = (aij). We have that det(u) is the determinant of

the column vectors of the matrix M , i.e

det(u) =
∑
σ∈Sn

ε(σ).aσ(1)1.aσ(2)2 . . . a sG(n)n.

This leads us to the following definition:

Definition 12.23 (Determinant of a matrix). Let M ∈ Mn(K), M = (aij). The

determinant of M , det(M) is the scalar:

det(M) =
∑
σ∈Sn

ε(σ)aσ(1)1aσ(2)2 . . . aσ(n)n.
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To summarize we have:

(1) The determinant of the vectors vi in the basis B: detB(v1, . . . , vn);

(2) The determinant of u ∈ End(E);

(3) The determinant of M ∈Mn(K), det(M).

These three things are connected in the following way:

(i) The determinant detB(v1, . . . , vn) is defined by (12.3).

(ii) The determinant det(u) is defined in Proposition 12.21.

(iii) The det(M) is the determinant of the column vectors (seen as vectors of Kn)

of the matrix M with respect to the canonical basis of Kn in the sense of (i).

If M = Mat(u;B,B) then det(u) = det(M) (with the basis B in the domain

and in the codomain).

These various avatars of the determinant will allow us to prove some properties

of determinants.

Proposition 12.24. Let E be a K-vector space of dimension n.

(1) We have det(IdE) = 1.

(2) If u, v ∈ End(E), det(u ◦ v) = det(u) det(v).

(3) An endomorphism u ∈ End(E) is invertible if and only if det(u) ̸= 0. If u is

invertible then det(u−1) = 1
det(u) .

Proof. (1) Let B = (ei) be a basis of E, then det(IdE) = detB(IdE(e1), . . . , IdE(en)) =

detB(e1, . . . , en) = 1.

(2) Let B = (e1, . . . , en) be a basis of E. We have detB((u ◦ v)(e1), . . . , (u ◦
v)(en)) = det(u◦ v) (Proposition 12.21). But, again by Proposition 12.21 detB((u◦
v)(e1), . . . , (u ◦ v)(en)) = det(v) det(u) detB(e1, . . . , en) = det(v) det(u).

(3) If u is invertible we have u ◦u−1 = IdE and from (1) and (2) it follows that

det(u) ̸= 0 and det(u−1) = 1
det(u) .

It remains to be seen that det(u) ̸= 0 implies that u is invertible. Let B =

(e1, . . . , en) be a basis of E. We have det(u) = detB(u(e1), . . . , u(en)) ̸= 0, so

the vectors u(e1), . . . , u(en) are independent, i.e. they form a basis of E. Then u

transforms the basis B into a basis, and hence it is bijective. □

Now, we can translate these results in terms of matrices: if A,B ∈ Mn(K),

we take a vector space E of dimension n, a basis B = (ei) of E and we have our

isomorphism: Mat(−;B,B) : End(E) → Mn(K). Recall that Mat(−;B,B) is also

an isomorphism of rings, so the matrix product corresponds to the composition
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of the maps. Our matrices correspond to endomorphisms u, v while detu,det v

correspond to detA,detB.

Corollary 12.25. (1) We have det In = 1, where In ∈ Mn(K) is the identity

matrix.

(2) If A,B ∈Mn(K) then det(AB) = det(A) det(B).

(3) A matrix A ∈Mn(K) is invertible if and only if det(A) ̸= 0. If A is invertible,

then det(A−1) = 1/ det(A).

Proof. (1) It follows from the fact that det(IdE) = 1 and Mat(IdE ;B,B) = In.

(2) Let Mat(u;B,B) = A, Mat(v;B,B) = B. We have Mat(u ◦ v;B,B) = AB

(Proposition 11.5). Now det(AB) = det(u ◦ v) = det(u).det(v) = det(A) det(B).

(3) Let Mat(u;B,B) = A, then A is invertible if and only if u is, we conclude

with (3) of Proposition 12.24. □

Remark 12.26. We obtained the above results without doing any calculations.

Obviously there are other ways to proceed. For example, let us see how to prove

point (1) using the determinant formula. So if A = (aij), we know that det(A) =∑
σ∈Sn

ε(σ)aσ(1)1 . . . aσ(n)n. Let us take the case of A = In, then aij = δij , where δij

is the Kronecker symbol. If σ ∈ Sn is not the identity then there exists i ∈ {1, . . . , n}
such that σ(i) ̸= i and therefore we have aσ(i)i = δσ(i)i = 0. This implies that in

the summation we have a single term to consider: the one corresponding to σ = Id.

So det(In) = ε(Id)a11 . . . ann = ε(Id). Now, it is clear that ε(Id) = 1, because if τ

is any transposition Id = τ ◦ τ . Therefore det(In) = 1.

12.5. Computation of a determinant

Let A ∈Mn(K). From what we have seen so far, it turns out that the determinant

is an alternating multilinear function of the columns of A. Therefore:

(1) Via a permutation σ of the columns of A, det(A) transforms into ε(σ) det(A).

If two columns are exchanged the determinant of the matrix so obtained is

−det(A).

(2) We have det(A) = 0 if and only if the columns of A are linearly dependent.

(3) The determinant does not change if a linear combination of columns is added

to a column.

(4) For every λ ∈ K, det(λA) = λn det(A). In fact λA = (λC1, . . . , λCn).

If we replace a column with a linear combination of all columns, the determinant

changes:

det(

n∑
i=1

λiCi, C2, . . . , Cn) = λ1 det(A).
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Proposition 12.27. If A ∈Mn(K) then det(A) = det(tA).

Proof. Let A = (aij), 1 ≤ i ≤ n, 1 ≤ j ≤ n. Then

det(A) =
∑
σ∈Sn

ε(σ)aσ(1)1 . . . aσ(n)n

and

det(tA) =
∑
ρ∈Sn

ε(ρ)a1ρ(1) . . . anρ(n).

In fact, if tA = (mij), then mij = aji. We can rewrite the formula for det(A) as

follows:

det(A) =
∑
σ∈Sn

ε(σ)

n∏
i=1

aσ(i)i.

We set σ(i) = t so that i = σ−1(t). Since σ is a bijection between {1, . . . , n} and

itself, while t varies between 1 and n also i varies between 1 and n, and so we can

write:

det(A) =
∑
σ∈Sn

ε(σ)

n∏
t=1

atσ−1(t).

Let us now observe that for each permutation σ ∈ Sn we have ε(σ) = ε(σ−1).

In fact if σ = τ1 ◦ · · · ◦ τr. Then, since (τi)
−1 = τi we have σ−1 = τr ◦ · · · ◦ τ1.

So ε(σ) = ε(σ−1) and

det(A) =
∑
σ∈Sn

ε(σ−1)

n∏
t=1

atσ−1(t).

Since the map Sn → Sn : σ → σ−1 is a bijection making the sum over σ or over

σ−1 is the same thing, then:

det(A) =
∑

σ−1∈Sn

ε(σ−1)

n∏
t=1

atσ−1(t).

Now, setting ρ = σ−1 we get:

det(A) =
∑
ρ∈Sn

ε(ρ)

n∏
t=1

atρ(t)

and this shows that det(A) = det(tA). □

Remark 12.28. The determinant det(tA) is a multilinear function of the columns

of tA, therefore of the rows of A, then this function is equal to det(A). So the

properties (1), . . . , (4) above are valid with the word row instead of the word column.

That is, det(A) is an alternating multilinear function of the columns and rows of

A.
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If n = 2 and

A =

(
a b

c d

)
then as we well know

det(A) =

∣∣∣∣∣ a b

c d

∣∣∣∣∣ = ad− bc.

For n = 3 and A = (aij) we have

det(A) = a11a22a33 + a21a32a13 + a31a12a23 − a21a12a33 − a31a22a13 − a11a32a23.

Of course (for n = 3 or worse n > 3) these are not formulas that a mathematician

wants to remember.

Actually, as we will see now, there is a way to reduce the calculation of an n×n
determinant to the calculation of multiple 2× 2 determinants.

Lemma 12.29. Let M ∈Mn(K) and write

M =


a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...

0 an2 · · · ann

 .

Then det(M) = a11 detN where

N =


a22 · · · a2n
...

. . .
...

an2 · · · ann

 .

Proof. We have

det(M) =
∑
σ∈Sn

ε(σ)aσ(1)1 . . . .aσ(n)n.

If σ(1) ̸= 1, aσ(1)1 = 0. So we need to consider only the permutations that verify

σ(1) = 1. Let U = {σ ∈ Sn | σ(1) = 1}. We have

det(M) = a11
∑
σ∈U

ε(σ)aσ(2)2 . . . aσ(n)n.

Let X = {2, . . . , n}. Then U ≃ S(X) ≃ Sn−1, here S(X) indicates the symmetric

group of X i.e. the group of bijective maps from X in X, clearly isomorphic to

Sn−1. The isomorphism is given by φ : U → S(X) : σ → σ′, where σ′(i) = σ(i),

∀i > 1. We have φ−1(σ′) = σ where σ(1) = 1 and σ(i) = σ′(i) if i > 1. We

observe that ε(σ) = ε(σ′). In fact if σ′ = τ ′1 ◦ · · · ◦ τ ′r, then σ = τ1 ◦ · · · ◦ τr, where
τi = φ−1(τ ′i). So we have

det(M) = a11
∑

σ′∈S(X)

ε(σ′)aσ′(2)2 · · · aσ′(n)n
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and this last expression is clearly equal to a11 det(N). □

Corollary 12.30. Let M ∈ Mn(K), M = (aij), be a triangular matrix (the ele-

ments above or below the diagonal are zero). Then det(M) = a11 · · · · · ann (the

product of the coefficients on the diagonal).

Proof. By induction on n using Lemma 12.29. □

Before stating the main theorem we need a definition.

Definition 12.31. Let M ∈Mn(K), M = (aij). We denote by Mk,t the matrix of

type (n−1, n−1) obtained from M by removing the k-th row and the t-th column.

The determinant of Mk,t is called the minor relative (associated) to akt.

We are ready for the main theorem.

Theorem 12.32 (Laplace expansion). Let M = (aij) ∈Mn(K).

(1) We have det(M) =

n∑
r=1

(−1)r+jarj det(Mrj) (Laplace expansion according to

the j-th column).

(2) We have det(M) =

n∑
r=1

(−1)r+iair det(Mir) (Laplace expansion according to

the i-th line).

Proof. Since det(M) = det(tM) it is enough to prove (1). The idea is to observe

that the j-th column can be written as the sum of n columns:

a1j
...

aij
...

anj


=



a1j
...

0
...

0


+



0
...

aij
...

0


+ · · ·+



0
...

0
...

anj


.

We can rewrite this equation as follows: Cj = cj1 + · · ·+ cjn, where Cj indicates the

j-th column of M .

Looking at the columns we have: det(M) = det(C1, . . . , c
j
1 + · · ·+ cjn, . . . , Cn).

By multilinearity (fixing all variables except the j-th) we get

det(M) =

n∑
i=1

det(C1, . . . , c
j
i , . . . , Cn).
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So we are led back to calculating n determinants of the following type:

Di := det(C1, . . . , c
j
i , . . . , Cn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · 0 · · · a1n
...

. . .
...

. . .
...

ai1 · · · aij · · · ain
...

. . .
...

. . .
...

an1 · · · 0 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Let R1, . . . , Rn be the rows of Di. Exchanging Ri with Ri−1, Ri−2, . . . , R1, we

obtain after i− 1 exchanges, the determinant:

D′
i =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ai1 · · · aij · · · ain

a11 · · · 0 · · · a1n
...

. . .
...

. . .
...

...
. . .

...
. . .

...

an1 · · · 0 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Let S1, . . . , Sn be the columns of D′
i. Exchanging Sj with Sj−1, . . . , S1 we get,

after j − 1 exchanges, the following determinant:

D′′
i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aij ai1 · · · ai,j−1 ai,j+1 · · · ain

0 a11 · · · a1,j−1 a1,j+1 · · · a1n
...

...
. . .

...
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
...

. . .
...

0 an1 · · · an,j−1 an,j+1 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Since we made i − 1 + j − 1 = i + j − 2 exchanges we have (−1)i+jD′′
i = Di (the

parity of i + j − 2 is equal to that of i + j). Now, by Lemma 12.29, we have

D′′
i = aij .∆, where ∆ is the determinant obtained by deleting the first row and

the first column of D′′
i . But removing the first row and first column of D′′

i is like

removing the i-th row and j-th column of Di. The i-th row of Di is the i-th row

of M , the j-th column of M and Di are the only differences between these two

determinants, but they are removed. Therefore, ∆ = det(Mij), where, as already

said, Mij is the matrix obtained from M by removing the i-th row and the j-th

column. In conclusion, we have det(M) =
∑n

i=1(−1)i+jaij det(Mij). □

This result reduces the computation of an n×n determinant to the computation

of n determinants of order n− 1. In particular, the calculation of a determinant of

any order n can be traced back to the calculation of many determinants of order

two. Note that the determinants of order two are also calculated with the Laplace

expansion.



12.5. Computation of a determinant 151

Example 12.33. Developing

D =

∣∣∣∣∣∣∣
1 −2 1

2 3 −1

−1 3 −2

∣∣∣∣∣∣∣
according to the first column we get

D = 1

∣∣∣∣∣ 3 −1

3 −2

∣∣∣∣∣−2

∣∣∣∣∣ −2 1

3 −2

∣∣∣∣∣−1

∣∣∣∣∣ −2 1

3 −1

∣∣∣∣∣ = (−6+3)−2.(4−3)−(2−3) = −4.

There is a faster way to proceed. We have seen that the determinant does not

change if a linear combination of the rows (resp. columns) is added to a row (resp.

column). The idea is to fit as many zeros as possible into a row (resp. columns).

Here for example we can replace R1 with R1 +R3, an operation which we indicate

as follows: R1 → R1 +R3. We obtain

D =

∣∣∣∣∣∣∣
0 1 −1

2 3 −1

−1 3 −2

∣∣∣∣∣∣∣ .
Now, we do C2 → C2 + C3 and we get

D =

∣∣∣∣∣∣∣
0 0 −1

2 2 −1

−1 1 −2

∣∣∣∣∣∣∣ .
Developing according to the first line we have

D = −

∣∣∣∣∣ 2 2

−1 1

∣∣∣∣∣ = −4.

Remark 12.34. Pay attention to the signs. The rule is very simple: the + sign

goes in place (1, 1) (first row, first column), then every time you move by one, either

according to a row or a column, the sign changes. So in the case 3 × 3 the signs

are: ∣∣∣∣∣∣∣
+ − +

− + −
+ − +

∣∣∣∣∣∣∣ .
As a first consequence of Laplace’s expansion we have a generalization of

Lemma 12.29.

Proposition 12.35. Let M ∈Mn+p(K) be a square matrix of the form

M =

(
A P

0 B

)
where A ∈ Mn(K), B ∈ Mp(K) P ∈ Mn,p(K) and 0 indicates a null matrix of

order (p, n). Then det(M) = det(A) det(B).
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Proof. We proceed by induction on n. The case n = 1 follows from Lemma 12.29.

Suppose the claim holds for n − 1. We develop according to the first column.

We have: det(M) =
∑n

i=1(−1)i+1ai1 detMi,1. Here, as usual, Mi,1 is the matrix

obtained from M by removing the row i and the first column. So

Mi,1 =

(
Ai,1 P (i)

0 B

)
where P (i) is the matrix obtained from P by removing the i-th row: it is a (n−1, p)

matrix; 0 indicates a null matrix of type (p, n − 1) (we removed the first column

of the initial null matrix). The matrix Ai,1 is square of order n− 1. By induction

hypothesis det(Mi,1) = det(Ai,1) det(B). So

detM =

n∑
i=1

(−1)i+1ai1 det(Ai,1) det(B) = det(B)

n∑
i=1

(−1)i+1ai1 det(Ai,1)

which indeed is equal to det(B) det(A). □

Corollary 12.36. Let M be a block matrix of the following form:

M =


A1 · · · · · · · · ·
0 A2 · · · · · ·

0 0
. . . · · ·

0 0 0 Ak


where A1, . . . , Ak are square matrices and the zeros indicate null matrices. Then

det(M) = det(A1) . . . det(Ak).

Proof. Proceed by induction on k. If k = 2 is the previous proposition. Again by

the previous proposition we have

det(M) = det(A1)

∣∣∣∣∣∣∣∣
A2 · · · · · ·

0
. . .

...

0 0 Ak

∣∣∣∣∣∣∣∣ .
By induction hypothesis the last determinant is det(A2) . . . det(Ak) and the result

follows. □

12.6. Inverse matrix, complementary matrix

Let A = (aij) ∈Mn(K) be a square matrix.

Definition 12.37. The cofactor of aij is (−1)i+j detAij where, as usual, Aij is

the matrix obtained from A by removing the i-th row and the j-th column.

The cofactor matrix of A is Co(A) = (cij) where cij = (−1)i+j detAij is the

cofactor of aij .
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The complementary matrix Ac of A is the transpose of the cofactor matrix:

Ac = tCo(A).

The interest of these definitions is revealed by the following result.

Theorem 12.38. Let A ∈Mn(K), then

(1) AAc = AcA = det(A)In;

(2) if A is invertible then A−1 =
1

det(A)
·Ac.

Proof. (1) Let AAc = (dij). By definition dij is the product of the i-th row of A

with j-th column of Ac. Since Ac = tCo(A), dij is equal to the scalar product of

the i-th row of A with the j-th row of Co(A). That is

dij = (Ri(A) | Rj(Co(A)) =

n∑
k=1

aik(−1)j+k detAjk.

If i = j we get

dii =

n∑
k=1

(−1)i+kaik detAik.

From Theorem 12.32 we have dii = det(A). Now, consider the case i ̸= j. Let

R1, . . . , Rn be the rows of A and Ai(j) the matrix whose rows, R′
i, are given by

R′
t = Rt if t ̸= j, R′

j = Ri. Since Ai(j) has two equal rows (R′
i = R′

j), we

have det(Ai(j)) = 0. If we develop detAi(j) according to the j-th line, we get

0 = det(Ai(j)) =
∑

k aik(−1)j+k det(Ajk) = dij . So if i ̸= j, dij = 0 and AAc =

det(A)In.

In the same way we prove AcA = det(A)In.

(2) If A is invertible then det(A) ̸= 0 (Corollary 12.25) and therefore(
1

det(A)
Ac

)
A = In

concluding the proof. □

Remark 12.39. Theorem 12.38 provides an effective way to compute A−1 when

A is invertible (i.e. when det(A) ̸= 0).

Remark 12.40. In the proof of Theorem 12.38 we never used that K is a field.

That is, we have not divided by any element. The proof of Theorem 12.38 is valid

even if K = R is only a commutative ring. The determinant of a square matrix is

defined by (12.23). Under these conditions Theorem 12.38 says that A is invertible

if and only if det(A) is invertible in R. For example if A ∈ Mn(Z), det(A) is

invertible in Z if and only if det(A) = ±1.
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Remark 12.41. Consider the matrix

A =

 1 2 0

0 2 −1

0 0 −1

 .

We have det(A) = −2. We can consider A as a matrix with rational coefficients.

We have −2 ̸= 0, so A is invertible in M2(Q) (Q is a field). We can also consider A

as a matrix with integer coefficients (A ∈ M3(Z)). But −2 is not invertible in the

ring Z and therefore A is not invertible in M2(Z). That is, it is not possible to find

a matrix B with integer coefficients such that AB = I3. It is instead possible to

find a matrix A−1 ∈ M3(Q) such that A.A−1 = I3. We conclude that the matrix

A−1 ∈M3(Q) has at least one rational, non-integer coefficient.

In this case it is not even too difficult to compute A−1. We associate to A an

endomorphism of K3 via E = K3, B = C (the canonical basis). So let B = (ei)

and Mat(f ;B,B) = A. We have f(e1) = e1, f(e2) = 2e1 + 2e2, f(e3) = −e2 − e3.

Applying f−1 to the two sides of the previous equations we obtain e1 = f−1(e1),

e2 = 2f−1(e1)+2f−1(e2) = 2e1+2f−1(e2), e3 = −f−1(e2)−f−1(e3). In conclusion

f−1(e1) = e1, f
−1(e2) = (e2−2e1)/2 = −e1+e2/2, f−1(e3) = e1−e2/2−e3. Finally

A−1 =

 1 −1 1

0 1
2 − 1

2

0 0 −1

 .

The matrix A−1 has two rational, non-integer coefficients. Here we got lucky be-

cause the system to solve to calculate f−1(ei) is particularly easy, this approach is

not recommended in general.

12.7. Rank and determinants

So far we have seen that the determinant allows us to say whether an n×n square

matrix has rank n or not. If the determinant is zero, the rank is less than n but we

do not know what it is exactly. In this section we show that using determinants it

is possible to calculate the rank of any matrix (even a non-square one).

Definition 12.42. Let M = (aij) ∈Mn,p(K) and

I ⊂ {1, 2, . . . , n}, J ⊂ {1, 2, . . . , p}.

With MI,J we indicate the matrix obtained from M by deleting the rows whose

index belongs to I and the columns whose index belongs to J . We say that MI,J

is a matrix extracted from M (or that MI,J is a submatrix of M).

We have already seen a special case of this notion in Laplace’s expansion: the

matrices Mij =MI,J with I = {i}, J = {j}.
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Definition 12.43. A minor of order r of M is the determinant of an r× r matrix

extracted from M . We observe that necessarily r ≤ min {n, p}.

Example 12.44. The matrix

A =

(
1 0 4

3 1 5

)
has three minors of order two.

Lemma 12.45. Let f : E → F be a linear map between two K-vector spaces,

and v1, . . . , vr ∈ E vectors such that f(v1), . . . , f(vr) are independent in F . Then

v1, . . . , vr are independent.

Proof. If
∑
λivi = 0, applying f we have

∑
λif(vi) = 0 but the vectors f(vi) are

independent, so λi = 0, ∀i. □

Proposition 12.46. Let M ∈ Mn,p(K). We have rk(M) ≥ r if and only if there

exists a non-zero minor of M of order r.

Proof. Suppose that there exists a minor of M , of order r, ∆r, not zero. The

rank of M is the rank of its column vectors (or its row vectors), so a permutation

of the columns or rows of M does not change its rank. We can therefore assume

that the smallest ∆r is constructed on the first r columns and the first r rows. Let

C1, . . . , Cp be the column vectors of M ; they are vectors of Kn. Consider

π : Kn → Kr : (x1, . . . , xn) → (x1, . . . , xr)

the projection onto the first r coordinates. We set ci := π(Ci). Then ∆r =

detC(c1, . . . , cr), where C denotes the canonical basis of Kr. Since ∆r ̸= 0, this im-

plies that c1, . . . , cr are independent. By Lemma 12.45 this implies that C1, . . . , Cr

are independent as well, so rk(M) ≥ r.

Now, suppose rk(M) ≥ r. There are therefore r independent column vectors of

M . By rearranging the columns we can assume that C1, . . . , Cr are independent.

The n × r matrix, N , whose columns are C1, . . . , Cr has therefore exactly rank r.

But the rank of N is also the rank of its rows. There are therefore r independent

rows of N . By rearranging the rows we can assume that they are the first r. Note

that the rows of N are vectors of Kr (while the columns are vectors of Kn). If

r1, . . . , rr indicate the first rows of N , we have detC(r1, . . . , rr) ̸= 0 (r independent

vectors of Kr). This shows that the minor of M constructed over the first r rows

and r columns is non-zero. □

Corollary 12.47. Let M ∈Mn,p(K) then M has rank r if and only if there exists

a non-zero minor of M of order r and all minors of order r + 1 are zero.



156 12. Determinants

Proof. IfM has rank r by Proposition 12.46 there exists a non-zero minor of order

r, and again for the same proposition all minors of order r+1 are zero. The converse

is clear. □

So for example if we have a matrix M ∈ M3,4(K) with a non-zero minor of

order two, to see if M has rank 2 or 3 we have to look at the four minors of order

3. If they are all zero the rank is 2 if one of them is non-zero the rank is 3. We

show that actually it is not necessary to check all the minors of order 3 but only

some of them.

Definition 12.48. Let M ∈Mn,p(K) and let ∆r be a minor of M of order r. An

edge of ∆r is a minor of order r + 1 of which ∆r is a minor.

Example 12.49. Let

M =

 1 0 2 1

0 1 3 −1

−1 0 2 3


and

∆2 =

∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣ .
An edge of ∆2 is a minor of order 3 that contains ∆2, there are two of them:∣∣∣∣∣∣∣

1 0 2

0 1 3

−1 0 2

∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣
1 0 1

0 1 −1

−1 0 3

∣∣∣∣∣∣∣ .
The main result of this section:

Theorem 12.50 (Edge method). Let M ∈Mn,p(K). Then rk(M) = r if and only

if there exists a non-zero minor of order r, ∆r, whose edges are all zero.

Proof. If rk(M) = r by Corollary 12.47 there exists a non-zero minor of order r

and all minors of order r + 1 are zero and we are fine.

For the other implication we show the opposite: if ∆r ̸= 0 and rk(M) > r then

there exists a non-zero edge of ∆r.

We can assume that ∆r is the minor constructed over the first r columns and

the first r rows. So C1, . . . , Cr, the first r columns ofM , are linearly independent. If

rk(M) ≥ r+1, the space generated by the columns F = ⟨C1, . . . , Cp⟩ has dimension

greater than r. Since C1, . . . , Cr are independent, by the incomplete basis theorem

we can complete these vectors to a basis of F . In particular, there exists Cj , with

j > r, such that C1, . . . , Cr, Cj are independent. Let N be the matrix of type

(n, r + 1) whose columns are C1, . . . , Cr, Cj . Clearly, N has rank r + 1. So the

row space of N has dimension r + 1. The rows of N are elements of Kr+1. Using
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Lemma 12.45 (with the projection π : Kr+1 → Kr : (x1, . . . , xr+1) → (x1, . . . , xr)),

we see that the first r rows, r1, . . . , rr, of N are independent. So there exists rt,

with t > r, such that r1, . . . , rr, rt are independent. The determinant of the matrix

(r1, . . . , rr, rt) is a non-zero edge of ∆r. □

Example 12.51. Let

A =

 1 2 4 5

0 1 1 3

1 0 2 −1

 .

We have

∆2 =

∣∣∣∣∣ 0 1

1 0

∣∣∣∣∣ = −1.

So rk(A) ≥ 2. Following Corollary 12.47 we need to compute four minors of order

3. The edge method reduces the work by half. Just compute the two edges of ∆2.

Do this to verify that rk(A) = 2.
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Exercises

Exercise 12.52. In the C-vector space C2, calculating a determinant, say whether

the vectors u, v are linearly independent where u = (2+ i, 1− i), v = (4+ i, 2+3i).

Exercise 12.53. In the K-vector space K2 for what values of m ∈ K are the two

vectors u = (m, 1), v = (−1,m) independent? (K = R,C).

Exercise 12.54. Let M ∈ Mn(K). Show that if M = AB with A ∈ Mn,p(K),

B ∈ Mp,n(K) and n > p, then det(M) = 0. Is it still true that det(M) = 0 if we

assume instead n < p?

Exercise 12.55. The chessboard matrix S ∈Mn(K) is defined as follows S = (aij ,

with aij = 0 if i+ j is even, aij = 1 if i+ j is odd. Compute det(S).

Exercise 12.56. Let n ≥ 3 be a natural odd number. Prove that there is no

matrix M ∈Mn(R) such that M2+ In = 0. What happens if n is even or if instead

of K = R we take K = C?

Exercise 12.57. Compute

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · · · · 1

1 0 1 · · · 1
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1

1 . . . . . . 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
where dij = 1 if i ̸= j, d11 = 1, dii = 0 if i > 1.

Exercise 12.58. Let a ∈ R. For every x ∈ R consider the matrix

An(x) :=



x a · · · · · · a

a x a · · · a
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

a · · · · · · a x


∈Mn(R)

with aij = a if i ̸= j, aii = x. Prove that:

detAn(x) = (x+ (n− 1)a)(x− a)n−1 ,∀x ∈ R

(Hint: start by adding all columns first).
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Exercise 12.59. Factor the polynomial

Q(x) =

∣∣∣∣∣∣∣∣∣
x a b x

a x x b

b x x a

x b a x

∣∣∣∣∣∣∣∣∣ .
Exercise 12.60. Let A ∈M3(R), A = (aij), with aij ∈ {±1},∀i, j.

(1) Show that detA ≤ 6.

(2) Note that detA is an even integer.

(3) Show that detA ≤ 4. Give an example of a matrix A (with aij ∈ {±1},∀i, j)
with detA = 4.

Exercise 12.61. Let f1, . . . fn ∈ R[X] be polynomials whose degree is at most

n−2. Let a1, . . . an be any real numbers. Show that the determinant of the matrix:

M =


f1(a1) f1(a2) . . . f1(an)

f2(a1) f2(a2) . . . f2(an)
...

...
. . .

...

fn(a1) fn(a2) . . . fn(an)


is zero.

Exercise 12.62. Let E := M2(R) be the R-vector space of 2 × 2 matrices with

real coefficients

A =

(
a b

c d

)
∈ E.

and f : E → E :M → AM .

(i) Show that f is linear.

(ii) Compute the determinant of the endomorphism f .

Exercise 12.63. (1) In R3 consider the vectors v1 = (1, 0, 0), v2 = (0,−1, 0),

v3 = (1, 0,−1). By calculating a determinant, show that B = (v1, v2, v3) is a

basis of R3.

(2) Let f : R3 → R3 be such that

Mat(f ; C, C) =

 0 1 0

1 0 1

0 0 −1


where C indicates the canonical basis. Show thatM is invertible and calculate

M−1. Conclude that f is an automorphism.

(3) Determine Mat(f−1;B,B).
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Exercise 12.64. Let M ∈Mn(K), M = (mij) where

mij =


1 if j = i− 1, j < n;

1 if j = n, i = 1;

0 otherwise.

Prove that M is invertible and compute M−1 (Hint: see M as the matrix of an

endomorphism).

Exercise 12.65. Let M ∈Mn(R) be of the following form

M =

(
A B

0 C

)
where A is an r × r square matrix.

(i) Show, using the edge method, that if A is invertible then

rk(M) = rk(A) + rk(C).

(ii) If A is not invertible, is it still true that rk(M) = rk(A) + rk(C)?

(iii) Show (without using any determinant) that we always have

rk(M) ≥ rk(A) + rk(C)

by considering the columns of M .

Exercise 12.66. Determine the rank of the following matrices:

A =


1 7 5 3 2

0 4 2 2 0

2 −2 4 0 1

3 −1 7 1 3

 , B =


2 −3 4

3 1 5

−1 0 −1

0 2 4

 , C =


3 1 0 −3 0

−3 0 1 6 1

2 0 −1 −4 0

−4 −1 0 5 1

 .

Exercise 12.67. Let n ≥ 3 be an odd integer. Show that there is no M ∈Mn(R)
such that M2 + In = 0.

Exercise 12.68. Let A be an n× n matrix, with integer coefficients (A ∈Mn(Z))
such that det(A) = 2. Prove that A has at least n− 1 odd coefficients.

Exercise 12.69. Let Cn be the n × n matrix whose diagonal entries are 2, the

entries on the superdiagonal and on the subdiagonal are 1, and the remaining entries

are 0:

Cn =



2 −1 0 . . . 0

−1 2 −1 . . . 0
...

...
...

. . .
...

0 . . . −1 2 −1

0 . . . 0 −1 2

 .
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(i) Prove that det(Cn) = n+ 1.

(ii) Let (Cn)−1 be the inverse of Cn, and di,i the i-th diagonal entry of (Cn)−1.

Prove that

di,i =
i(n− i+ 1)

n+ 1
for i = 1, . . . , n. In particular,

di,i = dn−i+1,n−i+1

for i = 1, . . . , ⌊n+1
2 ⌋.

(iii) Show that if n ≥ 8 then di,i ≥ 2 for i = 3, . . . , n− 2.





Chapter 13

Diagonalization

We have seen in Proposition 11.25 that, if f : E → F is a linear map between

two K-vector spaces, it is possible to find bases B, C of E,F such that Mat(f ;B, C)
is particularly simple. Now, we face the same problem for endomorphisms of a

space E. More precisely, if f ∈ End(E) we ask if there exists a B of E such that

Mat(f ;B,B) is simple. Note that we take the same basis in the domain and in the

codomain. In other words we are studying similarity of matrices.

What does simple matrix mean? The simplest we can hope for is a diagonal

one. In fact, the simplest linear maps are homotheties, i.e. maps of the form

g : E → E : v → αv. If B is any basis of E, Mat(g;B,B) = αIn. Finding a

basis B such that Mat(f ;B,B) is a diagonal matrix means expressing f as a sum

of homotheties (relative to certain particular subspaces). As we will see this is not

always possible.

The diagonalization problem for square matrices is posed in these terms: Let

M ∈ Mn(K), does there exist a diagonal matrix, D, such that M ≈ D (i.e. such

thatM is similar to D)? Recall thatM ≈ D ⇔ ∃P invertible, such that PDP−1 =

M .

This problem relates to the previous one in the following way. Let B be a basis

of E and M = Mat(f ;B,B). If C is a basis such that Mat(f ; C, C) = D is diagonal,

then

EC
P→ EB

M→ EB
P−1

→ EC

and we conclude that D = P−1MP . Therefore M ≈ D.

Conversely, letD = P−1MP , whereD is diagonal, and E aK-vector space with

dim(E) = n. Let B be a basis of E and f ∈ End(E) such that Mat(f ;B,B) = M .

163
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The usual diagram

EC
P→ EB

M→ EB
P−1

→ EC

tells us that D = Mat(f ; C, C).

We conclude that the problem of diagonalization of endomorphisms is equiva-

lent to the problem of diagonalization of matrices.

Suppose that f is diagonalizable, that is, suppose

D = Mat(f ;B,B) =


λ1 0 0

0
. . . 0

0 0 λn

 .

If B = (e1, . . . , en) we have f(ei) = λiei. Hence, the vectors ei and f(ei) lie on

the same line. In other words, the line ⟨ei⟩ is stable under f i.e. f(⟨ei⟩) = ⟨ei⟩ for
i = 1, . . . , n.

We now show that not all endomorphisms are diagonalizable. Let E be a 2-

dimensional R-vector space and B = (e1, e2) a basis of E. Let f ∈ End(E) be such

that f(e1) = −e2 and f(e2) = e1. So

M = Mat(f ;B,B) =

(
0 1

−1 0

)
.

Let v ∈ E, v ̸= 0, v = ae1 + be2, such that f(v) = λv. We have f(v) = −ae2 + be1.

Since f(v) = λv, we get f(v) = −ae2 + be1 = λae1 +λbe2. So b = λa and −a = λb.

That is, −a = λ2a. We have a ̸= 0 (otherwise a = b = 0 and v = 0). Dividing by a

we get λ2 = −1 but this is impossible in R.

We can also think geometrically. The map f is a rotation of 90 degrees clock-

wise. This map has no fixed line, so there exists no non-zero vector such that

f(v) = λv.

13.1. Eigenvectors and eigenvalues

Let us begin with a definition.

Definition 13.1 (Eigenvector). Let E be a K-vector space and f ∈ End(E). An

eigenvector of f is a vector v ∈ E such that:

(1) v ̸= 0;

(2) f(v) = λv for some λ ∈ K.

Remark 13.2. We have that f is diagonalizable if and only if there exists a basis

of E made of eigenvectors.
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Definition 13.3 (Eigenvalue). Let E be a K-vector space and f ∈ End(E). A

scalar λ ∈ K is an eigenvalue of f if there exists v ∈ E, v ̸= 0, such that f(v) = λv.

In this case v is an eigenvector, we say that v is associated to λ.

Each eigenvector is associated to a single eigenvalue. However, multiple eigen-

vectors can be associated with an eigenvalue. For example, if f ∈ End(E) is not

injective, 0 is an eigenvalue and every non-zero vector of Ker(f) is an eigenvector

associated to the eigenvalue 0.

Lemma 13.4. Let f ∈ End(E). Then λ is an eigenvalue of f if and only if

λIdE − f is not injective.

If λ is an eigenvalue of f , the set of eigenvectors of f associated to the eigen-

value λ is Ker(λIdE − f) \ {0}.

Proof. Follows from the definitions. □

Definition 13.5 (Eigenspace). Let f be an endomorphism of the K-vector space

E. For every λ ∈ K we set Ef (λ) = Ker(λIdE − f). If λ is an eigenvalue of f we

say that

Ef (λ) = Ker(λIdE − f) = {v ∈ E | f(v) = λv}

is the eigenspace associated to λ.

Remark 13.6. (1) λ is eigenvalue of f ⇔ Ef (λ) ̸= {0}.

(2) Let Ef (λ) be an eigenspace of f and v ∈ Ef (λ). We have f(v) = λv ∈
Ef (λ) (since Ef (λ) is a subvector space being the kernel of a linear map). So

f(Ef (λ)) ⊂ Ef (λ), i.e. Ef (λ) is stable under f , in particular the restriction

of f to Ef (λ) is an endomorphism of Ef (λ). This endomorphism is nothing

but the homothety Ef (λ) → Ef (λ) : v → λv.

Lemma 13.7. Let E be a K-vector space and f ∈ End(E). Let λ1, . . . , λm be dis-

tinct eigenvalues of f (i ̸= j ⇒ λi ̸= λj) and v1, . . . , vm the associated eigenvectors

(f(vi) = λivi,∀i). Then the vectors v1, . . . , vm are linearly independent.

Proof. We proceed by induction on m. The case m = 1 is clear (v1 ̸= 0). Let us

assume the lemma proved for m− 1. Let

α1v1 + · · ·+ αmvm = 0 (⋆).

We have

f(α1v1 + · · ·+ αmvm) = α1λ1v1 + · · ·+ αmλmvm = 0 (⋆⋆).

We multiply (⋆) by λ1 and subtract the result from (⋆⋆). Then

(λ2 − λ1)α2v2 + · · ·+ (λm − λ1)αmvm = 0.
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By induction hypothesis the m − 1 vectors v2, . . . , vm are independent. So (λi −
λ1)αi = 0,∀i ≥ 2. Since λi − λ1 ̸= 0, this implies αi = 0,∀i ≥ 2. So (⋆) becomes

α1v1 = 0, and since v1 ̸= 0 we get α1 = 0. In conclusion, all αi are zero and

v1, . . . , vm are independent. □

Corollary 13.8. Let f ∈ End(E), where E is a K-vector space of dimension n. If

f has n distinct eigenvalues then f is diagonalizable.

Proof. Follows from Lemma 13.7. □

Corollary 13.9. Let λ1, . . . , λm be distinct eigenvalues of f ∈ End(E). Then the

corresponding eigenspaces Ef (λ1), . . . , Ef (λm) are in direct sum.

Proof. We need to show that Ef (λi) ∩
∑

j ̸=iEf (λj) = {0} for every i. If vi =∑
j ̸=i vj , then v1, . . . , vm are dependent, but this is not possible because the vi are

eigenvectors corresponding to distinct eigenvalues (Lemma 13.7). □

13.2. The characteristic polynomial

As we have already observed, f ∈ End(E) is diagonalizable if and only if there

exists a basis made of eigenvectors. Each eigenvector belongs to an eigenspace and

to find these eigenspaces it is best to first find the eigenvalues.

Proposition 13.10. Let f ∈ End(E), where E is a K-vector space. Let B be a

basis of E and M = Mat(f ;B,B). The following are equivalent:

(1) λ is an eigenvalue of f ;

(2) λIn −M is not invertible;

(3) det(λIn −M) = 0.

Proof. It is an immediate consequence of the fact, already observed before, that

λ is an eigenvalue if and only if Ker(λIdE − f) ̸= {0}. □

This proposition allows us to determine the eigenvalues of f . The idea is to

compute det(xIn −M) = P (x), the eigenvalues will be those values λi such that

P (λi) = 0.

If M = (aij), xIn −M = (xδij − aij) using the determinant formula we have

(13.1) P (x) =
∑
σ∈Sn

ε(σ)(xδσ(1)1−aσ(1)1) · · · (xδσ(i)i−aσ(i)i) · · · (xδσ(n)n−aσ(n)n).

In particular, P (x) is a polynomial in x of degree ≤ n. If σ = Id we have (x −
a11) . . . (x−aii) . . . (x−ann) = xn− (a11+ · · ·+ann)xn−1+ terms of lower degree.
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If σ ̸= Id there exist at least two indexes i, j such that σ(i) ̸= i and σ(j) ̸= j,

then δσ(i)i = δσ(j)j = 0 and ε(σ)(xδσ(1)1 − aσ(1)1) · · · (xδσ(n)n − aσ(n)n) has degree

at most n− 2.

Finally, the constant term of the polynomial P (x) is P (0) = det(−M) =

(−1)n det(M). We proved the following:

Proposition 13.11. With the previous notations P (x) is a monic polynomial of

degree n in x, more precisely:

P (x) = xn − tr(M)xn−1 + · · ·+ (−1)n det(M)

where tr(M) := a11 + · · ·+ ann (tr(M) is the trace of the matrix M). The eigen-

values of f (and hence of M) are the roots of the polynomial P (x).

This calculation seems to depend onM . What happens if instead of considering

M we consider N = Mat(f ; C, C) where C ̸= B is another basis of E?

We find the same polynomial. In fact, the two matrices M and N are similar

so there exists an invertible P such that M = P−1NP . We have det(xIn −M) =

det(P−1xInP −P−1NP ) = det(P−1(xIn−N)P ) = detP−1 det(xIn−N).detP =

det(xIn −N). This proves the following:

Proposition 13.12. With the previous notations:

(1) The polynomial P (x) does not depend on the chosen basis; it is therefore an

invariant that we can associate to f .

(2) The polynomial P (x) is the characteristic polynomial of f (or of M); we will

denote it by Pf (x) (or PM (x)).

(3) The eigenvalues of f are the roots, in K, of Pf (x).

(4) Two similar matrices have the same characteristic polynomial.

13.3. Roots of a polynomial

Before moving on, let us make a reminder about the roots of a polynomial with

coefficients in a field K. Let P (x) ∈ K[x]. An element a ∈ K is a root of P (x)

if P (a) = 0. This is equivalent to saying that (x − a) | P (x). It is clear that if

(x − a) | P (x) then P (a) = 0. There are various ways of looking at the other

implication.

We can compute the Euclidean division of P (x) by (x − a) that is P (x) =

(x− a)Q(x) + r where r is a constant. Setting x = a, since P (a) = 0, we get r = 0.

So P (x) = (x− a)Q(x).

Or we can think like this: The result is clear if a = 0, 0 is the root of P (x) if

and only if the constant term of P (x) is zero. In the general case we set X = x− a
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(therefore x = X + a). We have P (x) = P (X + a) =: R(X). Hence 0 is a root of

R(X) ⇔ P (a) = 0 ⇔ X | R(X) ⇔ (x− a) | P (x).

The advantage of this proof is that it works for K = A, A being any commu-

tative ring.

If a is a root of P (x), the multiplicity of a as a root of P (x) is the greatest

power of x− a that divides P (x).

Let P (x) = x2 +1. Clearly P (x) has no root in R. Instead P (x) has two roots

in C and they are ±i. Whether or not the roots of a polynomial exist depends on

where we look for the roots. If one looks for solutions in R, then there are none. If

one searches for solutions in C, then there are two.

Let P (x) ∈ K[x], K a field, P (x) of degree n. Then P (x) has at most n roots

in K (counted with multiplicity).

If a1 is a root with multiplicity m1, then P (x) = (x − a1)
m1Q1(x), with

Q1(a1) ̸= 0. If a2 is a root with multiplicity m2 then P (x) = (x − a1)
m1(x −

a2)
m2R(x), with R(a1)R(a2) ̸= 0.

In fact, if a2 is a root, then (x − a2) | P (x) = (x − a1)
m1Q(x). If x = a2, we

have 0 = (a2 − a1)
m1Q(a2). Since a2 ̸= a1, (a2 − a1)

m1 ̸= 0, because K is a field

(this is not necessarily true if K = A is any commutative ring). Therefore, we have

Q(a2) = 0 i.e. (x − a2) | Q(x) i.e. Q(x) = (x − a2)Q1(x). If a2 is a root with

multiplicity m2 > 1 then (x−a2)m2 | P (x) = (x−a1)m1(x−a2)Q1(x). Dividing by

x−a2 and repeating the previous argument we see that (x−a2) | Q1(x). Continuing

in this way we get P (x) = (x−a1)m1(x−a2)m2R(x) with R(a1) ̸= 0 and R(a2) ̸= 0.

Repeating this process for each root we have P (x) = Q1(x) . . . Qt(x)R(x),

where Qi(x) = (x − ai)
mi , R(a) ̸= 0 ∀a ∈ K, and where the ai are the roots in K

of the polynomial P (x). In any case we have m1 + · · ·+mr ≤ n. This proves:

Proposition 13.13. Let P (x) ∈ K[x] be a polynomial of degree n. We have

P (x) = (x− a1)
m1 . . . (x− ar)

mrR(x)

where R(a) ̸= 0∀a ∈ K. In particular, m1 + · · ·+mr ≤ n.

In other words, a polynomial of degree n, with coefficients in a field K, has at

most n roots (counted with multiplicity) in K.

It is not always true that a polynomial of degree n with real coefficients has n

real roots. For example P (x) = x2 + 1 has no real root. The fundamental theorem

of algebra states that this situation does not arise for polynomials with coefficients

in C:
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Theorem 13.14 (Fundamental theorem of algebra). Let P (x) ∈ C[x] be a non-

constant polynomial. Then P (x) admits a complex root, that is, there exists a ∈ C
such that P (a) = 0.

This implies that if P (x) ∈ C[x] is a polynomial of positive degree then

P (x) = c

r∏
i=1

(x− ai)
mi

where m1 + · · ·+mr = n and c ∈ C.

Proof. We refer to [DF04, Theorem 35]. □

Theorem 13.14 tells us that C is algebraically closed.

Definition 13.15. A field K is algebraically closed if one of two following equiva-

lent conditions hold.

(1) For every polynomial P (x), of positive degree, there exists a ∈ K such that

P (a) = 0.

(2) For every polynomial P (x) of degree n ≥ 1 there is a factorization

P (x) = c

r∏
i=1

(x− ai)
mi

where m1 + · · ·+mr = n and c ∈ K.

Note that (1) ⇒ (2). In fact, if P (a) = 0, (x − a) | P (x), after dividing the

necessary number of times, we obtain P (x) = (x − a)m1Q(x), with Q(a) ̸= 0. If

Q has positive degree, then there exists a2 such that Q(a2) = 0. Repeating the

previous reasoning we obtain P (x) = (x − a1)
m1(x − a2)

m2Q1(x). Proceeding in

this way we get P (x) = (x−a1)m1 · · · (x−ar)mrR(x), with R(a) ̸= 0,∀ ∈ K. Since

K is algebraically closed R(x) = c is a constant.

The interesting thing is that every fieldK is contained in an algebraically closed

field, the smallest with respect to inclusion algebraically closed field that contains

K is called the algebraic closure of K and is denoted by K. For example, the

algebraic closure of R is C. The algebraic closure of Q, Q, is not C but the field of

algebraic numbers:

Q = {z ∈ C | z is the root of a polynomial in Q[x]}.

If z ∈ C\Q we say that z is transcendental. For instance, π and e (Euler’s number)

are transcendental. One can show that Q is countable (since Q is). Since R (resp.

C) is uncountable if one takes a random real (resp. complex) number it will most

likely be a transcendental number.

The thing you need to keep in mind is:
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Remark 13.16. Each field is contained in its algebraic closure, K, which is an

algebraically closed field.

This means that somewhere every polynomial factors as a product of polyno-

mials of degree one. In particular, a polynomial with real coefficients has all its

roots in C.

13.4. The main theorem on diagonalization

We have seen that an eigenvalue λ is a root of the characteristic polynomial, Pf (x),

and that each eigenvalue is associated to an eigenspace Ef (λ).

Definition 13.17. Let E be a K-vector space, f ∈ End(E) and λ an eigenvalue

of f .

(1) The algebraic multiplicity of λ, ma(λ), is the multiplicity of λ as a root of

Pf (x).

(2) The geometric multiplicity of λ, mg(λ), is the dimension of the eigenspace

Ef (λ).

Lemma 13.18. Let E be a K-vector space, f ∈ End(E) and λ an eigenvalue of

f . Then the geometric multiplicity of λ is always less than or equal to its algebraic

multiplicity:

1 ≤ mg(λ) ≤ ma(λ).

Proof. We have mg ≥ 1. Suppose dimEf (λ) = t = mg(λ). Let (v1, . . . , vt) be a

basis of Ef (λ). We can complete to a basis of E: B = (v1, . . . , vt, wt+1, . . . , wn). If

M = Mat(f ;B,B) then

M =

(
λIt A

0 B

)
.

Here B is an (n− t)× (n− t) square matrix. We have

xIn −M =

(
(x− λ)It −A

0 xIn−t −B

)
and applying Proposition 12.35 we get

Pf (x) = det(xIn −M) = det((x− λ)It) det(xIn−t −B) = (x− λ)t det(xIn−t −B).

It follows that (x−λ)t | Pf (x). Then t ≤ ma(λ) and the proposition is proved. □

Now, we can state the main result.

Theorem 13.19. Let E be a K-vector space and f ∈ End(E). The endomorphism

f is diagonalizable if and only if the following two conditions hold:
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(1) The characteristic polynomial Pf (x) has all (counted with multiplicity) its

roots in K.

(2) For each eigenvalue λ of f we have ma(λ) = mg(λ).

Proof. If f is diagonalizable there exists a basis made of eigenvectors and therefore

E = Ef (λ1) ⊕ · · · ⊕ Ef (λm). So
∑
mg(λi) = n := dimE. Since ma(λi) ≥ mg(λi)

(Lemma 13.18),
∑
ma(λi) ≥

∑
mg(λi) = n. On the other hand n ≥

∑
ma(λi),

because Pf (x) has degree n. So we have
∑
ma(λi) =

∑
mg(λi) = n. This shows

that Pf (x) has all its roots in K. Since ma(λi) ≥ mg(λi), we have mg(λi) =

ma(λi), ∀i.

Vice versa, if the two conditions are satisfied
∑
mg(λi) =

∑
ma(λi) = n (the

first equality follows from (2), the second from (1)). From
∑
mg(λi) = n it follows

that E = Ef (λ1) ⊕ · · · ⊕ Ef (λm), so there exists a basis of eigenvectors and f is

diagonalizable. □

Let A ∈ M3(R) how can we establish if A is diagonalizable? We can always

think that A = Mat(f ; C, C) where f ∈ End(E), E = R3, C the canonical basis. To

diagonalize A is equivalent to diagonalize f .

(1) We calculate PA(x) = det(xI3−A). Be careful since we then want to find the

roots, it is convenient to factor.

(2) The roots of PA(x) are found, let us assume as will often (but not always) be

the case that there is a simple root α and a double root β. So PA(x) has all

its roots in R. The first condition of Theorem 13.19 is satisfied.

(3) We need to verify the second condition, that is, we need to see if Ef (α) has

dimension one and if Ef (β) has dimension two. The verification in the case

Ef (α) is immediate: from Lemma 13.18 it immediately follows that mg(α) =

ma(α) = 1.

(4) For Ef (β) we proceed like this: by the rank theorem Ef (β) = Ker(βI3−f) has
dimension two if and only if βI3−A has rank one. The rank of βI3−A is then

calculated: if it is one f is diagonalizable, otherwise f is not diagonalizable

(observe that the rank of βI3 −A is at most 2).

Example 13.20. Consider the matrix

A =

 4 3 −3

−36 −20 18

−30 −15 13

 .

Let us see if A is diagonalizable.
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(1) Calculation of the characteristic polynomial PA(x) = det(xI3 −A). We have:∣∣∣∣∣∣∣
x− 4 −3 3

36 x+ 20 −18

30 15 x− 13

∣∣∣∣∣∣∣ =C2→C2+C3
=

∣∣∣∣∣∣∣
x− 4 0 3

36 x+ 2 −18

30 x+ 2 x− 13

∣∣∣∣∣∣∣

=R2→R2−R3=

∣∣∣∣∣∣∣
x− 4 0 3

6 0 −x− 5

30 x+ 2 x− 13

∣∣∣∣∣∣∣ = −(x+ 2)[(x− 4)(−x− 5) + 18]

From which we obtain PA(x) = (x + 2)2(x − 1). Having two zeros on the

second column we automatically have a factor (therefore a root) of PA(x).

(2) There are therefore two eigenvalues: λ1 = −2 (with multiplicity two) and

λ2 = 1. The eigenspace relative to λ2 = 1 necessarily has dimension one. The

matrix is diagonalizable if and only if the eigenspace relative to λ1 = −2 has

dimension two, that is, if and only if −2I3 −A has rank one. We have

−2I3 −A =

 −6 −3 3

36 18 −18

30 15 −15


which clearly has rank one (C1 = 2C2, C3 = −C2). So A is diagonalizable.

To calculate det(xIn − A) some try to modify A with combinations of

columns and rows. Once they obtain a simpler matrix, A′, they calculate

det(xIn − A′). This is not good. What is the problem? The problem is that

the matrix A′ obtained from the matrix A after manipulation on the rows or

columns is not necessarily similar to the starting matrix A, in other words the

endomorphism considered could be different from f .

Let us continue the previous example. The eigenspace relative to −2 is given

by the system:  −6 −3 3

36 18 −18

30 15 −15


 x

y

z

 =

 0

0

0

 .

Since this eigenspace has dimension two it is defined by a single equation, for

example: −6x − 3y + 3z = 0. For x = 0 we get y = z and we have the vector

v1 = (0, 1, 1). For y = 0 we get z = 2x and we have the vector v2 = (1, 0, 2).

The vectors v1, v2 are independent and form a basis of the eigenspace relative to

λ1 = −2.
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The eigenspace relative to λ2 = 1 is given by the system: −3 −3 3

36 21 −18

30 15 −12


 x

y

z

 =

 0

0

0

 .

Since the eigenspace has dimension one we need two independent equations, for

example: {
−3x− 3y + 3z = 0;

36x+ 21y − 18z = 0.

From the first comes x + y = z (∗); the second is rewritten as 12x + 7y − 6z = 0,

and plugin in (∗) we obtain y = −6x, z = −5x. Hence, v3 = (1,−6,−5) is a basis

of the eigenspace relative to λ2 = 1.

In conclusion B = (v1, v2, v3) is an eigenvector basis.

When are two matrices A,B ∈ Mn(K) similar? In general, the answer to this

question is very complicated.

Lemma 13.21. Let A,B ∈ Mn(K). Suppose A diagonalizable: A ≈ D, D diag-

onal. Then A ≈ B if and only if B is diagonalizable with the same eigenvalues

(counting the multiplicities) of A, that is if and only if B ≈ D.

Proof. The similarity relation is an equivalence relation. □

What happens if neither A nor B is diagonalizable? This is the hard case and

we will not develop a general method to decide. Let us consider the two matrices

with real coefficients (K = R):

A =

 1 1 0

0 1 0

0 0 1

 , B =

 1 1 0

0 1 1

0 0 1

 .

It is clear (Corollary 12.30) that PA(x) = PB(x) = (x − 1)3. So there is a unique

eigenvalue λ = 1, with algebraic multiplicity three. Neither A nor B is diagonal-

izable. In fact, if A were diagonalizable it would be similar to I3, but a matrix

similar to I3 is equal to I3 and A ̸= I3. Same reasoning for B. We can consider the

dimension of the eigenspaces. We have EA(1) = Ker(I3 −A). The matrix

I3 −A =

 0 −1 0

0 0 0

0 0 0
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clearly has rank one, so dimEA(1) = 2. Instead

I3 −B =

 0 −1 0

0 0 −1

0 0 0


has rank two, so dimEB(1) = 1. We conclude that A is not similar to B. In fact, if

A and B were similar they would represent the same endomorphism f in different

bases (Proposition 11.16) and therefore dimEf (1) = dimEA(1) = dimEB(1), but

this is not the case.

We note that if we had found dimEA(1) = dimEB(1), we would not have been

able to conclude A ≈ B. In this case one can try to find an invertible P such that

AP = PB (homogeneous linear system of 9 equations in 9 unknowns).

We observe that the matrices in the example have the same determinant and

the same trace but they are not similar.
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Exercises

Exercise 13.22. Find two matrices in M2(R) with the same characteristic poly-

nomial but not similar.

Exercise 13.23. Let E be a K-vector space and u, v two endomorphisms of E.

If u is bijective, prove that u ◦ v and v ◦ u have the same characteristic polynomial

(Hint: consider u−1 ◦ u ◦ v ◦ u).

Exercise 13.24. Consider the matrix

M =

 1 0 0

0 1 0

1 0 1

 .

1) Calculate the characteristic polynomial of M and conclude that M is not diag-

onalizable.

2) Conclude that for every n ≥ 3 there exists a non-diagonalizable M ∈Mn(K).

Exercise 13.25. 1) Show that every symmetric matrix, M ∈ M2(R), is diagonal-
izable.

2) Let A ∈M2(C)

A =

(
i 1

1 −i

)
Observe that A is symmetric. Is the matrix A diagonalizable?

Exercise 13.26. 1) Let E be a K-vector space and f ∈ End(E) such that f is not

injective and there exists a hyperplane H ⊂ E such that the restriction of f to H

is the identity. Is f diagonalizable?

2) For every n ≥ 2 give an example of an endomorphism f such that there ex-

ists a hyperplane H ⊂ E such that the restriction of f to H is the identity and

furthermore such that

(i) f is surjective, f ̸= Id and f is diagonalizable.

(ii) f is surjective and f is not diagonalizable.

Exercise 13.27. Let E be a K-vector space where K is a field of characteristic

different from two. Let f ∈ End(E) be such that f ◦ f = IdE . We set E+ = {x ∈
E | f(x) = x} and E− = {x ∈ E | f(x) = −x}.
1) Show that E+ ⊕ E− = E.

2) Conclude that f is diagonalizable.



176 13. Diagonalization

Exercise 13.28. Let A ∈M3(K) be the following matrix:

A =

 1 1 −1

−1 0 1

1 1 0

 .

State whether A is diagonalizable where K = R,C,Z/2Z.

Exercise 13.29. Let E be a finite-dimensional C-vector space and f an endomor-

phism of E. It is assumed that there exists a subvector space V ⊂ E such that

f(V ) ⊂ V (V is stable under f).

1) Prove that V contains an eigenvector of f .

2) Let g ∈ End(E) be an endomorphism that commutes with f . Show that every

eigenspace of f is stable under g.

3) Deduce that f and g have an eigenvector in common.

Exercise 13.30. (1) Does there exist a linear map f : R3 → R3 such that

f((0, 1,−1)) = (2, 0, 0) and such that V = {(x, y, z) ∈ R3 | y = z} is the

eigenspace relative to the eigenvalue λ = 2?

(2) Is such an f , if it exists, uniquely determined?

(3) If the answer to (1) is positive, determine the third eigenvalue.

Exercise 13.31. Consider the matrix

A =

 4 3 −3

−36 −20 18

−30 −15 13

 ∈M3(R).

Show that A is diagonalizable and give a basis of eigenvectors.

Exercise 13.32. Are there two matrices M,N ∈M2(R), M ̸= N , that are similar

but not diagonalizable? If the answer is yes, give an example. If the answer is no,

explain why.

Exercise 13.33. Let A ∈ Mn(R) be such that A2 + In = 0. Show that A is not

diagonalizable.

Exercise 13.34. Let f : R3 → R3 be an endomorphism such that

Mat(f ; C, C) =: A =

 5 9 −3

0 −1 0

6 9 −4


where C = (e1, e2, e3) is the canonical basis.

(1) Show that f is diagonalizable.

(2) Determine a basis of eigenvectors.
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(3) Let g ∈ End(R3) be such that (g ◦ f)(e1 + e3) = 0 and g(e2) = e2.

(a) Show that if g(e1) = αe1 then g is diagonalizable (choose an appropriate

basis).

(b) We assume e1 is not an eigenvector of g and g(e1) ∈ ⟨e1, e2⟩. Observe

that g(e1) = ae1 + be2, with b ̸= 0.

(c) With the notations and assumptions of (b) show that g is diagonalizable

⇔ a ̸= 1.

Exercise 13.35. State whether the following matrices with real coefficients are

diagonalizable or not:

A =

 0 −3 −1

0 −1 0

−1 0 0

, B =

 0 −1 −3

0 0 −1

−1 0 0

, C =

 −1 0 −3

0 0 −1

0 −1 0

.

Exercise 13.36. Consider the matrix

A =

 3 6 −1

0 1 0

2 0 0

 ∈M3(R).

Compute the trace of A8.

Exercise 13.37. Let A ∈Mn(R).

(1) Show that if A is diagonalizable then A2 is also diagonalizable.

(2) Is the converse of (1) true?

Exercise 13.38. (1) Let E be a K-vector space and f ∈ End(E). Show that if f

is not a homothety (i.e. f is not of the form λIdE , λ ∈ K), then there exists

v ∈ E such that v and f(v) are linearly independent.

(2) Show that every matrix M ∈M2(K) is similar to a matrix of the form(
0 a

1 b

)
or to λI2 for some λ ∈ K.

(3) Show that if M ∈M2(K) then

Tr(M2) = Tr(M)2 − 2 det(M)

where as usual Tr(M) indicates the trace of matrix M .

Exercise 13.39. Let E be a K-vector space of dimension n and let f an endomor-

phism of E that is not a homothety.

(1) Show that there exists a basis (e1, . . . , en) of E such that f(e1) = e2.
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(2) Let A ∈ Mn(K) be a zero trace matrix (i.e. Tr(A) = 0). Show, using (i),

that A is similar to a matrix whose diagonal contains only zeros (reason by

induction on n).

Exercise 13.40. Without using determinant theory compute

|An(x)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x a · · · · · · a

a x a · · · a
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . a

a · · · · · · a x

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Exercise 13.41. Consider the following matrices in M3(R):

A =

 1 1 0

0 1 1

0 0 1

 , B =

 1 0 0

0 1 1

0 0 1

 .

(1) Are the matrices A and B diagonalizable?

(2) Are the matrices A and B similar?

Exercise 13.42. Let t ∈ R and

Mt =


0 t 0 0

1 0 0 0

0 0 0 t

0 0 1 0

 ∈M4(R).

(1) Determine D := {t ∈ R |Mt is diagonalizable}.

(2) Consider the matrix

B =


0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

 .

Determine S := {t ∈ R |Mt is similar to B}.

Exercise 13.43. Let E =M2(R) be the R-vector space of 2× 2 matrices with real

coefficients, and

A =

(
a b

c d

)
∈ E.

(1) Show that f : E → E :M → AM is linear.

(2) Show that f is diagonalizable if and only if A is diagonalizable.



13.4. The main theorem on diagonalization 179

Exercise 13.44. Let f be an endomorphism of the K-vector space E.

(i) Show that if Ker(f) ∩ Im(f) ̸= {0} then f is not diagonalizable.

(ii) Show that f is diagonalizable ⇔ Ker(f)∩ Im(f) = {0} and f| Im(f) is diagonal-

izable. Here f| Im(f) is the restriction of f to Im(f). Note that Im(f) is stable for

f .

Exercise 13.45. We denote by Ir ∈Mn(K) the matrix

Ir =

(
Ir 0

0 0

)
where Ir is the r × r identity matrix and the zeros indicate null matrices of the

appropriate order. Let N ∈Mn(K) and write

N =

(
N1 N2

N3 N4

)
where N1 is a square r × r matrix, N2 ∈ Mr,n−r(K), N3 ∈ Mn−r,r(K) and N4 ∈
Mn−r(K).

(i) Show that

IrN =

(
N1 N2

0 0

)
and

NIr =

(
N1 0

N3 0

)
by considering the linear maps associated to the matrices Ir, N .

(ii) Conclude that IrN and NIr have the same characteristic polynomial.

(iii) Let A,B ∈Mn(K). Let r be the rank of A. We know that there exist invertible

matrices P,Q such that A = PIrQ. Set B = QBP so that B = Q−1BP−1. Show

that AB is similar to IrB while BA is similar to BIr. Conclude that AB and BA

have the same characteristic polynomial.

Exercise 13.46. Let K be a field and A,B ∈ Mn(K). The aim of the exercise is

to show that AB and BA have the same characteristic polynomial and therefore

also the same trace.

(i) If A (or B) is invertible show that AB and BA are similar. In particular,

PAB(x) = PBA(x).

(ii) Assumed K to be infinite. If α ∈ K, observe that αI + A is invertible ⇔ α is

not an eigenvalue of −A. We set q(α, x) = P(αI+A)B(x)−PB(αI+A)(x). Show that

q(α, x) is a polynomial in α, x.

(iii) An algebraic subset Z ⊂ K2 is the locus of the zeros of a finite set of polynomials

i.e. the set of solutions of a system of polynomial equations: Z = {u ∈ K2 | P1(u) =

· · · = Pt(u) = 0}, where Pi ∈ K[x, y].
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The algebraic identity prolongation theorem says that if K is infinite and if a

polynomial P ∈ K[x, y] vanishes on U = K2 \ Z, where Z is an algebraic set, then

P = 0.

With the notations of (ii) observe that q(α, x) ∈ K[α, x] vanishes on U =

K2\
⋃r

i=1Di, where Di is the line of equation α = αi and the αi are the eigenvalues

of A. Conclude that PAB(x) = PBA(x).

(iv) If K is finite, let K be its algebraic closure. Observe that K is infinite. We

consider A,B,AB,BA as elements of Mn(K). The characteristic polynomial of

AB,BA considered as elements of Mn(K) is equal to the characteristic polynomial

of AB,BA considered as elements of Mn(K). Conclude that PAB(x) = PBA(x) in

K[x] even if K is finite.

Exercise 13.47. (i) Let E be a 3-dimensional C-vector space and f, g two endo-

morphisms of E such that g2 = f . Let λ be an eigenvalue of f and W = Ef (λ) the

corresponding eigenspace.

Show that g has an eigenvalue α such that α2 = λ. Furthermore, if W̃ = Eg(α)

is the corresponding eigenspace, show that W̃ ⊂ W (use Exercise ??). Finally,

show with an example that we could have W̃ ̸=W .

(ii) Let A ∈M3(C) be a diagonalizable matrix and

SQ(A) = {M ∈M3(C) |M2 = A}.

State whether SQ(A) is a finite or infinite set (distinguish according to the multi-

plicity of the eigenvalues).

Exercise 13.48. Let K = Z/2Z and f : E → E an invertible endomorphism of

the K-vector space E of dimension n. Show that if f is diagonalizable then f = Id.

Exercise 13.49. Let E be a K-vector space and f : E → E an endomorphism of

rank one.

(1) Show that if f2 ̸= 0 then f is diagonalizable.

(2) Show that if dim(E) > 1 there exist non-diagonalizable rank-one endomor-

phisms of E.

Exercise 13.50. Tell for which values of m the matrix

Am =

 0 0 m

0 m 0

m 0 0

 ∈M3(R)

is diagonalizable, and for which values of m, Am is similar to

B =

 20 3 2008

372 −157 34

−285 129 137

 .
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Exercise 13.51. (1) Let m be a real parameter and

Am =

 −2m 0 −m
0 m 0

m 0 0

 ∈M3(R).

Determine

D := {m ∈ R | Am is diagonalizable}.

(2) Let

B =

 3 2 2

−4 −3 −2

0 0 −1

 .

For which values of m is Am similar to B?

Exercise 13.52. Consider the matrix

N =



6 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1

−3 0 −2 −2 −2 −2 0 0 0 0 −1 −1 −1 −1 −1 −1

−3 −2 0 −2 −2 −2 0 −1 −1 −1 0 0 0 −1 −1 −1

−3 −2 −2 0 −2 −2 −1 0 −1 −1 0 −1 −1 0 0 −1

−3 −2 −2 −2 0 −2 −1 −1 0 −1 −1 0 −1 0 −1 0

−3 −2 −2 −2 −2 0 −1 −1 −1 0 −1 −1 0 −1 0 0

1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1

1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1

1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 0

1 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0

1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1

1 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0

1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0

1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0

1 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0

1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0


and the vector

vK2 = (25,−9,−9,−9,−9,−9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

(1) Show that vK2 is fixed by N .

(2) Show that N2 is the identity matrix.

(3) Compute the eigenvalues and the eigenvectors of N , and show that N is di-

agonalizable.

Exercise 13.53 (Jordan form for nilpotent endomorphisms in dimension three).

Let f ̸= 0 be an endomorphism of R3 such that f3 = 0 (such an endomorphism is

called nilpotent).

(1) Show that f is not invertible and that if λ is an eigenvalue of f then λ = 0.

Is f diagonalizable?

(2) Show that if rk(f) = 2 then f2 ̸= 0.
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(3) Show that if rk(f) = 2 there exists a basis B such that

Mat(f ;B,B) =

 0 1 0

0 0 1

0 0 0


by considering v, f(v), f2(v) for a suitable v.

(4) Show that if rk(f) = 1 then f2 = 0 and there exists a basis D such that

Mat(f ;D,D) =

 0 0 0

0 0 1

0 0 0

 .

(5) Conclude that two nilpotent matrices, M,N ∈M3(R), are similar if and only

if they have the same rank.

Exercise 13.54 (Triangularization of matrices). Let E be a K-vector space of

dimension n, where K is algebraically closed. Let f be an endomorphism of E. The

aim of the exercise is to show that there exists a basis B such that A = Mat(f ;B,B)
is triangular, that is:

A =



λ1 ⋆ ⋆ · · · ⋆

0 λ2 ⋆ ⋆
...

0 0
. . . ⋆

...
...

...
. . .

. . . ⋆

0 0 · · · 0 λn


where λ1, . . . , λn are the n eigenvalues (not necessarily distinct) of f .

(i) Show that f has an eigenvector e1. Complete e1 to a basis B1 = (e1, e2, . . . en)

and write the matrix of f in the basis B1.

(ii) Now, we proceed by induction. The initial case is (i) and now we do the

induction step. Suppose we have a basis Bk = (e1, . . . , ek, ek+1, . . . , en) with respect

to which the matrix of f is of the form
λ1 ⋆ ⋆
...

. . . ⋆

0 . . . λk

A

0n−k,k B


where 0n−k,k stand for the (n − k) × k zero matrix. Let V = ⟨ek+1, . . . , en⟩ and

p : E → V defined by p(
∑n

1 αiei) =
∑n

k+1 αiei. Let f := p ◦ f ◦ i :W ↪→ E → E →
W , where i :W ↪→ E is the natural inclusion.
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Show that f admits an eigenvector vk+1. Complete to a basis (vk+1, . . . , vn) of

W , and show that B = (e1, . . . , ek, vk+1, . . . , vn) is a basis of E. Write the matrix

of f with respect to the basis B and conclude.

Exercise 13.55 (Jordan form for 3 × 3 matrices). Let E be a 3-dimensional K-

vector space, where K is algebraically closed. Let f be a non-diagonalizable endo-

morphism of E.

(1) Note that there are three cases:

(A) f has two distinct eigenvalues, λ, α; α has multiplicity one, λ has multiplicity

two but the corresponding eigenspace, Ef (λ), has dimension one.

(B1) f has a unique eigenvalue, λ, of multiplicity three and the eigenspace Ef (λ)

has dimension two.

(B2) f has a unique eigenvalue, λ, of multiplicity three and the eigenspace Ef (λ)

has dimension one.

(2) Show that:

(i) In case (A) there exists a basis B of E such that

Mat(f ;B,B) =

 λ 1 0

0 λ 0

0 0 α

 .

(ii) In case (B1) there exists a basis B of E such that

Mat(f ;B,B) =

 λ 0 0

0 λ 1

0 0 λ

 .

(iii) In case (B2) there exists a basis B of E such that

Mat(f ;B,B) =

 λ 1 0

0 λ 1

0 0 λ


using the fact that there exists a basis of E in which the matrix of f is triangular

and then making suitable base changes).

Exercise 13.56. Let E be a K-vector space of dimension greater than three. Show

that there exists a nilpotent endomorphism f of E of rank two with f2 = 0 (cf.

Exercise 13.53).

Exercise 13.57 (Nilpotent endomorphisms). Let E be a K-vector space of dimen-

sion n, and f a nilpotent endomorphism of E with fm+1 = 0, fm ̸= 0 (m ≥ 1).

(i) Show that 0 is an eigenvalue of f .

(ii) Show that if λ is an eigenvalue of f then λ = 0.

(iii) Show that fn = 0 (Hint: consider v, f(v), . . . , fm(v) for v appropriate).

(iv) Show that the characteristic polynomial of f is equal to Xn.
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Exercise 13.58 (Rank one endomorphisms, take two). Let E be a K-vector space

of dimension n ≥ 2 and f : E → E an endomorphism of rank one.

(i) Show that there exist w ∈ E, w ̸= 0 and φ : E → K (i.e. φ ∈ E∗) such that

(1) Ker(f) = Ker(φ);

(2) ∀v ∈ E we have f(v) = φ(v)w.

(ii) With the notations of (i), show that f is diagonalizable if and only if w /∈ H

where H := Ker(f).

(iii) Show that f is diagonalizable if and only if f2 ̸= 0.

(iv) Show that a matrix of rank one is similar to
0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

0 · · · 0 λ


with λ ̸= 0 in the diagonalizable case, f2 ̸= 0; or to

0 · · · · · · · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · · · · · · · 0


in the non-diagonalizable case, f2 = 0. In the non-diagonalizable case: let en−2 =

w, en such that φ(en) = 1 and complete the basis of H.

(v) Let Pf (X),Mf (X) be the characteristic and minimal polynomial of f . Show

that:

f is diagonalizable ⇔ Pf (X) = Xn−1(X − λ) with λ ̸= 0 ⇔Mf (X) = X(X − λ).

f is not diagonalizable ⇔ Pf (X) = Xn ⇔Mf (X) = X2.

The aim of the next exercises is to determine the center and generators of

the groups Gl(E), Sl(E). For this we will use Exercise 13.58. These results have

particular relevance in algebra and arithmetic when K is a finite field.

Exercise 13.59 (Transvections, dilations). Let E be aK-vector space of dimension

n and f : E → E an endomorphism, f ̸= Id, such that there exists a hyperplane

H with f|H = IdH .

(i) The following are equivalent:

(1) det(f) = λ ̸= 1;

(2) f is diagonalizable;
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(3) the line D := Im(Id− f) is not contained in H.

In this case we say that f is a dilation of hyperplane H, line D and ratio λ.

(ii) Show that a dilation f is uniquely determined by H, D, λ.

(iii) The following are equivalent:

(1) det(f) = 1;

(2) f is not diagonalizable;

(3) D := Im(Id− f) ⊂ H;

(4) ∃w ∈ H, w ̸= 0 and φ ∈ E∗ with Ker(φ) = H such that f(v) = v + φ(v)w,

∀v ∈ E;

(5) there exists a basis B such

Mat(f ;B,B) =



1 0 · · · · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · · · · · · · 1


.

In this case we say that f is a transvection of hyperplane H and line D.

(iv) Let n = 2 and B = (e1, e2) be a basis of E. Determine all transvections with

H = D = ⟨e1⟩. Conclude that a transvection is not uniquely determined by H and

D.

(v) Let φ ∈ E∗, φ ̸= 0 and w ∈ Ker(φ), w ̸= 0, observe that φ and w determine a

transvection f = τ(φ,w) via f(v) = v+φ(v)w,∀v ∈ E; τ(φ,w) is a transvection of

hyperplane H = Ker(φ), line D = ⟨w⟩. Conversely, if f = τ(φ,w) is a transvection,

f does not determine (φ,w).

Exercise 13.60 (Transvections: inverses, products). Let E be a K-vector space.

(i) Show that if f ∈ End(E) is a transvection, then f−1 is also a transvection (with

the same hyperplane and the same line).

(ii) Show that if f, g are two transvections of hyperplane H, then f ◦g = Id or f ◦g
is a transvection of hyperplane H.

(iii) Show that, in general, the product of two transvections is not a transvection.

Exercise 13.61 (Center of Gl(E) and Sl(E)). Let E be a K-vector space of

dimension n. The aim of this exercise is to determine the center of Gl(E) and of

the special linear group

Sl(E) = {g ∈ Gl(E) | det(g) = 1}.

(i) Let f ∈ End(E) be such that ∀v ∈ E, v and f(v) are dependent. Show that f

is a homothety.
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(ii) Let f = τ(φ,w) be a transvection (Exercise 13.59) and g ∈ Gl(E) an automor-

phism of E. Show that gfg−1 is a transvection of hyperplane g(H) and line g(D)

where H = Ker(φ) and D = ⟨w⟩.
(iii) Let G be a group. Show that

Z(G) = {x ∈ G | xy = yx,∀y ∈ G}

is a normal subgroup of G, remember that a subgroup is normal H �G if ∀x ∈ G :

xHx−1 = H. The subgroup Z(G) is called the center of G.

(iv) Show that Sl(E) is a normal subgroup ofGl(E) by considering the determinant.

(v) Show that if g ∈ Gl(E) commutes with every transvection, then g is a homothety

(use (i) and (ii)). Deduce that

Z(Gl(E)) ≃ K∗

and

Z(Sl(E)) ≃ µn = {z ∈ K | zn = 1}
the multiplicative group of the n-th roots of unity.

Exercise 13.62 (Center of Gl(E) and Sl(E), take two). A direct, simpler (but

less informative) proof of the determination of Z(Gl(E)), Z(Sl(E)). Let E be a

K-vector space of dimension n.

(i) Let f ∈ End(E) be such that f ◦g = g ◦f, ∀g ∈ Sl(E). Show that ∀v ∈ E, v and

f(v) are linearly dependent (if f(w) = v with w, v linearly independent, consider

g, h, appropriate automorphisms such that g(w) = w+v, g(v) = −w; h(w) = w+v,

h(v) = v).

(ii) Conclude that every element of Z(Gl(E)) (resp. Z(Sl(E))) is a homothety

(resp. an n-th root of unity) (Exercise 13.61 (i)).

Exercise 13.63 (Transvections). Let E be a K-vector space of dimension n.

(i) Let u, v ∈ E \ {0}.

(1) If u, v are linearly independent, show that there exists a transvection, f , such

that f(u) = v.

(2) If u, v are linearly dependent, show that there exist two transvections, f, g,

such that (f ◦ g)(u) = v.

(ii) Let H1, H2 be two distinct hyperplanes of E and let v /∈ H1 ∪H2. Show that

there exists a transvection, f , such that f(v) = v, f(H1) = H2.

Exercise 13.64 (Generators of Gl(2,K) and Sl(2,K)). Let E be a 2-dimensional

K-vector space.

(i) Show that every g ∈ Sl(E) that is not a homothety is written as a product of

at most two transvections by using Exercise 13.63.

(ii) Show that −Id can be written as a product of three transvections but not as a
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product of two.

(iii) Show that if f ∈ Gl(E) there exists a dilation (Exercise 13.59) h such that

(h ◦ f) ∈ Sl(E). Conclude that dilations and transvections generate Gl(E).

Exercise 13.65 (Generators of Sl(E), Gl(E)). Let E be a K-vector space of di-

mension n.

(i) Show that each element of Sl(E) can be written as a product of transvections

(use Exercise 13.63, cf Exercise 13.64).

(ii) Conclude that dilations and transvections generate Gl(E).

Exercise 13.66. Remember that two elements x, y of a group G are conjugate if

there exists z ∈ G such that zxz−1 = y.

Let E be a K-vector space of dimension n and f, g ∈ Sl(E) two transvections.

(i) Use Exercise 13.59, (iii), and conclude that f and g are conjugate in Gl(E) (i.e.

∃u ∈ Gl(E) such that ugu−1 = f).

(ii) Let λ ∈ K, λ ̸= 0. Show that if n ≥ 3, there exists v ∈ Gl(E) with det(v) = 1
λ

such that vgv−1 = g (consider Mat(g;B,B) for a suitable basis B of E.

(iii) Conclude that if n ≥ 3, two transvections f and g are conjugate in Sl(E) (i.e

∃u ∈ Sl(E) such that ugu−1 = f).

Exercise 13.67 (Simplicity of PSl(E), dim(E) ≥ 3). We have seen that the center,

Z, of Sl(E) is made up of the homotheties in Sl(E) (Exercises 13.61, 13.62).

Let G be a subgroup of Sl(E) containing Z. The aim of the exercise is to show,

under the hypothesis dim(E) ≥ 3, that if G is normal (i.e. fGf−1 = G,∀f ∈ Sl(E))

and G ̸= Z, then G = Sl(E).

(i) Observe that G being normal, if g ∈ G and f ∈ Sl(E), then gfg−1f−1 ∈ G.

(ii) The idea now is to use (i) to show that G contains a transvection. In fact, show

(using Exercise 13.65 and Exercise 13.66: this is where the hypothesis dim(E) ≥ 3

comes in) that if G contains a transvection, then G = Sl(E).

(iii) Let g ∈ G \ Z. Since g is not a homothety there exist linearly independent

u, v such that g(u) = v. Let t be a transvection of line ⟨u⟩ and set: f = gtg−1t−1.

Show:

(1) f ∈ G and f ̸= Id (note that gtg−1 is a transvection of line ⟨g(u) = v⟩).

(2) Let H be a hyperplane containing ⟨u, v⟩ (such hyperplanes exist because

dim(E) ≥ 3). Show that ∀x ∈ E, f(x)− x ∈ H.

(3) Conclude that f(H) = H.

(iv) Suppose that there exists a transvection, h, of hyperplane H that does not

commute with f (hf ̸= fh). Let v := fhf−1h−1. Show that v ∈ G, v ̸= Id, v is a

transvection of hyperplane H (consider fhf−1, h−1 and use Exercise 13.60).

(v) Finally, suppose instead that f commutes with each transvection of hyperplane



188 13. Diagonalization

H. Show that f is a transvection of hyperplane H.

(vi) We have therefore shown that every normal subgroup of Sl(E) containing Z

is equal to Z or Sl(E). Since the center is a normal subgroup, we can consider the

quotient group: PSl(E) := Sl(E)/Z. Deduce from the above that if dim(E) ≥ 3,

PSl(E) is a simple group (a group is simple if each of its normal subgroups is

trivial).



Chapter 14

The Cayley-Hamilton theorem

Let E be a K-vector space of dimension n and f ∈ End(E). If Q(x) ∈ K[x],

Q(x) = apx
p + · · ·+ a1x+ a0 we set

Q(f) := apf
p + · · ·+ a1f + a0Id

where f i = f ◦ f ◦ · · · ◦ f , i times. Similarly, if A ∈Mn(K) we set

Q(A) := apA
p + · · ·+ a1A+ a0In.

The purpose of this section is to prove the following:

Theorem 14.1 (Cayley-Hamilton). Let E be a K-vector space and f : E → E an

endomorphism. Then Pf (f) = 0. Equivalently, if A ∈ Mn(K), then A is a root of

its characteristic polynomial that is PA(A) = 0.

Remark 14.2. (1) If A ∈ M2(K), we have PA(x) = x2 − Tr(A)x + det(A). So

by the Cayley-Hamilton theorem: A2 − Tr(A)A+ det(A)I2 = 0.

(2) The theorem might seem obvious, in fact PA(x) = det(xIn −A), so if we take

x = A we get PA(A) = det(A−A) = 0. Where is the mistake?

This result is an important theorem and has various applications. In particular,

it can be useful for calculating the powers of a matrix.

We will give two proofs of the theorem. The first uses a very deep result of

algebra (each field is a subfield of an algebraically closed field). The second uses

Remark 12.40 i.e. the fact that the relation MM c =M cM = det(M)In is satisfied

for matrices with coefficient in a commutative ring A (we will take A = K[x]).

189
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14.1. Triangular matrices and Cayley-Hamilton theorem

We begin with a general result under the hypothesis that the characteristic poly-

nomial has all its roots in the field K.

Proposition 14.3. Let E be a K-vector space of dimension n and f : E → E an

endomorphism of E. The characteristic polynomial of f is assumed to have all its

roots (not necessarily distinct) in K:

Pf (X) = (X − λ1)(X − λ2) . . . (X − λn).

Then there exists a basis B of E such that Mat(f ;B,B) is upper triangular, with

λ1, . . . , λn on the diagonal.

Proof. The proof is by induction on n = dim(E). If n = 1 there is nothing to

prove. Suppose the result is true for n− 1. Let e1 ̸= 0 such that f(e1) = λ1e1 and

B1 = (e1, e
′
2, . . . , e

′n) a basis containing e1. We have

Mat(f ;B1,B1) =


λ1 a12 . . . a1n

0
... C

0

 .

Let E′ = ⟨e′2, . . . , e′n⟩ and f ′ : E′ → E → E → E′ be the composite f ′ = p ◦ f ◦ i
where i : E′ → E is the inclusion and where p : E → E′ is the projection. Then

B′ = (e′2, . . . , e
′
n) is a basis of E′ and Mat(f ′;B′,B′) = C. Furthermore

Pf ′(X) = (X − λ2) . . . (X − λn).

Then f ′ satisfies the induction hypothesis and there exists a basis B′
2 = (v2, . . . , vn)

of E′ such that Mat(f ′;B′
2,B′

2) is upper triangular. The vectors e1, v2, . . . , vn are

linearly independent, in fact from αe1+α2v2+ · · ·+αnvn = 0 it follows αe1 ∈ E′ =

⟨e′2, . . . , e′n⟩ and this implies α = 0. It then follows that α2 = · · · = αn = 0. In the

basis B = (e1, v2, . . . , vn) the matrix of f is upper triangular:

Mat(f ;B,B) =


λ1 b12 . . . b1n

0 λ2 . . . . . .

. . . . . . . . . . . .

0 . . . 0 λn

 .

The elements on the diagonal are necessarily λ1, . . . , λn as can be seen by calculating

the characteristic polynomial. □

Corollary 14.4. Let f : E → E be an endomorphism of the K-vector space E.

If Pf (X) has all its roots in K (a hypothesis certainly verified if K is algebraically

closed) then Pf (f) = 0.
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Proof. If Pf (X) has all its roots in K, by Proposition 14.3, there exists a basis

B of E such that Mat(f ;B,B) is upper triangular (with the eigenvalues λi on the

diagonal):

Mat(f ;B,B) =


λ1 b12 . . . b1n

0 λ2 . . . . . .

. . . . . . . . . . . .

0 . . . 0 λn

 .

We set fi = f − λiId and Fi = f1 ◦ f2 ◦ · · · ◦ fi, 1 ≤ i ≤ n. We observe that

fi ◦ fj = fj ◦ fi. In fact if Pi(X) = (X −λi), then Pi(f) = fi. Since Pi(X)Pj(X) =

Pj(X)Pi(X) we have fi ◦ fj = fj ◦ fi.

Note that Ft = Ft−1 ◦ ft = ft ◦ Ft−1, in fact ft commutes with fi. We show,

by induction on t, that Ft(ei) = 0 if i ≤ t. We have F1(e1) = (f − λ1Id)(e1) =

f(e1)− λ1e1 = 0 (because f(e1) = λ1e1 by construction of the basis B).

Suppose the statement is true for t − 1 and prove it for t: if j < t, Ft(ej) =

(Ft−1 ◦ ft)(ej) = (ft ◦ Ft−1)(ej) = ft(Ft−1(ej)) = 0 (because Ft−1(ej) = 0 by

induction hypothesis). Finally, ft(et) = (f − λtId)(et) =
∑t−1

i=1 ciei, Ft(et) =

(Ft−1 ◦ ft)(et) =
∑i=t−1

i=1 ciFt−1(ei) = 0.

In particular, Fn(ei) = 0,∀i, 1 ≤ i ≤ n, that is Fn = 0. So

Fn = (f − λ1Id) ◦ (f − λ2Id) ◦ · · · ◦ (f − λnId) = Pf (f) = 0

and the proposition is proved. □

Remark 14.5. The previous corollary proves the Cayley-Hamilton theorem under

the hypothesis that Pf (X) has all its roots in K. We observed that this hypothesis

is certainly verified if K is algebraically closed. Then the Cayley-Hamilton theorem

is proved for K algebraically closed.

To move to the general case (K not necessarily algebraically closed) we will use

a very deep algebraic result (already mentioned in Section 13.3).

Theorem 14.6. Each field K is a subfield of an algebraically closed field. More

precisely, there exists a unique (module isomorphism) smallest algebraically closed

field containing K, this field, denoted by K, is the algebraic closure of K.

Proof. We refer to [DF04, Propositions 30, 31]. □

We will now prove the the Cayley-Hamilton theorem.

Proof. (First proof of the Cayley-Hamilton theorem) Let f be an endomorphism

of the K-vector space E, and A = Mat(f ;B,B) the matrix of f with respect to a

basis B of E. We have K ⊂ K, with K algebraically closed (Theorem 14.6). So
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A ∈ Mn(K) ⊂ Mn(K) and we can consider A as the matrix of an endomorphism

of K
n
with n = dim(E).

We have PA(X) ∈ K[X] ⊂ K[X]; now PA(X), seen as a polynomial in K, has

all its roots in K. So (Corollary 14.4) PA(A) = 0. Since PA(X) = Xn + a1X
n−1 +

· · · + an with ai ∈ K, ∀i, the relation PA(A) = 0 is also verified in Mn(K), and

hence Pf (f) = 0. □

14.2. Second proof of the Cayley-Hamilton theorem

Let us make some reminders about the complementary matrix of a matrix M ∈
Mn(K). The complementary matrix, M c, is the transpose of the cofactor matrix

of M . We have:

(14.1) MM c =M cM = det(M)In.

Actually the definition of M c and (14.1) hold for matrices with coefficients in a

commutative ring R (12.40). In the following we will take R = K[X].

By definition Pf (X) = det(XIn − A) where A is the matrix of f with respect

to a fixed basis. We setM := XIn−A ∈Mn(K[X]). The coefficients of the matrix

M are polynomials of degree at most one: M = (δijX − aij).

From 14.1 it follows that

(14.2) MM c = Pf (X)In.

The coefficients of the matrix M c are the minors of order n− 1 of M , so they are

polynomials of degree at most n − 1. Therefore M c is a polynomial of degree at

most n− 1 with coefficients in Mn(K). Let us take an example to clarify this last

statement. Let

P =

(
X2 −X + 3 X − 1

3X2 +X + 2 −X2 + 3

)
then

P = X2

(
1 0

3 −1

)
+X

(
−1 1

1 0

)
+

(
3 −1

2 3

)
.

Obviously this writing of P as a polynomial in X with coefficients in Mn(K) is

uniquely determined.

We are now ready to give our second proof of the Cayley-Hamilton theorem.

Proof. (Second proof of the Cayley-Hamilton theorem) With the previous nota-

tions we haveM c = B1X
n−1+ · · ·+Bn−1X+Bn where Bi ∈Mn(K). The relation

14.2 is written as

(14.3) (XIn −A)(B1X
n−1 + · · ·+Bn−1X +Bn) = Pf (X)In.
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Let us set Pf (X) = Xn + a1X
n−1 + · · · + an (ai ∈ K,∀i), then by 14.3 we get

XnB1 +Xn−1(B2 −AB1) + · · ·+X(Bn −ABn−1)−ABn = XnIn +Xn−1a1In +

· · ·+ anIn, and hence

B1 = In, B2 −AB1 = a1In, . . . , Bn −ABn−1 = an−1In, −ABn = anIn.

Multiplying (on the left) the first equation by An, the second by An−1 and so

on, up to the second to last by A, we obtain AnB1 = An, An−1B2 − AnB1 =

a1A
n−1, . . . , ABn − A2Bn−1 = an−1A, −ABn = anIn. Adding term by term we

get

An + a1A
n−1 + · · ·+ anIn = Pf (A) = 0.

In fact the terms of the terms on the left cancel out. So the matrix of f is a root

of the characteristic polynomial, in terms of endomorphisms Pf (f) = 0. □
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Exercises

Exercise 14.7. Let A ∈ M2(K). We assume A to be invertible, show, without

doing calculations, that

A−1 =
1

det(A)
(−A+ Tr(A)I2).

Exercise 14.8. Consider the matrix

A =

 0 0 1

1 0 0

0 1 0


and compute A7.

Exercise 14.9. Consider the matrix

B =

 3 1 −3

20 5 −18

8 2 −7

 ∈M3(R).

(1) Compute the characteristic polynomial PB(x).

(2) Is B diagonalizable?

The aim of the exercise is to compute Bn. There are various steps. Let us first

consider

xn = PB(x)Qn(x) +Rn(x)

with RN (x) = 0 or deg(Rn) < 3 (Euclidean division of xn by PB(x)). We can set

Rn(x) = anx
2 + bnx + cn. Setting x = 1 and x = −1 we find two linear relations

between an, bn, cn. To find a third relation use the fact that 1 is a double root of

PB(x).

At this point we have a linear system of three equations with unknowns an, bn, cn.

Solve it and determine Rn(x). Express B
n as a function of B2, B and I3.

Exercise 14.10. Let E be a K-vector space of dimension n, and f ∈ End(E) a

nilpotent endomorphism.

(1) Show that every eigenvalue of f is zero.

(2) Conclude that fn = 0 (associate a matrix A ∈ Mn(K) to f and use Cayley-

Hamilton).

Exercise 14.11. Let f be an endomorphism of R3, of characteristic polynomial

Pf (X) = (X − α)2(X − β)
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with α, β ∈ R, α ̸= β. We set

Nα := Ker(f − αId)2, Nβ := Ker(f − βId).

(i) Show that Nα ∩Nβ = {0}.
(ii) Show that dim(Nα) = 2 (use the Cayley-Hamilton theorem).

(iii) Conclude that R3 = Nα ⊕Nβ .

Exercise 14.12. (i) Let f : R3 → R3 be an endomorphism of rank two. It is

assumed that Pf (x) (the characteristic polynomial) has all its roots in R. Show

that 0 is a simple root of Pf (x) if and only if Ker(f)⊕ Im(f) = R3.

(ii) Give an example of a rank two endomorphism f ∈ End(R3) such that Pf (X)

has all its roots in R and such that Ker(f) ∩ Im(f) ̸= {0} (see Exercise 14.13 for a

more general result).

Exercise 14.13 (Characteristic subspaces). Let E be a K-vector space of di-

mension n and f ∈ End(E) an endomorphism of rank n − 1. The characteristic

polynomial Pf (x) is assumed to have all its roots in K. Show that 0 is a simple

root of Pf (x) if and only if Ker(f)⊕ Im(f) = E (Exercise 14.14).

Exercise 14.14 (Characteristic subspaces). Let E be a K-vector space of dimen-

sion n and f ∈ End(E). The characteristic polynomial, Pf (x), of f is assumed to

have all its roots in K. For every i ≥ 0 we set

Ki = Ker(f i), Ji = Im(f i)

with f0 = Id. Let s := min{i | Ki ⊕ Ji = E} (Exercise 9.47). Finally, let m be the

multiplicity of zero as a root of Pf (x) (m = 0 if Pf (0) ̸= 0).

(i) Show that s ≤ m. Give an example where the inequality is strict.

(ii) Let p := dimKer(f). Show that p ≤ m. Give an example where the inequality

is strict.

(iii) Show, with an example, that in general Kp ⊕ Jp = E (p as in (ii)) does not

imply m = p (in Exercise 14.13 instead it is shown that the implication is true if

p = 1).

(iv) We have s ≤ m and p ≤ m, however there is no order relation between s and

p. Show with examples that we can have both s > p and p > s.

Exercise 14.15. Let A ∈ M2(R), A ̸= I2 such that A3 = I2. Show that Tr(A) =

−1.

Exercise 14.16. Let f : E → E be an endomorphism of the R-vector space E

with dim(E) = 3. We assume

Pf (X) = (X − α)2(X − β)
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with α ̸= β. Show that if

Mf (X) = (X − α)(X − β),

then f is diagonalizable (Pf ,Mf indicate respectively the characteristic polynomial

and the minimal polynomial of f).

Exercise 14.17. Let f : E → E be an endomorphism of the K-vector space E.

Show, without using Cayley-Hamilton, that if λ is a root of the minimal polynomial

of f , then λ is an eigenvalue.

Exercise 14.18 (Minimal polynomial, rank one endomorphisms). Let E be a K-

vector space of dimension n > 1 and f : E → E an endomorphism, Mf (X) denotes

the minimal polynomial of f .

(i) Show that Mf (X) has degree one if and only if f = λId (λ ̸= 0).

(ii) Assume f of rank one, show that there exists α ∈ K, uniquely determined, such

that f2 = αf . Conclude that Mf (X) has degree two.

(iii) Show that for every r, 1 ≤ r ≤ n, there exists an endomorphism of E, of rank

r, with minimal polynomial of degree two.

Exercise 14.19. Let E be a K-vector space and f an endomorphism of E, f is

assumed to be diagonalizable. Show that if V ⊂ E is a stable subvector space under

f (f(V ) ⊂ V ), then fV : V → V is diagonalizable.

Exercise 14.20 (Minimum polynomial, K = Z2). Let f : E → E be an endomor-

phism of the Z2-vector space, E, of dimension n, f is assumed to be invertible. Show

that if the minimal polynomial of f has degree two then f is not diagonalizable.

Exercise 14.21. Let A ∈Mn(K) be such that A3 = A.

(i) Show that if char(K) ̸= 2 then A is diagonalizable.

(ii) If char(K) = 2 show that there exists A ∈ M3(K), with A3 = A, such that A

is not diagonalizable.

Exercise 14.22. Let A ∈ Mn(R) and MA(x) ∈ R[x] its minimal polynomial. We

can consider A as a matrix with complex coefficients (A ∈Mn(C)). The aim of the

exercise is to show that the minimal polynomial of A ∈Mn(C) is still MA(x).

(i) Let K ⊂ L be a field extension, E a K-vector space of dimension n and F an

L-vector space. Let f : E → F be a K-linear map (note that F is also a K-vector

space). It is assumed that there exists a basis, (ei), of the K-vector space E such

that (f(ei)) is a basis of the L-vector space F .

Show that if v1, . . . , vm are independent in E (over K), then f(v1), . . . , f(vm)

are independent in F (over L).

(ii) Let E = Mn(K), F = Mn(L) and f : E → F the canonical injection. Observe

that the canonical basis of E is transformed, via f , into the canonical basis of the
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L-vector space Mn(L). Conclude that if A1, . . . , Am ∈ Mn(K) are independent,

then A1, . . . , Am are independent in Mn(L).

(iii) Let A ∈ Mn(K) and MA(x) ∈ K[x] its minimal polynomial. Show that the

minimal polynomial of A ∈ Mn(L) is still MA(x) (note that if d is the degree of

the minimal polynomial, then I, A,A2, . . . , Ad−1 are independent).

(iv) Let A ∈Mn(R). The characteristic polynomial of A is assumed to have all its

roots in R. Show that A is diagonalizable on R ⇔ A is diagonalizable on C.

Exercise 14.23. Consider two matrices M,N ∈ M3(R) having the same charac-

teristic polynomial, namely

PM (X) = PN (X) = (X − λ)3.

Show that M and N are similar if and only if rk(λI3 −M) = rk(λI3 −N).





Chapter 15

Linear systems

This is the last section of linear algebra, it is a bridge between linear algebra and

affine geometry.

In general, a linear system is a system of equations of the following type:

S =


a11x1 + · · ·+ a1nxn = b1;
...

ap1x1 + · · ·+ apnxn = bp;

where the aij , bi ∈ K and the bi are not necessarily zero.

Such a system may have no solution, for example let us consider the system:{
a11x1 + · · ·+ a1nxn = b1;

a11x1 + · · ·+ a1nxn = b2.

If b1 ̸= b2 this system has no solution (we can add many other equations to these

two and we will always have a system without solutions).

Definition 15.1. A linear system that does not admit a solution is said to be

incompatible; if the system admits solutions we say that the system is compatible.

A linear system can be viewed in several different ways.

(1) Let φi : K
n → K : (x1, . . . , x : n) → φi(x) = ai1x1 + · · · + ainxn. Then the

linear system S can be written:
φ1(x) = b1;
...

φp(x) = bp.

199
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Here x = (x1, . . . , xn) ∈ Kn and φi : K
n → K is a linear form, i.e. an element

of the dual (Kn)∗.

Let A = (aij) be the matrix with p rows and n columns. The system S
can be rewritten as follows:

AX = B.

Here X = t(x1, . . . , xn) and B = t(b1, . . . , bp). We can see A as the matrix

associated to the linear map f : Kn → Kp : X → AX, with respect to the

canonical bases (A = Mat(f ; Cn, Cp)). A solution of the system is an X ∈ Kn

such that f(X) = B. In other words, the solution set of the system is

S = {X ∈ Kn | f(X) = B} = f−1(B).

The system AX = B can be rewritten as follows:

x1C1 + · · ·+ xnCn = B

where C1, . . . , Cn are the columns of A. The set of solutions are the x1, . . . , xn

for which B can be written as a linear combination of C1, . . . , Cn.

15.1. Structure of the solution set

Contrary to what happens with homogeneous linear systems (bi = 0,∀i) a general

linear system can have no solutions: S = {∅}. As already said, the simplest example

consists of taking φ2 = φ1 and b1 ̸= b2. For example:
x− y + 2z = 1;

x− y + 2z = 2 :

3x+ 2y + z = 0.

Now, suppose that our system S has a solution X0. In the matrix interpretation

(or with the linear map) we have f(X0) = B. If Y ∈ Ker(f), then f(X0 + Y ) =

f(X0)+f(Y ) = f(X0) = B, thenX0+Y is also a solution of the system. Conversely,

if Z is another solution of the system, we have Z = X0+(Z−X0) and f(Z−X0) =

f(Z)−f(X0) = 0, therefore −X0 ∈ Ker(f). This shows that the solution set of the

system is of the form

S = {X0 + Y | Y ∈ Ker(f)}.

This last writing has the advantage of being suggestive and making us see that S

is the translated of the vector subspace Ker(f). More precisely, let t : Kn → Kn :

Y → Y +X0, the map t is the translation of vector X0. Then S = t(Ker(f)).

Definition 15.2. Let E be a K-vector space. A subset Z ⊂ E is an affine subspace

of E if Z can be written in the form Z = ta(F ), where F ⊂ E is a subvector space,

a ∈ E and where ta : E → E : v → a+ v is the translation of vector a.
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The dimension of Z is, by definition, the dimension of F , and F is said to be

the direction of Z.

u

v

Z

F

v + a

We can summarize what was said before:

Proposition 15.3. Suppose the system S is compatible and X0 is a particular

solution of S. Then the set of solutions is the affine subspace X0 + Ker(f), of

dimension dim(Ker(f)) and direction Ker(f).

We observe that Ker(f) = {X | AX = 0} is nothing but the set of solutions of

the associated homogeneous linear system:

S0 =


a11x1 + · · ·+ a1nxn = 0;
...

ap1x1 + · · ·+ apnxn = 0.

In other words, if the system is compatible, the set of solutions is obtained by

adding the solutions of the associated homogeneous system (elements of Ker(f)) to

a particular solution X0.

At this point we still need to understand two things:

(1) How do we know if a system is compatible or not?

(2) If the system is compatible, how do you find a particular solution (and also

the solutions of the associated homogeneous system)?

15.2. Compatibility condition

Let S be the linear system AX = B (matrix writing). The matrix A is called

the coefficient matrix, the rank of the system is the rank of A. If rk(A) = r,

then dim⟨φ1, . . . , φp⟩ = r (row interpretation). By rearranging the vectors we can

assume that (φ1, . . . , φr) is a basis of ⟨φ1, . . . , φp⟩. This implies that φi is a linear

combination of φ1, . . . , φr, if i > r:
r∑

k=1

λ
(i)
k φk = φi, if i > r.
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The compatibility conditions are:

(15.1)

r∑
k=1

λ
(i)
k bk = bi, i > r.

In fact, let us consider the system:

T =


φ1(x) = b1;
...

φr(x) = br.

Then S and T are equivalent systems, that is, they have the same set of so-

lutions S. It is clear that every solution of S is a solution of T . Conversely, if

x0 is a solution of T then it is also a solution of S because, if i > r, φi(x0) =∑r
k=1 λ

(i)
k φk(x0) =

∑r
k=1 λ

(i)
k bk = bi.

Lemma 15.4. A system of r equations, in n unknowns, of rank r is always com-

patible and the set of solutions is an affine subspace of dimension n− r.

Proof. Let AX = B be a system of r equations in n unknowns, and f : Kn → Kr

such that A = Mat(f ; Cn, Cr). Since rk(f) = rk(A) = r, f is surjective, so there

exists X0 ∈ Kn such that f(X0) = B. On the other hand, by the Rank Theorem

dimKer(f) = n− r. □

From this lemma it follows that T is compatible, so S ̸= ∅ and S is compatible

as well. Finally, it is clear that S is incompatible if the compatibility conditions

are not satisfied.

This analysis will be useful later but fortunately there is a simpler way to check

if a system is compatible. Let S : AX = B, A = (aij). We denote by (A|B) the

matrix obtained by adding the column of known terms to A. This matrix is called

the complete matrix of the system:

(A|B) =


a11 · · · a1n b1
...

. . .
...

...

ap1 · · · apn bp

 .

Lemma 15.5. The system S is compatible if and only if rk(A) = rk(A|B).

Proof. Let us consider the column interpretation of the system: x1C1 + · · · +
xnCn = B. The system is compatible if and only if B can be written as a linear

combination of the column vectors, that is, if and only if B ∈ ⟨C1, . . . , Cn⟩. This

can be rewritten as follows: ⟨C1, . . . , Cn⟩ = ⟨C1, . . . , Cn, B⟩ and this is true if and

only if rk(A) = rk(A|B). □
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This provides a fairly convenient criterion for seeing if a system is compatible.

We still have to figure out how to find solutions. Lemma 15.4 suggests that the

easiest case could be that of a system of n equations in n unknowns, of rank n: in

this case the set of solutions has dimension zero, that is, there is a single solution.

Such a system is called a Cramer system.

15.3. Cramer systems

In this section S : AX = B will indicate a Cramer system i.e. a system of n

equations in n unknowns, of rank n. So A ∈Mn(K) and A is invertible. We know

that this system has a unique solution (Lemma 15.4). Let X0 = (α1, . . . , αn) be

the unique solution of the system. Obviously X0 = A−1B. Let us see a faster way

to compute X0. We denote by Ai the matrix obtained from A by replacing the i

column with B.

Lemma 15.6. With the previous notations we have, for every i, 1 ≤ i ≤ n:

αi =
det(Ai)

det(A)
.

Proof. Let us consider the column interpretation:

α1C1 + · · ·+ αnCn = B.

The solution (α1, . . . , αn) is nothing but the coordinates of the vector B in the

basis (C1, . . . , Cn) (rk(A) = n). We have det(Ai) = det(C1, . . . , B, . . . , Cn) (B in

the entry i). We plug-in the above expression for B:

det(Ai) = det(C1, . . . , α1C1 + · · ·+ αnCn, . . . , Cn).

Since the determinant is a multilinear function of the columns we have:

det(Ai) =
∑
j

αj det(C1, . . . , Cj , . . . , Cn).

If i ̸= j then

det(C1, . . . , Cj , . . . , Cn) = 0

since two columns are equal. If i = j then

det(C1, . . . , Cj , . . . , Cn) = det(A)

and the result follows. □

The general case reduces to the case of a Cramer system. Let S : AX =

B be our usual system. First, we compute the rank of the matrix A and check

the compatibility condition is verified rk(A) = rk(A|B). Suppose the condition is

satisfied and set r = rk(A). There is therefore a non-zero minor of order r: ∆r ̸= 0.

By reordering, if needed, the rows and columns we can assume that ∆r is the minor
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constructed on the first r rows and columns. The system is then equivalent to the

system:

S ′ =


a11x1 + · · ·+ a1nxn = b1;
...

ar1x1 + · · ·+ arnxn = br.

Let A′ be the matrix of the system S ′. Since rk(A′) = r there are r linearly

independent columns of A′. After reordering we can assume that they are the first

r. We can rewrite the system as follows:

S ′ =


a11x1 + · · ·+ a1rxr = b1 − a1,r+1xr+1 − · · · a1nxn;
...

ar1x1 + · · ·+ arrxr = br − ar,r+1xr+1 − · · · arnxn.

Assigning values to xr+1, . . . , xn we obtain a Cramer system, which we know how

to solve. We conclude that the set of solutions, S, is the set of all the solutions of

these Cramer systems, varying xr+1, . . . , xn.

Another way of doing this consists in solving the Cramer system S ′ formally

with Lemma 15.6:

xi =
det(A′′

i )

det(A′′)
.

Here

A′′ =


a11 · · · a1r
...

. . .
...

ar1 · · · arr


and A′′

i is the matrix obtained from A′′ by replacing the i-th column with the

column

B′(xr+1, . . . , xn) =


b1 − a1,r+1xr+1 − · · · a1nxn

...

br − ar,r+1xr+1 − · · · arnxn

 .

The r equations above thus express x1, . . . , xr as functions of the (n−r) parameters

xr+1, . . . , xn .

Finally, yet another way to describe the set of solutions: set xr+1 = · · · = xn =

0 and solve the corresponding Cramer system S ′ with Lemma 15.6. This gives a

solution of S ′, z0. We have S = z0 +Ker(A′).

In practice the use of the Lemma 15.6 is not necessarily the best way to proceed.

The same applies to the relation rk(A) = rk(A|B) to check the compatibility of the

system. In fact, if the system is simple enough, the best thing to do is to solve by

substitution. Calculating rk(A) and then rk(A|B) can be quite cumbersome and if

we then find that the system is compatible we will still have to solve it.
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Determinants are useful because they show us that, theoretically, we can cal-

culate (describe) the set of solutions with a well-established procedure that we can,

for example, implement on the computer. Furthermore, in certain general situa-

tions they can be useful for exploiting any particular properties of the system such

as symmetries.

Finally, there is yet another method for solving a linear system: the Gauss pivot

method. It is a systematization of the resolution method by substitution, which like

any systematization, has its advantages and disadvantages.

To conclude we summarize what we have seen so far in the following theorem

(often attributed to Rouché-Capelli):

Theorem 15.7. Let AX = B be a linear system of p equations in n unknowns, of

rank r.

(1) The system is compatible if and only if r = rk(A) = rk(A|B).

(2) If the system is compatible, the set of solutions, S, is an affine subspace of

dimension n − r, more precisely S = z0 + Ker(A), where z0 is a particular

solution of the system.

(3) Every compatible system can be traced back to a Cramer system.

Example 15.8. Let us consider the linear system
3x+ 2y + 2z + 3t = 1;

3y + 2z + t = 5;

3x+ 11y + 8z + 6t = 16.

The minor constructed over the first two rows and columns is

∆2 =

∣∣∣∣∣ 3 2

0 3

∣∣∣∣∣ = 9.

So the rank of the system is at least 2. We calculate the rank of

A =

 3 2 2 3

0 3 2 1

3 11 8 6


with the edged method, considering the minor ∆2. The two edges are zero, so

rk(A) = 2. Then it remains to compute the rank of

(A|B) =

 3 2 2 3 1

0 3 2 1 5

3 11 8 6 16

 .
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We have already seen that the two edges of ∆2 made with the third and fourth

columns of A are zero, so all that remains is to calculate:∣∣∣∣∣∣∣
3 2 1

0 3 5

3 11 16

∣∣∣∣∣∣∣ .
This determinant is zero, so the system is compatible, of rank two.

It follows that the system is equivalent to the Cramer system:{
3x+ 2y = 1− 2z − 3t;

3y = 5− 2z − t.

Applying Lemma 15.6 we get that the solutions of this system are

x =

∣∣∣∣∣ 1− 2z − 3t 2

5− 2z − t 3

∣∣∣∣∣
9

, y =

∣∣∣∣∣ 3 1− 2z − 3t

0 5− 2z − t

∣∣∣∣∣
9

.

So x = −2z−7t−7
9 , y = 15−6z−3t

9 and

S =

{(
−2z − 7t− 7

9
,
5− 2z − t

3
, z, t

)
| z, t ∈ R

}
.

Looking carefully at the system (or the matrix (A|B)) we can see that the third

equation is the first plus three times the second (or look at the rows of (A|B)). So

the system is compatible and of rank two. From the second equation we obtain

t = −3y − 2z + 5; then doing the twice the first plus twice the second minus the

third we obtain 3x− y + 2t = −4, i.e. x = −7y−4z+6
3 . we conclude that

S =

{(
−7y − 4z + 6

3
, y, z,−3y − 2z + 5

)
| y, z ∈ R

}
.

Example 15.9. A situation in which determinants are useful. Let us consider, in

C, the system with parameter λ ∈ C:

S(λ) =

{
λx+ y − 3λz = 1;

x− λy + 2λz = 2.

The minor constructed with the first two columns and rows is

D1 =

∣∣∣∣∣ λ 1

1 −λ

∣∣∣∣∣ = −λ2 − 1.

We have D1 = 0 ⇔ λ = ±i. The minor constructed with the first and third columns

is

D2 =

∣∣∣∣∣ λ −3λ

1 2λ

∣∣∣∣∣ = λ(2λ+ 3)
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and D2 = 0 ⇔ λ = 0 or λ = − 3
2 . So for every λ ∈ C there exists a non-zero minor

of order two, we therefore have a system of two equations, three unknowns, of rank

two and we conclude that the set of solutions S has dimension one.

Example 15.10. The pivot method. The method is based on the following fact,

let us consider the system

S =



φ1(x) = b1;
...

φi(x) = bi;
...

φp(x) = bp.

We replace the i-th equation φi(x) = bi with a linear combination of all equations:∑
j λjφj(x) =

∑
j λjbj . Then, if λi ̸= 0, the system S ′ thus obtained is equivalent

to S (they have the same set of solutions). It is clear that a solution of S is also

a solution of S ′. Conversely, if x0 is a solution of S ′ then x0 verifies the equations

of S except perhaps the i-th one. From the relation
∑

l λjφj(x0) =
∑

j λjbj , given

that φk(x0) = bk if k ̸= i, it follows λi fGi(x0) = λibi, dividing by λi ̸= 0 we obtain

φi(x0) = bi (if λi = 0 we can not conclude anything).

Having said this, it is now a question of putting the matrix of the system in

triangular form. Let us see how it works on an example. Consider the system

S =


x+ 2y + 2z = 2;

x+ 3y − 2z = −1;

3x+ 5y + 8z = 8.

We keep the first equation (the pivot) which we will need to eliminate x from the

other equations. Then we replace the second equation with the second minus the

first and replace the third with the third minus three times the second, we obtain:

S =


x+ 2y + 2z = 2;

y − 4z = −3;

−y + 2z = 2.

Now, we use the second equation to eliminate y from the third, replacing the third

with the third plus the second:

S =


x+ 2y + 2z = 2;

y − 4z = −3;

−2z = −1.

The last equation gives us z = 1
2 . Then by the second equation y = −1, and finally

by the first equation x = 3.
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Exercises

Exercise 15.11. Let S(λ) be the following linear system in four real unknowns,

with parameter λ ∈ R: 
x+ λy − z + t = λ;

2x+ 2y − λz + 2λt = 1;

−x+ y − z + λt = λ.

Without solving it, show that S(λ) is compatible for every λ ∈ R.

Exercise 15.12. Let S(λ) be the following linear system in four real unknowns,

with parameter λ ∈ R: 
x+ λy − z − t = 1;

−x− y + λz = λ;

2x+ y − λz + t = −1.

(1) Show, without solving it, that the linear system S(λ) is compatible for every

value of the parameter λ ∈ R.

(2) Determine the set of solutions when λ = 1.

Exercise 15.13. Consider for λ a real parameter the system:

S(λ) =


λx+ y − z + t = 1;

x− y + z − t = λ;

2x+ λz = 2.

Let S(λ) be the set of solutions of S(λ).

(1) Without solving the system, determine E = {λ ∈ R | dimS(λ) = 2}.

(2) Solve the system for λ = 1 and determine dimS(1).

Exercise 15.14. Consider the system

S(λ) =


λx− y + 2λz = 1;

x− 2λy + 3z = λ;

2λx+ y + λz = 2;

with λ ∈ R.

(1) Determine R = {λ | S(λ) is compatible}.

(2) Solve S(1).

Exercise 15.15. Consider the system

S(λ) =

{
λx+ y − 3λz = 1;

x− λy + 2λz = 2;
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with λ ∈ C and (x, y, z) ∈ C3. Without solving the system show that it is compat-

ible for any λ ∈ C.

Now, consider the system

S ′(λ) =


λx+ y − 3λz = 1;

x− λy + 2λz = 2;

αx+ βy + γz = δ;

where α, β, γ, δ ∈ R. Do there exist α, β, γ, δ ∈ R such that

(i) S ′(λ) is compatible for any λ ∈ C?
(ii) S ′(λ) is compatible for any λ ∈ R?

Exercise 15.16. Consider the linear system AX = B where A ∈Mm,n(R), A ̸= 0,

and where

B =


b1
...

bm

 ∈ Rm.

Let r = rk(A). Tell whether the following statements are true or false, justifying

the answer.

(1) The system admits solutions for every B ∈ Rm if and only if r = m.

(2) The system admits one and only one solution if and only if it is a Cramer

system (i.e. n = m = r).

(3) Let n = m. If there exists B1 ∈ Rm such that the system admits more than

one solution, then there exists B2 ∈ Rm such that the system is incompatible.

(4) If there exists B1 ∈ Rm such that the system admits infinite solutions, then

∀B ∈ Rm the system admits infinite solutions.

(5) If the system admits at most one solution for every B ∈ Rm then r = n.

(6) If n = m and if there exists B1 ∈ Rm such that the system is incompatible,

then there exists B ∈ Rm such that the system admits infinite solutions.





Part 3

Affine Geometry



The main difference between linear algebra and affine geometry can be repre-

sented with the following picture:

•

Linear algebra Affine geometry

In linear algebra there is a special element: the zero vector (the origin). Affine

geometry is more democratic: all points are equal. This normalization is achieved

through translations. If E is a vector space and a ∈ E, the translation with respect

to the vector a is the map ta : E → E : v → a + v. In particular, ta(0) = a: the

origin is moved to the point a. Every point can be the origin, so being the origin

is no longer a privilege.

There are various ways of presenting affine geometry. For example, we can say

that an affine space is a triple (X,E,φ), where X is a set (the set of points), E

is a K-vector space (the set of vectors) and φ is a simply transitive action of the

group (E,+) on X. This is how they taught it to us and we understood very little!

Therefore we will follow another path and start studying the affine subspaces of a

vector space. It is much simpler, more intuitive and that’s what we need in practice.

It is a particular case of the general situation (X = E and the action of (E,+) on

X = E is given by the translations). We will then see that this particular case is

equivalent to the general case. But everything has pros and cons, there is a price

to pay. In fact we will have to consider an element of E both as a point and as

a vector (X = E). This can be confusing, especially at first, but the context will

help us make the necessary differences.



Chapter 16

Affine subspaces of a vector

space

Let us formalize what we have already said.

Definition 16.1. Let E be a K-vector space and a ∈ E, the translation with

respect to the vector a is the map ta : E → E : v → a+ v.

Remark 16.2. The translation is not (if a ̸= 0) a linear map: ta(0) = a ̸= 0. A

translation is bijective ((ta)
−1 = t−a). Obviously t0 = IdE .

Definition 16.3. Let E be a K-vector space. Any subset of E constructed by

translation from a subvector pace of E is called an affine subspace of E. In other

words A ⊂ E is an affine subspace of E if there exist a ∈ E and a subvector space

F ⊂ E such that A = ta(F ) = {x ∈ E | ∃v ∈ F, x = a+ v}.

Remark 16.4. We will write A = a+ F = {a+ v | v ∈ F}.

The following picture shows that A is uniquely determined by the translation

vector a.

a

a′
F

A = a+ F = a′ + F

213
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Moreover we see that A uniquely determines the sub-vector space F .

Lemma 16.5. Let E be a K-vector space, F, F ′ two subvector spaces of E, and

a, a′ two elements of E. If a+ F = a′ + F ′ then F = F ′.

Proof. We observe that a = a + 0 ∈ a + F . So a ∈ a′ + F ′, that is, a = a′ + f ′,

with f ′ ∈ F ′. It follows that a− a′ ∈ F ′. Let f ∈ F , then a+ f ∈ a′ + F ′, that is,

a+ f = a′ + v′, with v′ ∈ F ′. So f = (a′ − a) + v′. Since a′ − a = −(a− a′) ∈ F ′,

we have f ∈ F ′. This shows that F ⊂ F ′. Similarly, we get that F ′ ⊂ F . □

This shows that in the writing A = a + F the subvector space F is uniquely

determined.

Definition 16.6. Let A = a+F be an affine subspace of the vector space E. The

subspace F is uniquely determined by A and is called the direction of A. We will

write F = dir(A). The dimension of A is the dimension of F .

If F is a line, a plane, a hyperplane we say that A is a line, a plane, a hyperplane

(affine). A 0-dimensional affine subspace is a point (it is also a vector, an element

of E). Obviously every subvector space of E is also an affine subspace (F = t0(F )).

Coming back to the equation A = a + F , we have already said that the point

a is not uniquely determined, more precisely we have:

Lemma 16.7. Let A = a + F be an affine subspace of the vector space E. For

every point b ∈ A we have

(1) b− a ∈ F ;

(2) A = b+ F .

Proof. 1) Since b ∈ A, b = a+ f , with f ∈ F . Therefore b− a = f ∈ F .

2) Let a+ f be an element of A. Then a+ f = b+ (a− b) + f ∈ b+F . This shows

a+F ⊂ b+F . Vice versa b+f = a+(b−a)+f ∈ a+F . So A = a+F = b+F . □

Remark 16.8. The first point of Lemma 16.7 says that given two points of an

affine subspace A, their difference belongs to the direction of A. This is a useful

and important fact.

The intersection of two affine subspaces is not always an affine subspace. In

fact the intersection can be empty: let A = a + F and b /∈ A. If B = b + F , then

A ∩ B = ∅. If w ∈ A ∩ B, then w = a + f = b + g, with f, g ∈ F . It follows that

b = a+ (f − g) ∈ A, against our hypothesis b /∈ A. More generally if F ′ ⊂ F and if

B = b+ F ′, A ∩B = ∅. As we will see later, A and B are parallel.
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Lemma 16.9. Let (Ai)i∈I be a family of affine subspaces of E and A =
⋂

i∈I Ai.

If A ̸= ∅, then A is an affine subspace of E of direction
⋂

i∈I Fi, where Fi =

dir(Ai), ∀i ∈ I.

Proof. Suppose A ̸= ∅ and take a ∈ A, then a ∈ Ai, ∀i ∈ I. So we can write

(Lemma 16.7) Ai = a + Fi = ta(Fi). We have A =
⋂

i∈I ta(Fi) = ta(
⋂

i∈I Fi)

(because ta is one-to-one). So A = a+
⋂

i∈I Fi is an affine subspace. □

Definition 16.10. Let E be a K-vector space and v1, . . . , vk ∈ E. The affine

subspace generated by v1, . . . , vk is the smallest affine subspace of E containing

v1, . . . , vk. In other words it is the intersection of all the affine subspaces containing

v1, . . . , vk. We will denote it by [v1, . . . , vk].

Remark 16.11. Do not confuse ⟨v1, . . . , vk⟩ (the subvector space generated by

v1, . . . , vk) with [v1, . . . , vk]. For example ⟨v⟩ = {λv | λ ∈ K}, while [v] = {v}.

Lemma 16.12. With the previous notations we have

[v1, . . . , vk] = vi + ⟨v1 − vi, . . . vi−1 − vi, vi+1 − vi, . . . , vk − vi⟩

for every i, 1 ≤ i ≤ k.

Proof. We set Ai = vi + ⟨v1 − vi, . . . vi−1 − vi, vi+1 − vi, . . . , vk − vi⟩. We have

vi ∈ Ai and if j ̸= i, vj = vi + (vj − vi) ∈ Ai. So Ai contains v1, . . . , vk. Let

A be an affine subspace containing v1, . . . , vk. We can write A = vi + F (Lemma

16.7). Since vj ∈ A, we have vj = vi + f , f ∈ F . So vj − vi = f ∈ F . This shows

⟨v1 − vi, . . . vi−1 − vi, vi+1 − vi, . . . , vk − vi⟩ ⊂ F , then Ai ⊂ A. We conclude that

Ai is the smallest affine subspace containing v1, . . . , vk. □

Definition 16.13. The points v1, . . . , vk are said to be affinely independent if

dim[v1, . . . , vk] = k − 1 (the maximum possible dimension). The points v1, . . . , vk

are said to be aligned (respectively coplanar) if dim[v1, . . . , vk] = 1 (respectively

dim[v1, . . . , vk] = 2).

Two points v0, v1 are affinely independent if and only if they are distinct. In

this case [v0, v1] is a line (the only line passing through v0 and v1). Three points

v0, v1, v2 are affinely independent if and only if they generate a plane (i.e. if they

are not aligned). Four points are affinely independent if and only if they are not

coplanar and so on.
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•

Four affinely independent points
•

••

16.1. Affine maps, affinity group

Let us now move on to the definition of affine map.

Definition 16.14. Let E,F be two K-vector spaces. A map ψ : E → F is an

affine map if there exist a linear map v : E → F and a translation ta (a ∈ F ) such

that

ψ = ta ◦ v.

Pay attention to the order, the linear map is applied first and then the trans-

lation.

Remark 16.15. An affine map ψ : K → K is of the form ψ(x) = ax+ b. Its graph

is a line that does not pass through the origin if b ̸= 0.

An affine map is linear if and only if a = 0. In particular, every linear map is

an affine map.

A translation ta : E → E is an affine map (just take F = E and v = IdE in

the previous definition).

Lemma 16.16. With the above notations, the decomposition of ψ as a composition

of a linear map and a translation is unique i.e. v and ta are uniquely determined

by ψ.

Proof. Suppose ψ(x) = v(x)+a = v′(x)+a′. We have ψ(0) = a = a′. Furthermore

v′(x) = ψ(x)− a′ = ψ(x)− a = v(x). So v = v′. □

Definition 16.17. With the previous notations the linear map v is called the linear

part of the affine map ψ and we denote it by v = L(ψ).

Proposition 16.18. Let E,F,G be K-vector spaces and ψ : E → F , φ : F → G

affine maps. The map φ ◦ ψ : E → G is an affine map. Furthermore L(φ ◦ ψ) =
L(φ) ◦ L(ψ).

Proof. Let ψ = ta ◦ v and φ = tb ◦ u. Then φ(ψ(x)) = u(v(x) + a) + b =

u(v(x)) + (u(a) + b). Therefore φ ◦ ψ = tu(a)+b ◦ (u ◦ v). □
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Proposition 16.19. Let E,F be two K-vector spaces and ψ : E → F an affine

map with L(ψ) = v. If A ⊂ E is an affine subspace then ψ(A) is an affine subspace

of F with direction v(F ) where F = dir(A).

Proof. Let A = a+F . If x ∈ A, x = a+f, f ∈ F and ψ(x) = v(a+f)+b (ψ = tb◦v).
So ψ(x) = v(a) + b+ v(f), and ψ(A) is the affine subspace v(a) + b+ v(F ). □

An useful observation:

Lemma 16.20. An affine map ψ is injective (surjective, bijective) if and only if

its linear part L(ψ) is.

Proof. We have ψ = ta ◦ L(ψ) and the claim follows from the fact that the trans-

lation ta is bijective. □

We now introduce an important class of affine maps: affine, bijective maps from

E to itself. Such a map is called an affinity of E.

Theorem 16.21. Let E be a K-vector space. The set of affine, bijective maps from

E to E is a group for the composition of maps. This group is known as GA(E) and

is called the affinity group of E.

Proof. If ψ,φ are two affinities of E, then ψ◦φ is also an affinity of E. The identity

IdE is an affinity. The composition of maps is associative. It only remains to show

that if ψ is an affinity then ψ−1 is also an affinity. Let ψ = ta ◦ v. Clearly (Lemma

16.20) v is a linear isomorphism. Let ψ(x) = v(x) + a =: z. We want ψ−1(z) = x

If we apply v−1 to z (forced choice by Proposition 16.18) we get x + v−1(a). We

conclude that ψ−1 = t−v−1(a) ◦ v−1. □

Remark 16.22. From a certain point of view, affine geometry is the study of

geometric properties invariant under GA(E), more precisely:

- two subsets, X,Y , of E are affinely equivalent if there is an affinity of E that

sends X to Y ;

- an affine property of a subset X ⊂ E is a property common to all subsets

affinely equivalent to X.

Proposition 16.23. Two affine subspaces A,A′ of E are affinely equivalent if and

only if dim(A) = dim(A′).

Proof. Let A = a+F , A′ = a′+F ′ and suppose dim(A) = dim(A′), i.e. dim(F ) =

dim(F ′). There exists a linear isomorphism v : E → E such that v(F ) = F ′. In

fact, let (e1, . . . , er), (e
′
1, . . . , e

′
r) be bases of F, F ′. Let us complete them to bases

of E: B = (e1, . . . , en), B′ = (e′1, . . . , e
′
n). We define v by v(ei) = e′i. Then v is an
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isomorphism (transforms the basis B into the basis B′) and v(F ) = F ′. We have

v(A) = v(a) + F ′. So ψ = tb ◦ v, with b = a′ − v(a) and ψ(A) = A′. Hence A and

A′ are affinely equivalent.

Now, let ψ be an affinity such that ψ(A) = A′. We know (Proposition 16.19)

that ψ(A) has as its direction L(ψ)(dirA). So L(ψ)(dirA) = dirA′. Since L(ψ)

is an isomorphism, the two directions have the same dimension, i.e. dim(A) =

dim(A′). □

Remark 16.24. 1) The dimension is therefore an affine property of affine sub-

spaces.

2) We can identify two notable subgroups of GA(E):

- the linear group Gl(E) of the linear automorphisms of E (ψ = t0 ◦ v with

v ∈ Gl(E) is an affinity);

- the group T (E) of the translations of E (ψ = ta ◦ IdE is an affinity).

Furthermore, the map L : GA(E) → Gl(E) : ψ → L(ψ) is a morphism of groups.
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Exercises

Exercise 16.25. Let E,F be two K-vector spaces, A ⊂ F an affine subspace and

u : E → F an affine map. Prove that, if not empty, u−1(A) is an affine subspace of

E.

Exercise 16.26. Let E be a K-vector space and v, w two vectors of E, with v ̸= 0.

1) Show that there exists φ ∈ End(E) such that φ(v) = w.

2) Let A = {f ∈ End(E) | f(v) = w}. Show that A is an affine subspace of End(E),

and compute dim(A).

Exercise 16.27. Let E be a K-vector space and g : E → E an affine map. A

point p ∈ E is said to be fixed for g if g(p) = p.

1) Let f : R3 → R3 : (x, y, z) → (x + y − z + 2,−x + y + z − 2, x − y + z). Prove

that f is an affinity and determine the set of its fixed points.

2) Prove that the set of the fixed points of g is an affine subspace of E.

3) Prove that g has a unique fixed point if and only if 1 is not an eigenvalue of the

linear part of g.

Exercise 16.28. Let E be a K-vector space and GA(E) the affinity group of E.

Let T ⊂ GA(E) be the subgroup of translations; furthermore, if x ∈ E we set

Fx = {f ∈ GA(E) | f(x) = x}.
1) Prove that Fx is a subgroup of GA(E).

2) Show that Fx ∩ T = {Id} and: ∀ t ∈ T , ∀ g ∈ GA(E), g−1 circt ◦ g ∈ T .

3) Show that ∀ f ∈ Fx, ∀ g ∈ GA(E), g−1 ◦ f ◦ g has a fixed point.





Chapter 17

Equations of affine subspaces

17.1. Cartesian equations

The first result of this section highlights the correspondence between the geometric

theory of affine subspaces and the algebraic theory of linear systems. This corre-

spondence will become more evident in the following.

Proposition 17.1. Let E be a K-vector space of dimension n and A ⊂ E an affine

subspace of dimension p. Then there exists a linear system of n− p equations in n

unknowns and of rank n− p whose solution set is A.

Proof. Let A = a + F with dimF = p. We know that F is defined by n − p

independent linear equations. We quickly remember how it works: let F ◦ ⊂ E∗,

F ◦ = {φ ∈ E∗ | F ⊂ Ker(φ)}. Then dimF ◦ = n − p and if (φ1, . . . , φn−p) is a

basis of F ◦, F is the set of solutions of the homogeneous linear system
φ1(v) = 0;
...

φn−p(v) = 0.

Let us set φi(a) = bi, then a is a solution of the linear system

S =


φ1(v) = b1;
...

φn−p(v) = bn−p.

Since the set of solutions of the linear system S is obtained by adding to a particular

solution the set of solutions of the associated homogeneous system, we conclude that

the set of solutions of the system S is a+ F = A. □

221
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Remark 17.2. The equations of the system S are Cartesian equations of the affine

subspace A. As in the vector case these equations are not uniquely determined, they

depend on the choice of a basis of F ◦ and on the choice of the point a. Furthermore,

linear combinations of the equations φi = bi can be added to the system, as we

know, this will not change the set of solutions.

Example 17.3. Let in R3 be the affine line R = a + ⟨v⟩, where a = (1, 1, 0)

and where v = (1,−1, 2). We are looking for Cartesian equations of R. Since

dim(R) = 1 we are looking for 3 − 1 = 2 equations. We follow the procedure

described above. The orthogonal of ⟨v⟩ is generated by two linear forms that vanish

on v, for example φ1(x, y, z) = x + y, φ2(x, y, z) = 2x − z. These two forms are

independent so ⟨v⟩◦ = ⟨φ1, φ2⟩. We have φ1(a) = 2, φ2(a) = 2. The system that

defines R is {
x+ y = 2;

2x− z = 2.

We will often use the following result:

Lemma 17.4. Let S := {φ1(v) = b1, . . . , φr(v) = br} be the Cartesian equations

of the affine subspace A, and S ′ := {ψ1(v) = c1, . . . , ψp(v) = cp} the Cartesian

equations of the affine subspace A′. Then A ∩ A′ is the (possibly empty) set of

solutions of the linear system S + S ′ := {φ1(v) = b1, . . . , φr(v) = br, ψ1(v) =

c1, . . . , ψp(v) = cp}.

Proof. Clear. □

So in the previous example we can say that the line R is the intersection of the

affine plane, H1, of equation x + y − 2 = 0 with the affine plane, H2, of equation

2x− z − 2 = 0.

17.2. Parametric representation of affine subspaces

Let E be a K-vector space of dimension n and A = a + F an affine subspace of

E, of dimension p. An element v ∈ E belongs to A if v = a + f , with f ∈ F .

Let (f1, . . . , fp) be a basis of F , then v ∈ A ⇔ ∃ (λ1, . . . , λp) ∈ Kp such that

v = a+ λ1f1 + · · ·+ λpfp. So we have

(17.1) A = {a+ λ1f1 + · · ·+ λpfp | (λ1, . . . , λp) ∈ Kp}.

This is a parametric representation of A, the λi are the parameters, they are equal

in number to dim(A) = p. Obviously this representation depends on the choice of

a basis of F .
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Let (e1, . . . , en) be a basis of E. We have a =
∑

i αiei, fj =
∑

i βijei, then A

is the set of v ∈ E whose coordinates (x1, . . . , xn) are of the form

(17.2)


x1 = α1 + λ1β11 + · · ·+ λpβ1p;

x2 = α2 + λ1β21 + · · ·+ λpβ2p;
...

xn = αn + λ1βn1 + · · ·+ λpβnp.

We just rewrote (17.1) using the coordinates of a, f1, . . . , fp. This parametric

representation also depends on the choice of a basis of E.

Example 17.5. Let us take the line from Example 17.3. We have w ∈ R⇔ w = λv,

so (taking the canonical basis of R3) a parametric representation of R is
x = 1 + λ;

y = 1− λ;

z = 2λ.

Let us now look for a parametric representation of the plane H1 with Cartesian

equation x+ y − 2 = 0. Consider the point a = (1, 1, 0) ∈ H1. The direction of H1

is given by the associated homogeneous equation

x+ y = 0.

The solution set is a subvector space of dimension two and basis ((0, 0, 1), (1,−1, 0)).

A parametric representation is given by
x = 1 + µ;

y = 1− µ;

z = λ.

Remark 17.6. Let A ⊂ E be an affine subspace of dimension p of a vector space

of dimension n. A parametric representation of A is given by n equations with p

parameters. A Cartesian representation is given by n−p equations (in n unknowns).

Be careful not to confuse the number of parameters with the number of Carte-

sian equations.

17.3. Hyperplanes and lines: cartesian, parametric, round trip

Let H be a hyperplane of the K-vector space E. In Cartesian form H is defined by

an equation φ(v) = a. To find a parametric representation of H we need to find a

basis of Ker(φ) and a particular solution of the system φ(v) = a.

After choosing a basis E is identified as Kn and the equation φ(v) = a will be

written as a1x1 + · · ·+ anxn = a. To find a basis of

Ker(φ) = {(x1, . . . , xn) | a1x1 + · · ·+ anxn = 0}
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we give values to the parameters. For example we can proceed like this: ∃ i such
that ai ̸= 0. For each j, j ̸= i, we set

wj =

(
0, . . . , 0, 1, 0, . . . ,−aj

ai
, 0, . . . , 0

)
with 1 in place j and −aj

ai
in place i. It is easily verified that these n − 1 vectors

form a basis of Ker(φ).

A particular solution of φ(v) = a is given, for example, by

p =

(
0, . . . , 0, 1, 0, . . . ,

a− aj
ai

, 0, . . . , 0

)
.

Example 17.7. In R3 consider the plane of equation x− 2y+3z = −1. We apply

the previous procedure with i = 1. The vectors (2, 1, 0), (−3, 0, 1) form a basis of

the direction and (1, 1, 0) is a point on the plane. A parametric representation is

given by 
x = 1 + 2λ− 3µ;

y = 1 + λ;

z = µ.

Now suppose we have a parametric representation of the hyperplane: H =

a+ ⟨h1, . . . , hn−1⟩. We want to derive a Cartesian equation of H.

Note that x ∈ H ⇔ x − a ∈ ⟨h1, . . . , hn−1⟩ and this is equivalent to saying

that the n = dimE vectors x− a, h1, . . . , hn−1 are dependent which translates into

det(x− a, h1, . . . , hn−1) = 0 and this is our Cartesian equation.

In practice, however, we can do it differently by trying to eliminate the param-

eters. Let us consider an example.

Example 17.8. Let H ⊂ R3 be the hyperplane given by
x = 1 + λ− µ;

y = 2 + 2λ+ µ;

z = −1− λ+ 2µ.

Adding the first and third equations we get µ = x + z. Plugging this value of µ

into the first equation yields λ = 2x+ z − 1. Substituting these expressions of λ, µ

into the second equation gives 5x− y + 3z = 0, a Cartesian equation of H.

The other approach consists in calculating the following determinant:∣∣∣∣∣∣∣
x− 1 1 −1

y − 2 2 1

z + 1 −1 2

∣∣∣∣∣∣∣
which is indeed equal to 5x− y + 3z.
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Now, let R ⊂ E be a parametric representation of the line R = a + ⟨u⟩. We

have w ∈ R ⇔ w − a and u are dependent. After choosing a basis and setting

w = (x1, . . . , xn), a = (a1, . . . , an) this translates into saying that the matrix

M =

(
x1 − a1 x2 − a2 · · · xn − an

u1 u2 · · · un

)
has rank one, where after choosing a basis the ui are coordinates on E. Since there

exists i such that ui ̸= 0, to say that M has rank one is equivalent to say that the

n− 1 edges of ui are zero. This gives n− 1 Cartesian equations of the line R.

In practice we will try to eliminate the parameter. For example, if R ⊂ R3 is

the line of equations x = 1 + 2λ, y = 3− λ, z = 2 + 3λ then λ = 3− y from which

we derive the Cartesian equations x = 7− 2y, z = 11− 3y.

Now, suppose we have our line R given by n−1 Cartesian equations φ1(v) = β1,

. . . ,φn−1(v) = βn−1. To find the direction of R we must find a non-trivial solution

of the homogeneous system φ1(v) = 0, . . . , φn−1(v) = 0.

Lemma 17.9. Let S be the homogeneous system of n− 1 equations in n unknowns
a11x1 + · · ·+ a1nxn = 0;
...

an−1,1x1 + · · ·+ an−1,nxn = 0;

and

A =


a11 · · · a1n
...

. . .
...

an−1,1 · · · an−1,n


the (n − 1, n) matrix of the coefficients. Let Ai be the matrix obtained from A by

removing the i-th column, and ∆i = (−1)i+1 det(Ai). If the system has rank n− 1

then (∆1, . . . ,∆n) is a non-trivial solution of S.

Proof. For 1 ≤ k ≤ n we consider the determinant of the n × n matrix obtained

by adding its k-th row to A: ∣∣∣∣∣∣∣∣∣∣
ak1 · · · akn

a11 · · · a1n
...

. . .
...

an−1,1 · · · an−1,n

∣∣∣∣∣∣∣∣∣∣
.

This determinant is zero because it has two equal rows. Developing according to

the first line we get ak1∆1 + · · ·+ akn∆n = 0. So (∆1, . . . ,∆n) is a solution of S.
Since S has rank n − 1, A has a non-zero minor of order n − 1, i.e. there exists i

such that ∆i ̸= 0. □
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This lemma allows us to find the direction of R. A point remains to be found

and this will be done by giving values to the unknowns. We can also try to eliminate

the unknowns by setting x1 = λ. Let us consider an example.

Example 17.10. Let R ⊂ R3 be given by{
x+ y − z = 2;

2x+ y + z = −4.

Setting x = λ we obtain y − z = 2 − λ, y + z = −4 − 2λ. Adding up we get

2y = −2 − 3λ, so y = −1 − 3
2λ. Then z = λ − 1 − 3

2λ − 2 = −3 − 1
2λ. Be careful

though. Setting x = λ assumes that the first coordinate of a vector in dir(R) is

non-zero. For example consider{
x+ y − z = 2;

2x− y + z = −4.

Only one sign was changed. After setting x = λ we obtain y− z = 2− λ, −y+ z =

−4− 2λ, adding 2 = −3λ and the parameter is constant. This means that the first

coordinate of a vector in dir(R) is zero. In fact, let y = µ, then x− z = 2− µ and

2x+z = −4+µ, adding 3x = −2, i.e. x = − 2
3 and then z = − 16

3 +µ. A parametric

representation is 
x = − 2

3 ;

y = µ

z = − 16
3 + µ.

The direction of R is ⟨(0, 1, 1)⟩. This can also be seen by solving the homogeneous

system {
x+ y − z = 0;

2x− y + z = 0;

adding x = 0 and then y = z. To find a point we cut with a coordinate plane. In

this case the line is parallel to the plane x = 0 so it is preferable to set y = 0 or

z = 0. For y = 0 we get x− z = 2 and 2x+ z = −4, then x = − 2
3 and z = − 8

3 . So

R =

(
−2

3
, 0,−8

3

)
+ ⟨(0, 1, 1)⟩.
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Exercises

Exercise 17.11. In R3 give equations (parametric and Cartesian) of the affine

subspace generated by P,Q,R where

1) P = (0, 0, 2), Q = (0, 1, 2), R = (0, 2, 2);

2) P = (0, 0, 2), Q = (−1, 0, 2), R = (0, 2, 2).

Exercise 17.12. In R3 let D be the plane of equation x+ y + 1 = 0 and let R be

the line of equations x− 5y + 6z = 0, 5x− y + 6z + 1 = 0.

1) Show that R ∩D = ∅.
2) Give parametric equations of D and R.

Exercise 17.13. Let A ⊂ R4 be defined by the equations x + y − z + t = 1,

2x+ y + 2z − t = −1.

1) Determine the dimension of the affine subspace A.

2) Give parametric equations of A.

Exercise 17.14 (Magic matrices: the end). We set

S = {M ∈M3(R) |M is symmetric}

and

A = {M ∈M3(R) |M is antisymmetric}.

Show that S,A are subvector spaces, calculate their dimension and show that

M3(R) = S ⊕A.

Therefore each matrix is written in a unique way as the sum of a symmetric

matrix and an antisymmetric matrix. Make this decomposition explicit i.e. write

M = (aij) ∈ M3(R) as the sum of a symmetric matrix and an antisymmetric

matrix.

Let M ⊂ M3(R) be the subvector space of magic matrices (Exercise 11.30).

We set M+ = M∩ S and M− = M∩ A. Prove that M+ and M− are subvector

spaces of M and that M = M+ ⊕M−.

It follows from Exercise 11.30 that M− = {αA0 | α ∈ R} where

A0 =

 0 −1 1

1 0 −1

−1 1 0

 .
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If α ∈ R we set M+(α) = {M ∈ M+ | s(M) = α}. Determine M+(0) by

considering a suitable linear system, computing its rank and observing that

S0 =

 1 −1 0

−1 0 1

0 1 −1

 ∈ M+(0).

Show that every M+(α) is a line parallel to M+(0).

Let U be the matrix whose coefficients are all equal to 1. Clearly U ∈ M+(3).

Show that the line ⟨U⟩ intersects every M+(α). Conclude that dim(M+) = 2.

In conclusion M is a subvector space of dimension 3. A basis is (A0, S0, U). So

every magic matrix is of the form b+ c −a− b+ c a+ c

a− b+ c c −a+ b+ c

−a+ c a+ b+ c −b+ c


with a, b, c ∈ R. Here the sum is 3c. Let us observe a curious fact: if M = (aij) is

a magic matrix with sum s the central coefficient a22 is always equal to s
3 .

Let M ∈ M3(R) be a magic matrix. We denote by Ri (resp. Ci, Di), the sum

of the elements of the i-th row (resp. of the i-th column, diagonal) of M . Since M

is magic we have Ri = R1, 2 ≤ i ≤ 3, Dj = R1, 1 ≤ j ≤ 2, Ck = R1, 1 ≤ k ≤ 3. A

homogeneous linear system of 7 equations in 9 unknowns is thus obtained. Compute

the rank of the system and conclude that dim(M) = 3.



Chapter 18

Parallelism and incidence

As we have seen when studying duality the main obstacle to a good notion of duality

in the affine plane lies in the fact that two lines may not intersect, in this case they

are parallel. Parallelism is certainly an emblematic phenomenon of affine geometry.

Definition 18.1. Two affine subspaces A,A′ of a K-vector space, E, are parallel

if dir(A) ⊂ dir(A′) or dir(A′) ⊂ dir(A); in this case we write A ∥ A′.

Remark 18.2. (i) A point is parallel to any affine subspace, in particular two

points are parallel. In the following we will limit ourselves (tacitly) to considering

spaces of positive dimension.

(ii) The parallelism relation is not an equivalence relation on the set of affine

subspaces of positive dimension. In fact A ∥ A′ and A′ ∥ A′′ do not necessarily imply

A ∥ A′′. Take for example A′ a plane and A,A′′ two intersecting lines contained

in A′. It is true, however, that parallelism is an equivalence relation on the set of

affine subspaces of fixed positive dimension.

Lemma 18.3. Let A,A′ be two affine subspaces of the K-vector space E. If A ⊂ A′

then A ∥ A′.

Proof. Let a ∈ A, then a ∈ A′ and we can write (Lemma 16.7) A = a + F,A′ =

a+ F ′. If f ∈ F , a+ f ∈ a+ F ′. Hence f ∈ F ′, therefore F ⊂ F ′ and A ∥ A′. □

Lemma 18.4. Let A,A′ be two parallel affine subspaces of the K-vector space E,

with dim(A) ≤ dim(A′).

1) If A and A′ have a point in common then A ⊂ A′.

2) If dim(A) = dim(A′) and if A and A′ have a point in common then A = A′.

229
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Proof. 1) Let a ∈ A ∩ A′. We know (Lemma 16.9) that A ∩ A′ = a + (F ∩ F ′),

where F, F ′ are the directions of A,A′. Since A ∥ A′ and dim(A) ≤ dim(A′) we

have F ⊂ F ′. This implies F ∩ F ′ = F , so A ∩A′ = A i.e. A ⊂ A′.

2) From 1) we have A ⊂ A′ and A′ ⊂ A. □

Corollary 18.5. Let A be an affine subspace of fixed positive dimension of the K-

vector space E. Let p ∈ E. There exists one and only one affine subspace A′ ⊂ E

such that: p ∈ A′, dim(A) = dim(A′) and A ∥ A′.

Proof. Let A = a+F . For the existence it is enough to consider A′ = p+F . The

uniqueness follows from point (2) of Lemma 18.4. □

Remark 18.6. We identify E = R2 with the plane of elementary geometry. The

previous corollary states that given a line and a point in the plane, there exists one

and only one line passing through the point and parallel to the given line. In short,

we have proved Euclid’s famous axiom of parallels. How is this possible?

We all know that using the axioms of Euclidean geometry it is not possible

to prove the axiom of parallels (there are geometries that are equally valid, from a

logical point of view, as Euclidean geometry in which there is no parallel or there are

infinitely many parallels). The fact is that we are using a much stronger axiomatic

system than that of classical Euclidean geometry.

In linear algebra the Grassmann relation allows us to estimate the dimension

of the intersection of two subvector spaces, in affine geometry we have:

Lemma 18.7. Let E be a K-vector space of dimension n and A,A′ two affine

subspaces of E of dimension s, t. If A ∩A′ ̸= ∅ then dim(A ∩A′) ≥ s+ t− n.

Proof. Let a ∈ A∩A′, then A∩A′ = a+ (F ∩ F ′), where F, F ′ are the directions

of A,A′. The Grassmann relation gives

dim(F ∩ F ′) = dim(F ) + dim(F ′)− dim(F + F ′)

and the result follows since dim(F + F ′) ≤ n. □

Considering two parallel affine hyperplanes we see that the hypothesis A∩A′ ̸=
∅ is necessary. By adding an assumption about the relative position of the directions

we can guarantee that the intersection of two affine subspaces is non-empty.

Proposition 18.8. Let E be a K-vector space of dimension n. Let A = a + F ,

A′ = a′+F ′ be two affine subspaces of dimensions s, t. The following are equivalent:

1) F + F ′ = E;

2) A ∩A′ ̸= ∅ and dim(A ∩A′) = s+ t− n.
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Proof. 1) ⇒ 2). Since E = F + F ′, ∃ f ∈ F, f ′ ∈ F ′ such that a − a′ = f + f ′.

Then a− f = a′ + f ′ ∈ A ∩ A′. If b ∈ A ∩ A′ we can write A = b+ F,A′ = b+ F ′

and A ∩ A′ = b + (F ∩ F ′). Since dim(F + F ′) = n, the result follows from the

Grassmann relation.

2) ⇒ 1). We have A ∩ A′ = b + (F ∩ F ′) and dim(F ∩ F ′) = s + t − n. From the

Grassmann relation it follows that dim(F + F ′) = n, so F + F ′ = E. □

Corollary 18.9. Let H be a hyperplane of the K-vector space E. If A ⊂ E is

an affine subspace (of positive dimension) not parallel to H, then H ∩ A ̸= ∅ and

dim(H ∩A) = dim(A)− 1.

Proof. Let A = a + F and H = h + G. Since A and H are not parallel F is not

contained in G. Let v ∈ F \G, then ⟨v⟩ ⊕G = E, i.e. F +G = E. We conclude by

Proposition 18.8. □

This corollary is very important. In fact it allows us to do proofs by induction

on the dimension.

18.1. Intersection of two hyperplanes

Let H,H ′ be two hyperplanes of E given by the Cartesian equations φ(v) = β,

φ′(v) = β′.

Lemma 18.10. With the previous notations we have:

1) H = H ′ if and only if there exists λ ∈ K such that φ = λφ′ and β = λβ′.

2) H and H ′ are parallel if and only if there exists λ ∈ K such that φ = λφ′.

3) H and H ′ are not parallel if and only if φ and φ′ are linearly independent. In

this case H ∩H ′ is an affine subspace of dimension n− 2, defined by the Cartesian

equations {φ(v) = β, φ′(v) = β′}.

Proof. Follows from Corollary 18.9. □

If instead the hyperplanes are given in parametric representation H = a +

⟨h1, ..., hn−1⟩, H ′ = a′ + ⟨h′1, ..., h′n−1⟩, we have:

Lemma 18.11. With the previous notations the following are equivalent:

1) H ∥ H ′.

2) for every i, 1 ≤ i ≤ n− 1, det(h1, . . . , hn−1, h
′
i) = 0.

3) for every i, 1 ≤ i ≤ n− 1, det(h′1, . . . , h
′
n−1, hi) = 0.

In practice it is perhaps more convenient to derive Cartesian equations.



232 18. Parallelism and incidence

18.2. Intersection of a hyperplane and a line

Let H,R be a hyperplane and a line of the K-vector space E of dimension n. If

H ∥ R there are two possible cases: (i) R ⊂ H, (ii) R ∩H = ∅. To distinguish the

two cases it is enough to check whether any point of R belongs to H or not. If the

point belongs to H we are in the first case, otherwise we are in the second case.

If H ̸∥ R (H is not parallel to R) then (Corollary 18.9) H ∩R = {p}.

Lemma 18.12. If H is given by the Cartesian equation φ(v) = β and if R is given

by the equations φ1(v) = β1, ..., φn−1(v) = βn−1, then the following are equivalent:

1) R ∥ H.

2) det(φ1, . . . , φn−1, φ) = 0.

Proof. By definition H ∥ R⇔ dir(R) ⊂ dir(H). We have dir(R) = ⟨φ1, ..., φn−1⟩◦

and dir(H) = ⟨φ⟩◦. Now ⟨φ1, . . . , φn−1⟩◦ ⊂ ⟨φ⟩◦ ⇔ ⟨φ⟩ ⊂ ⟨φ1, . . . , φn−1⟩ (duality
reverses inclusions). This last inclusion implies that φ,φ1, . . . , φn−1 are linearly

dependent and this occurs if and only if their determinant in any basis is zero. □

Once a basis of E is chosen, E is isomorphic to Kn and the intersection H ∩R
is given by the linear system

α11x1 + · · ·+ α1nxn = β1;
...

αn−1,1x1 + · · ·+ αn−1,nxn = βn−1;

α1x1 + · · ·+ αnxn = β.

It is a system of n equations in n unknowns. Let A be the coefficient matrix. If

A has rank n (the equations φ1, . . . , φn−1, φ are independent) then the system is

a Cramer system and admits a unique solution (we are in the case H and R are

parallel). If det(A) = 0 then the equations are dependent and rk(A) = n − 1

(since φ1, . . . , φn−1 are independent). The system is compatible if and only if

rk(A | B) = n − 1 ((A | B) is the complete matrix of the system). If compatible,

the solution set is an affine subspace of dimension one (it is the line R, we are in

the case R ⊂ H). If the system is incompatible H ∩ R = ∅, we are in the case

R ∥ H, R ̸⊂ H.

In practice, rather than calculating the rank of A and that of (A | B), it may

be more advantageous to solve the system directly by substitutions.

Let us now move on to the parametric point of view. We have H = a + F ,

R = b + ⟨u⟩. Clearly R ∥ H ⇔ u ∈ F . If (f1, . . . , fn−1) is a basis of F we have:

u ∈ F ⇔ det(u, f1, . . . , fn−1)) = 0. If R ∥ H we have R ⊂ H ⇔ b ∈ H.
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If H and R are not parallel we know that H ∩R = {p}. So

p = b+ λu = a+ λ1f1 + · · ·+ λn−1fn−1

and b − a = λ1f1 + · · · + λn−1fn−1 − λu. The parameters λ1, ..., λn−1,−λ are

the coordinates of the vector b − a in the basis (f1, ..., fn−1, u). We got a Cramer

system.

18.3. Incidences in the plane and in the 3-dimensional space

Let E be a 2-dimensional K-vector space. The only interesting case from the point

of view of incidence of affine subspaces is that of two lines. But this is the case of the

intersection of two hyperplanes that we have already discussed. Let us remember

the conclusion: the two lines R,D are parallel (with the two cases R = D or

R ∩D = ∅) or they are not and intersect in a point.

Now, let E be a 3-dimensional K-vector space. The proper affine subspaces of

positive dimension are lines and planes. In this case the planes are hyperplanes.

We still have to study the mutual position of two lines.

Definition 18.13. Two affine lines R,D ⊂ E are said to be coplanar if there exists

an affine plane that contains both of them. The lines R,D are said to be skew if

they are not parallel and if R ∩D = ∅.

We have often seen this tragic error: two lines are skew if they are contained in

distinct planes. Be careful, any two distinct lines are always contained in distinct

planes!

Lemma 18.14. Let E be a K-vector space of dimension n, R and R′ two affine

lines of E.

1) If R and R′ are coplanar, not parallel, then their intersection consists of one

and only one point.

2) If R and R′ meet at a point then they are coplanar.

Proof. 1) This follows from the study in the affine plane. Suppose R,R′ ⊂ Π, Π

affine subspace of dimension two. Let R = a+ ⟨u⟩, R′ = a′ + ⟨u′⟩. We have u, u′ ∈
dir(Π) (Lemma 18.3). Since R and R′ are not parallel, u, u′ are independent and

therefore form a basis of dir(Π). Hence a−a′ = λu+µu′ (note that a−a′ ∈ dir(Π),

Lemma 16.7) i.e. p := a− λu = a′ + µu′ ∈ R ∩R′. Since R and R′ are distinct we

conclude that R ∩R′ = {p}.
2) Set R ∩R′ = {p}. We can write R = p+ ⟨u⟩, R′ = p+ ⟨u′⟩. Then R and R′ are

contained in the plane p + ⟨u, u′⟩ (u, u′ are independent because the lines are not

parallel). □
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Lemma 18.15. Let E be a K-vector space of dimension n, and R,R′ two affine

lines of E. If R and R′ are parallel, then they are coplanar.

Proof. Clearly we can assume R ̸= R′. We can write R = a+⟨u⟩ and R′ = a′+⟨u⟩.
Let w = a− a′. We show that w and u are linearly independent. Let αw+µu = 0.

If α = 0, then µ = 0 and we are done. If α ̸= 0, then a − a′ = w = λu, i.e.

a = a′+λu ∈ R′, but this is a contradiction since R∩R′ = ∅. Let H = a+⟨a−a′, u⟩.
It is clear that R ⊂ H. If p = a′ + λu ∈ R′, then p = a − (a − a′) + λu ∈ H, so

R′ ⊂ H. □

a

a− a′

a′

u

Corollary 18.16. Two lines of an affine space are skew if and only if they are not

coplanar.

Proof. It follows from Lemma 18.14 and Lemma 18.15. □

Let us now consider two lines R,D, of a 3-dimensional space. After choosing a

basis we can assume R given by the Cartesian equations: α11x+α12y+α13z = β1,

α21x+ α22y + α23z = β2 and D given by the equations: α′
11x+ α′

12y + α′
13z = β′

1,

α′
21x+ α′

22y + α′
23z = β′

2. Note that the matrix

M =


α11 α12 α13 β1

α21 α22 α23 β2

α′
11 α′

12 α′
13 β′

1

α′
21 α′

22 α′
23 β′

2


is the complete matrix of the system that determines R ∩D.

Proposition 18.17. With the previous notations, the following are equivalent:

1) det(M) = 0;

2) R ∥ D or R and D intersect at a point;

3) R and D are coplanar.

Proof. 1) ⇒ 2). Let A be the 4 × 3 matrix obtained from M by removing the

last column; A is the coefficient matrix of the system that determines R ∩D. We

have rk(A) ≥ 2 (the two equations of R (or D) are independent). Furthermore
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rk(A) = 2 ⇔ ⟨f1, f2⟩ = ⟨f ′1, f ′2⟩ (fi (f ′i) are the equations of R (D)), i.e. if

and only if ⟨f1, f2⟩◦ = ⟨f ′1, f ′2⟩◦, i.e. if and only if R ∥ D. If rk(A) = 3 then

rk(A) = rk(M) (because det(M) = 0) and the system is compatible, the solution

set has zero dimension (the system is equivalent to a Cramer system), then the two

lines intersect at a point.

2) ⇒ 1) If R ∥ D then rk(A) = 2 and this implies rk(M) ≤ 3, so det(M) = 0. If

R ∩D = {p}, the system is compatible so rk(A) = rk(M). Since rk(A) ≤ 3 (A has

three columns), we have det(M) = 0.

2) ⇔ 3). Follows from Lemma 18.14 and Lemma 18.15. □

Using this result is not recommended in practice. It is not even recommended

to calculate the ranks of A and M .

Instead, it is better to troubleshoot the system directly (for replacements).

If the system is compatible, we will see that the lines meet at a point (and the

coordinates of the point of intersection are found). If the system is incompatible,

the two lines are parallel or skew. By solving the homogeneous systems f1(v) =

0, f2(v) = 0 and f ′1(v) = 0, f ′2(v) = 0 the two directions are found and it is easy to

determine the mutual position of the two lines.
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Exercises

Exercise 18.18. In R3 consider the plane H of equation 2x + y − 2z = −1, the

line L of equations {z = x− 1, y + 1 = 2z} and the line D = (1, 1, 1) + ⟨(1, 2, 2)⟩.
1) Determine the mutual positions of H,L,D.

2) Without doing calculations, show that there exists a unique line R such that

R ∥ H, b := (3, 5, 5) ∈ R, R ∩ L ̸= ∅.
3) Give Cartesian equations of R.

Exercise 18.19. In R3 let u = (1,−1, 2), v = (0,−1, 1), w = (1, 2, 0), p =

(1, 2,−2), q = (1, 1, 1), r = (3,−1, 1), L = p+ ⟨u⟩, R = q + ⟨v⟩ and D = r + ⟨w⟩.
(1) Determine the mutual positions of L,R,D.

(2) Show that for every a ∈ D, a− p and u are linearly independent.

(3) For each a ∈ D letH(a) be the affine subspace generated by a and L. Determine

X := {a ∈ D | H(a) ∥ R}.

Exercise 18.20. In R4, with coordinates x, y, z, t, consider the planes Π1 = (1, 0, 0, 0)+

⟨(−1, 1, 0, 0), (0, 1, 1, 1)⟩ and Π2 given by the equations x−1+y = t, z = t. Finally,

let R be the line of equations x+ y = 3, z = 0, t = 1.

1) Determine the mutual positions of Π1,Π2, R.

2) Let La = (1, 1, a, 1) + ⟨(−1, 1, 0, 0)⟩ where a is a real parameter. Determine

T = {a | there exists a hyperplane containing Π1,Π2 and La}.

Exercise 18.21. In R3 let D,L be two non-parallel and coplanar lines. Denote by

H the plane containing D and L. Let R be a line not contained in H and which

meets D at a point p, with p ̸= D ∩ L. Show that R and L are skew.

Exercise 18.22. In R3 let R,S be two skew lines and let p be a point not belonging

to R∪S. Prove that there is a unique line, L, passing through p and coplanar with

both R and S. Also show that L meets at least one of the two lines R,S.

Exercise 18.23. In R4 consider the affine subspace E defined by

E = {(x, y, z, t) ∈ R4 |x+ 2y + z = −1 and x− y − t = 1}

and the line L = (1, 0, 1, 0) + ⟨(0, 1, 0, 1)⟩.

(1) Determine the mutual positions of E and L.

(2) Let p = (1,−1, 0, 1) and Π the affine subspace generated by p and L. Deter-

mine E ∩Π.

Exercise 18.24. In R3 consider the two lines L = q+ ⟨u⟩, R = p+ ⟨v⟩. Show that

L and R are skew if and only if the three vectors q−p, u, v are linearly independent.
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Exercise 18.25. Consider three lines Di = ai + ⟨ui⟩, 1 ≤ i ≤ 3 in R3, such that

two of them are skew.

(i) Show with an example that u1, u2, u3 are not necessarily independent.

(ii) Show that u1, u2, u3 are independent if and only if for each plane H ⊂ R3,

H ∩ (D1 ∪D2 ∪D3) ̸= ∅.

Exercise 18.26. In R3 consider the plane E of equation x − 2y + z = 1, the line

D of equations: z = 1− x, y = −1 and the line R = (1, 0, 2) + ⟨(1, 0,−1)⟩.
(i) Determine a Cartesian representation of the affine subspace, H, generated by R

and D.

(ii) Determine the mutual positions of R,E,D.

(iii) Let p = (1, 0, 0). Show that there exists one and only one plane, Π, such that

p ∈ Π, Π ∥ D, Π ∩R ̸= ∅. Give a Cartesian equation of Π.

Exercise 18.27. In R3 consider the plane E of equation x+ y− z = 1, the line D

of equations: z = x, 1 + y = x and the line R = (1, 2, 0) + ⟨(1, 1, 1)⟩.
(i) Determine a Cartesian representation of the affine subspace, H, generated by R

and D.

(ii) Determine L = E ∩H and deduce the mutual positions of R,E,D.

(iii) Let w = (2, 2, 2). Show that there exists an affinity, g, such that g(w) = w,

g(L) = L and g(E) = H.

Exercise 18.28. In R4 consider the affine subspace E defined by E = {(x, y, z, t) ∈
R4 |x+ 2y + z = −1 and x− y − t = 1}, and the line L = (1, 0, 1, 0) + ⟨(0, 1, 0, 1)⟩.

(1) Determine the mutual positions of E and L.

(2) Let p = (1,−1, 0, 1) and Π be the affine subspace generated by p and L,

determine E ∩Π.

Exercise 18.29. In R3 consider two lines R,D such that R∩D = {p}. Let L be a

line incident to R: L ∩R = {q}, with p ̸= q. It is assumed that L is not contained

in the plane H = ⟨R,D⟩. Show that L and D are skew.

Exercise 18.30. In R3 consider the plane H of equation 2x− 4y− z = 3, the line

R of equations x− 3y = −2, z− 2y = −3, the line D = (−1, 0,−1) + ⟨(3, 1, 2)⟩ and
the line L = (1, 0,−1) + ⟨(1, 1, 1)⟩. Let E be the affine subspace generated by R

and D.

(i) Determine the reciprocal positions of H,E,L.

(ii) Show that there exists no line, l, passing through P = (1, 0,−1) such that

l ∩R ̸= ∅ and l ∩D ̸= ∅.
(iii) Say whether there exists an affinity, φ, of R3 such that φ(L) = D and φ(D) =

R.
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Exercise 18.31. Consider two parallel planes H,H ′ in R3. Let R,D ⊂ H ′ be two

parallel lines. Show that there exists an affinity, φ, of R3 such that φ(H) = H,

φ(R) = D, and φ(D) = R (consider p ∈ D, q ∈ R,m ∈ H and use the fact that

φ(p)− φ(q) = f(p− q) where f is the linear part of φ).

Exercise 18.32. Let R1, R2, R3 be three distinct lines of R3.

(i) R1, R2, R3 are assumed two by two skew. Show that there exist infinitely many

lines, L, such that L ∩Ri ̸= ∅, 1 ≤ i ≤ 3.

(ii) The lines Ri are again assumed to be two by two skew. Let p ∈ R1. Show

with an example that you can not always find a line L with p ∈ L and L ∩Ri ̸= ∅,
i = 2, 3.

(iii) Is (i) still true if the lines are not two by two skew?

Exercise 18.33. Consider the following affine subspaces in R3: H = {(x, y, z) |
x + y − 3z + 2 = 0}, L = {(x, y, z) | x − y = 2 and 2z − x − y = −4}, D =

(0, 1, 2) + ⟨(1, 0, 1)⟩.

(1) Determine dimensions and mutual positions of H,L,D.

(2) In an affine space of dimension three consider two skew lines, L′, D′ and a

plane H ′ such that L′ ∩ H ′ = {p′}, D′ ∩ H ′ = {q′}. Let l = [p′, q′] and

r ∈ l \ {p′, q′}. Show that there is no line R such that

(a) r ∈ R;

(b) R ⊈ H ′;

(c) R ∩ L′ ̸= ∅, R ∩D′ ̸= ∅.

(3) Conclude that there is no line, R, R ⊈ H, passing through r = (−12,−5,−5)

and meeting both L and D.

Exercise 18.34. Let

S(λ) =


x+ y − λz − t = 2;

−x+ λy − t = 1;

2x+ y − λz + t = 3.

(1) Show, without solving it, that the linear system S(λ) is compatible for every

value of the parameter λ ∈ R.

(2) Let S(λ) ⊂ R4 be the set of solutions of S(λ). Show that if λ ̸= 0 then S(λ)

is never parallel to S(0).

Exercise 18.35. Consider the following system in R4

S(λ) =


λx+ y + z − t = 1;

2x+ λy + z = λ;

−x+ λy + t = 2;

where λ ∈ R is a real parameter.
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(1) Show, without solving the system, that S(λ) is compatible ∀λ ∈ R and that

the solution set, S(λ), is a line.

(2) Is it possible to find λ, µ ∈ R, λ ̸= µ, such that S(λ) and S(µ) are parallel?

Exercise 18.36. Remember that two affine subspaces are skew if they do not

intersect and if they are not parallel.

(i) Show that two general affine planes in R4 intersect at a point (in other words:

two planes, in general, intersect at a point; or again: given a plane E, in the set

of all the planes of R4, those which intersect E at a point are the most numerous

ones, they form a dense open space.)

(ii) Are there two skew affine planes in R4?

Exercise 18.37. Let E,F be two skew planes in R4, show that dim(dir(E) ∩
dir(F )) = 1.

Exercise 18.38. (1) Let E,F be two parallel planes in R4, with E ∩ F = ∅.
Show that there is one and only one hyperplane containing E ∪ F .

(2) Let E,F be two planes in R4 whose intersection is a line. Show that there is

one and only one hyperplane containing E ∪ F .

Exercise 18.39. Let E, F be two affine planes in R4. In the following, E and F

are assumed to be skew.

(1) Show that it is possible to find linear forms f, g, h and constants α, β, γ, δ such

that E is given by the equations f(v) = α, g(v) = β and F by the equations

f(v) = γ, h(v) = δ. Show that under these conditions α ̸= γ.

(2) Tell whether there is a plane G parallel to both E and F .

(3) Show that there exists a plane L such that dim(L ∩ E) = dim(L ∩ F ) = 1.

Show that for such a plane L, necessarily L ∩ E and L ∩ F are parallel.

(4) Show that there are infinitely many planes L with dim(L∩E) = dim(L∩F ) =
1.

Exercise 18.40 (Continuation of the Exercise 18.39). Let E,F be two skew planes

in R4, and A,B two planes such that dim(A∩E) = dim(A∩F ) = 1, dim(B∩E) =

dim(B ∩ F ) = 1.

(1) Show that if A∩B ̸= ∅, then A∩B is a straight line, more precisely A∩B =

A ∩ E = B ∩ E or A ∩B = A ∩ F = B ∩ F .

(2) Show that if A ∩B = ∅, then A and B are skew. In particular, A and B can

not be parallel.



240 18. Parallelism and incidence

Exercise 18.41. In R4 consider the affine subspaces E,F where E = (0, 1, 0, 0) +

⟨(−2, 2, 1, 0), (−2, 2, 1, 1)⟩ and

F =

{
x+ y = 2;

−z + t = −1.

(1) Determine the dimensions of E,F and their mutual positions.

(2) Let a = (1, 1, 0,−1). Show that there exists a unique line, R, such that

a ∈ R ⊂ F and R ∥ E.

(3) Let b /∈ E∪F and G = ⟨b, R⟩ be the plane generated by b and R. Show that if

a− b /∈ dir(E) then the linear system corresponding to G ∩E has rank three.

Exercise 18.42. Consider the following affine subspaces in R4: E = {(x, y, z, t) ∈
R4 | x − y + z + t = 1 , x + y + 2t = −1}, F = {(x, y, z, t) ∈ R4 | 2x − z + t =

2 , y+z−t = 1}, G = p+⟨e1, e2⟩, where p = ( 53 ,
−1
3 ,

1
6 ,

−7
6 ) and where (ei), 1 ≤ i ≤ 4

is the canonical basis.

(1) Determine the mutual positions of E,F,G.

(2) Determine the equations of a plane Π verifying the following conditions:

- q = (0, 0, 0, 1) ∈ Π;

- e1 ∈ dir(Π);

- Π is skew with E, F and G.

(3) Show that the plane Π is uniquely determined.

Exercise 18.43. Let n ≥ 3 and s, t two integers such that 1 ≤ s ≤ t < n − 1.

Show that there exist in Rn two skew affine subspaces, E,F , with dim(E) = s,

dim(F ) = t. Show that the condition t < n− 1 is necessary.



Chapter 19

Affine coordinate systems and

affinities

Let E be a K-vector space and q ∈ E a point. If p ∈ E we can consider the vector

p−q = v, we can think of it as the vector with origin q and pointing in the direction

of p.

−q

v = p− q

p

q

e2

e1

The vector p − q with origin q

It is clear that p = q + v i.e. p = q + (p − q); in this equality p and q

should be thought of as points and v as a vector. Once q has been fixed (as the

origin of the affine space E) the point p is completely determined by the vector

v. If (e1, . . . , en) is a basis of E we can consider the coordinates of v in this basis:

v = λ1e1 + · · · + λnen, and the point p is completely determined by the scalars

(λ1, . . . , λn).

Definition 19.1. An affine coordinate system on the affine space E is a pair (q,B)
where q is a point of E and B is a basis of vector space E. The point q is called

the origin of the coordinate system.
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If p ∈ E, the coordinates of the vector v = p − q in the basis B are the affine

coordinates of the point p in the coordinate system (q,B).

Remark 19.2. As can be seen from the drawing above, the coordinate system

(q,B), B = (e1, e2) is nothing but the basis B translated to q. The coordinates of

the origin q in the coordinate system (q,B) are (0, . . . , 0).

19.1. Change of coordinates

Let (q,B), (q′,B′) be two affine coordinate systems on E. The problem consists

in determining the coordinates of a point p in the coordinate system (q′,B′) using

those in the coordinate system (q,B). For this it is enough to know the coordinates

of q′ in the coordinate system (q,B).

In fact, let p = q + v, then p = q′ + ((q − q′) + v) = q′ + (v − (q′ − q)). The

coordinates of p with respect to (q,B) are the coordinates (λ1, . . . , λn) of the vector
v in the basis B; the coordinates of p with respect to (q′,B′) are the coordinates

(λ′1, . . . , λ
′
n) of the vector v − (q′ − q) in the basis B′.

Let (β1, . . . , βn) be the coordinates of the vector q′ − q in the basis B i.e. the

coordinates of q′ in the coordinate system (q,B). If M = Mat(IdE ;B,B′) then

M


λ1 − β1

...

λn − βn

 =


λ′1
...

λ′n

 .

In conclusion:

Proposition 19.3. If (λ1, . . . , λn) are the coordinates of p in the coordinate system

(q,B), then the coordinates (λ′1, . . . , λ
′
n) of p in the coordinate system (q′,B′) are

given by

M


λ1 − β1

...

λn − βn

 =


λ′1
...

λ′n


where (β1, . . . , βn) are the coordinates of q′ in the coordinate system (q,B) and

where M = Mat(IdE ;B,B′).

Remark 19.4. The previous formula can also be rewritten (with obvious notations)

as λ′ = Mλ + δ, where δ = −Mβ. This shows that the application λ → λ′ is an

affinity.

19.2. Affinities

A characterization of affinities:
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Lemma 19.5. Let E be a K-vector space. A map ψ : E → E is an affinity if

and only if there exists a linear isomorphism v : E → E such that: ∀(p, q) ∈ E2:

ψ(p)− ψ(q) = v(p− q). In this case L(ψ) = v.

Proof. Suppose the condition is verified. Let us fix a point q. From ψ(x)−ψ(q) =
v(x−q) we obtain ψ(x) = (ta◦v)(x), where a = ψ(q)−v(q). Since v is invertible, ψ is

an affinity. Conversely, if ψ = ta◦v is an affinity it is clear that ψ(p)−ψ(q) = v(p−q)
for every pair of points (p, q). □

Lemma 19.6. Let E be a K-vector space and q ∈ E a point. Then ∀q′ ∈ E,

∀v ∈ Gl(E), there exists a unique affinity ψ : E → E such that ψ(q) = q′ and

L(ψ) = v.

Proof. Set ψ(x) = v(x− q) + q′. We see that ψ = tb ◦ v, with b = q′ − v(q), so ψ

is an affinity, also ψ(q) = q′. If φ = tc ◦w is an affinity that satisfies the conditions

of the lemma then w = v and φ(q) = v(q) + c = q′. Hence c = q′ − v(q) = b and

φ = ψ. □

Remark 19.7. Lemma 19.6 shows that an affinity is completely determined by

its linear part and the image of any point. It is the analogue of the linear algebra

result stating that a linear map is determined by the images of the basis vectors.

Let us now move on to the so-called fundamental theorem of affine geometry.

Theorem 19.8. Let E be a K-vector space of dimension n, q0, q1, . . . , qn ∈ E and

p0, p1, . . . , pn ∈ E two collections or n + 1 affinely independent points. There is a

unique affinity ψ : E → E such ψ(qi) = pi for 0 ≤ i ≤ n.

Proof. Since the points qi (resp. pi) are affinely independent, the vectors qi − q0

(resp. pi − p0) are linearly independent and form a basis B (resp. C) of E. Let

v : E → E be the linear map such that v(pi − p0) = qi − q0, 1 ≤ i ≤ n. The map

v is a linear isomorphism because it transforms the basis B into the basis C. Let

ψ be the unique affinity such that L(ψ) = v and ψ(q0) = p0 (Lemma 19.6). Then

ψ(qi)− ψ(q0) = v(qi − q0) = pi − p0. So ψ(qi) = pi, 0 ≤ i ≤ n. □

Remark 19.9. 1) Another way of formulating the theorem: An affinity of E is

completely determined by its values on n + 1 affinely independent points, where

n = dim(E).

2) If (q,B), B = (e1, . . . , en), is an affine coordinate system, the q, e1, . . . , en are not

necessarily affinely independent; it is instead true that the points q, q+e1, . . . , q+en

are affinely independent.
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e2

e1

q q + e1

q + e2

The three points q, e1, e2 are

collinear but the three points

q, q + e1, q + e2 are not.

If p1, . . . , pn+1 are n + 1 affinely independent points then for every i, 1 ≤ i ≤
n+ 1, (pi,Bi) with Bi = (p1 − pi, . . . , pn+1 − pi) is a coordinate system.

In conclusion (p0, (p1 − p0, . . . , pn − p0)) is a coordinate system if and only if

the points p0, . . . , pn are affinely independent.
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Exercises

Exercise 19.10. In R3 consider the points q = (1, 1, 1), v1 = (−1, 0, 0), v2 =

(1, 2, 0), v3 = (2, 0,−3) and b = (4,−1, 0).

1) Show that B = (v1, v2, v3) is a basis of R3.

2) Determine the coordinates of the point b in the coordinate system (q,B).

Exercise 19.11. In R2 consider the line D of equation x+y = 1. Give the equation

of D in the coordinate system (q,B) where q = (1,−1), B = (u, v) with u = (0,−1),

v = (2, 1) (verify that this is indeed a coordinate system).

Exercise 19.12. Show that two distinct planes of R4 can

a) intersect at a point (this is the general case);

b) be skew (they do not intersect and are not parallel);

c) intersect in a line.

Exercise 19.13. Let E,F ⊂ R4 be two skew planes of R4. Show that there exists

an affinity φ of R4 such that φ(E) = F,φ(F ) = E (show that we can assume

E = a+ ⟨u, v⟩, F = b+ ⟨u,w⟩ and that (a− b, u, v, w) is a basis of R4. Finally, use

the fact that an affinity is determined by its linear part and the image of a point).

Exercise 19.14. Consider two parallel and disjoint planesH,H ′ in R3. Let R,D ⊂
H ′ be two disjoint parallel lines. Show that there exists an affinity, φ, of R3 such

that φ(H) = H, φ(R) = D, and φ(D) = R (consider p ∈ D, q ∈ R,m ∈ H and use

the fact that φ(p)− φ(q) = f(p− q) where f is the linear part of φ).





Chapter 20

Affine spaces: general theory

One can define on a set X an affine space structure (on a K-vector space) in an

axiomatic way.

Definition 20.1. Let E be a K-vector space of dimension n. An affine space on

E is a triple (X,E,φ) where

- X is a set;

- φ : X × E → X is a map satisfying the following conditions:

A1 ∀P ∈ X,∀(v, w) ∈ E2 we have φ(φ(P, v), w) = φ(P, v + w);

A2 ∀(P,Q) ∈ X2, ∃!v ∈ E such that φ(P, v) = Q.

If the vector space is specified by the context, we say that X is an affine

space. To better understand this definition let us set some writing conventions and

terminology:

- The elements of X (the points) will be denoted by capital letters.

- The elements of E (the vectors) will be denoted by lowercase letters.

- If P ∈ X, v ∈ E we set φ(P, v) = P + v. Pay attention: this + sign has

nothing to do with addition in E, it is just a convention for writing φ. With

these conventions we have:

A1 ∀P ∈ X, ∀(v, w) ∈ E2: (P + v) + w = P + (v + w) (on the left side the

two + have different meanings).

A2 ∀(P,Q) ∈ X2 there exists a unique v ∈ E such that P + v = Q (this

vector v is Q− P ).
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Example 20.2. Let us take X = E and φ : E ×E → E : (x, v) → x+ v (addition

in E). Conditions (A1), (A2) are satisfied and (E,E, φ) is an affine space; this is

the structure we have studied so far.

20.1. First properties

Lemma 20.3. For every (P, v) ∈ X × E we have P + v = P if and only if v = 0.

Proof. We show that P + 0 = P , the equivalence will result from uniqueness in

condition (A2). By (A2) there exists v such that P +v = P . So P +0 = (P +v)+0;

by (A1) we get (P + v) + 0 = P + (v + 0) = P + v. In conclusion P + 0 = P . □

Definition 20.4. For every v ∈ E the map φv : X → X : P → P + v is called the

translation of vector v.

Lemma 20.5. For every v ∈ E the translation tv is a bijection.

Proof. Using Lemma 20.3 we get that (tv)
−1 = t−v. □

Definition 20.6. A subset Y of X is an affine subspace of X if there exists a point

Q ∈ X and a subspace V ⊂ E such that Y = {P ∈ X | ∃v ∈ V, P = Q + v}. We

say that V is the direction of Y . We will write Y = Q+ V .

Remark 20.7. As in the vector case we prove Q ∈ Y and Q+V = Q′+V ′ ⇒ V =

V ′, so the direction is uniquely determined and ∀Q ∈ Y, Y = Q+V . The dimension

of Y is the dimension of V . It follows from (A2) that X = P + E,∀P ∈ X.

Definition 20.8. Let X,X ′ be two affine spaces on E,E′. A map f : X → X ′ is an

affine map if there exists a linear map v : E → E′ such that f(P )−f(Q) = v(P−Q)

for any (P,Q) ∈ X2.

As in the vector case v is uniquely determined by f . Note that it makes no

sense to require that f is the composition of a linear morphism E → E′ with a

translation X ′ → X ′.

20.2. Coordinate system and back to vector spaces

We have seen in the vector case how the choice of an origin causes the zero vector to

lose its privileged status (translating the vector space structure to the new origin).

In the general case, the choice of an origin in X allows us to give X a vector space

structure (isomorphic to E) and therefore leads us back to the vector case.

Let X be an affine space on E and Q ∈ X a point, we denote by φQ the partial

map φQ : E → X : v → Q+ v.

Lemma 20.9. For every point Q ∈ X the map φQ is a bijection.
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Proof. It is a consequence of (A2). For every P ∈ X there exists one and only one

v such that φQ(v) = P . □

The bijection φQ allows us to transport the vector space structure of E to X.

An addition on X is defined as follows: P + P ′ := φQ(φ
−1
Q (P ) + φ−1

Q (P ′)) and an

external multiplication via: λP = φQ(λφ
−1
Q (P )).

For this vector space structure on X, the map φQ is linear, so it is a linear

isomorphism i.e. we have identified X to E. Note that the vector φ−1
Q (Q)) =: w is

such that φQ(w) = Q + w = Q, and (Lemma 20.3) w = 0. For this reason we say

that Q was chosen as the origin of X.

Definition 20.10. Let X be an affine space on E. An affine coordinate system

(Q,B) on X consists in choosing an origin Q and a basis B of E.

Take P ∈ X, by (A2) there exists a unique vector v such φQ(v) = Q+ v = P .

The coordinates (λ1, . . . , λn) of v in the basis B are the coordinates of P in the

affine coordinate system (Q,B).

By writing An(K) we indicate Kn seen as an affine space on itself.

Proposition 20.11. Let E be a K-vector space of dimension n and X an affine

space on E. There exists an affine isomorphism f : X → An(K) i.e. f is a bijective

affine map such that f−1 is an affine map.

Proof. Let (Q,B), B = (e1, . . . , en) be an affine coordinate system on X. If P ∈ X

has coordinates (λ1, . . . , λn) we set f(P ) = (λ1, . . . , λn). The map f is bijective

(f−1(α1, . . . , αn) is the unique point P ′ such that P ′ = Q + w, with w = α1e1 +

· · · + αnen). The associated linear map is g : E → Kn : w → (α1, . . . , αn), g is

clearly bijective (it transforms the basis B into the canonical basis of Kn).

We verify that f is affine: if (λi), (λ
′
i) are the coordinates of P, P ′, we have

P −P ′ =
∑

i(λi − λ′i)ei and the condition f(P )− f(P ′) = g(P −P ′) is verified. In

the same way we verify that f−1 is affine (take the standard coordinate system in

Kn i.e. the origin in 0 and the canonical basis). □

20.3. Group actions

Let G be a group and X a set. An action of G on X is a morphism of groups

ψ : G→ S(X)

where S(X) is the group of permutations of X.

The action is transitive if ∀ (P,Q) ∈ X2 there exists a g ∈ G such that

ψ(g)(P ) = Q (X is said to be a homogeneous space under G); furthermore, if

the element g is unique the action is said to be simply transitive.



250 20. Affine spaces: general theory

Let X be an affine space on the K-vector space E. Consider

ψ : (E,+) → S(X) : v → tv.

The map is well-defined since translation is bijective (Lemma 20.5). The map ψ is

a group morphism due to (A1) and the action is simply transitive due to (A2).
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Exercises

Exercise 20.12. LetX be a set andG a group acting onX via the group morphism

φ : G→ S(X). If x ∈ X we will write φ(g)(x) = g(x). The orbit of the point x is

Ox = {g(x) | g ∈ G}.

1) Show that the set of orbits is a partition of X. In other words, the relation

xRy ⇔ ∃g ∈ G such that g(x) = y is an equivalence relation and the equivalence

classes are the orbits. The quotient set is denoted by X/G.

2) If (X,E,φ) is an affine space, describe the quotient set X/G, where G = (E,+).

Exercise 20.13. Let G be a group, X a set and φ : G → S(X) an action of G

on X. Suppose that the action is transitive i.e. ∀(x, y) ∈ X2, ∃g ∈ G such that

g(x) = y.

1) Describe the quotient set X/G (Exercise 20.12).

2) Show that if φ is injective and G is abelian, the action is simply transitive i.e.

∀(x, y) ∈ X2, ∃!g such that g(x) = y.

Exercise 20.14. Let E be a K-vector space and f : E → E an affine map. A

point p ∈ E is fixed for f if f(p) = p.

(1) Let φ : R3 → R3 : (x, y, z) → (x+ y + 1, y − z + 2, x− y − z − 1). Determine

the set of fixed points of φ.

(2) If f : E → E is an affine map, show that the set of fixed points of f , if not

empty, is an affine subspace of E.

(3) Show that f has a unique fixed point if and only if 1 is not an eigenvalue of

the linear part of f .

Exercise 20.15. Let φ : R3 → R3 be an affinity.

(1) Let F (φ) = {x | φ(x) = x} be the set of fixed points of φ. Show that F (φ), if

non-empty, it is an affine subspace of R3.

(2) Let φ : R3 → R3 : (x, y, z) → (x+ y + z − 1, 3y + 2z − 2,−y + 1). Show that

φ is an affinity and determine F (φ).

(3) Let φ be an affinity of R3. Show that if F (φ) is a plane, then the characteristic

polynomial of L(φ), the linear part of φ, has all its roots in R. Conclude that

if det(L(φ)) ̸= 1 then L(φ) is diagonalizable.

(4) Let φ be an affinity of R3 such that F (φ) is a plane, H. Show that if

det(L(φ)) ̸= 1, then there exist infinitely many lines, D, such that D ̸⊂ H

and φ(D) = D (these lines are globally invariant or stable but not fixed point

by point).



252 20. Affine spaces: general theory

Exercise 20.16. Consider two skew planes in R4, E,F . Show that there exists an

affinity, f , of R4 such that f(E) = F and f(F ) = E.



Part 4

Euclidean geometry



Euclidean geometry is a mathematical system attributed to ancient Greek

mathematician Euclid, which he described in the Elements. In this geometry the-

orems are derived from a small number of simple axioms. In the beginning of the

first book of the Elements, Euclid gives the following five postulates (axioms) for

plane geometry:

(i) Through every pair of points in the plane there passes a straight line.

(ii) It is possible to extend a line segment continuously in a straight line.

(iii) It is possible to describe a circle with any center and radius.

(iv) All right angles are equal to one another.

(v) If a straight line falling on two straight lines make the interior angles on

the same side less than two right angles, the two straight lines, if produced

indefinitely, meet on that side on which the angles are less than two right

angles.

Although Euclid explicitly only asserts the existence of the objects, in his reasoning

he also implicitly assumes them to be unique.

In 1795, John Playfair (1748− 1819) offered an alternative version of the fifth

postulate. This alternative version gives rise to the identical geometry as Euclid’s.

Playfair’s version of the fifth postulate reads as follows:

(v’) Given a line L and a point p not lying on L there is a unique line L′ passing

through p which does not meet L.

The modern version of Euclidean geometry is the theory of Euclidean spaces,

where distance and angles are measured by a suitable generalizations of Pythagoras

theorem.



Chapter 21

Bilinear forms

Bilinear forms are a special case of multilinear maps. Symmetric bilinear forms

are particularly important in geometry because they allow us to define distances,

orthogonality and angles.

Definition 21.1. Let E be a K-vector space. A map f : E × E → K is a

bilinear form if for every x ∈ E the partial maps fx, : E → K : y → f(x, y),

f,x : E → K : y → f(y, x) are linear.

Definition 21.2. A bilinear form f : E × E → K is

(1) Symmetric if ∀ (x, y) ∈ E2: f(x, y) = f(y, x).

(2) Antisymmetric if ∀ (x, y) ∈ E2: f(x, y) = −f(y, x).

(3) Alternating if ∀x ∈ E: f(x, x) = 0.

Remark 21.3. We have already seen that an alternating form is antisymmetric. If

char(K) ̸= 2, an antisymmetric form is alternating. In fact, from f(x, x) = −f(x, x)
we obtain 2f(x, x) = 0 and since 2 is invertible in K it follows that f(x, x) = 0.

Instead, if the char(K) = 2 then −1 = 1 and an antisymmetric form is symmetric.

The set Bil(E) of bilinear forms on E is a K-vector space. The set S2(E) of

symmetric bilinear forms is a subvector space of Bil(E).

Let B = (e1, . . . , en) be a basis of E and f : E × E → K a bilinear form.

Let v = x1e1 + · · · + xnen, u = y1e1 + · · · + ynen be two vectors of E. Using the

bilinearity of f we have

f(v, u) = f(x1e1 + · · ·+ xnen, u) = x1f(e1, u) + · · ·+ xnf(en, u).

255
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Furthermore, f(ek, u) = f(ek, y1e1 + · · ·+ ynen) =
∑

j yjf(ek, ej). In conclusion

(21.1) f(v, u) =
∑

1≤i≤n, 1≤j≤n

xiyjf(ei, ej).

It turns out that f is completely determined by the n2 scalars f(ei, ej).

Definition 21.4. The matrix associated to the bilinear form f with respect to the

basis B of E is the n× n matrix matB(f) = (f(ei, ej)), 1 ≤ i ≤ n, 1 ≤ j ≤ n.

We can now express the relation (21.1) in matrix form. Set

X =


x1
...

xn

 , Y =


y1
...

yn


then

Lemma 21.5. With the previous notations:

1) f(v, u) = tXAY , where A = matB(f).

2) If M ∈Mn(K) the map g : E × E → K : (v, u) → tXMY is a bilinear form on

E such that matB(g) =M .

Proof. 1) The product of matrices is associative therefore (tXA)Y = tX(AY ). By

definition AY is the matrix with coefficients αi = y1f(ei, e1) + · · · + ynf(ei, en).

Now, tX(AY ) is the scalar product of the row tX with the column AY and we find

the expression (21.1).

2) It follows from the properties of the matrix product. □

Proposition 21.6. Let B be a basis of the K-vector space E. The map matB :

Bil(E) →Mn(K) : f → matB(f) is an isomorphism of K-vector spaces.

The image of S2(E) is the subspace of symmetric matrices and the image of

A2(E) is the subspace of antisymmetric matrices.

Proof. The map matB is clearly linear, it is injective because with the previous

notations f is completely determined by the scalars f(ei, ej) and, for the same

reason it is surjective ((2) of Lemma 21.5).

The form f is symmetric if and only if f(ei, ej) = f(ej , ei),∀ i, j (same thing

for antisymmetric forms but with a minus), i.e. if and only if matB(f) is symmetric

(resp. antisymmetric). □

Obviously, the isomorphism matB depends on the basis B and the matrices

representing the same bilinear form in different bases are generally different. Let

us see what the relation between two such matrices is.
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Let B = (ei), B′ = (e′i) be two bases of E, and (xi) (resp. (x
′
i)) the coordinates

of the vector u ∈ E in the basis B (resp. B′). Similarly, we indicate with (yi), (y
′
i)

the coordinates of the vector v in the bases B,B′.

Let f : E × E → K be a bilinear form with A = matB(f), A
′ = matB′(f).

Finally, let P = Mat(IdE ;B,B′). We know that PX = X ′, PY = Y ′.

We have f(u, v) = tX ′A′Y ′ = t(PX)A′(PY ) = tX( tPA′P )Y = tXAY . Since

this is true for every X,Y we conclude that tPA′P = A (in fact f is determined

by the scalars f(ei, ej)). We used the fact that t(AB) = tB tA (Exercise 21.33).

We observe that since P is invertible we also have: A′ = t(P−1)AP−1 (because

(tP )−1 = t(P−1), Exercise 21.33). We proved:

Proposition 21.7. Two matrices A,A′ ∈Mn(K) represent the same bilinear form

if and only if there exists an n× n invertible matrix, P , such that tPA′P = A.

Definition 21.8. Two matrices A,A′ ∈ Mn(K) are congruent if there exists an

invertible matrix P ∈Mn(K) such that tPA′P = A. In this case we write A ≡ A′.

Lemma 21.9. The congruence relation ≡ is an equivalence relation on the set

Mn(K).

Proof. Exercise 21.34. □

Lemma 21.10. Two congruent matrices have the same rank.

Proof. In fact two congruent matrices are equivalent. If tPA′P = A, since tP and

P are invertible A and A′ are equivalent, therefore they have the same rank. □

It follows from this lemma that the rank of the matrix representing a given

bilinear form f does not depend on the basis but only on f . This justifies the

following:

Definition 21.11. Let f : E × E → K be a bilinear form. The rank of f is the

rank of the matrix matB(f) where B is any basis of E.

The form is said to be non-degenerate if it has maximum rank that is rank equal

to dim(E), otherwise f is said to be degenerate.

21.1. Symmetric bilinear forms and quadratic forms

Let f : E × E → K be a symmetric bilinear form. By definition f(u, v) =

f(v, u),∀ (u, v) ∈ E2 and the matrix matB(f) which represents f with respect

to any basis B is symmetric. We observe that if A is symmetric and P is invertible

then tPAP is also symmetric (it could not be otherwise since the fact of being

symmetric does not depend on a basis).

We now define a map q : E → K via q(v) := f(v, v).
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Definition 21.12. The map q is the quadratic form associated to f .

Remark 21.13. The quadratic form q satisfies the following properties:

Q1 ∀ v ∈ E,∀λ ∈ K: q(λv) = λ2q(v);

Q2 ∀ (u, v) ∈ E2: q(u+ v)− q(v)− q(u) = 2f(u, v);

Q’2 In particular, the map E × E → K : (u, v) → q(u + v) − q(u) − q(v) is a

symmetric bilinear form.

Definition 21.14. Let E be a K-vector space. A quadratic form on E is a map

q : E → K that satisfies (Q1) and (Q’2).

Lemma 21.15. Let E be a K-vector space. If char(K) ̸= 2 there is a one-to-one

correspondence between S2(E) and Q(E), the set of quadratic forms on E.

Proof. The correspondence φ : S2(E) → Q(E) is given by φ(f) = q where q(v) :=

f(v, v). We have φ−1(q) = f with f(u, v) = q(u+v)−q(u)−q(v)
2 . □

Remark 21.16. Lemma 21.15 is false in characteristic two.

The theory of symmetric bilinear forms and quadratic forms is very different

depending on whether char(K) = 2 or char(K) ̸= 2. From now on we will always

assume char(K) ̸= 2 (and every now and then, in certain sentences where this

assumption is essential, we will remember it). Under the hypothesis char(K) ̸= 2

we have (Lemma 21.15) a perfect correspondence between symmetric bilinear forms

and quadratic forms.

Remark 21.17. We remember what the characteristic of a field K is. We have

f : Z → K : n → 1k + · · · + 1k (n terms, n > 0; f(0) = 0 and f(−n) = −f(n)).
If f is injective, we say that K has characteristic 0 (in this case K contains a field

isomorphic to Q, consider the inverses in K of the f(n)). If f is not injective the

kernel of the ring morphism f is an ideal, I, of Z. Every ideal of Z is of the form

aZ. By the factorization theorem for morphisms of groups, rings and so on, the

image Im(f) ⊂ K is isomorphic to Z/aZ. So Im(f) is a finite, integral ring (since

Im(f) ⊂ K). It follows that Im(f) is a field, in particular a is a prime number.

In conclusion, the characteristic of a field, if not zero, is always a prime number

p. We have px = x+ · · ·+ x = 0,∀x ∈ K.

21.2. Quadratic forms and homogeneous polynomials of degree two

Let us remember the definition of homogeneous polynomial.
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Definition 21.18. A polynomial P ∈ K[x1, . . . , xn] in n variables, with coefficients

in K is homogeneous of degree d if

P (x1, . . . , xn) =
∑

ai1...inx
i1
1 . . . x

in
n

with i1+ · · ·+ in = d, for every ai1...in ̸= 0. In other words P is a sum of monomials

of degree d.

Remark 21.19. 1) In particular, if P is homogeneous of degree d then

P (λx1, . . . , λxn) = λd.P (x1, · · · , xn).

2) A homogeneous polynomial of degree 2 in the variables x1, . . . , xn is written as

P (x1, . . . , xn) =
∑

1≤i≤j≤n

aijxixj .

If i = 1 there are n possible values for j. If i = 2, there are n− 1. In general there

are n− (i− 1) possible values of j. So by varying i from 1 to n we have

n+ (n− 1) + · · ·+ 1 =
n(n+ 1)

2

possible values for j, i.e. P is determined by n(n+1)
2 coefficients aij . We thus see

that the K-vector space K[x1, . . . , xn]2 of homogeneous polynomials of degree two

has dimension

dim(K[x1, . . . , xn]2) =
n(n+ 1)

2
.

Compare it with the dimension of Sn(K), the subspace of n×n symmetric matrices.

Let us go back to quadratic forms. Let B = (e1, . . . , en) be a basis of E and

v = x1e1 + · · ·+ xnen. By definition

q(v) = f(v, v) = tXAX =
∑

1≤i≤n, 1≤j≤n

aijxixj

so q(v) can be seen as a homogeneous polynomial of degree two in the coordinates

of v. Let us try to be more precise. Let p, t be such that 1 ≤ p < t ≤ n. In the

sum we have a term aptxpxt and a term atpxtxp. But the matrix A is symmetric

so apt = atp and we can rewrite

q(v) =
∑

1≤i≤n

aiix
2
i + 2

∑
1≤i<j≤n

aijxixj .

Now let Q(x1, . . . , xn) ∈ K[x1, . . . , xn] be the homogeneous polynomial of degree

two

Q(x1, . . . , xn) =
∑

1≤i≤j≤n

qijxixj

with qii = aii, qij = 2aij if i ̸= j. We have that q(v) is the scalar Q(x1, . . . , xn),

where the xi are the coordinates of v in the basis B. Under these conditions we say



260 21. Bilinear forms

that the polynomial Q represents the quadratic form q in the basis B. Conversely,
let

Q(x1, . . . , xn) =
∑

1≤i≤j≤n

bijxixj .

We set aii = bii and aij = aji =
bij
2 if i < j (char(K) ̸= 2). The matrix A =

(aij) is symmetric and Q(X) = tXAX. Therefore, once a basis of E is chosen, if

char(K) ̸= 2, homogeneous polynomials of degree two, quadratic forms, symmetric

bilinear forms and symmetric matrices are avatars of the same thing.

21.3. Orthogonality with respect to a symmetric bilinear form

We introduce the notion of orthogonality with respect to a symmetric bilinear form

and make the connection with the orthogonality seen in linear algebra (duality).

Definition 21.20. Let E be a K-vector space and f : E × E → K a symmetric

bilinear form. A vector v is f -orthogonal to a vector u if f(u, v) = 0. By symmetry

f(v, u) = 0 and we say that u and v are f -orthogonal.

Remark 21.21. For simplicity of notation we will say more simply that u and v

are orthogonal omitting the form f . We must remember, however, that this notion

depends on f . Two vectors that are orthogonal for one form may not be for another.

Definition 21.22. Let X ⊂ E be a subset of the K-vector space E. We denote

with X⊥ the set of vectors orthogonal to each element of X:

X⊥ := {v ∈ E | f(u, v) = 0,∀ , u ∈ X}.

Remark 21.23. 1) It is easily verified that X⊥ is a subspace of E (even if X is

not).

2) The subspace E⊥ = {v ∈ E | f(u, v) = 0,∀u ∈ E} is called the radical of f .

3) If v ∈ E we will write v⊥ instead of {v}⊥.

Definition 21.24. A vector v ∈ E is isotropic if f(v, v) = q(v) = 0. In other

words v is isotropic if v is orthogonal to itself (v ∈ v⊥).

Definition 21.25. Let F,G be two subspaces of E. We say that F and G are

orthogonal if F ⊂ G⊥.

Remark 21.26. If F ⊂ G⊥ then ∀u ∈ F, v ∈ G, f(u, v) = 0. So F ⊂ G⊥ ⇔ G ⊂
F⊥.

Let us now move on to the connection with the notion of orthogonality seen in

linear algebra.

Let F ⊂ E be a subspace and f a symmetric bilinear form. We have two

orthogonals of F :
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- F ◦ ⊂ E∗, F ◦ = {φ ∈ E∗ | F ⊂ Ker(φ)};

- F⊥ ⊂ E, F⊥ = {v ∈ E | f(u, v) = 0,∀u ∈ F}.

Let f : E × E → K be a bilinear form (not necessarily symmetric). For each

u ∈ E the partial maps fu, : E → K : v → f(u, v), f,u : E → K : v → f(v, u) are

linear forms, i.e. fu,, f,u ∈ E∗. Let B = (e1, . . . , en) be a basis of E, B∗ the dual

basis and A = matB(f).

Lemma 21.27. With the previous notations we have that Mat(f•,;B,B∗) = tA

and Mat(f,•;B,B∗) = A.

Proof. Let M = (mij) be the matrix of f•, in the bases B,B∗. By definition

mij is the i-th coordinate in the basis B∗ of f•,(ej) = fej ,. If fej , =
∑

kmkje
∗
k,

then mij =
∑

kmkje
∗
k(ei) = fej ,(ei). But fej ,(ei) = f(ej , ei) = aji. So mij =

aji,∀ (i, j), therefore M = tA. In the same way we prove Mat(f,•;B,B∗) = A. □

If f is symmetric f•, = f,• =: f∗ (and tA = A). So for a symmetric bilinear

form we have the linear map f∗ : E → E∗ : u → fu, where fu : E → K :

v → f(u, v) = f(v, u). Furthermore, if B is a basis of E and A = matB(f), then

Mat(f∗;B,B∗) = A.

Proposition 21.28. Let f : E ×E → K be a symmetric bilinear form and U ⊂ E

a subvector space. Then f∗(U)◦ = U⊥.

Proof. By definition f∗(U) = {fu | u ∈ U}. So f∗(U)◦ = {v ∈ E | fu(v) = 0,∀u ∈
U} = {v ∈ E | f(u, v) = 0,∀u ∈ U} = U⊥. □

The following result will be very useful.

Lemma 21.29. Let v ∈ E, then v⊥ is a hyperplane if and only if v /∈ Ker(f∗). In

particular, if v is not isotropic then v⊥ is a hyperplane and E = v⊥ ⊕ ⟨v⟩.

Proof. From Proposition 21.28 we have: v⊥ = f∗(v)◦ = Ker(fv). So v⊥ = E ⇔
f∗(v) = 0, otherwise v⊥ is a hyperplane.

If v is not isotropic f(v, v) = fv(v) ̸= 0, then fv = f∗(v) ̸= 0 and v⊥ is a

hyperplane. We have v⊥ ∩ ⟨v⟩ = {0} since v is not isotropic. □

Another important result:

Proposition 21.30. Let f : E × E → K be a symmetric bilinear form. The rank

of f is equal to the rank of f∗. In particular f is non-degenerate if and only if f∗

is an isomorphism.

Proof. It follows immediately from Lemma 21.27 and the definition of rank of f

(rk(f) := rk(A) = rk(f∗)). □
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Remark 21.31. 1) If f is a non-degenerate symmetric bilinear form, the isomor-

phism f∗ : E → E∗ identifies E with its dual (in general there is no canonical

isomorphism between E and E∗).

2) If f is a non-degenerate bilinear form (not necessarily symmetric), since rk(A) =

rk(tA), we have two isomorphism between E and E∗ induced by f (f•, and f,•).

In this identification the orthogonality with respect to f corresponds, via f∗, to

the orthogonality of linear algebra and we can use the duality results, for example:

Proposition 21.32. Let f : E × E → K be a non-degenerate symmetric bilinear

form and let U ⊂ E be a subspace. Then 1) dim(U⊥) = dim(E)− dim(U);

2) (U⊥)⊥ = U .

Proof. 1) By Proposition 21.28 dim(U⊥) = dim(f∗(U)◦). We know from linear

algebra that dim(f∗(U)◦) = dim(E∗) − dim(f∗(U)). We have dim(E) = dim(E∗)

and dim(f∗(U)) = dim(U) since f∗ is an isomorphism.

2) We have U ⊂ (U⊥)⊥ = {v ∈ E | f(v, u) = 0,∀u ∈ U⊥}. But by 1) these two

subspaces have the same dimension, so they are equal. □
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Exercises

Exercise 21.33. 1) Let A,B ∈Mn(K), show that t(AB) = tB tA.

2) If P is invertible show that (tP )−1 = t(P−1).

Exercise 21.34. Prove Lemma 21.9.

Exercise 21.35. Let E be a K-vector space and f : E × E → K a symmetric,

non-degenerate bilinear form. Let V be a subspace of E and let f ′ the restriction

of f to V × V . Is f ′ non-degenerate?

Exercise 21.36. Let E be a K-vector space and f : E × E → K a symmetric

bilinear form. The form f is said to be anisotropic if it does not possess non-zero

isotropic vectors.

(1) Show that if f is anisotropic then f is non-degenerate. Is the vice versa true?

(2) If f is anisotropic and U ⊂ E is a subvector space, show that E = U ⊕ U⊥.

Exercise 21.37. The aim of the exercise is to show that if A,B ∈ Mn(K), then

AB and BA have the same characteristic polynomial.

Let Ir ∈Mn(K) denote the matrix

Ir =

(
Ir 0

0 0

)
where Ir is the r × r identity matrix and the zeros indicate null matrices of the

appropriate size. Take N ∈Mn(K) and write

N =

(
N1 N2

N3 N4

)
where N1 is an r × r square matrix, N2 ∈ Mr,n−r(K), N3 ∈ Mn−r,r(K) and

N4 ∈Mn−r(K).

(i) Show that

IrN =

(
N1 N2

0 0

)
and

NIr =

(
N1 0

N3 0

)
(consider linear maps associated to the matrices Ir, N).

(ii) Conclude that IrN and NIr have the same characteristic polynomial.

(iii) Let A,B ∈Mn(K), and r the rank of A. We know that there exist invert-

ible matrices P,Q such that A = PIrQ. Set B = QBP so that B = Q−1BP−1.
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Show that AB is similar to IrB while BA is similar to BIr. Conclude that AB

and BA have the same characteristic polynomial.

Exercise 21.38. 1) Show that

Tr :Mn(K)×Mn(K) → K : (A,B) → Tr(AB)

is a non-degenerate symmetric bilinear form.

2) Determine S⊥ where S indicates the subspace of symmetric matrices and the

orthogonal is taken with respect to Tr.

Exercise 21.39. Let f : E × E → K be a symmetric bilinear form and V ⊂ E

a subvector space that does not contain any non-zero isotropic vectors. Show that

E = V ⊕ V ⊥.

Exercise 21.40. Let E be a K-vector space, char(K) ̸= 2 and f : E × E → K a

non-degenerate symmetric bilinear form. A subspace U of E is said to be totally

isotropic if for every x ∈ U , f(x, x) = 0.

(1) Prove that if U is totally isotropic then dim(U) ≤ dim(E)
2 .

(2) For each n ≥ 1, give an example of a non-degenerate symmetric bilinear form

on a space of dimension 2n, with a totally isotropic subspace of dimension n.

Exercise 21.41. Let E be a K-vector space and f : E×E → K a non-degenerate

symmetric bilinear form.

(1) Show that for every w ∈ E,w ̸= 0, w⊥ is a hyperplane (remember that

U⊥ = f∗(U)◦, where f∗ : E → E∗ : u→ fu).

(2) Show that if v⊥ = w⊥, then v and w are dependent.

(3) Assume dim(E) = 3 and u ∈ E isotropic (u ̸= 0). Let u⊥ = ⟨u, v⟩. Determine

u⊥ ∩ v⊥.

Exercise 21.42. Let φ, ψ be two linear forms on the K-vector space E.

(1) Prove that f : E × E → K : (u, v) → φ(u)ψ(v) + φ(v)ψ(u) is a symmetric

bilinear form.

(2) Let E = R2, and φ, ψ be the linear forms determined by the following

conditions: φ((1, 1)) = 1, Ker(φ) = {(x, y) | x + 2y = 0}, ψ((1, 1)) = 2,

Ker(ψ) = {(x, y) | x + y = 0} (coordinates in the canonical basis C). Deter-

mine matcc(f) (f defined as in (1)). State whether f is degenerate.

Exercise 21.43. Consider the quadratic form

q : R3 → R : (x, y, z) → z2 − 4xy + 2xz − 2yz.

(1) Determine the rank and signature of q using Gauss method.
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(2) Show that there are two linearly independent vectors that are isotropic with

respect to q.

(3) Let v, w be two linearly independent isotropic vectors. Show that if f(v, w) = 0

(f the symmetric bilinear form associated to q), then the orthogonal of ⟨v, w⟩
is contained in ⟨v, w⟩.

Exercise 21.44. Consider the quadratic form

q : R3 → R : (x, y, z) → −x2 − 3y2 − 2z2 − 2xy + 2xz + 6yz.

(1) Determine A = matC(f), where C = (ei) is the canonical basis and f is the

associated symmetric bilinear form. Compute the rank of A.

(2) Determine e⊥1 .

(3) Let v = (0, 1, 1). Determine v⊥.

(4) Determine the signature of q.

(5) Find the signature of q with Gauss method.

Exercise 21.45. Consider the quadratic form

q : R3 → R : (x, y, z) → x2 − 2z2 + 2xy − 2xz.

(1) Determine, with Gauss method, the rank and signature of q.

(2) Show that there are three linearly independent isotropic vectors. Are these

three vectors two by two orthogonal?

Exercise 21.46. For eachM ∈Mn(R) we denote by Σ(M) the sum of the elements

of M . Let

S =

 1 2 0

2 1 2

0 2 1


andA := {X ∈M3(R) | X = − tX} the subvector space of antisymmetric matrices.

(1) Show that φ : A×A → R : (X,Y ) → Σ(XSY ) is a symmetric bilinear form.

(2) Determine the signature of φ.





Chapter 22

Diagonalization of quadratic

forms

22.1. Orthogonal bases

Definition 22.1. Let f : E×E → K be a symmetric bilinear form on the K-vector

space E. A basis B = (e1, . . . , en) of E is f -orthogonal (or simply orthogonal) if

f(ei, ej) = 0 if i ̸= j.

Remark 22.2. The basis B is orthogonal if and only if MatB(f) is diagonal. In

fact MatB(f) = (f(ei, ej)). In this case if q is the associated quadratic form and if

v =
∑
xiei, then q(v) = α1x

2
1+· · ·+αnx

2
n where αi = f(ei, ei), so the homogeneous

polynomial representing f does not have mixed terms xixj , i ̸= j.

A first important result:

Theorem 22.3. Let E be a finite-dimensional K-vector space, with char(K) ̸= 2,

and f : E × E → K a symmetric bilinear form. Then there exists a basis of E

which is f -orthogonal.

Proof. If f is identically zero the result is clear. We can therefore assume f ̸= 0.

We proceed by induction on dim(E). The initial case dim(E) = 1 is fine. The

essential point is to show the existence of a non-isotropic vector u. In fact, once u

has been found, we can write E = ⟨u⟩ ⊕H, H = u⊥ (Lemma 21.29). By induction

hypothesis there exists an orthogonal basis, B′ = (e1, . . . , en−1), for f|H : H×H →
K. Then B = (e1, . . . , en−1, en = u) is an orthogonal basis for f .

We show the existence of a non-isotropic vector. Since f ̸= 0 there exist v, w ∈
E such that f(v, w) ̸= 0. We have f(v + w, v + w) = f(v, v) + f(w,w) + 2f(v, w).

267
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Since 2f(v, w) ̸= 0 (this is where the hypothesis char(K) ̸= 2 is used), one of the

three terms f(v + w, v + w), f(v, v), f(w,w) is non-zero. □

Remark 22.4. The assumption char(K) ̸= 2 is necessary, the theorem is false

if char(K) = 2. Let E be a 2-dimensional K-vector space with K = Z/2Z and

B = (e1, e2) a basis of E. Let f : E × E → K be defined by the matrix

MatB(f) =

(
0 1

1 0

)
and v = αe1+βe2 be a vector of E. We have f(v, v) = 2αβ = 0. If C = (w1, w2) were

an orthogonal basis we would have f(w1, w2) = 0 and as seen above f(wi, wi) = 0,

therefore MatC(f) would be the zero matrix, in contradiction with f(e1, e2) = 1.

Another way to formulate the theorem:

Corollary 22.5. Let K be a field with char(K) ̸= 2. Every symmetric matrix

A ∈Mn(K) is congruent to a diagonal matrix.

Proof. Indeed in an f -orthogonal basis, B, MatB(f) is diagonal. □

Remark 22.6. This does not imply that every symmetric matrix is diagonalizable.

Actually, such statement is false. Consider the matrix

A =

(
1 i

i −1

)
∈M2(C).

We have PA(x) = x2, if A were diagonalizable it would be similar to the null matrix.

So A is symmetric and not diagonalizable.

We will see (spectral theorem) that every symmetric matrix with real entries

is diagonalizable.

Finally, yet another way of expressing the theorem: In an f -orthogonal basis

the associated quadratic form does not contain terms of the type xixj with i ̸= j.

That is, if v = x1e1 + · · · + xnen (B = (ei) an f -orthogonal basis), then q(v) =

α1x
2
1 + · · ·+ αnx

2
n (where αi are the terms on the diagonal of MatB(f)).

22.2. Orthonormal families and Sylvester’s theorem

Let us now move on to the second result. From Theorem 22.3 it follows that there

always exists an f -orthogonal basis, the matrix of f in this basis is diagonal with

ai = aii on the diagonal. We have (after possibly reordering) ai ̸= 0 if 1 ≤ i ≤ r,

where r = rk(f), ai = 0 if i > r. Now, we want to normalize, i.e. replace the

non-zero ai with 1. In other terms we want to write the associated quadratic form

as a sum of squares: q(v) = x21 + · · ·+ x2r. It is possible to normalize if the ai have

a square root in K. In particular:
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Theorem 22.7. Let E be a K-vector space and f : E × E → K a symmetric

bilinear form. We assume K algebraically closed, with char(K) ̸= 2. Then there

exists a basis B of E such that

MatB(f) =

(
Ir 0

0 0

)
where r is the rank of f and where the zeros indicate null matrices of appropriate

orders.

Proof. Let B′ = (e′i) be an orthogonal basis (Theorem 22.3). We set ei =
e′i√
ai

for 1 ≤ i ≤ r, ei = e′i if i > r. Clearly, B is an orthogonal basis. We have

f(ei, ei) =
f(e′i,e

′
i)

(
√
ai)2

= 1, 1 ≤ i ≤ r. □

Remark 22.8. There are non-algebraically closed fields in which every element

has a square root. These are called quadratically closed field. For instance, the

field of constructible numbers is quadratically closed but not algebraically closed.

A real number λ is constructible if and only if, given a line segment of unit length,

a line segment of length |λ| can be constructed with compass and straightedge in

a finite number of steps. Equivalently, λ is constructible if and only if there is a

closed-form expression for λ using only integers and the operations for addition,

subtraction, multiplication, division, and square roots. Theorem 22.7 holds more

generally when K is quadratically closed.

This normalization process has to do with the basic notion orthonormal family.

Definition 22.9. A family v1, . . . , vk of vectors of E is orthonormal if the vi are

two by two orthogonal and if f(vi, vi) = 1,∀i (this, as we will see, means requiring

that the vi have length 1).

Lemma 22.10. Let v1, . . . , vk ∈ E be vectors forming an orthonormal family, then

v1, . . . , vk are independent.

Proof. Let
∑

i λivi = 0. We have 0 = f(vk,
∑

i λivi) = λkf(vk, vk) (because

f(vk, vi) = 0 if k ̸= i). Since f(vk, vk) = 1 ̸= 0, we have λk = 0. □

Theorem 22.7 says that if rk(f) = r, then there exists an orthonormal family

formed by r vectors (and it is not possible to have more than r).

The ideal situation is when we have an orthonormal basis B = (ei). In this case

MatB(f) = In; this is possible if and only if rk(f) = n (K algebraically closed). In

this case if v =
∑
xiei, w =

∑
yiei, f(v, w) = (x1, . . . , xn)

t(y1, . . . , yn) = x1y1 +

· · ·+ xnyn. We find the usual scalar product that we used in defining the product

of matrices and which we will indicate with (v | w).
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Remark 22.11. Homogeneous polynomials of degree two (quadratic forms) define

quadrics (in projective space, in the plane they are called conics). Theorem 22.7

says that if K is algebraically closed, the classification of quadrics is given by the

rank.

More precisely, if K is algebraically closed, a form of rank r can be transformed

to q(v) = x21 + · · ·+ x2r, where the xi are the coordinates of v.

22.3. Sylvester’s theorem

Sylvester’s theorem concerns the case K = R. By Theorem 22.3 there is always an

orthogonal basis but since there exist real numbers that do not have a real square

root (the negative real numbers) we can not always normalize. If ai < 0 then

−ai > 0 and −ai has a square root. We can write ai = −(−ai) = −(α2
i ). Resuming

the proof of the Theorem 22.7 we have

f(
e′i
αi
,
e′i
αi

) =
ai
α2
i

= −1.

We can therefore normalize but with +1 and −1. However, there is a problem.

There are infinite orthogonal bases (review the proof of the Theorem 22.3) and the

number of positive terms on the diagonal might vary. Sylvester’s theorem says that

the number of positive terms does not depend on the orthogonal basis chosen, it

only depends on f .

Theorem 22.12 (Sylvester). Let E be an R-vector space and f : E × E → R a

symmetric bilinear form. There exists an integer p (0 ≤ p ≤ r := rk(f)) such that

for each orthogonal basis B the number of positive terms in the matrix MatB(f) is

equal to p. In particular, there exists a basis B such that

MatB(f) =

 Ip 0 0

0 −Ir−p 0

0 0 0


where, as usual, the zeros indicate null matrices of appropriate orders. The pair

(p, r − p) is called the signature of f .

Proof. It remains to be seen that the number of positive terms is always the

same in all orthogonal bases. Let B = (ei), C = (fi) be two orthogonal bases.

Suppose q(ei) > 0, 1 ≤ i ≤ p, q(ei) ≤ 0, i > p and q(fj) > 0, 1 ≤ j ≤ t, q(fj) ≤
0, j > t. If p > t we consider F := ⟨e1, · · · , ep⟩ and G = ⟨ft+1, · · · , fn⟩. We

have dim(F ) + dim(G) = p + (n − t) > n, because p − t > 0. For Grassmann

there exists w ∈ F ∩ G,w ̸= 0. Since w ∈ F , w = a1e1 + · · · + apep and q(w) =

a21q(e1) + · · ·+ a2pq(ep) > 0 (note that ai ̸= 0 for some i). But w also belongs to G:
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w = bt+1fq+1 + · · ·+ bnfn and q(w) ≤ 0 (since q(fj) ≤ 0 if j > t). A contradiction.

So p = t.

As explained before we can normalize in the following way: we take the basis

B, for 1 ≤ i ≤ p set vi = ei√
ai

(where ai = q(ei)) and for p + 1 ≤ i ≤ r, set

vi =
ei√

−q(ei)
. Finally, for i > r we set vi = ei. Then in the basis (vi) the matrix of

f has the desired form. □

Definition 22.13. Let E be an R-vector space let f : E × E → R a symmetric

bilinear form. The form f is:

- positive if q(v) = f(v, v) ≥ 0,∀ v ∈ E;

- positive definite if q(v) = f(v, v) ≥ 0,∀ v ∈ E, with q(v) = 0 ⇔ v = 0;

- negative if q(v) = f(v, v) ≤ 0,∀ v ∈ E;

- negative definite if q(v) = f(v, v) ≤ 0,∀ v ∈ E, with q(v) = 0 ⇔ v = 0;

otherwise the form is said to be indefinite.

The positive definite forms are the scalar products and will play an important

role. These definitions are peculiar to the R field (it makes no sense to talk about

negative/positive numbers over C).

22.4. Diagonalization of quadratic forms in practice

In this section we will see how to diagonalize a quadratic forms in practice (in the

real case it will also be a matter of determining the signature of the form).

The idea is to resume the proof of the Theorem 22.3. Then we look for a

non-isotropic vector v1 and write E = ⟨v1⟩ ⊕H1 where H1 = v⊥1 . Now, we try to

apply the previous procedure with H1 instead of E. Be careful though, it could be

that f|H1
= 0. But in this case we are done: if C = (ui) is any basis of H1, C is

an orthogonal basis for f|H1
and B = (v1, ui) is an orthogonal basis for f . We can

therefore assume that f|H1
̸= 0 and in this case there exists a non-isotropic vector

v2 ∈ H1. We determine v⊥2 (which is a hyperplane of E) and H2 := H1 ∩ v⊥2 . We

observe that dim(H2) = dim(H1)− 1 since v2 ∈ H1 but v2 /∈ v⊥2 because v2 is not

isotropic. We can write H1 = ⟨v2⟩ ⊕ H2 and therefore E = ⟨v1⟩ ⊕ ⟨v2⟩ ⊕ H2 (we

have dim(H2) = dim(E)− 2 because H1 ̸= v⊥2 since v2 /∈ v⊥2 ). We observe that v1

and v2 are orthogonal and that each vector of H2 is orthogonal to both v1 and v2.

In the case dim(E) = 3 we are finished.

We show by induction that in the general case the process can be completed.

Suppose we have E = ⟨v1⟩ ⊕ · · · ⊕ ⟨vt⟩ ⊕Ht with the vi two-by-two orthogonal and

non-isotropic, and with Ht = v⊥1 ∩ · · · ∩ v⊥t . If f|Ht
= 0, we take any basis of Ht:

(wt+1, . . . , wn). Then B = (v1, . . . , vt, wt+1, . . . , wn) is an orthogonal basis of E. In
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fact f(vi, wj) = 0 because wj ∈ Ht = v⊥1 ∩ · · · ∩ v⊥t , f(wk, wj) = 0 since f|Ht
= 0

and f(vi, vl) = 0 being the vi two-by-two orthogonal. The vectors (v1, . . . , vt) are

independent since they are two-by-two orthogonal and not isotropic (Lemma 22.10

and Lemma 22.15 below). Hence the vectors (vi, wj) form a basis.

If f|Ht
̸= 0, we take w = vt+1 non-isotropic in Ht. We compute w⊥ and set

Ht+1 = w⊥ ∩ Ht. We have Ht = ⟨vt+1⟩ ⊕ Ht+1 (because w is non isotropic, so

w /∈ w⊥), and E = ⟨v1⟩ ⊕ · · · ⊕ ⟨vt+1⟩ ⊕Ht+1.

We will inevitably end up with E = ⟨v1⟩ ⊕ · · · ⊕ ⟨vn⟩, where the vi two-by-two

orthogonal, and not isotropic (therefore Lemma 22.10 and Lemma 22.15 below) or

there will be some i such that f|Hi
= 0. But in this case we conclude by taking any

basis of Hi. In any case we found an orthogonal basis.

Example 22.14. Let us see how it works in a concrete case. Let E be a R-vector
space of dimension three, B = (e1, e2, e3) a basis of E and f the symmetric bilinear

form defined by

MatB(f) =

 1 1 −1

1 2 0

−1 0 3

 .

(i) We have q(e1) = f(e1, e1) = a11 = 1, so e1 is not isotropic.

(ii) Furthermore

e⊥1 =

(x, y, z) | (x, y, z)A

 1

0

0

 = 0


where A = MatB(f). From the study of linear maps we know that

A

 1

0

0


is given by the first column of A, so we can directly write

e⊥1 = {(x, y, z) | (x, y, z) t(1, 1,−1) = x+ y − z = 0}.

To find a basis we give values to x, y, z: if x = 0, y = z and we can take (0, 1, 1). If

y = 0, we can take (1, 0, 1) = e1 + e3.

(iii) It follows from (ii) that a ∈ e⊥1 . The associated quadratic form is

q(x, y, z) = x2 + 2y2 + 3z2 + 2xy − 2xz.

So q(a) = 1+3−2 = 2 ̸= 0 and a is not isotropic. We have A(e1+e3) = Ae1+Ae3 =
t(0, 1, 2) (sum of the first column ofA with the third). So a⊥ = {(x, y, z) | y = −2z}.
A basis is given by e1 and (0,−2, 1).
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(iv) We have e⊥1 ∩a⊥ = {(x, y, z) | x+y−z = 0, y = −2z}, i.e. x = 3z, y = −2z.

In conclusion, e⊥1 ∩ a⊥ = ⟨b⟩ where b = (3,−2, 1).

By construction the vectors e1, a, b are two-by-two orthogonal. Be careful, two-

by-two orthogonal vectors are not necessarily independent.

Lemma 22.15. Let v1, . . . , vk ∈ E be two-by-two orthogonal vectors. We also

assume vi is non-isotropic, 1 ≤ i ≤ k. Then the vi are independent.

Proof. It comes from the proof of the Lemma 22.10. □

Going back to our example we see that q(b) = 2. We conclude that (e1, a, b)

is an orthogonal basis. The matrix of f in this basis is diagonal with 1, 2, 2 on the

diagonal. The signature is (3, 0) (3 positive terms, 0 negative terms). In particular,

f is non-degenerate (positive definite).

22.5. Gauss method for diagonalizing quadratic forms

The Gauss method can be stated as follows:

Theorem 22.16. Given a quadratic form

q(x1, . . . , xn) =

n∑
i=1

aiix
2
i +

∑
1≤i<j≤n

aijxixj

on a K-vector space of dimension n (char(K) ̸= 2), it is possible to write q in the

form

q(x1, . . . , xn) =

n∑
i=1

λiLi(x1, . . . , xn)
2

where the Li are linear, linearly independent forms.

The important point is that the Li are independent. In fact, let A be the matrix

whose rows are the coefficients of the Li. If the Li are independent, the matrix A

is invertible and if we set

A


x1
...

xn

 =


X1

...

Xn


then Xi := Li(x1, . . . , xn) is a change of variables and after this change of variables

our form is written as

q(X1, . . . , Xn) =

n∑
i=1

λiX
2
i .

The rank is given by the number of non-zero λi, the signature (in the real case) by

the signs of the λi.
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The interest of Gauss’s method lies more in its proof than in its statement.

The method is based on two algebraic identities:

- a2 + 2ab = (a+ b)2 − b2 (completion of the square);

- ab = (a+b
2 )2 − (a−b

2 )2.

Proof. (of Theorem 22.16) Let us see how it works. We proceed by induction on

n. The case n = 1 is clear. Let us do the induction step n− 1 → n. We distinguish

two cases:

(i) one of the aii is non-zero;

(ii) aii = 0,∀i.

In case (i) we can assume a := a11 ̸= 0 and write q = ax21 +2x1R+S, where R is a

linear form in x2, . . . , xn and S is a quadratic form in x2, . . . , xn. Now, we complete

the square:

q = a

(
x1 +

R

a

)2

−
(
R

a

)2

+ S.

Finally, q = a(x1+
R
a ))

2+T , where T = S−(Ra )
2. We observe that T is a quadratic

form in x2, . . . , xn. By induction hypothesis T =
∑n

i=2 λiLi(x2, . . . , xn), with the

Li linearly independent. We conclude that

q =

n∑
i=1

λi(Li(x1, . . . , xn))
2

with L1 = x1 + R
a , λ1 = a and Li(x1, . . . , xn) = Li(x2, . . . , xn) if i > 1. Since

L1 /∈ ⟨L2, . . . , Ln⟩ (x1 does not appear in Li, i > 1), the forms L1, . . . , Ln are

independent.

In case (ii) there are only rectangular terms. We can assume q = ax1x2+x1R+

x2S + T , with a ̸= 0, R,S linear forms in x3, . . . , xn and with T a quadratic form

in x3, . . . , xn. We have

q = a

((
x1 +

S

a

)(
x2 +

R

a

))
− RS

a
+ T = aD1D2 +M

whereD1 = x1+
S
a ,D2 = x2+

R
a andM = T−RS

a . We observe thatM is a quadratic

form in x3, . . . , xn. By induction hypothesis M =
∑
λiL

2
i , with L3, . . . , Ln linearly

independent.

Now, we use the second algebraic identity: D1D2 = (D1+D2

2 )2− (D1−D2

2 )2. Set

L1 = D1+D2

2 , L2 = D1−D2

2 , so q =
∑
λiL

2
i , with λ1 = λ2 = a. Furthermore, D1

and D2 are linearly independent, so L1 = D1+D2

2 and L2 = D1−D2

2 are also linearly

independent.

Since ⟨L1, L2⟩ ∩ ⟨L3, . . . , Ln⟩ = {0}, the Li are linearly independent. This

concludes the proof. □
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Example 22.17. Let us see how it works in practice with the quadratic form of

Example 22.14: q(x, y, z) = x2 + 2y2 + 3z2 + 2xy − 2xz.

We collect the terms in x: q = x2 + 2xy − 2xz + (2y2 + 3z2), and we complete

the square: x2 + 2x(y − z) = (x+ y − z)2 − y2 − z2 + 2yz. So

q = (x+ y − z)2 − y2 − z2 + 2yz + (2y2 + 3z2) = (x+ y − z)2 + y2 + 2z2 + 2yz.

Now, we have to deal with the form y2 + 2z2 + 2yz in the two variables y, z. We

have y2 + 2z2 + 2yz = (y + z)2 + z2. In conclusion

q(x, y, z) = (x+ y − z)2 + (y + z)2 + z2.

The rank is three and the signature is (3, 0).

This approach is much faster. Be careful though, if not rigorously applied the

method can lead to inextricable calculations.
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Exercises

Exercise 22.18. Let E be an R-vector space of dimension three, B = (ei) a basis

of E and f : E × E → R a symmetric bilinear form such that

MatB(f) =

 1 1 −1

1 2 0

−1 0 3

 .

1) Show that e1 is not isotropic for f .

2) Determine e⊥1 .

3) Note that a = e1 + e3 ∈ e⊥1 . Show that a is not isotropic and determine a⊥.

4) If b is a non-zero vector of e⊥1 ∩ a⊥, prove that B′ = (e− 1, a, b) is an orthogonal

basis of E and write MatB′(f).

Exercise 22.19. Consider the quadratic form

q : R3 → R : (x, y, z) → −x2 − 3y2 − 2z2 − 2xy + 2xz + 6yz.

(1) Determine A = MatC(f) where C = (ei) is the canonical basis and where f is

the associated symmetric bilinear form. Calculate the rank of A.

(2) Determine e⊥1 .

(3) Let v = (0, 1, 1). Determine v⊥.

(4) Determine an orthogonal basis for f .

Exercise 22.20. Consider the quadratic form

q : R3 → R : (x, y, z) → z2 − 4xy + 2xz − 2yz.

1) Write the matrix, A, of the associated bilinear form in the canonical basis and

calculate its rank.

2) Compute q(e1 + e2) ((ei) indicates the canonical basis). Deduce the signature of

q (look at A).

3) Find the signature of q using the Gauss method.

Exercise 22.21. Consider the quadratic form

q : R3 → R : (x, y, z) → x2 − 2z2 + 2xy − 2xz.

(1) Determine, with the Gauss method, the rank and the signature of q.

(2) Show that there are three linearly independent isotropic vectors. Are these

three vectors two-by-two orthogonal?

Exercise 22.22. Consider the quadratic form

q : R3 → R : (x, y, z) → −2x2 − 2y2 − 4xy + 4xz + 4yz.
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i) Write the matrix, A, of the associated symmetric bilinear form and calculate its

rank.

ii) Determine E⊥ = Ker(A). Observe that v = e2 + e3 is orthogonal to e1 and

deduce the signature of q.

iii) Find the signature of q with the Gauss method.

iv) Show that there exist three linearly independent vectors u1, u2, u3, with q(ui) <

0,∀i.

Exercise 22.23. Consider the quadratic form

q : R3 → R : (x, y, z) → 4x2 + 5y2 + z2 − 4xy + 4zy.

1) Write the associated matrix and calculate its rank.

2) Calculate e⊥1 ((ei) indicates the canonical basis).

3) Let v = (1, 2, 0). Compute v⊥ and determine an orthogonal basis. Deduce the

signature of q.

4) Find the previous result with the Gauss method.

Exercise 22.24. Consider the quadratic form

q : R4 → R : (x, y, z, t) → −x2 + 3y2 + t2 + 2xy − 2xz − 2yt.

1) Write the matrix of the associated symmetric bilinear form.

2) Calculate e⊥4 and e⊥1 ((ei) is the canonical basis).

3) Let v = e1 + e2 + e4, calculate v
⊥ and then determine the signature of q.

4) Find the signature of q with the Gauss method.





Chapter 23

Euclidean vector spaces

23.1. Metric spaces

In this section we introduce in general terms the notions of distance and norm

which will be fundamental in the study of Euclidean spaces.

Definition 23.1. Let X be a set, a distance on X is a map

d : X ×X → R

such that

(1) ∀(x, y) ∈ X2, d(x, y) ≥ 0 with equality if and only if x = y.

(2) ∀(x, y) ∈ X2, d(x, y) = d(y, x).

(3) ∀(x, y, z) ∈ X3, d(x, z) ≤ d(x, y) + d(y, z) (triangular inequality).

Definition 23.2. A metric space is a pair (X, d) where X is a set and d is a

distance on X.

Example 23.3. On R we have the distance d(x, y) = |x−y|. On R2 using Pythago-

ras theorem we have the Euclidean distance

d((x, y), (x′, y′)) =
√
(x− x′)2 + (y − y′)2.

On any set X we have the trivial distance defined by

d(x, y) =

{
1 if x ̸= y;

0 if x = y.

Definition 23.4. Let (X, d) be a metric space and x0 ∈ X. If r ∈ R, r > 0, the

open disk with center x0 and radius r is

D(x0, r) := {x ∈ x) < r}.

279
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A subset U ⊂ X is open if ∀x ∈ U , there exists r > 0 such that D(x, r) ⊂ U . A

subset F ⊂ X is closed if its complement X \ F is open.

Remark 23.5. (1) An open disk D(x0, r) is an open subset.

(2) The empty set is open: by convention or since the implication P ⇒ Q, with

P = x ∈ ∅ and Q = ∃ r > 0 such that D(x, r) ⊂ ∅ is always true, being P
always false.

(3) The open subsets of X satisfy the following properties:

T1 X and ∅ are open.

T2 Any intersection of open sets is an open set: if (Ui)i∈I are open, then⋃
i∈I Ui is open.

T3 The intersection of a finite number of open sets is an open set.

Definition 23.6. Let Z be a set and T = (Vj)j∈J a family of subsets of Z. Suppose

that T satisfies the following conditions:

T1 Z and ∅ are in T .

T2 Any union of elements of T is still an element of T .

T3 An intersection of a finite number of elements of T is an element of T .

We then say that T defines a topology on Z and that (Z, T ) is a topological space;

the elements of T are the open sets of this topology.

So a metric space is a special case of topological space. In a metric space the

notion of limit can be defined: the sequence (xn)n∈N of points of X tends to the

point a if every open disk with center a contains all the points of the sequence except

at most a finite number, that is if ∀r > 0, ∃n0 such that n ≥ n0 ⇒ xn ∈ D(a, r).

We can also define the notion of continuous map between metric spaces.

Definition 23.7. Let (X, d), (Y, δ) be two metric spaces. A map f : X → Y is

continuous if and only if for any open subset V ⊂ Y the set f−1(V ) ⊂ X is open.

An important notion for what follows:

Definition 23.8. Let (X, d), (Y, δ) be two metric spaces. A map f : X → Y is

an isometry if f preserves distances, that is d(x1, x2) = δ(f(x1), f(x2)) for any

(x1, x2) ∈ X2.

It is easily seen that an isometry is always injective. If E is a R-vector space

one way to define a distance on E is via the notion of norm:

Definition 23.9. A norm ||.|| on E is a map

||.|| : E → R : v → ||v||

such that
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(1) ∀v ∈ E we have ||v|| ≥ 0, with equality if and only if v = 0;

(2) ∀λ ∈ R, v ∈ E we have ||λv|| = |λ|||v||;

(3) ||u+ v|| ≤ ||u||+ ||v|| (triangular inequality).

In order to define a norm on a K-vector space we need an absolute value

notion on K. If K = R (or C) there is no problem, but in general we do not have

an absolute value on an arbitrary field.

We can think of the norm ||v|| as the length of the vector v. A vector space

with a norm is also called a normed vector space. The important fact is:

Lemma 23.10. Let E be a real vector space with a norm ||.||. Then

d : E × E → R : (u, v) → ||u− v||

is a distance on E.

Proof. Follows from the properties of norms and the definition of distance. □

Remark 23.11. If E is am R-vector space with a norm ||.||, the associated distance

satisfies d(x+ z, y+ z) = d(x, y) and d(λx, λy) = |λ|d(x, y). Not all distances on E

come from a norm. In fact, the trivial distance, for example, does not come from

a norm: we have d(4u, 2v) = 1 if 4u ̸= 2v, if d came from a norm we would have

1 = ||4u− 2v|| = ||2(2u− v)|| = 2||2u− v|| = 2, a contradiction.

23.2. Euclidean distance

Throughout this paragraph E will be a vector space over R. Recall that a symmetric

bilinear form f on E is positive definite if ∀v ∈ E, f(v, v) ≥ 0 with equality if and

only if v = 0.

Definition 23.12. An Euclidean vector space is a pair (E, f) where E is a real

vector space and f is a positive definite symmetric bilinear form on E. We also say

that f is a scalar product.

Our goal is to use f to define a norm on E, this will give us a distance. Since

f is positive definite there are orthonormal bases for f . We will see that in an or-

thonormal basis the distance obtained is nothing other than the Euclidean distance

on Rn.

Lemma 23.13. Let (E, f) be an Euclidean space. Two vectors v, w ∈ E are linearly

dependent if and only if f(w,w)v = f(v, w)w.

Proof. Suppose v and w are dependent. If v = 0 or w = 0 the lemma is clear. Let

v = λw, then f(v, w) = λf(w,w). Since w ̸= 0, f(w,w) ̸= 0 (f is positive definite).

It follows that λ = f(v,w)
f(w,w) and the result follows.
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Conversely, if f(w,w)v− f(v, w)w = 0 then v, w are dependent except perhaps

if f(w,w) = f(v, w) = 0. But f(w,w) = 0 implies w = 0 and, in any case, the two

vectors are dependent. □

Proposition 23.14 (Schwarz inequality). Let (E, f) be an Euclidean space. For

every v, w ∈ E we have

f(v, w)2 ≤ f(v, v)f(w,w),

Furthermore, equality holds if and only if v, w are linearly dependent and in this

case f(w,w)v = f(v, w)w.

Proof. We can assume that v, w are not zero. For each t ∈ R let φ(t) = f(v +

tw, v + tw). We have φ(t) ≥ 0,∀t. Now φ(t) = f(v, v) + 2tf(v, w) + t2f(w,w).

Since the equation φ(t) = 0 can not have two distinct roots (one of these would

certainly correspond to a non-zero vector), the discriminant ∆ is greater than or

equal to zero. So ∆ = 4f(v, w)2 − 4f(v, v)f(w,w) ≤ 0 and we have our inequality.

If ∆ = 0, there exists t0 such that φ(t0) = 0, this implies v + t0w = 0, so v and w

are dependent. □

Corollary 23.15. Let (E, f) be an Euclidean space. The map

||.|| : E → R : v →
√
f(v, v)

is a norm. Also ||u+ v|| = ||u||+ ||v|| if and only if u and v are linearly dependent.

In particular

d : E × E → R : (u, v) → ||u− v||
is a distance on E.

Proof. We show that ||v + w|| ≤ ||v|| + ||w|| (the other checks are immediate).

We have ||v + w||2 = f(v + w, v + w) = ||v||2 + ||w||2 + 2f(v, w). By the Schwarz

inequality f(v, w)2 ≤ ||v||2||w||2 (with equality if and only if v, w are dependent). So

f(v, w) ≤ ||v||||w||. Therefore ||v+w||2 ≤ ||v||2+ ||w||2+2||v||||w|| = (||v||+ ||w||)2

or ||v + w|| ≤ ||v||+ ||w|| (with equality if and only if v, w are dependent). □

If f is a scalar product there exist orthonormal bases for f (Sylvester’s theo-

rem). If B = (ei) is an orthonormal basis, we have matB(f) = In. If u =
∑
xiei

and v =
∑
yiei, then f(u, v) = x1y1 + · · · + xnyn =: (u | v). So every scalar

product f , in an orthonormal basis (or rather f -orthonormal) is expressed as the

usual scalar product.

In an orthonormal basis we have:

(1) ||u|| =
√
(u | u) =

√
x21 + · · ·+ x2n;

(2) d(u, v) = ||u− v|| =
√
(x1 − y1)2 + · · ·+ (xn − yn)2;

(3) xi = (u | ei);
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(4) (x1y1 + · · ·+ xnyn)
2 ≤ (x21 + · · ·+ x2n)(y

2
1 + · · ·+ y2n).

Item (4) is the Schwarz inequality which can also be formulated as follows:

|(u | v)| ≤ ||u||||v||.

23.3. First properties of Euclidean spaces

In an Euclidean space Pythagoras theorem holds:

Theorem 23.16 (Pythagoras). Let (E, f) be an Euclidean space. If v, w are two

orthogonal vectors of E then ||v + w||2 = ||v||2 + ||w||2.

Proof. We have ||v + w||2 = f(v + w, v + w) = f(v, v) + f(w,w) = ||v||2 + ||w||2

(in fact f(v, w) = 0 because the vectors are orthogonal). □

Lemma 23.17. Let (E, f) be an Euclidean space. If F ⊂ E is a subvector space

of E then E = F ⊕ F⊥.

Proof. This follows from the fact that the form is non-degenerate (so dimF⊥ =

dimE − dimF ) and has no non-zero isotropic vectors so F ∩ F⊥ = {0}. □

With the notations of the previous lemma, each v ∈ E is written uniquely as

v = f + f ′, with f ∈ F, f ′ ∈ F⊥. The map πF : E → F : v → f is linear and it is

called the orthogonal projection on F .

Proposition 23.18 (Gram-Schmidt). Let (E, f) be an Euclidean space and let

(v1, . . . , vn) be a basis of E. There exists an orthonormal basis of E, (e1, . . . , en),

such that for every p: f(ep, vp) > 0 and ⟨v1, . . . , vp⟩ = ⟨e1, . . . , ep⟩.

Proof. We show by induction on p the existence of an orthonormal family e1, . . . , ep

such that f(ei, vi) > 0 and ⟨e1, . . . , ep⟩ = ⟨v1, . . . , vp⟩. If p = 1, just take e1 = v1
||v1|| .

Suppose we have constructed e1, . . . , ep−1 with the required properties. We set

F = ⟨e1, . . . , ep−1⟩ = ⟨v1, . . . , vp−1⟩. We have E = F ⊕ F⊥ and vp = v + w with

v ∈ F,w ∈ F⊥. Let ep = w
||w|| .

We see that ep satisfies the requests. We have

f(ep, vp) =
1

||w||
f(w, v + w) =

1

||w||
f(w,w) > 0.

Clearly, ||ep|| = 1 and f(ei, ep) = 0 if i < p (because w ∈ F⊥). Now ||w||ep = w =

vp−v with v ∈ F , then w ∈ ⟨v1, . . . , vp⟩ = F ⊕⟨vp⟩ and vp ∈ ⟨e1, . . . , ep⟩ = F ⊕⟨w⟩.
Therefore ⟨v1, . . . , vp⟩ = ⟨e1, . . . , ep⟩. □

Corollary 23.19. In an Euclidean space every family of orthonormal vectors can

be completed to an orthonormal basis.
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Proof. Let u1, . . . , up be our orthonormal family. The vectors ui are independent

and we can complete them to a basis (v1, . . . , vn) (vi = ui for 1 ≤ i ≤ p). Now, we

apply Proposition 23.18 observing that we can take ei = ui if i ≤ p. □
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Exercises

Exercise 23.20. 1) Let (X, d) be a metric space. Show that each open subset of

X is a union of open disks.

2) Let (X, d), (Y, δ) be two metric spaces. A map f : X → Y is continuous at

the point x if for every open set V ⊂ Y containing f(x), there exists an open set

U ⊂ X, containing x, such f(U) ⊂ V . Note that V,U can be assumed to be open

disks. Observe that in the case of a maps f : R → R we find the usual definition

with epsilons and deltas.

3) A map f : X → Y is continuous if it is continuous at every point x ∈ X. Show

that this is equivalent to the following formulation: f is continuous if and only if

for every open set V ⊂ Y , f−1(V ) is an open set of X.

Exercise 23.21. Let f : X → Y be an isometry between two metric spaces.

1) Show that f is one-to-one.

2) Show that if f is bijective then f−1 is also an isometry.

3) Show that f is continuous.

Exercise 23.22. Prove Lemma 23.10.

Exercise 23.23. If u = (x, y) ∈ R2 we set ||u|| = max {|x|, |y|}. Show that ||.|| is
a norm not coming from a scalar product.

Exercise 23.24. In the Euclidean space R3 with the usual scalar product (the

canonical basis is an orthonormal basis), apply the Gram-Schmidt procedure to the

basis v = (1, 1, 1), v′ = (1, 1, 0), v′′ = (1, 0, 0).

Exercise 23.25. Let v, w be two independent vectors of an Euclidean plane. De-

termine a real number α such that v + αw has the minimum length among all

vectors of the form v + βw, β ∈ R. Is the number α uniquely determined?

Exercise 23.26. Let E be an Euclidean space and v0, w0 two non-zero vectors of

E. Consider the map

f : E → E : v → (v0 | v)w0.

1) State whether f is linear.

2) Determine the matrix of f with respect to an orthonormal basis. Compute the

dimension of Ker(f).

Exercise 23.27. Let E be an Euclidean vector space. An endomorphism f : E →
E is said to be positive if for every v ∈ E we have (f(v) | v) ≥ 0.

1) Let W ⊂ E be a subvector space and p : E → E the orthogonal projection on

W (each v ∈ E is written in a unique way as v = w + w′, with w ∈ W,w′ ∈ W⊥,
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and p(v) = w). Show that p is positive.

2) Prove that for every u, v ∈ E we have (p(v) | u) = (v | p(u)).
3) Show, with an example, that there exist non-zero endomorphisms g : E → E

such that (g(v) | v) = 0,∀v ∈ E (begin with the case dim(E) = 2).



Chapter 24

Vector isometries

From now on we will work in orthonormal bases, in such a basis the scalar product

f reduces to the standard scalar product (· | ·). For this reason we will no longer

mention f . For example we will simply say that E is an Euclidean (vector) space.

Definition 24.1. Let E be an Euclidean space. An isometry Φ : E → E is a

distance-preserving map i.e. ∀v, w ∈ E, ||Φ(v)− Φ(w)|| = ||v − w||.

We observe that there are isometries that are not linear. For example a trans-

lation ta with a ̸= 0.

Lemma 24.2. Let Φ be an isometry of the Euclidean vector space E. If Φ(0) = 0

then ∀v, w ∈ E, ||Φ(v)|| = ||v|| and (Φ(v) | Φ(w)) = (v | w).

Proof. We have ||Φ(v) − Φ(0)|| = ||v − 0|| and the hypothesis Φ(0) = 0 implies

||Φ(v)|| = ||v||. Since ||Φ(v)− Φ(w)||2 = ||v − w||2, we have (Φ(v)− Φ(w) | Φ(v)−
Φ(w)) = (v − w | v − w). Expanding

||Φ(v)||2 + ||Φ(w)||2 − 2(Φ(v) | Φ(w)) = ||v||2 + ||w||2 − 2(v | w).

Since Φ preserves the norm we obtain the statement. □

Lemma 24.3. Let Φ be an isometry of the Euclidean space E such that Φ(0) = 0,

and B = (ei) an orthonormal basis. Then (Φ(ei)) is an orthonormal basis.

Proof. It follows from the previous lemma, in fact we have (Φ(ei) | Φ(ej)) = (ei |
ej) = δij . □

Lemma 24.4. Let Φ be an isometry of the Euclidean space E. If Φ(0) = 0 then Φ

is linear.

287
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Proof. Let B = (ei) be an orthonormal basis and let v =
∑
xiei. By Lemma 24.3

(Φ(ei)) is an orthonormal basis, in this basis we have Φ(v) =
∑

(Φ(v) | Φ(ei).Φ(ei).
By Lemma 24.2 (Φ(v) | Φ(ei)) = (v | ei). On the other hand (v | ei) = xi. So

Φ(v) =
∑
xiΦ(ei) and Φ is linear. □

Hence, an isometry that fixes the origin is a linear map. Such an isometry is

called a vector isometry.

We observe that a vector isometry is a bijective endomorphism (since an isom-

etry is always injective, and being linear it is also bijective).

The previous result has a very important consequence: Let f : E → E be an

isometry and a = f(0). Set Φ = t−a ◦ f . Since translations are isometries and the

composition of two isometries is clearly an isometry, Φ is an isometry. We have

Φ(0) = 0, so Φ is a linear isometry. In conclusion f = ta ◦ Φ, that is:

Theorem 24.5. Every isometry of the Euclidean space E is an affinity ta◦Φ whose

linear part is a vector isometry.

In particular an isometry of E is always bijective. The previous theorem shows

the way to classify the isometries of E. We must first classify vector isometries and

then understand how they can be combined with translations.

Definition 24.6. Amatrix A ∈Mn(R) is orthogonal if tAA = In (so A is invertible

and A−1 = tA).

Proposition 24.7. Let E be an Euclidean vector space and g : E → E an endo-

morphism of E. The following are equivalent:

(1) g is a vector isometry;

(2) g preserves the norm and the scalar product;

(3) g transforms orthonormal bases into orthonormal bases;

(4) g transforms an orthonormal basis into an orthonormal basis;

(5) if B is an orthonormal basis then Mat(g;B,B) is an orthogonal matrix.

Proof. (1) ⇔ (2): the implication ⇒ is Lemma 24.2, for the other implication since

g preserves the norm and is linear, we have ||v−w|| = ||g(v−w)|| = ||g(v)−g(w)||,
so g preserves distances.

(2) ⇔ (3): the implication ⇒ is Lemma 24.3. For the other implication let B = (ei)

be an orthonormal basis. Then if u =
∑
xiei, ||u||2 =

∑
x2i . Now, g(u) =

∑
xig(ei)

and since (g(ei)) is an orthonormal basis, ||g(u)||2 =
∑
x2i . So g preserves the norm.

We conclude as in the proof of the Lemma 24.2.

(3) ⇔ (4): One implication is clear. For the other we show (4) ⇒ (2) exactly as we

showed (3) ⇒ (2).
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(5) ⇒ (3) Let B be an orthonormal basis and let A = Mat(g;B,B). By hypothesis
tAA = In, then the scalar product of the i-th row of tA with the j-th column

of A is equal to δij . Since the i-th row of tA is the i-th column of A we get

(g(ei) | g(ej)) = δij . Therefore (g(ei)) is an orthonormal basis.

(3) ⇒ (5) We know that (g(ei)) is an orthonormal basis and conclude as above. □

Lemma 24.8. Let g be a vector isometry of the Euclidean space E. If λ is an

eigenvalue of g then λ = ±1.

Proof. In fact there exists v ̸= 0 such that g(v) = λv, taking norms ||g(v)|| =
|λ|||v||, but g preserves norms so ||g(v)|| = ||v||. It follows that |λ| = 1 (note that

||v|| ≠ 0 because v ̸= 0). □

24.0.1. The group of vector isometries. Let E be an Euclidean vector space.

We denote by O(E) the set of vector isometries of E.

Lemma 24.9. The set O(E) is a group for composition of maps.

Proof. It is clear that if f, g ∈ O(E) then f ◦g ∈ O(E). We have seen that a vector

isometry is bijective, we show that f−1 is also an isometry. Let u, v ∈ E, we can

write u = f(u′), v = f(v′). We have ||f−1(u)−f−1(v)|| = ||u′−v′|| = ||f(u′)−f(v′)||
(f is an isometry). We conclude that ||f−1(u)− f−1(v)|| = ||u− v||. Of course the

neutral element is IdE . □

The group O(E) is called the orthogonal group of E. We have seen (Proposition

24.7) that if g ∈ O(E) and if B is an orthonormal basis, then A = Mat(g;B,B) is an
orthogonal matrix, i.e. tA.A = In. From this relation it follows that det(A)2 = 1.

So det(g) = det(A) = ±1.

We will say that a vector isometry g is positive (resp. negative) if det(g) = 1

(resp. det(g) = −1). We will denote by O+(E) (resp. O−(E)) the set of positive

(resp. negative) vector isometries of E.

The set O+(E) is a group for the composition of applications while O−(E) is

not. Why?

If B is an orthogonal basis the isomorphism Mat(−;B,B) : End(E) → Mn(R)
sends O(E) to On(R), the group of orthogonal matrices (furthermore O±(E) has

as its image O±
n (R)).

24.0.2. Vector isometries of the line and the plane. If dimE = 1 the classifi-

cation of vector isometries is easily done. In fact, every endomorphism of a space of

dimension one is diagonalizable with a single eigenvalue. Therefore the only vector

isometries of a space of dimension one are ±IdE .
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This trivial result is important for the sequel. Now, suppose that E is a 2-

dimensional Euclidean vector space. Let us start with a lemma:

Lemma 24.10. Let E be a 2-dimensional Euclidean vector space, and B = (e1, e2)

an orthonormal basis of E. Let g be a vector isometry of E and M = Mat(g;B,B)
with

M =

(
a c

b d

)
.

Then:

(a) ac+ bd = 0 and (b) a2 + b2 = c2 + d2 = 1. Furthermore:

(i) M ∈ O+
2 (R) ⇔M =

(
a −b
b a

)
with a2 + b2 = 1;

(ii) M ∈ O−
2 (R) ⇔M =

(
a b

b −a

)
with a2 + b2 = 1.

Proof. (a) The first relation follows from the fact that (g(e1) | g(e2)) = 0. The

last two follow from ||g(e1)|| = ||g(e2)|| =1. Another way to proceed is to take the

product tMM and equate it to I2 (the matrix M is orthogonal).

We have the relations

(1) ac+ bd = 0;

(2) a2 + b2 = 1;

(3) c2 + d2 = 1.

If a = 0, from 2) we get b2 = 1, therefore b = ε, (ε = ±1). From 1) it follows

d = 0 and from 3) c = ε′ (ε′ = ±1). In conclusion, if a = 0,

M =

(
0 ε

ε′ 0

)
and det(M) = −εε′.

We can therefore assume a ̸= 0. From 1) we have c = − bd
a . From 3) d2(a2+b2)

a2 =

1. Using 1) gives d2 = a2, so d = εa (ε = ±1). We have c = − bd
a hence c = −εb.

In conclusion we have

M =

(
a −εb
b εa

)
.

Furthermore, det(M) = ε(a2 + b2) = ε. Now M ∈ O+
2 (R) ⇔ ε = 1 and M ∈

O−
2 (R) ⇔ ε = −1. □

Remark 24.11. From the previous lemma it follows that O+
2 (R) is an abelian

group. This is notable because in general O+
n (R) is not abelian. The geometric

description of positive isometries will make this fact clearer.
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Let E be an Euclidean space of dimension n and H ⊂ E a vector hyperplane.

We have E = H ⊕H⊥. Each x ∈ E is written as x = y + z with y ∈ H, z ∈ H⊥.

Let rH : E → E : x→ y − z. It is easily seen that rH is a linear map. We have

||x||2 = (y + z | y + z) = (y | y) + (z | z) = (y − z | y − z) = ||rH(x)||2

since y and z are orthogonal. Therefore, rH is an isometry. We observe that

rH|H = IdH while rH|H⊥ = −IdH⊥ . It follows that det(rH) = −1, so rH ∈ O−(E).

Clearly rH ◦ rH = IdE .

Definition 24.12. With the previous notations, the isometry rH is the orthogonal

reflection with respect to H.

Proposition 24.13. Let E be an Euclidean plane and v ∈ O−(E), then v is an

orthogonal reflection with respect to a line.

Proof. Let B be an orthonormal basis, from Lemma 24.10

Mat(v;B,B) = A =

(
a b

b −a

)

with a2 + b2 = 1. Since A is symmetric with tAA = I2 (orthogonality), we get

A2 = I2. Hence, A is diagonalizable with eigenvalues ±1. Let B′ = (e′1, e
′
2) be

an eigenvector basis: v(e′1) = e′1, v(e
′
2) = −e′2. We see that v is a reflection with

respect to the line ⟨e′1⟩ parallel to ⟨e′2⟩ (v(αe′1 + βe′2) = αe′1 − βe′2). It remains to

be seen that e′1 and e′2 are orthogonal. We have (v(e′1) | v(e′2)) = (e′1 | e′2) (the

isometry v preserves the scalar product) but we also have (v(e′1) | v(e′2)) = (e′1 |
−e′2) = −(e′1 | e′2) (e′i are eigenvectors). Therefore (e′1 | e′2) = 0. □

Let us now move on to positive isometries.

Definition 24.14. A rotation is an isometry belonging to O+(E).

This unusual definition is a ploy to avoid talking about angles. But a rotation

is just what you think. However, with this definition we have:

Proposition 24.15. Each rotation is the product of two orthogonal reflections with

respect to two lines, one of which can be chosen at will.

Proof. Let ρ ∈ O+(E) and let rL be the orthogonal reflection with respect to the

line L, then ρ ◦ rL ∈ O−(E) and ρ ◦ rL = rD i.e. ρ = rD ◦ rL. □

Remark 24.16. Now it is clear that O+(E) is commutative: two rotations com-

mute between each other.
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The Schwarz inequality |(v | w)| ≤ ||v|| · ||w|| implies −1 ≤ |(v|w)|
||v||·||w|| ≤ 1. From

the properties of the cos function it follows that there exists a unique real number

θ, such that 0 ≤ θ ≤ π and cos θ = |(v|w)|
||v||·||w|| .

Lemma 24.17. Let E be an Euclidean plane, v and w two non-zero vectors of E

with ||v|| = ||w||. There is a unique rotation, r, such that r(v) = w.

Proof. We can assume ||v|| = ||w|| = 1 (otherwise consider v
||v|| ,

w
||w|| ). Let us

consider the line v⊥. There are two vectors v′, v′′ ∈ v⊥. In particular B = (v, v′)

is an orthonormal basis of E. We have w = av + bv′ for suitable scalars a, b. Also

||w|| = a2 + b2 = 1. The rotation r with

M := Mat(r;B,B) =

(
a −b
b a

)
satisfies r(v) = w. If r′ is a rotation such that r′(v) = w thenN := Mat(r′;B,B) has
the first column equal to that of M . By Lemma 24.10 M = N , that is r = r′. □

Having said this, we see that (v|w)
||v||·||w|| = a = cos θ where θ is the angle formed

by v and w. We would like to consider the matrix(
cos θ − sin θ

sin θ cos θ

)
and say that r = rθ is the rotation of angle θ.

However, there is an ambiguity in our construction: there exist two vectors of

norm 1 in v⊥ (v′ and −v′). In the basis (v,−v′) the matrix would be(
a b

−b a

)
.

The fact is that only a and |b| are completely determined by r (Tr(r) = 2a, det r =

a2 + b2 = 1). To avoid this ambiguity about the sign of b we need to orient the

angles.

24.1. Vector isometries of the Euclidean space

Definition 24.18. Let E be an Euclidean space and v an isometry of E. A

subspace F ⊂ E is fixed by v if v|F = IdF . The subspace F is stable, under v, if

v(F ) = F .

Stated differently, F is fixed if F is contained in the eigenspace relative to the

eigenvalue 1. If F is stable we have v|F : F → F , that is, v|F is an isometry of F .

If dimF = 1 and if F is stable, then v|F = ±IdF and F is an eigenspace.
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Lemma 24.19. Let E be an Euclidean space, v an isometry of E and F ⊂ E a

subspace. If F is stable then F⊥ is also stable.

Proof. Take x ∈ F⊥ and y ∈ F . We need to show that v(x) ∈ F⊥ and (v(x) |
y) = 0. Since F is stable v|F is an isometry of F , in particular it is bijective and

we can write y = v(z), z ∈ F . We have (v(x) | y) = (v(x) | v(z)) = (x | z) = 0. □

Let us now see a general, very useful result. Let E be an Euclidean space and

let f be a vector isometry of E. We set

E+ = {v ∈ E | f(v) = v} and E− = {v ∈ E | f(v) = −v}.

Be careful, one can have E+ = {0} (same thing for E−). For sure E+ and E− are

in direct sum and E+ ⊕ E− is stable under f . So if W = (E+ ⊕ E−)
⊥, we have

E = E+ ⊕ E− ⊕W

Furthermore W is stable under f (Lemma 24.19).

Proposition 24.20. With the previous notations we have that:

(1) The dimension of W is even. Furthermore f|W is a positive isometry of W .

(2) If f is positive and if dim(E) is odd then dim(E+) ≥ 1 (i.e. 1 is an eigenvalue

and there is an eigenvector for 1).

(3) If f is negative, dim(E−) ≥ 1 (i.e. −1 is always an eigenvalue and there is a

corresponding eigenvector).

(4) If f is negative and if dim(E) is even then dim(E+) ≥ 1 (i.e. both −1 and 1

are eigenvalues, with corresponding eigenvectors).

For the proof we will use the following lemma:

Lemma 24.21. 1) Let P (x) ∈ R[x] be a polynomial of odd degree, then P (x) has

a real root.

2) If a monic polynomial P (x) ∈ R[x] has no real root (therefore P (x) has even

degree), then P (0) > 0 (the constant term is strictly positive).

Proof. Exercise 24.31. □

Proof. (of Proposition 24.20) 1) Since W is stable f|W : W → W is an isom-

etry of W . This isometry has no eigenvector. In fact, an eigenvector would be

w ∈ W , w ̸= 0, such that f(w) = ±w, but then we would have w ∈ E+ ⊕
E−, a contradiction. So Pf|W (x) has no real root. Therefore (Lemma 24.21)

the degree of Pf|W (x) is even and dim(W ) is even: dim(W ) = 2m. We have

Pf|W (0) = (−1)2m det(f|W ) = det(f|W ). From point 2) of Lemma 24.21 it follows

that det(f|W ) > 0, i.e. det(f|W ) = 1 and f|W is positive.
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So taking bases of E+, E−,W , the matrix of f is a block matrix: Ir 0 0

0 −Ip 0

0 0 A


with the convention that if E+, E− or W is trivial, the corresponding matrix does

not appear. Furthermore, if dim(W ) > 0, det(A) = 1.

2) If f is positive, necessarily dim(E−) = p is even (possibly 0). So if dim(E) is

odd, necessarily dim(E+) = r is odd, and dim(E+) ≥ 1.

3) If f is negative, since f|E+
and f|W are positive, dim(E−) is necessarily odd, so

dim(E−) ≥ 1.

4) If f is negative, necessarily dim(E−) is odd. So if dim(E) is even, since dim(W )

is even, we must have dim(E+) odd. □

See Exercise 24.32 for a simplified version of this result. We can finally classify

the vector isometries of the 3-dimensional space.

Proposition 24.22. Let E be an Euclidean space with dimE = 3.

(i) Let v be a positive vector isometry of E. Then v = IdE or v is a rotation with

axis a line.

(ii) Let v be a negative vector isometry of E. Then there exists a line, D, such that

v|D = −IdD and such that v|D⊥ is a rotation.

Proof. (i) From Proposition 24.20, the eigenspace Ev(1) =: F has dimension ≥ 1.

Recall that F is fixed. If dim(F ) = 3, then v is the identity. Suppose from now

on v ̸= Id. From Lemma 24.19 v|F⊥ is an isometry of F⊥. If dim(F ) = 2 then

dim(F⊥) = 1 and v|F⊥ = ±Id. It can not be v|F⊥ = Id because F⊥ ∩ F = {0}
and F = Ev(1). So v|F⊥ = −Id. Taking a basis of eigenvectors gives det(v) = −1

against the hypothesis that v is positive. So the only possibility is dim(F ) = 1,

dim(F⊥) = 2. Since det(v) = det(v|F ) det(v|F⊥), we see that det(v|F⊥) = 1, i.e.

v|F⊥ is a rotation. Therefore v is a rotation with axes F .

(ii) From Proposition 24.20, −1 is an eigenvalue of v, let F be the relative eigenspace.

If F = E, v = −IdE (and we can take any D). If dimF = 2 we have E = F ⊕ F⊥

and the associated matrix in an orthonormal basis B made with vectors of F , F⊥

is of the form  −1 0 0

0 −1 0

0 0 a

 .

Since F, F⊥ are stable, the matrix necessarily has this form. The determinant is a

so a = −1 but this is a contradiction since we would have v = −Id with dimF = 2.
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Suppose dimF = 1. Taking an orthonormal basis with vectors in F, F⊥ the

matrix of v is of the form  −1 0 0

0 a b

0 c d

 .

The determinant is −(ad− bc) so ad− bc = 1 and v|F⊥ is a rotation. □

In case (ii) it is customary to distinguish three cases depending on v|F⊥ : (a)

identity (b) minus identity (c) ̸= ±Id. In case (a) v is the orthogonal symmetry

with respect to the plane F⊥; in case (b) it is the symmetry with respect to the

origin.

24.2. A structure theorem for vector isometries

We now introduce an useful construction.

Lemma 24.23. Let E be an Euclidean vector space of dimension n. Let v, w ∈ E

with ||v|| = ||w||, and H = {x ∈ E | d(x, v) = d(x,w)}. Then H = {x | (x |
v − w) = 0} = (v − w)⊥, and H is a vector hyperplane.

Proof. We have x ∈ (v − w)⊥ ⇔ (x | v) = (x | w). Since d(x, v) = ||x − v|| =
(||x||2 + ||v||2 − 2(x | v))1/2 and taking into account that ||v|| = ||w||, we see that

d(x, v) = d(x,w) ⇔ (x | v) = (x | w). □

Definition 24.24. With the previous notations the hyperplane H = (v − w)⊥ is

called the orthogonal bisector of v and w.

Be careful, the bisector of v, w is defined only if the two vectors have the same

norm.

Remark 24.25. Let H = (v−w)⊥ be the orthogonal bisector of v, w, then v−w ∈
H⊥. Therefore, if rH indicates the orthogonal reflection with respect to H, we have

rH(v − w) = w − v = rH(v) − rH(w) and (v + w | v − w) = ||v||2 − ||w||2 = 0. So

v + w ∈ H and rH(v + w) = v + w = rH(v) + rH(w). Combining this with the

previous result we get rH(v) = w and rH(w) = v.



296 24. Vector isometries

−w

w

v

v − w

v + w

H

H⊥

H is the orthogonal bisector of v, w

Theorem 24.26. Let E be an Euclidean vector space of dimension n ≥ 2. Each

vector isometry of E can be written as a product of at most n orthogonal reflections.

We have already seen that the theorem is true for n = 2. The theorem will be

a consequence of a more precise statement:

Theorem 24.27. Let E be an Euclidean vector space of dimension n ≥ 2, and

v ̸= IdE a vector isometry of E. If there exists a subvector space V ⊂ E with

dim(V ) = n− r such that v|V = IdV , then v is written as the product of at most r

orthogonal reflections with respect to hyperplanes containing V .

Note that Theorem 24.27 implies Theorem 24.26: for every hyperplane H we

have IdE = rH ◦ rH . If v ̸= IdE just take V = {0} in Theorem 24.27.

Proof. (of the Theorem 24.27) We proceed by induction on r. If r = 1 there

exists a hyperplane H such that v|H = IdH . We have E = H ⊕ H⊥. Taking an

orthonormal basis of H and completing it to an orthonormal basis B of E with a

vector of norm 1 in H⊥, we see that Mat(v;B,B) = (1, . . . , 1, a). So det g = a = ±1

(an orthogonal matrix has determinant ±1 since tAA = In). Since v ̸= IdE we

have a = −1 and v = rH .

Let us now consider the induction step. We have E = V ⊕ V ⊥. The subspace

V is stable, so V ⊥ is also stable (Lemma 24.19). By taking orthonormal bases in

V and V ⊥ and combining them we obtain an orthonormal basis, B, of E: B = (ei)

such that (e1, . . . , en−r) is a basis of V and (en−r+1 =: f, . . . , en) is a basis of

V ⊥. Let H be the orthogonal bisector of f and v(f) (||f || = ||v(f)|| since v is an

isometry).

Let v′ = rH ◦ v. We show that the isometry v′ restricted to V ′ = V ⊕⟨f⟩ is the
identity. We observe that V ⊂ H: if w ∈ V , (w | f − v(f)) = 0 because f ∈ V ⊥

and also v(f) ∈ V ⊥ (because V ⊥ is stable under v). This implies v′|V = IdV (since

both v and rH restricted to V are the identity). Now, rH(v(f)) = f since H is the

bisector of f, v(f). In conclusion v′|V ′ is the identity.



24.2. A structure theorem for vector isometries 297

Since dim(V ′) = (n − r) + 1 = n − (r − 1), by induction hypothesis v′ =

rH ◦ v = rH1 ◦ · · · ◦ rHk
, with k ≤ r − 1. Also V ′ ⊂ Hi,∀i. It follows that

v = rH ◦ rH1
◦ · · · ◦ rHk

. Therefore, v is written as a product of at most r reflections

with respect to hyperplanes containing V . □

Remark 24.28. For instance, in R3 we have that a positive isometry is written

as the product of two orthogonal reflections. Instead, if f is a negative isometry

then either f is an orthogonal reflection, or it is written as the product of three

orthogonal reflections.
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Exercises

Exercise 24.29. Let Q ⊂ R2 be the square of vertices v1, . . . , v4, located on the

circumference C with center the origin, of radius 1:

C

v4

v3

v2

v1

Let G be the set of vector isometries of R2 that send Q into itself:

G = {g | g is a vector isometry and g(Q) = Q}.

1) Show that G is a group (group of symmetries of the square).

2) If g ∈ G, for every i, g(vi) is a vertex of Q, i.e. g sends vertices to vertices (reason

using the drawing). Two vertices, vi, vj are opposite if d(vi, vj) = 2, otherwise they

are consecutive. If g ∈ G, show that g sends opposite (resp. consecutive) vertices

to opposite (resp. consecutive) vertices.

3) If g fixes three vertices, then g = Id. If g fixes exactly two vertices, show that

these vertices are opposite and conclude that g is the orthogonal symmetry with

respect to one of the two axes (g = sx or g = sy).

4) Let g ∈ G be a vector isometry which does not fix any vertex. If g is positive it

is a rotation. Let r be the rotation that sends v1 to v2 (and therefore v2 to v3 and

so on). Show that the only rotations in G are r, r2, r3, r4 = Id.

If g is negative it is an orthogonal symmetry. Considering g(v1) and using 3)

conclude that either g is symmetry with respect to the line x = y (g = s) or g is

symmetry with respect to the line x+ y = 0 (g = σ).

Remark 24.30. It can be shown that every isometry of the square is necessarily

a vector isometry, so G is the group of all symmetries of the square. We have

G = {Id, r, r2, r3, s, σ, sx, sy}.

So #(G) = 8 and G is not abelian (rs(v1) ̸= sr(v1)). It is easily seen that G = D4,

the dihedral group.

Exercise 24.31. Let P (x) ∈ R[x] be a polynomial of odd degree. Considering the

limits when x tends to ±∞ conclude that P (x) has always a real root.
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2) Let P (x) ∈ R[x]. We can consider P (x) as a polynomial with complex coeffi-

cients. Show that if z ∈ C is a root of P (x) then z is also a root of P (x). Indeed,

show that if z is a root with multiplicity i, then z is also a root with multiplicity i.

Conclude that the irreducible factorization in R[x] of P (x) is of the form:

P (x) =
∏

Qi(x)
ai

∏
(x− αj)

bj

where the Qi(x) are irreducible polynomials of degree two and where αj ∈ R.
3) Show, in two different ways, that if P (x) ∈ R[x] has no real root then the sign

of P (0) is the sign of the coefficient of the term with the highest power (so if P (x)

is monic, P (0) > 0).

Exercise 24.32. Let n ≥ 1 be an odd integer, and A ∈ Mn(R) an orthogonal

matrix. Show that

(i) if det(A) = 1 then det(A− In) = 0 i.e. if A is positive 1 is an eigenvalue (Hint:

write det(A− In) = det(A− tAA)).

(ii) if det(A) = −1 then det(A+ In) = 0 i.e. if A is negative, −1 is an eigenvalue.

Exercise 24.33. We work in R3 considered as an Euclidean vector space. If H is

a vector plane, rH indicates the orthogonal reflection with respect to H.

(1) Let H be a plane and L ⊂ H a line. Set R = H ∩L⊥. Show that dim(R) = 1

and that H⊥ = R⊥ ∩ L⊥ (note that if V ⊂ W , then W⊥ ⊂ V ⊥). Conclude

that rH|L⊥ = rR (orthogonal reflection in the plane L⊥ with respect to the

line R).

Let v = rH1 ◦ rH2 ◦ rH3 be a vector isometry. Set L = H1 ∩H2 ∩H3. The

aim of the exercise is to show that if v is not an orthogonal reflection, then

the planes Hi are independent i.e. dim(L) = 0.

(2) Show that if dim(L) = 2 i.e. the three planes are equal, then v is an orthogonal

reflection.

(3) Suppose dim(L) = 1.

(a) Show that v|
L⊥ = rD is the orthogonal reflection in the L⊥ plane with

respect to a line D ⊂ L⊥ (Hint: use (1)).

(b) Conclude that v is the orthogonal reflection with respect to the plane

H = ⟨D,L⟩.

(4) From (2) and (3) it follows that if v is not an orthogonal reflection then

dim(L) = 0. Find this result using a general structure theorem.

Exercise 24.34. Let E be an Euclidean space of dimension n and B an orthonor-

mal basis of E. If f ∈ End(E) with A = Mat(f ;B,B); tf denotes the unique

endomorphism of E such that Mat(tf ;B,B) = tA (tf is the adjoint of f).

(1) Show that ∀v, w ∈ E we have (f(v) | w) = (v | tf(w)).
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(2) Show that (f(v) | v) = 0,∀v ∈ E if and only if f + tf = 0.

(3) Conclude that an antisymmetric matrix A ∈ Mn(R) has no real non-zero

eigenvalues.



Chapter 25

Euclidean affine spaces

Like any vector space, an Euclidean space E has a natural structure of affine space.

Thanks to the scalar product we know how to measure distances and angles. This

is a natural framework also because, as we have seen, isometries are affinities.

From now on the term Euclidean space will mean an Euclidean vector space

with an affine space structure.

Definition 25.1. The reference system (Q; e1, . . . , en) of the Euclidean space E is

said to be orthonormal if (e1, . . . , en) is an orthonormal basis.

Every Euclidean space of dimension n is isomorphic to Rn and in Rn we have

the standard coordinate system (O; e1, . . . , en) where O is the origin and (ei) is the

canonical basis.

Definition 25.2. Let E be an Euclidean space. Two affine subspaces, F,G, are

orthogonal if dir(F ) and dir(G) are orthogonal i.e. dir(F ) ⊂ dir(G)⊥ or vice versa.

The two subspaces are perpendicular if dir(F )⊥ ⊂ dir(G) or vice versa.

In general the two notions are distinct, they coincide if dimF +dimG = dimE.

In fact in this case dimF⊥ = dimG and if one is contained in the other then they

are equal.

For example in R3 the line D of equations x = y = 0 (z axis) and the line L of

equations y = z = 0 (x axis) are orthogonal but not perpendicular.

Proposition 25.3. Let H = a + F be a hyperplane of the Euclidean space E.

For each point p ∈ E there is one and only one line, Rp, passing through p and

perpendicular to H. Let πH : E → H : p→ Rp ∩H.

1) The map πH is an affine map (orthogonal projection on H).

301
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2) Let d(p,H) := inf{d(p, x) | x ∈ H} be the distance from p to H. We have

d(p,H) = ||p− πH(p)||.

Proof. Clearly, Rp = p + F⊥, Rp is not parallel to H so the intersection Rp ∩H
is a point. This shows that πH is well defined.

1) Let b = H ∩ F⊥, so that H = b+ F . We have E = F ⊕ F⊥ so we can write

p = f + f ′, f ∈ F, f ′ ∈ F⊥. We have πH(p) = f + b (picture below). In fact, the

line through p and f + b has direction ⟨p − (f + b) = f ′ − b⟩ = F⊥ (they are two

points of the line F⊥; if f ′ = b, p ∈ H and πH(p) = p). We see that πH = tb ◦ f
where f is the (orthogonal) projection onto F . So πH is an affine map.

2) Follows from Pythagoras theorem. □

H

F

F⊥

f

n

p

f ′

b Orthogonal projection of p on H

We now define the orthogonal reflection with respect to an affine hyperplane of

an Euclidean space E.

Definition 25.4. Let H = a + F be an affine hyperplane of the Euclidean space

E. If p ∈ E we set rH(p) = −p + 2n where n is the orthogonal projection of p

onto H (n = πH(p)). The map rH is the orthogonal reflection with respect to the

hyperplane H.

Let us go back to the notations of the previous proof: b = F⊥ ∩ H and p =

f + f ′. We have rH(p) = −p + 2πH(p) = −f − f ′ + 2(f + b) = f − f ′ + 2b, i.e.

rH(p) = (t2b ◦ rF )(p), where rF is the orthogonal reflection with respect to the

hyperplane F . So rH is an affinity whose vector part is a vector isometry, therefore

rH is an isometry.

Remark 25.5. If H = a+F we have rH = te◦rF where e = a−rF (a). This follows
from the fact that a − rF (a) = 2b. In fact we have a = f + b and rF (a) = f − b,

therefore a− rF (a) = b+ f − (f − b) = 2b.

For a direct proof we can reason like this: Let us try to write rH in the form

te ◦ v where v is a vector isometry, since rH(H) = H, we have v(F ) = F and
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we can set v = rF . We consider the decomposition E = F ⊕ F⊥ and write a =

a′ + a′′, a′ ∈ F, a′′ ∈ F⊥. We have te ◦ rF = a′ − a′′ + e. Since rH(a) = a, we get

e = 2a′′ = a′ + a′′ − (a′ − a′′) = a− rF (a).

Let p = f + f ′ be any point. We observe that a+ f − a′ = n and b = a′′, then

rH(p) = −p+ 2n = f − f ′ + a− (a′ − a′′) = (te ◦ rF )(p), with e = a− rF (a).

H

n

p

rH(p)

u⃗

−u⃗

Orthogonal reflection with respect to H.

The vector − u⃗ is rH(p) − n.

Hence rH(p) − n = n − p that is rH(p) = −p + 2n.

Definition 25.6 (Orthogonal bisector of two points). Let a ̸= b be two distinct

points of E. We define

Ha|b := {p ∈ E | d(a, p) = d(b, p)}.

Then Ha|b is an affine hyperplane, more precisely Ha|b = a+b
2 + ⟨(a − b)⊥⟩. The

hyperplane Ha|b is the orthogonal bisector of a and b.

Lemma 25.7. Let a ̸= b be two distinct points of E, and Ha|b their orthogonal

bisector. If σ is the orthogonal reflection with respect to Ha|b we have σ(a) = b and

σ(b) = a.

Proof. In fact, a point p belongs to H := Ha|b if and only if ||p − a|| = ||p − b||,
that is, if and only if (p − a | p − a) = (p − b | p − b). Hence p ∈ H if and only if

(a | a)− (b | b) = 2(p | a− b). So H is the hyperplane of equation φ(p) = α where

φ is the linear form φ : E → k : p → 2(p | a − b) and where α = (a | a) − (b | b).
From this description it immediately follows that dir(H) = Ker(φ) = (a − b)⊥.

On the other hand, a+b
2 ∈ H ((a+b

2 − a | a+b
2 − a) = (a+b

2 − b | a+b
2 − b)). So

H = a+b
2 + ⟨(a− b)⊥⟩.
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Ha|b
a

b

The orthogonal bisector of the two points a, b

a+b
2

•

•

•

The orthogonal projections, πH(a), πH(b) of a, b onto H are equal to a+b
2 . This

can be seen from the picture. However, the perpendicular to H passing through

a is Ra = a + ⟨a − b⟩. We have b = a − (a − b) ∈ Ra, so Rb = Ra and a+b
2 =

a− a−b
2 ∈ Ra. Hence, πH(a) = πH(b) = a+b

2 . Finally, σ(a) = −a+ 2(a+b
2 ) = b and

σ(b) = −b+ 2(a+b
2 ) = a. □

25.1. A structure theorem for isometries

Using Theorem 24.26 on the structure of vector isometries we can easily prove that

any isometry can be written as a product of at most n + 2 orthogonal reflections.

In fact, it is enough to prove that:

Lemma 25.8. Any translation can be written as the product of two orthogonal

reflections.

Proof. Let tu be a translation, F = u⊥, a, b two points such that a − b = u
2 , and

H = a+ F,H ′ = b+ F . By Remark 25.5 we have rH′(x) = rF (x) + b− rF (b). So

rH(rH′(x)) = rF (rF (x) + b− rF (b)) + a− rF (a) = x+ rF (b)− b+ a− rF (a). Now

rF (b) = rF (a) − rF (
u
2 ) = rF (a) +

u
2 and we conclude that rH(rH′(x)) = x + u =

tu(x). □

Corollary 25.9. Any isometry of an Euclidean space of dimension n can be written

as a product of at most n + 2 orthogonal reflections of which at most two are not

vector reflections.

Proof. Let g be an isometry, we have g = ta ◦ v where v is a vector isometry. By

Theorem 24.26 v is written as a product of at most n orthogonal vector reflections.

We conclude by the previous lemma. □

Lemma 25.10. Let E be an Euclidean space of dimension n and (a1, . . . , ap),

(b1, . . . , bp), p ≤ n + 1 two p-tuples of points such that d(ai, aj) = d(bi, bj), ∀i, j.
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Then there exists an isometry s, product of at most p orthogonal reflections, such

that s(ai) = bi.

Proof. We proceed by induction on p. Let p = 1. If a1 = b1, s = Id = r0H , any H.

If a1 ̸= b1, s = rH where H = Ha1|b1 , the orthogonal bisector of the two points.

Suppose the result is true for p− 1. So there exists g, product of at most p− 1

orthogonal reflections, such that g(ai) = bi, 1 ≤ i ≤ p − 1. If g(ap) = bp we are

fine, so let us assume g(ap) ̸= bp. For i < p we have d(g(ap), bi) = d(g(ap), g(ai)) =

d(ap, ai) (g is an isometry), so d(g(ap), bi) = d(bp, bi). Therefore b1, . . . , bp−1 ∈ H,

where H is the orthogonal bisector of g(ap), bp. Consider the isometry f = rH ◦g. It
is a product of at most p orthogonal reflections. For i < p we have f(ai) = rH(bi) =

bi (since bi ∈ H). Then f(ap) = rH(g(ap)) = bp being H is the orthogonal bisector

of g(ap), bp. □

Theorem 25.11. Any isometry of an Euclidean space E of dimension n can be

written as a product of at most n+ 1 orthogonal reflections.

Proof. Let f be an isometry and a1, . . . , an+1 ∈ E affinely independent points.

Set bi = f(ai). We have d(ai, aj) = d(f(ai), f(aj)) = d(bi, bj). By the previous

lemma there exists an isometry g, product of at most n+ 1 orthogonal reflections,

such that g(ai) = bi. The two isometries f, g coincide on the ai, therefore they are

equal. This can be seen in the following way: f(ai)− f(a1) = L(f)(ai − a1), so the

linear parts L(f), L(g) coincide on the basis ai − a1, 2 ≤ i ≤ n + 1 and therefore

f(a1) = b1 = g(a1). Hence, f = g (an affinity is determined by its linear part and

the image of a point). □

25.2. Classification of plane isometries

Let E be an Euclidean space and g ∈ Isom(E) an isometry of E. We have seen

that g = ta ◦ v where v is a vector isometry. We will say that g is direct or positive

if v is positive i.e. det v = 1, otherwise we will say that g is inverse or negative, in

this case det v = −1. From now on we will assume dimE = 2.

Let rθ be the vector rotation of angle θ, 0 ≤ θ ≤ π. If θ = 0, rθ is the identity.

Now, let p ∈ E, p ̸= 0. The map rp,θ := tp ◦rθ ◦ t−p is the rotation of center p, angle

θ. As a composition of positive isometries, rp,θ is a positive isometry. Observe

that rp,θ(p) = p, furthermore if θ ̸= 0, p is the only fixed point of rp,θ (if θ = 0,

rp,θ = IdE). In fact rp,θ(x) = x if and only if rθ(x−p) = x−p but a vector rotation

other than IdE has no eigenvector. In fact the associated matrix is of the form(
a b

−b a

)
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with a2 + b2 = 1 and b ̸= 0. Then the characteristic polynomial is (x− a)2 + b2 >

0,∀x. So the only possibility is x = p.

Proposition 25.12. Let g ̸= IdE be a direct isometry of the Euclidean plane E.

If g fixes a point, then g is a rotation with the fixed point as center; otherwise g is

a non-zero vector translation and has no fixed points.

Proof. Suppose g fixes a point: g(p) = p. Consider f := t−p◦g◦tp. The map f is a

positive isometry (composition of positive isometries), furthermore f(0) = 0. So f

is a vector rotation, f = rθ, where θ is the angle of the rotation. So g = tp ◦ rθ ◦ t−p

is a rotation with center p and angle θ.

Now, let g = ta ◦ v be a direct isometry of E. If g is not a translation, v ̸= IdE

and f = IdE − v is invertible (1 is not an eigenvalue of a positive vector isometry

different from Id). Therefore there exists x ∈ E such that f(x) = a, that is,

x− a = v(x). It follows that g(x) = x and g is a rotation with center x. □

Let us now move on to inverse (negative) isometries. Recall that for each affine

line L of E we have defined the orthogonal reflection with respect to L.

Definition 25.13. A glissreflection of the plane E is the composition, tw ◦ rL, of
an orthogonal reflection rL with a non-zero vector translation w parallel to L.

Let g = ta ◦ v be a negative isometry of E. The vector isometry v is an

orthogonal reflection rL where L = E+ = Ev(1) is the eigenspace relative to 1.

Furthermore, L⊥ = E− = Ev(−1) and we have E = E+ ⊕ E−. So each x ∈ E is

written uniquely as x = x+ + x− and v(x) = x+ − x−.

Let us see whether g can have fixed points: g(x) = x⇔ x+−x−+a = x++x− ⇔
a = 2x−. So g has a fixed point if and only if a ∈ E−. Furthermore, in this case the

line D = a
2+E+ is fixed (point by point): g(a2+x+) = −a

2+x++a = a
2+x+. Under

these conditions g = rD. In fact, let p = p+ + p− be any point. The orthogonal

projection of p onto D is n = a
2 + p+.

D

p

p+

p−

a
2

E+

E−

n
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So rD(p) = −p + 2n = −p+ − p− + a + 2p+ = p+ − p− + a = g(p). Assume

that g has no fixed points a /∈ E− that is a+ ̸= 0. The line D is globally invariant:

g(a2 +x+) =
a+

2 − a−
2 +x+ + a+ + a− = a

2 +x+ + a+. So g|D = ta+
. It follows that

the negative isometry t−a+
◦ g fixes the line D point by point. From what we saw

before, this implies t−a+
◦ g = rD, i.e. g = ta+

◦ rD and g is a glissreflection. To

sum up:

Proposition 25.14. Let g be a negative isometry of the plane. If g has a fixed

point then g is an orthogonal reflection (and has a line of fixed points). If g has no

fixed points, then g is a glissreflection.

This completes the classification of the isometries of the plane.
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Exercises

Exercise 25.15. Let E be an Euclidean vector space. An endomorphism, f , of E

is said to be positive if for every v in E we have (f(v) | v) ≥ 0.

(1) Let W ⊂ E be a vector subspace and p : E → E the orthogonal projection on

W (i.e. E = W ⊕W⊥ and if v = w + w′, w ∈ W , w′ ∈ W⊥, then p(v) = w).

Show that p is positive.

(2) Prove that ∀(u, v) ∈ E2 we have (p(v) | u) = (v | p(u)).

(3) Show with an example that there exist non-zero endomorphisms, g, such that

(g(v) | v) = 0,∀v ∈ E.

Exercise 25.16. Let E be an Euclidean vector space and v0, w0 two non-zero

vectors of E. Consider the map f : E → E : v → (v0 | v)w0.

(1) Show that f is linear.

(2) Determine the matrix of f with respect to an orthonormal basis. Determine

the dimension of the kernel of f .

Exercise 25.17. Let v, w be two non-zero vectors of an Euclidean plane. Deter-

mine a real number α such that v+αw has the minimum length (i.e. norm) among

all vectors of the form v + βw, β ∈ R. Is the number α uniquely determined?

Exercise 25.18 (Vector isometries: eigenspaces). Let E be an Euclidean space of

dimension n and f : E → E a vector isometry.

(1) Show that the only real eigenvalues of f are ±1.

(2) Let E+, E− denote the eigenspaces relative to 1 and −1 and set W = (E+ ⊕
E−)

⊥. Show that E = E+ ⊕ E− ⊕W .

(3) Show that f is positive (i.e. det(f) = 1) if and only if dim(E−) is even.

(Observe that the restriction of f to W is an endomorphism of the real vector

space W whose characteristic polynomial has no real root. Conclude that

dimW is even and that f|W is a positive isometry of W ).

(4) Assume n is odd. Show that if f is positive (resp. negative), then E+ ̸= {0}
(resp. E− ̸= {0}). Actually, f negative implies E− ̸= {0}, whatever the parity
of n is.

Exercise 25.19 (Affine orthogonal reflections). Let E be an Euclidean space. If

H0 ⊂ E is a vector hyperplane of E, the orthogonal reflection with respect to H0,

rH0
, is defined as follows: we have E = H0 ⊕ H⊥

0 , if u ∈ E, u = v + v′, v ∈ H0,

v′ ∈ H⊥
0 ; we set rH0

(u) = v−v′. The map rH0
is a negative vector isometry, whose

fixed point locus is H0.
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Our aim is to extend this notion to an affine hyperplane H = a+ V . For each

affine hyperplane H we define a map πH : E → H as follows: if p ∈ E, πH(p) is

the intersection point of the line Rp = p+ ⟨(dir(H))⊥⟩ with the hyperplane H.

(1) Show that the map πH is well defined.

(2) Now we define a map σH : E → E as follows: if p ∈ E, then σH(p) =

−p+ 2πH(p), i.e. σH(p)− πH(p) = −(p− πH(p)). The map σH is called the

orthogonal reflection with respect to the hyperplane H.

Let n be a unit vector normal to H (i.e. n ∈ dir(H)⊥ and ||n|| = 1, and

let a ∈ H be a point of H. Show that σH(p) = p− 2(p− a | n)n.

(3) Show that the set of fixed points of σH is H.

(4) Show that σ2
H = Id and conclude that σH is bijective.

(5) If H = a+V , show that σH = ta ◦ rV ◦ t−a, where te indicates the translation

of vector e and where rV indicates the orthogonal reflection with respect to

the vector hyperplane V . Conclude that σH is a negative isometry.

(6) Write σH in the form te ◦ f where f is a vector isometry and where e ∈ E.

Exercise 25.20. Let E be an Euclidean space of dimension n, and a0, . . . , an

affinely independent points. Furthermore, let a, b be two points such that d(a, ai) =

d(b, ai), 0 ≤ i ≤ n. Show that a = b.

Exercise 25.21. Let E be an Euclidean space, V ⊂ E a vector hyperplane of E,

and rV the orthogonal reflection with respect to V .

(1) Show that the image of Id− rV is the line V ⊥.

(2) Let u be a non-zero vector of E, show that there exists a unique hyperplane

V of E such that w − rV (W ) = u. More precisely, show that V = u⊥, while

w = wV + u
2 where wV is any vector of V .

(3) If H = a+V is an affine hyperplane, remember that the orthogonal reflection

with respect to H, σH , is written as σH = te ◦ rV where e = a− rV (a).

Using this fact and the previous point, show that each translation tu is

written as a product of two orthogonal reflections.

(4) Show that if tu = σH ◦ σH′ , then dir(H) = dir(H ′) = u⊥.
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The spectral theorem

Using the theory of Euclidean spaces, we prove that every real symmetric matrix

is diagonalizable.

26.1. Self-adjoint operators and spectral theorem

Definition 26.1. Let E be an Euclidean space and v ∈ End(E). We say that v

is a symmetric or self-adjoint operator if for every orthonormal basis B the matrix

Mat(v;B,B) is symmetric.

Lemma 26.2. The endomorphism v ∈ End(E) is self-adjoint if and only if ∀x, y ∈
E we have (x | v(y)) = (v(x) | y).

Proof. We have (x | v(y)) = tX(AY ), while (v(x) | y) = t(AX)Y = tX tAY

(here X indicates the column matrix built on the coordinates of x, ditto for Y, y).

Since X,Y are arbitrary we have equality if and only if A = tA, that is, if and only

if A is symmetric. □

Lemma 26.3. Let E be an Euclidean space, v ∈ End(E) a symmetric operator

and W ⊂ E a subspace such that v(W ) ⊂ W . Then v|W is a symmetric operator

on W .

Proof. Let B′ = (e1, . . . , er) be an orthonormal basis of W . Complete it to an

orthonormal basis B of E (Gram-Schmidt). Set A = Mat(v;B,B). The matrix A

is symmetric. Then the submatrix A′ = (aij)1≤i,j≤r is also symmetric. □

Let A ∈ Mn(R) be a real symmetric matrix. The characteristic polynomial

PA(x) of A is a polynomial with real coefficients but we can also consider it as an

element of C[x] and as such it has all its roots in C being C algebraically closed.

311
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Remember that the conjugate of a complex number z = a + ib is z = a − ib.

A complex number is real if and only if z = z. The modulus of z is |z| =
√
zz =√

a2 + b2.

Lemma 26.4. Let A ∈ Mn(R) be a symmetric matrix. Every root in C of PA(x)

is real i.e. PA(x) has all its roots in R.

Proof. We can associate to A an endomorphism f of Cn via the isomorphism

Mat(−;B,B) : End(Cn) → Mn(C), where B is a basis of Cn. Let λ be a root in

C of PA(x), λ is an eigenvalue of f . So there exists Y ∈ Cn, Y ̸= 0 such that

AY = λY . Now let us take the conjugate, coordinate by coordinate AY = λY

(note that AB = AB). Since the coefficients of A are all real A = A.

Therefore AY = λY . Now, we compute tY AY in two different ways:

- tY AY = ( tY tA)Y = t(AY )Y = t(λY )Y = λ tY Y ;

- tY AY = tY (AY ) = tY (λY ) = λ tY Y .

If tY = (z1, . . . , zn) then
tY Y = |z1|2 + · · ·+ |zn|2 > 0 (since Y ̸= 0 so one of the

zi is non-zero). We conclude that λ = λ, i.e. λ is real. □

Theorem 26.5. Let E be an Euclidean space and v ∈ End(E) a symmetric oper-

ator. There is an orthonormal basis, B, of E such that Mat(v;B,B) is diagonal.

Proof. We proceed by induction on dim(E). If dim(E) = 1 there is nothing to

prove. Let B′ be an orthonormal basis of E. The matrix Mat(v;B′,B′) is symmetric.

From the previous lemma there exists a real eigenvalue λ and therefore an associated

eigenvector, x. Set H := x⊥. We show that v(H) ⊂ H (H stable under v). For

y ∈ H we have to show (x | v(y)) = 0. Since v is self-adjoint: (x | v(y)) = (v(x) | y).
But (v(x) | y) = (λx | y) = λ(x | y) = 0 since y ∈ H = x⊥.

It follows that the restriction of v to H is a symmetric operator of H (Lemma

26.3). By induction hypothesis there exists an orthonormal basis of H, BH , such

that the matrix of v|H is diagonal. We complete BH to an orthonormal basis, B, of
E by adding the vector x

||x|| . In the basis B the matrix of v is diagonal. □

An equivalent formulation:

Theorem 26.6. Let A ∈ Mn(R) be a symmetric matrix. Then there exists an

orthogonal matrix P such that P−1AP is diagonal.

Definition 26.7. A matrix A ∈ Mn(K) is called orthogonally diagonalizable if

there exist an orthogonal matrix P and a diagonal matrix D such that A = QD tQ.
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Most matrices, even most diagonalizable matrices, are not orthogonally diago-

nalizable. Indeed, a necessary condition to be orthogonally diagonalizable is to be

symmetric.

Proposition 26.8. Let A ∈Mn(K) be an orthogonally diagonalizable. Then A is

symmetric.

Proof. By hypothesis we have A = QD tQ with P orthogonal and D diagonal.

Hence
tA = t( tQ) tD tQ = QD tQ = A

since tD = D being D diagonal. □

Finally, summing up we get the following:

Theorem 26.9 (Spectral theorem). Let E be an Euclidean space and v ∈ End(E)

an operator. There is an orthonormal basis, B, of E such that Mat(v;B,B) is

diagonal if and only if v is self-adjoint.

Equivalently, a matrix A ∈Mn(R) is orthogonally diagonalizable if and only if

it is symmetric.

Proof. Follows from Theorems 26.5, 26.6 and Proposition 26.8. □

Remark 26.10. We have already seen in Remark 22.6 that there exist symmetric

matrices with complex entries which are not diagonalizable.

A matrix M ∈ Mn(C) is said to be Hermitian if M = tM . The spectral

theorem in all generality states that every Hermitian matrix is diagonalizable (a

real symmetric matrix is Hermitian).

26.2. Spectral theorem and real quadratic forms

The spectral theorem offers us a third method for determining the signature of a

real quadratic form.

Let q be a real quadratic form and let A be the associated symmetric matrix. By

the spectral theorem there exists an orthogonal matrix P such that P−1AP = D is

diagonal (A is similar to D). The elements on the diagonal of D are the eigenvalues,

i.e. the roots of PA(x).

Since the matrix P is orthogonal P−1 = tP we also have tPAP = D (A is

congruent to D). This means that there exists an orthogonal basis B such that

matB(f) = D (f is the symmetric bilinear form associated to q). So the signature

of q is given by the signs of the elements on the diagonal of D i.e. the signature is

given by the signs of the eigenvalues.
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In conclusion, to determine the signature of q, the characteristic polynomial

PA(x) is calculated and the sign of its roots are determined.

Example 26.11. Consider the quadratic form

q(x, y, z) = x2 + y2 + z2 − 4(xy + xz + yz).

The associated matrix is

A =

 1 −2 −2

−2 1 −2

−2 −2 1


and we have

PA(x) =

∣∣∣∣∣∣∣
x− 1 2 2

2 x− 1 2

2 2 x− 1

∣∣∣∣∣∣∣ = (x− 3)2(x+ 3).

The signature of q is (2, 1) (two positive terms, one negative).

Be careful though, this method is not necessarily faster or safer than the others.

Furthermore, regarding the diagonalization of a quadratic form, it can only be used

when K = R.
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Exercises

Exercise 26.12. Consider the matrix

A =

 0 −1 1

−1 0 1

1 1 0


and find an orthogonal matrix P and a diagonal matrix D such that A = PD tP .

Exercise 26.13. Let A,B ∈ Mn(R) be two orthogonally diagonalizable matrices

such that AB = BA. Prove that AB is orthogonally diagonalizable.

Exercise 26.14. Consider the matrices

A =

(
1 2

2 1

)
and B =

(
1 −1

−1 0

)
.

Show that A and B are orthogonally diagonalizable but AB is not.

Exercise 26.15. Let A ∈ Mn(R) be a symmetric matrix. Prove that there exists

a matrix B ∈ Mn(C) such that A = tBB (Hint: write A = tPDP and consider

the diagonal matrix
√
D, whose entries are the square roots of the entries of D, and

the matrix
√
DP ).

Exercise 26.16. Define the exponential of a symmetric matrix A ∈Mn(R) by the

convergent series

eA :=

∞∑
k=0

Ak

k!
.

Show that eA = tPeDP where D is diagonal and P is orthogonal.





Part 5

Jordan canonical form



A Jordan canonical form is an upper triangular matrix of the following form

J1 0 . . . . . . 0

0 J2 0 . . . 0

0 0
. . .

. . . 0
...

...
. . .

. . .
...

0 . . . . . . 0 Jr


called a Jordan matrix representing a linear operator on a finite-dimensional vector

space with respect to some basis. Each block Ji, called a Jordan block, is a square

matrix of the form

Ji =



λi 1 0 . . . 0

0 λi 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 λi 1

0 . . . . . . 0 λi

 .

In other terms the only non zero entries a matrix in Jordan canonical form are

either on the diagonal or on the superdiagonal.

Let f : E → E be an endomorphism of the K-vector space E. We will see that

there is a basis B of E such that Mat(f ;B,B) is in Jordan form if and only if the

endomorphism f has all its eigenvalues in K. In this case, the diagonal entries of

the Jordan form are the eigenvalues of f , and the number of times each eigenvalue

occurs is the algebraic multiplicity of the eigenvalue.

The diagonal form for diagonalizable matrices is a special case of the Jordan

canonical form. As we have seen there are non diagonalizable matrices but, if K is

algebraically closed, any square matrix has a Jordan canonical form. For instance,

the matrix  0 −6 −4

5 −11 −6

−6 9 4


is not diagonalizable but admits the following Jordan canonical form −2 1 0

0 −2 0

0 0 −3

 .



Chapter 27

The minimal polynomial

In the following we will denote by E a K-vector space of dimension n and by

f : E → E an endomorphism of E. If

P (X) = anX
n + · · ·+ a1X + a0 ∈ K[X]

then

P (f) = anf
n + · · ·+ a1f + a0Id ∈ End(E)

and we get a map

φf : K[X] → End(E) : P → P (f).

It turns out that φf is a ring morphism (φf is also K-linear). Therefore (PQ)(f) =

P (f)◦Q(f) (to verify this take P (X) = Xm, Q(X) = Xt and conclude by linearity).

An important fact: since K[X] is commutative, we have

P (f) ◦Q(f) = Q(f) ◦ P (f),∀P,Q ∈ K[X]

that is Im(φf ) is a commutative subring of End(E).

The morphism φf is not injective. Indeed, By the Cayley-Hamilton theorem

Pf (x) ∈ Ker(φf ).

The non-injectivity of φf can be seen directly. Since dim(End(E)) = n2,

Id, f, f2, . . . , fn
2

are dependent: a0Id + · · · + an2fn
2

= 0, i.e. Q(f) = 0 with

a0 + · · ·+ an2Xn2

= Q(X) ̸= 0. This shows that the map φf is not one-to-one. On

the other hand, K[X] is a K-vector space of infinite dimension, while End(E) has

finite dimension.

Set J = Ker(φf ). The subset J of K[X] is an ideal, that is if P,Q ∈ J then

P +Q ∈ J and ∀P ∈ J, T ∈ K[X], TP ∈ J . Another crucial fact:

319
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Lemma 27.1. Any ideal, J , of K[X] is generated by a single polynomial that is

∃T ∈ K[X] such that J = (T ) = {PT |P ∈ K[X]}.

Proof. The simplest way to see this is to use Euclidean division. Recall that if

P,M are two polynomials with deg(P ) ≥ deg(M), then there exist Q,R such that

P = QM + R and deg(R) < deg(M). Let M ∈ J be of minimum degree. If

P ∈ J , we divide by M : P = QM + R. We have R = P − QM ∈ J . Since

deg(R) < deg(M), due to the minimality of the degree of M , the only possibility

is R = 0. So P = QM . □

Remark 27.2. An integral ring in which each ideal can be generated by a single

element is called a PID (principal ideal domain).

Every Euclidean ring, i.e. a ring with an Euclidean division, is a PID. For

example Z is a PID. There are principal ideal domains that are not Euclidean, for

instance Z
[
1+

√
−19
2

]
is a non Euclidean PID.

So every ideal J ⊂ K[X] can be written as J = (M) where M is a polynomial

of minimal degree in J . The polynomial is not uniquely determined, if a ∈ K,

a ̸= 0, then J = (aM). In particular, we can always find a such that aM is monic

i.e. the coefficient of the highest power of X in aM is equal to 1:

aM = Xt + at−1X
t−1 + · · ·+ a0.

The monic generator of J is uniquely determined.

In what follows, when we write J = (P ) we will assume that P is the monic

generator.

Definition 27.3. The minimal polynomial, Mf , of the endomorphism f : E → E

is the monic generator of the ideal J = Ker(φf ).

Remark 27.4. 1) The minimal polynomial is the monic polynomial, P , of smallest

degree such that P (f) = 0.

2) If P verifies P (f) = 0, then Mf |P (Mf divides P ). In particular, Mf | Pf due

to the Cayley-Hamilton theorem.

In the following we will study the relation between the minimal polynomialMf

and the characteristic polynomial Pf .

27.1. Minimal and characteristic polynomial

As already observed Mf | Pf that is MfQ = Pf . A priori this does not imply that

if λ is a root of Pf then λ is also a root of Mf (λ could be a root of Q). Actually,

as we will now see, Mf and Pf have the same roots.
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Proposition 27.5. Let f : E → E be an endomorphism of the K-vector space E.

An element λ ∈ K is a root of Pf (i.e. λ is an eigenvalue of f) if and only if λ is

a root of Mf .

Proof. Exercise 27.9. □

Corollary 27.6. Let f : E → E be an endomorphism of the K-vector space E. It

is assumed that Pf (X) has all its roots in K (hypothesis verified if K is algebraically

closed):

Pf (X) = (X − λ1)
α1(X − λ2)

α2 . . . (X − λr)
αr

with λi ̸= λj if i ̸= j, and α1 + · · ·+ αr = dim(E). Then

Mf (X) = (X − λ1)
β1(X − λ2)

β2 . . . (X − λr)
βr with 1 ≤ βi ≤ αi,∀i.

Proof. If Q(X) is an irreducible factor of Mf (X), then Q is an irreducible factor

of Pf (X) (sinceMf |Pf ), so Q has degree one. From Proposition 27.5 it follows that

Mf (X) = (X − λ1)
β1(X − λ2)

β2 . . . (X − λr)
βr

with βi ≥ 1,∀i. Finally, since Mf |Pf , βi ≤ αi, ∀i. □

Corollary 27.7. Let f : E → E be an endomorphism of the K-vector space E. It

is assumed that Pf (X) has all its roots in K (hypothesis verified if K is algebraically

closed):

Pf (X) = (X − λ1)
α1(X − λ2)

α2 . . . (X − λr)
αr

with λi ̸= λj if i ̸= j, and α1 + · · ·+ αr = dim(E). If f is diagonalizable then

Mf (X) = (X − λ1)(X − λ2) . . . (X − λr).

In particular, Mf does not have multiple roots.

Proof. Let B = (e11 , . . . , e1α1
; e21 , . . . , e2α2

; ...; er1 , . . . , erαr
) be a basis of eigenvec-

tors (f(eij ) = λieij ), and set F = (f −λ1Id) ◦ (f −λ2Id) ◦ . . . (f −λrId). We have

F (eij ) = (f − λ1Id) ◦ · · · ◦ (f − λiId) ◦ . . . (f − λrId)(eij ) = (f − λ1Id) ◦ · · · ◦ (f −
λrId) ◦ (f − λiId)(eij ) = 0. So F = 0. It follows that Mf |(X − λ1) . . . (X − λr).

We conclude by Corollary 27.6. □

Remark 27.8. It can be shown that if Pf (x) has all its roots in K and if Mf (x)

has no multiple roots, then f is diagonalizable (i.e. these conditions are necessary

and sufficient).
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Exercises

Exercise 27.9. Prove Proposition 27.5.

Exercise 27.10. 1) Let P (x) ∈ R[x]. Show that if P (x) is irreducible then

deg(P ) ≤ 2 (Work on C).
2) Let E be an R-vector space and f ∈ End(E). Show that Mf and Pf have the

same irreducible factors.

Exercise 27.11. A matrix A ∈ Mn(K) is scalar if A = αIn for some α ∈ K.

1) Show that A ∈ Mn(K) verifies deg(MA(x)) = 1 if and only if A is scalar.

2) Give an example of a 3× 3 non-scalar matrix, A, whose minimal polynomial has

degree two (therefore MA(x) ̸= PA(x)).

Exercise 27.12. 1) Let E be aK-vector space. Throughout the exercise we assume

dim(E) ≥ 2. Show that there exist f, g ∈ End(E) such that f ◦ g ̸= g ◦ f (take a

basis (ei) of E and define f, g by their values on the vectors ei, just consider e1 and

e2). In particular, End(E) is a non-commutative ring.

2) Conclude that if f ∈ End(E), the morphism φf : K[x] → End(E) : P → P (f) is

never surjective.

3) The center, Z of End(E) is

Z = {f ∈ End(E) | f ◦ g = g ◦ f, ∀g ∈ End(E)}

i.e. Z is the set of endomorphisms that commute with all other endomorphisms.

A homothety is an endomorphism of the form αId, clearly a homothety belongs

to Z. Show that if f ∈ End(E) is not a homothety, then there exists v ∈ E such

that v and f(v) are linearly independent (taking a basis of E and reasoning by

contradiction). Taking a suitable basis, show that there exists g ∈ End(E) which

does not commute with f . Conclude that Z = {αId | α ∈ K} ≃ K.

Exercise 27.13. 1) Let Mf (x) be the minimal polynomial of f ∈ End(E). Set

m := deg(Mf ). Observe that Id = f0, f, f2, . . . , fm are linearly dependent and

conclude that (Id, f, f2, . . . , fm−1) is a basis of Im(φf ). So dim(Im(φf )) ≤ n, ∀f
(n = dim(E)).

2) An endomorphism f is nilpotent if there exists t such that f t = 0. What is

the shape of the minimal polynomial of a nilpotent endomorphism? Determine the

characteristic polynomial Pf (x) and conclude that fn = 0 (n = dim(E)).

3) If f is nilpotent its index (of nilpower) is ι(f) = min {t | f t = 0}. For example,

if (e1, . . . , en) is a basis of E and f is defined by f(ei) = ei+1 (with the convention

ek = 0 if k > n), then f is nilpotent with ι(f) = n. Show that for 2 ≤ k ≤ n there

exists f nilpotent with ι(f) = k.
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4) Conclude that for every k with 1 ≤ k ≤ n there exists f ∈ End(E) such that

dim(Im(φf )) = k.





Chapter 28

Cyclic spaces and subspaces

28.1. The K[X]-module Ef

The map φf : K[X] → End(E) : P → P (f) allows us to define an external

multiplication on E:

K[X]× E → E : (P, v) → Pv := P (f)(v).

With this external multiplication E becomes a K[X]-module, this means that the

external multiplication verifies the axioms of the multiplication for vector spaces,

the only difference (but it is notable) is that K[X] is not a field but just a ring.

In the following we will write Ef to indicate that we are considering E as a

K[X]-module via f and we will write Pv instead of P (f)(v).

Definition 28.1. Let A be a commutative ring, an A-module M is an abelian

group with an external multiplication i.e. A×M →M : (α,m) → αm such that

- (α+ β)m = αm+ βm;

- α(m+ n) = αm+ αn;

- α(βm) = (αβ)m;

- 1Am = m;

for any α, β ∈ A,m, n ∈M .

Example 28.2. 1) If A = K is a field a K-module is a K-vector space.

2) An ideal I ⊂ A is an A-module (so A is an A-module, more generally An is an

A-module).

3) The Z-modules are exactly the abelian groups.
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4) If A = K[x] an A-module is a K-vector space with an endomorphism (the

situation we are considering).

Definition 28.3. Let M,N be two A-modules, a map φ : M → N is an A-linear

morphism if

- φ(m+m′) = φ(m) + φ(m′) (group morphism);

- φ(αm) = αφ(m) (A-linearity).

We highlight some differences between the theory of modules and that of vector

spaces. For example, in a vector space we have λv = 0 ⇒ λ = 0 or v = 0 (λ ∈ K)

which is not true for A-modules.

In fact, if Mf is the minimal polynomial of f we have Mfv = 0,∀v ∈ E, this

means that Ef is a K[X]-module with torsion. In general an A-module F has

torsion if ∀m ∈ F,∃a ∈ A, a ̸= 0 such that am = 0. A priori a depends on m and

it is not certain that there exists a single a that annihilates F . We therefore have

two good news: the first is that in our case there is an element of the ring that

annihilates the module, the second is that our ring, A = K[X], is a PID. In fact,

there is a classification of modules (in particular with torsion) on a PID and what

follows is a particular case of this theory.

Definition 28.4. A submodule of Ef is a subvector space V ⊂ E such P (V ) ⊂ V ,

∀P ∈ K[X].

The following fact is immediate:

Lemma 28.5. A subvector space V ⊂ E is a submodule of Ef if and only if V is

stable under f (i.e. f(V ) ⊂ V ).

The notion of stable subspace is important by virtue of the following:

Lemma 28.6. Let F ⊂ E be a stable subspace of Ef . Then Pf |F | Pf and Mf |F |
Mf .

Proof. Let us take a basis B = (e1, . . . , et) of F and complete it to a basis B =

(e1, . . . , et, . . . , en) of E. Since f(ei) ∈ F for 1 ≤ i ≤ t, M = Mat(f ;B,B) is of the
form

M =

(
R D

0 T

)
.

Here R is a t × t matrix and T is an (n − t) × (n − t) matrix. Furthermore,

R = Mat(f|F ;B,B). We have det(λIn −M) = det(λIt − R) det(λIn−t − T ). So

Pf |F | Pf . If v ∈ F then Mfv = 0, and hence Mf ∈ (Mf |F ) i.e. Mf |F |Mf . □
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Definition 28.7. For v ∈ Ef we denote by ⟨v⟩f is the submodule of Ef generated

by v:

⟨v⟩f := {Pv | P ∈ K[x]}.

Lemma 28.8. Let v ∈ Ef , v ̸= 0. The subspace ⟨v⟩f is stable. If t := dim⟨v⟩f ,
then B = (v, f(v), . . . , f t−1(v)) is a basis of ⟨v⟩f .

Proof. Being a submodule, ⟨v⟩f is clearly a stable subvector space of Ef (note

that f(Pv) = x(Pv) = (xP )(v)). Set

t := max{k | v, f(v), . . . , fk−1(v) are independent}.

We have 1 ≤ t because v ̸= 0 and t ≤ n = dimE (so t is well defined). If

m ≥ t, fm(v) is a linear combination of v, f(v), . . . , f t−1(v). In fact f t(v) is a

linear combination of v, . . . , f t−1(v), by definition of t; now

f t+1(v) = f(f t(v)) = f

(
t−1∑
i=0

aif
i(v)

)
=

t−1∑
i=1

ai−1f
i(v) + at−1f

t(v)

and we see that f t+1(v) is a linear combination of v, . . . , f t−1(v). Proceeding in this

way we get the statement by induction. Since Pv = alf
l(v)+ · · ·+ a1f(v)+ a0v, it

follows that the vectors v, f(v), . . . , f t−1(v) generate ⟨v⟩f . So (v, f(v), . . . , f t−1(v))

is a basis of ⟨v⟩f . □

Definition 28.9. A subspace F ⊂ Ef is cyclic if there exists v ∈ E such that

F = ⟨v⟩f . The space Ef is cyclic if there exists v ∈ E such that E = ⟨v⟩f .

28.2. Companion matrices and cyclic spaces

Let Q(x) = xn+an−1x
n−1+ · · ·+a1x+a0 ∈ K[x] be a monic polynomial of degree

n = dim(E). To the polynomial Q we associate the matrix

C(Q) :=



0 0 . . . . . . 0 −a0
1 0 . . . . . . . . . −a1
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . 1 0 −an−2

0 0 . . . 0 1 −an−1


.

Definition 28.10. The matrix C(Q) is called the companion matrix of the poly-

nomial Q.

Lemma 28.11. Let C(Q) be the companion matrix of the polynomial Q. Then

MC(Q) = PC(Q) = Q (the characteristic polynomial and the minimal polynomial of

C(Q) are both equal to Q).

Proof. Exercise 28.16. □
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We have a clear relation between companion matrices and cyclic spaces:

Proposition 28.12. Let E be a K-vector space and f ∈ End(E).

1) Ef is cyclic if and only there exists a basis B of E such that Mat(f ;B,B) = C(Q)

and in this case Q = Pf .

2) If Ef is cyclic then Pf =Mf .

3) Two n× n companion matrices are similar if and only if they are equal.

Proof. 1) If there exists a basis B = (ei) such that Mat(f ;B,B) is a companion

matrix C(Q), then Ef is clearly cyclic (E = ⟨e1⟩f ) and Q = Pf (Lemma 28.11).

Conversely, if Ef is cyclic, Ef = ⟨v⟩f and if B = (v, f(v), . . . , fn−1(v)), then

Mat(f ;B,B) is a companion matrix C(Q), with Q = Pf (Lemma 28.11).

2) Follows from 1) and Lemma 28.11.

3) If C(Q) and C(P ) are similar they represent the same endomorphism f in different

bases. By Lemma 28.11 we have P = Pf = Q. □

Remark 28.13. 1) Proposition 28.12 provides a necessary condition for an en-

domorphism f to be cyclic: we must have Pf = Mf . We will see later that this

condition is also sufficient.

2) A similarity class is associated to each monic polynomial P : the class of C(P ).
The map associating to P the class of C(P ) is injective and its image describes the

classes of cyclic endomorphisms.
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Exercises

Exercise 28.14. An A-module M is of finite type (or finitely generated) if there

exists a surjective morphism An → M for some n. We say that M is free, of rank

n, if there exists an isomorphism An → M . In these situations the image of the

canonical basis of An is a set of generators (resp. a basis) of M .

Give an example of an A-module M of finite, non-free type (i.e. M has a finite

set of generators but does not have a basis).

Exercise 28.15. Let A be an integral (commutative) ring and M an A-module.

An element m ∈M , m ̸= 0, is torsion if there exists a ∈ A, a ̸= 0 such that am = 0.

Set

T (M) = {m ∈M | m is torsion} ∪ {0}.
1) Show that T (M) is a submodule of M . The A-module M is torsion-free if

T (M) = {0}.
2) Let G be a Z-module. Show that if G is a finite set (i.e. G is a finite abelian

group) every element of G is torsion (T (G) = G). Is G finitely generated?

3) If A is integral and M is free of rank n then M is torsion-free. What happens if

A is not integral?

Exercise 28.16. Prove Lemma 28.11.

Exercise 28.17. Let E be a K-vector space and f ∈ End(E). The endomorphism

f is simple if the only stable subspaces of E are the trivial ones ({0}, E). Note that

this goes back to requiring that Ef has no non-trivial K[x]-submodules (it is also

said that Ef is simple). Show that:

1) A simple space is cyclic.

2) The space Ef is simple if and only if Pf is irreducible.

Exercise 28.18. (A third proof of the Cayley-Hamilton theorem) Let E be a K-

vector space and v ∈ E, v ̸= 0.

1) Let F = ⟨v⟩f . Show that Pf |F (v) = 0.

2) Conclude that Pf (f) = 0.





Chapter 29

Characteristic subspaces and

the killer lemma

We introduce the decomposition of E into characteristic subspaces. As a first

consequence we obtain a new diagonalization criterion (Theorem 29.6). We then use

this decomposition to prove the killer lemma which will be crucial in the following.

Remark 29.1. If F ⊂ E is a subvector space, we denote by

Ann(F ) = {P ∈ K[x] | Pv = 0,∀v ∈ F}

its annihilator. It is easily verified that Ann(F ) is an ideal ofK[x], so Ann(F ) = (Q)

(monic generator as always). Clearly Q = Mf |F . If F = ⟨v⟩ = {λv | λ ∈ K}, we
write Ann(v) instead of Ann(⟨v⟩). We observe that Ann(v) = Ann(⟨v⟩f ).

Indeed, let Ann(v) = (Q), then Q(f i(v)) = (Qxi)(v) = (xiQ)(v) = 0. So

Q ∈ Ann(⟨v⟩f ). On the other hand, it is clear that Ann(⟨v⟩f ) ⊂ Ann(v). Therefore,

Ann(v) = Ann(⟨v⟩f ) = (Mf |⟨v⟩f ). Since Pf |⟨v⟩f = Mf |⟨v⟩f , if Ann(v) = (Q),

dim⟨v⟩f = deg(Q).

Lemma 29.2 (Kernel lemma). Let P1, . . . , Pt ∈ K[x] be polynomials prime to

each other i.e. (Pi, Pj) = (1) if i ̸= j, E a K-vector space, f ∈ End(E) and

P := P1 · · ·Pt. Then

Ker(P (f)) =

t⊕
i=1

Ker(Pi(f)).

Proof. The proof is by induction on t. If t = 1, there is nothing to prove. Set

t = 2. Since (P1, P2) = (1), there exist Q1, Q2 such that Q1P1 + Q2P2 = 1. So
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(Q1P1)(f) + (Q2P2)(f) = IdE . Therefore,

∀v ∈ E : (Q1P1)v + (Q2P2)v = v (∗).

Let w ∈ Ker(P1P2(f)). We have P2(Q1P1)w) = Q1(Pw) = 0 (P = P1P2). Simi-

larly, P1((Q2P2)w) = Q2(Pw) = 0. So, due to (∗) we have w ∈ Ker(P1) +Ker(P2).

Using (∗) it is easy to see that the sum Ker(P1) + Ker(P2) is direct. At this

point we have Ker(P ) ⊂ Ker(P1)⊕Ker(P2).

Since Ker(P1)⊕Ker(P2) ⊂ Ker(P ) (if w = w1 +w2 ∈ Ker(P1)⊕Ker(P2), then

Pw = Pw1 + Pw2 = P2(P1w1) + P1(P2w2) = 0), we conclude that Ker(P (f)) =

Ker(P1(f))⊕Ker(P2(f)).

Let us assume the result is true for t−1 and show it for t. Set R1 = P1 . . . Pt−1,

R2 = Pt. We have (R1, R2) = (1) and hence Ker(R1R2) = Ker(P ) = Ker(R1) ⊕
Ker(R2). By induction hypothesis (since P1, . . . , Pt−1 are prime two to each other),

we have Ker(R1) =

t−1⊕
1

Ker(Pi). So Ker(P (f)) =

t⊕
i=1

Ker(Pi(f)). □

Theorem 29.3 (Characteristic subspaces). Let E be a K-vector space and f ∈
End(E). Let us consider the irreducible factorization of Mf (x) in K[x]:

Mf (x) =Ma1
1 (x)Ma2

2 · · ·Mar
r (x).

We can assume Mi monic, ∀i. Set Ei := Ker(Mai
i (f)). Then every Ei is stable

and E = E1 ⊕ · · · ⊕ Er. The Ei are the characteristic subspaces or generalized

eigenspaces of f .

Proof. It is clear that the subspaces Ei are stable. More generally every subspace

of the form Ker(P ) is stable (if v ∈ Ker(P ), Pf(v) = (Px)v = x(Pv) = 0).

If Pi = Mai
i , the polynomials P1, . . . , Pr are prime to each other. Set P =

P1 · · ·Pr. By Lemma 29.2 Ker(P ) =
⊕r

i=1 Ker(Pi). But P = Mf , so Ker(P ) =

E. □

If Bi is a basis of Ei, B = (B1, . . . ,Br) is a basis of E and since Ei is stable

f(Bi) ∈ Ei, then the matrix Mat(f ;B,B) of f in the basis B is a block diagonal

matrix:

(29.1) Mat(f ;B,B) =


A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 . . . 0 Ar


where Ai = Mat(fi;Bi,Bi) and fi = f|Ei

.

Lemma 29.4. With the above notations, if a ≥ al, then Ker(Ma
l (f)) = El.
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Proof. Set δi = ai if i ̸= l, δl = a and set P =
∏

iM
δi
i . Since Mf | P , we have

P (f)(v) = 0,∀v ∈ E. By Lemma 29.2 we have E =
⊕

i Ker(Mδi
i (f)) = (

⊕
i ̸=lEi)⊕

Ker(Ma
l ). So dim(Ker(Ma

l (f))) = dim(El). Since, clearly El ⊂ Ker(Ma
l (f)), it

follows that Ker(Ma
l (f)) = El. □

We also have:

Lemma 29.5. With the previous notations let fi = f|Ei
. Then the minimal poly-

nomial of the endomorphism fi : Ei → Ei is M
ai
i (x).

Proof. Let mi(x) be the minimal polynomial of fi. Since Ei = Ker(Mai
i (f)),

mi |Mai
i , then mi =Mδi

i , δi ≤ ai.

On the other hand, if m = m1 . . .mr, since E = E1 ⊕ · · · ⊕ Er, we have

m(f)(v) = 0,∀v ∈ E , so Mf | m and this implies δi = ai,∀i. □

Suppose that the characteristic polynomial of f has all its roots in K (hypoth-

esis verified if K is algebraically closed). In this case we have (Corollary 27.6):

Pf (X) =
∏r

i=1(X − λi)
αi ;

Mf (X) =
∏r

i=1(X − λi)
βi ;

with 1 ≤ βi ≤ αi (λi ̸= λj if i ̸= j).

Theorem 29.6. With the previous hypotheses and notations (in particular Pf has

all its roots in K), if Vi is the eigenspace relative to λi then:

(1) Vi ⊂ Ei;

(2) dim(Ei) = αi, 1 ≤ i ≤ r;

(3) f is diagonalizable if and only if Mf (X) has no multiple roots.

Proof. (1) Follows from Ker(f − λiId) ⊂ Ker((f − λiId)
βi).

(2) The minimal polynomial of fi is Mβi

i (X) = (X − λi)
βi (Lemma 29.5). The

block form (29.1) shows that the characteristic polynomial of f is the product

of the characteristic polynomials of the fi. In particular Pfi has all its roots in

K, this implies Pfi(X) = (X−λi)γi (the roots of Pfi are roots of the minimal

polynomial of fi). It follows that dim(Ei) = γi = αi.

(3) The endomorphism f is diagonalizable if and only if E =
⊕

i Vi if and only if

Vi = Ei,∀i if and only if Ei = Ker(f − λiId) if and only if βi = 1,∀i (Lemma

29.5)

concluding the proof. □

We see that in these hypotheses the characteristic polynomial provides the

dimension of the characteristic subspaces.
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29.1. The killer lemma

We have seen so far how simple life is with cyclic endomorphisms. Two cyclic endo-

morphisms are similar if and only if they have the same characteristic polynomial.

Furthermore, we can associate a very particular matrix to each cyclic endomor-

phism: the companion matrix of its characteristic polynomial. To extend this type

of result to all endomorphisms the idea is to write E as a direct sum of cyclic

subspaces.

The first step consists in showing that there exists v ∈ E such thatMf|F =Mf ,

where F = ⟨v⟩f (killer lemma). We have already seen thatMf|F |Mf , it is therefore

legitimate to ask whether there is a v for which equality holds.

Lemma 29.7. Let E be a K-vector space, f ∈ End(E), v1, . . . , vr ∈ E vectors such

that the subspaces ⟨v1⟩f , . . . , ⟨vr⟩f are in direct sum, and Ann(vi) = (Pi). Then if

v = v1 + · · ·+ vr, we have Ann(v) = (Q), with Q = lcm(Pi).

Proof. Set P = lcm(Pi) and Ann(v) = (Q) (we can assume P and Q are monic).

We have Pvi = 0,∀i since Pi | P,∀i. It follows that Pv = 0, so Q | P .

We have 0 = Qv = Qv1 + · · · + Qvr. Since Qvi ∈ ⟨vi⟩f and since the sum of

the ⟨vi⟩f is direct, this implies Qvi = 0,∀i. So Pi | Q,∀i. Therefore P | Q (by

definition (P ) = ∩i(Pi)). We conclude that P = Q. □

Lemma 29.8 (Killer Lemma). Let E be a K-vector space (K any field) and f ∈
End(E). Then there exists v ∈ E such that Ann(v) = (Mf ).

Proof. Let Mf =Ma1
1 · · ·Mar

r be the factorization of Mf into irreducible factors.

By Theorem 29.3 we have E = E1 ⊕ · · · ⊕ Er, where the Ei = Ker(Mai
i ) are the

characteristic subspaces. Since the minimal polynomial of fi = f|Ei
is mi = Mai

i

(Lemma 29.5), there exists vi ∈ Ei such that Mai−1
i vi ̸= 0 (otherwise mi |Mai−1

i ).

If Ann(vi) = (Pi), then Pi | mi = Mai
i , and Pi = M bi

i with bi ≤ ai (because Mi is

irreducible). But since Mai−1
i vi ̸= 0 we have ai = bi.

In conclusion, there exists vi ∈ Ei such that Ann(vi) = (Mai
i ), 1 ≤ i ≤ r. Since

⟨vi⟩f ⊂ Ei (because Ei is stable (Theorem 29.3), the subspaces ⟨v1⟩f , . . . , ⟨vr⟩f
are in direct sum. By Lemma 29.7, if v = v1 + · · · + vr, Ann(v) = (lcm(Mai

i )) =

(Ma1
1 . . .Mar

r ) = (Mf ). □
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Exercises

Exercise 29.9. Let A ∈ Mn(K) be such that At = In, K is assumed to be

algebraically closed and of characteristic zero. Show that A is diagonalizable.

Exercise 29.10. (The killer lemma with K infinite). Let E be a K-vector space

and f ∈ End(E), K is assumed to be infinite.

1) If v ∈ E, Ann(v) = (Mf|F ) where F = ⟨v⟩f . Conclude that if Ann(v) = (Q)

then Q is a monic divisor of Mf .

2) Let P1, . . . , Pt be the monic divisors of Mf (they are finite in number). Show

that

E =

t⋃
i=1

Ker(Pi).

3) Show that, if K is infinite, E can not be equal to the union of a finite number

of proper subvector spaces.

4) Conclude the proof of the killer lemma.





Chapter 30

Frobenius canonical form

30.1. Similarity invariants

The purpose of this section is to prove the following theorem:

Theorem 30.1. (Rational or Frobenius canonical form) Let E be a K-vector space

and f ∈ End(E).

(1) There exist cyclic subspaces F1 = ⟨v1⟩f , . . . , Fr = ⟨vr⟩f such that:

(i) E = F1 ⊕ · · · ⊕ Fr;

(ii) if Pi =Mf |Fi
, then P1 =Mf and Pr | Pr−1 | · · · | P2 | P1;

(iii) there exists a basis B of E such that:

Mat(f ;B,B) =


C(P1)

. . .

C(Pr)

 .

(2) The polynomials P1, . . . , Pr are uniquely determined by f and are the similarity

invariants of f .

(3) Pf = P1 · · ·Pr.

Remark 30.2. Theorem 30.1 therefore states the existence of a basis in which

the matrix of f is block diagonal, where the blocks are the companion matrices of

the similarity invariants. Since the similarity invariants depend only on f we get

a canonical representation of f . This representation is called rational because it is

valid for any field K.

As we will see later, two endomorphisms f, g (resp. two matrices A,B ∈
Mn(K)) are similar if and only if they have the same similarity invariants, hence

the interest of the result.
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Before moving to the proof let us recall some facts about the transposed map

of an endomorphism. If f : E → E is an endomorphism of E, the transposed

map tf is defined by: tf : E∗ → E∗ : φ → φ ◦ f . If A = Mat(f ;B,B), then
tA = Mat(tf ;B∗,B∗), where B∗ is the dual basis of B. In the following lemma we

collect a few facts about transposed matrices some of which have already been seen

in previous chapters.

Lemma 30.3. Let A,B ∈Mn(K) be two m× n matrices. Then

(1) t(AB) = tB tA;

(2) if A is invertible then t(A−1) = (tA)−1;

(3) we have t(Am) = (tA)m, ∀m ≥ 1;

(4) if P (x) ∈ K[x], t(P (A)) = P (tA);

(5) A and tA have the same characteristic and minimal polynomial.

Proof. Exercise 30.10. □

Remark 30.4. The previous lemma can also be proved using the definition of tf

and the fact that if A = Mat(f ;B,B), then tA = Mat(tf ;B∗,B∗).

Note in particular the following translation of (3): (tf)i(φ) = φ ◦ f i. We will

see later that A and tA are similar.

Lemma 30.5. Let E be a K-vector space, f ∈ End(E) and v ∈ E be such that

Ann(v) = (Mf ). Then there exists a stable subvector space W ⊂ E such that

E = ⟨v⟩f ⊕W .

Proof. Let F := ⟨v⟩f be of dimension r, then F = ⟨v, f(v), . . . , fr−1(v)⟩ where

the vectors e1 = v, e2 = f(e1), . . . , er = fr−1(e1), are linearly independent. Recall

that r = degMf (Remark 29.1). Complete to a basis B = (e1, . . . , er, er+1, . . . , en)

of E (n = dim(E)).

Let φ ∈ E∗ be such that φ(e1) = · · · = φ(er−1) = 0 and φ(er) = 1 (for example

φ = e∗r), and U ⊂ E∗, U = ⟨φ⟩tf . So U is the cyclic subspace generated by

φ,tf(φ), (tf)2(φ), . . . , (tf)i(φ), . . .

i.e. (Remark 30.4) U = ⟨φ ◦ f i⟩.

Now, let W = U◦. So W = {w ∈ E | (φ ◦ f i)(w) = 0,∀i ≥ 0}. Note that W

is stable: if w ∈ W , (φ ◦ f i)(f(w)) = (φ ◦ f i+1)(w) = 0, so f(w) ∈ W . Moreover,

W ∩ F = {0}. Let w ∈ W ∩ F , then w = α1e1 + · · · + αrer (w ∈ F ). Then

φ(w) = 0 (w ∈ W ), but φ(w) = αr. So w = α1e1 + · · · + αr−1er−1. We have

(φ ◦ f)(w) = 0 = φ(α1e2 + · · · + αr−1er) = αr−1. Proceeding in this way, up to

(φ ◦ fr−1)(w) = 0 = α1, we see that w = 0.
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Furthermore E = F ⊕W . We have dimU = degm, where m is the minimal

polynomial of tf|⟨φ⟩tf (Remark 29.1). As usual m | Mtf . But tf and f have the

same minimal polynomial (Lemma 30.3). So dim(U) ≤ degMf = dimF . Therefore

dimW ≥ n−dimF . If the inequality is strict we have, by Grassmann, F∩W ̸= {0}.
So dimW = n− dimF and E = F ⊕W . □

Now, we can prove the main theorem.

Proof. (of Theorem 30.1) We proceed by induction on dimE. If dimE = 1,

there is nothing to prove. Suppose the theorem proved in dimension smaller that

n = dimE.

By the killer lemma (Lemma 29.8) there exists v ∈ E such that Ann(v) = (Mf ).

If ⟨v⟩f = E, Ef is cyclic, the matrix of f in the cyclic basis (v, f(v), . . . , fn−1(v))

is C(Mf ). Furthermore Mf = Pf . Then conditions (i), (ii), (iii) are satisfied.

If ⟨v⟩f ̸= E, by Lemma 30.5 there exists a stable subspace W such that E =

F1⊕W (F1 := ⟨v⟩f ). By induction hypothesisW is a direct sum of cyclic subspaces:

W = F2 ⊕ · · · ⊕ Fr and if Pi = Mf|Fi
, i = 2, . . . , r then Pr | Pr−1 | · · · | P3 | P2.

Furthermore, if B′ is the basis of W given by the union of the cyclic bases of the

various Fi = ⟨vi⟩f|W , then Mat(f|W ;B′,B′) is the diagonal block matrix, whose

blocks are the companion matrices of the polynomials Pi.

We have P2 = Mf|W . Since Mf (w) = 0,∀w ∈ E and therefore ∀w ∈ W ,

P2 =Mf|W | P1 =Mf . Finally, the matrix of f in the basis B, obtained by joining

the cyclic basis of ⟨v⟩f to the basis B′, is the diagonal block matrix, whose blocks

are the matrices C(Pi). This shows the existence of the decomposition.

Let us now move to the uniqueness of the similarity invariants. Suppose we

have two decompositions in cyclic subspaces

E = F1 ⊕ · · · ⊕ Fr = G1 ⊕ · · · ⊕Gs

with Fi = ⟨vi⟩f , Gj = ⟨wj⟩f . Let P1, . . . , Pr, Q1, . . . , Qs be the associated polyno-

mials (Pi =Mf|Fi
, Qj =Mf|Gj

).

Suppose (P1, . . . , Pr) ̸= (Q1, . . . , Qs). In any case P1 = Q1 = Mf . Further-

more,
∑

i deg(Pi) =
∑

j deg(Qj) = dimE. So there exists (even if r ̸= s) an index

j ≥ 2 such that Pi = Qi if i < j and Pj ̸= Qj .

We have Pj(E) = Pj(F1)⊕ · · · ⊕Pj(Fr). In fact Pj(Fi) ⊂ Fi (Fi is stable) and

therefore the sum of the images is still direct. On the other hand, Pj(Fi) = 0 if

i ≥ j, because Pj =Mf|Fj
and Mf|Fi

= Pi | Pj if i > j. In conclusion:

Pj(E) = Pj(F1)⊕ · · · ⊕ Pj(Fj−1).
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On the other hand, we also have

Pj(E) = Pj(G1)⊕ · · · ⊕ Pj(Gs).

The matrices of f|Fi
and f|Gk

in the cyclic basis are C(Pi), C(Qk). So if i <

j they are equal (because Qi = Pi). If Pj(x) = xt + at−1x
t−1 + · · · + a0 and

Ai = C(Pi) = C(Qi) (i < j) the matrix of Pj(f|Fi
) in the cyclic basis of Fi is

Mi := At
i + at−1A

t−1
i + · · · + a0It. Likewise the matrix of Pj(f|Gi

) in the cyclic

basis of Gi is Mi.

It follows that dimPj(Fi) = dimPj(Gi) = rk (Mi), if i < j. This implies

Pj(Gj) = · · · = Pj(Gs) = {0}. In particular Pj annihilates Gj . So Qj = Mf|Gj

divides Pj . Exchanging Pj with Qj , we get that Pj | Qj and hence Pj = Qj . A

contradiction. So r = s and Pi = Qi, ∀i.

If A is a diagonal block matrix, with blocks Ai, then clearly the characteristic

polynomial of A is the product of the characteristic polynomials of the Ai. Since the

characteristic polynomial of C(P ) is P (Lemma 28.11), we have Pf = P1 · · ·Pr. □

30.2. Frobenius form and similarity

The previous results justify the following definition.

Definition 30.6. Let K be a field and A ∈ Mn(K). The matrix A is in rational

canonical form (or is a Frobenius reduction) if

A =


C(P1)

. . .

C(Pr)


with P1 =MA and Pr | · · · | P2 | P1. The polynomials P1, . . . , Pr are the similarity

invariants of A.

Conversely, to each sequence of monic polynomials (Q1, . . . , Qs) in K[x] with

Qs | · · · | Q2 | Q1 we associate the Frobenius reduction

Can(Q1, . . . , Qs) =


C(Q1)

. . .

C(Qs)

 .

Remark 30.7. In the previous definition we chose an order on the blocks: the

first block at the top left is C(P1) where P1 =MA. So Can(Q1, . . . , Qs) is uniquely

determined by (Q1, . . . , Qs). Obviously, each Qi has positive degree (otherwise

Mf|Fi
= 1 i.e. Id annihilates Fi i.e. Fi = {0}).
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A diagonal block matrix with companion block matrices of polynomials P1, . . . , Pr

is not necessarily a Frobenius reduced matrix: we must have Pr | · · · | P1 and the

blocks must be in the right order.

Proposition 30.8. Let M,N ∈Mn(K) be two n× n matrices. Then

(1) the matrices M and N are similar if and only if they have the same similarity

invariants;

(2) two Frobenius reduced matrices are similar if and only if they are equal;

(3) each matrix M ∈Mn(K) is similar to a unique Frobenius reduced matrix (the

one constructed with its similarity invariants). This Frobenius reduction will

be denoted by Can(A) (canonical or rational form of A).

Proof. 1) If M ≈ N (M,N similar) then there exist a K-vector space E, of

dimension n, an endomorphism f ∈ End(E) and bases B,B′ of E such that

Mat(f ;B,B) = M and Mat(f ;B′,B′) = N . Therefore (Theorem 30.1) the simi-

larity invariants of M (resp. N) are those of f .

If P1, . . . , Pr are the similarity invariants of M,N then

M ≈


C(P1)

. . .

C(Pr)

 ≈ N.

So M ≈ N .

2) Follows from 1).

3) Follows from Theorem 30.1 and from 2). □

From the above we finally obtain an exhaustive description of the similarity

classes of Mn(K) with K an arbitrary field.

Corollary 30.9. The similarity classes of matrices in Mn(K) are in one-to-one

correspondence with the sequences of non constant monic polynomials (P1, . . . , Pr)

such that Pr | · · · | P1 and
∑

i deg(Pi) = n.
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Exercises

Exercise 30.10. Prove Lemma 30.3.

Exercise 30.11. 1) Determine the similarity invariants of αI3.

2) Let D(a1, . . . , an) be the diagonal matrix of order n with a1, . . . , an on the

diagonal (ai = aii). Determine the similarity invariants of D(a1, a2, a3) where

ai ̸= aj if i ̸= j.

3) Determine the similarity invariants and the canonical matrix of D(a, a, b) (a, b

distinct) and D(a, a, a, b, b, c) (a, b, c distinct).

Exercise 30.12. Let E be a K-vector space and f ∈ End(E). Show that Ef is

cyclic if and only if Pf =Mf .

Exercise 30.13. Let E be a K-vector space and f ∈ End(E). Show that Pf and

Mf have the same irreducible factors.



Chapter 31

Canonical form: applications

31.1. Similarity of matrices of order at most three

One may wonder whether there is a simple criterion to determine if two matrices

A,B ∈ M3(R) are similar or not. Of course, one can check if there exists an

invertible matrix P such as PA = BP , but this is not always easy.

Proposition 31.1. Let K be a field and A,B ∈ Mn(K) with 2 ≤ n ≤ 3. The

following are equivalent:

(1) A ≈ B (A and B are similar);

(2) PA = PB and MA =MB;

(3) PA = PB and for each eigenvalue λ the eigenspaces associated to λ have the

same dimension.

Proof. We will do the proof for the case n = 3 leaving the proof for the case n = 2

(even easier) to the reader.

It is clear that (1) implies (2). We show that (2) implies (1). If deg(MA) = 3,

then PA = MA and the similarity invariants of A are (P1 = MA), but we also

have PB = MB . Therefore, A and B have the same invariants and hence they are

similar.

If MA has degree two the invariants of A are (P1 =MA, P2), with P2 of degree

one. Since P2 | P1 we are in the case P1 = (x − a)(x − b), P2 = x − a and

PA = (x − a)2(x − b) (possibly a = b). Since PA = PB ,MA = MB , the invariants

of B are (Q1 = MB = (x − a)(x − b), Q2), with Q2 | Q1. Furthermore, since

PB = Q1Q2 also A and B have the same invariants. If MA = (x−λ) then A = λI3

and the same is true for B.

343
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We showed that (1) ⇔ (2). Now, we show that (1) and (2) ⇔ (3).

(1) ⇒ (3) If A ≈ B, A and B represent the same endomorphism f in differ-

ent bases and therefore the eigenspaces related to an eigenvalue λ have the same

dimension that is dimEA(λ) = dimEB(λ) = dimEf (λ).

(3) ⇒ (2) If PA = PB is irreducible then MA = PA = MB . If P := PA =

PB = (x − λ)Q(x), with Q(x) irreducible, then MA = P = MB . In fact, the

minimal polynomial and the characteristic polynomial have the same irreducible

factors (Exercise 30.13). Or look at the similarity invariants: if MA ̸= P , the

invariants of A are (P1 =MA, P2), with P = P1P2 and P2 | P1, a contradiction.

We can therefore assume that P has all its roots inK. In this case alsoMA,MB

all have their roots in K which are the same as those of P (Corollary 27.6). If the

roots are distinct then A,B are diagonalizable and MA = P =MB .

Assume P (x) = (x−α)(x−β)2, with α ̸= β. If dim(EA(β)) = dim(EA(β)) = 1,

A,B are not diagonalizable and MA,MB have a double root, then MA = P =

MB . If instead the dimension of the eigenspace is two, A,B are diagonalizable and

MA,MB do not have multiple roots, then MA =MB = (x− α)(x− β). It remains

to deal with the case P = PA = PB = (x− λ)3 (Exercise 31.20). □

Remark 31.2. Note this curious fact: in dimension three if Mf has degree two,

then Mf can not be irreducible, therefore it is reducible and Pf has all its roots in

K and one of them is at least double.

Remark 31.3. The previous result no longer holds if n ≥ 4 (Exercise 31.21).

31.2. Each matrix A ∈Mn(K) is similar to its transpose

Lemma 31.4. Let E be a K-vector space and f ∈ End(E). If Ef is cyclic Ef =

⟨v⟩f , then B = (e1 = v, e2 = f(v), . . . , en = fn−1(v)), the cyclic basis of ⟨v⟩f , is a

basis of E.

(1) Under these conditions E∗
tf is also cyclic: Etf = ⟨e∗n⟩tf .

(2) If A = Mat(f ;B,B) for some basis B of E, then A ≈ tA.

Proof. (1) Let B∗ = (e∗n, e
∗
n ◦ f, . . . , e∗n ◦ fn−1) = ((tf)i(e∗n)))0≤i≤n−1. We show

that B∗ is a basis of E∗.

Let α0e
∗
n+α1(e

∗
n◦f)+ · · ·+αn−1(e

∗
n◦fn−1) = 0. Evaluating at e1 = v, keeping

in mind that f i(e1) = ei+1 if i ≤ n− 1, we get αn−1 = 0.

Suppose α0e
∗
n+α1(e

∗
n ◦f)+ · · ·+αk(e

∗
n ◦fk) = 0, with k < n−1. Evaluating at

en−k = fn−k−1(e1), we get αk = 0 (if i < k, f i(en−k) = fn−k−1+i(e1) = en−k+i).

We conclude that αi = 0,∀i and therefore B∗ is a basis of E∗.

This shows that E∗
tf = ⟨e∗n⟩tf .
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(2) The similarity invariants of f , and therefore of A, are (P1 =Mf = Pf ) because

f is cyclic (Proposition 28.12). In the same way the invariants of tf , and therefore

of tA, are (Q1 = Mtf = Ptf ). Since Pf = Ptf (Lemma 30.3), A and tA have the

same invariants and are therefore similar. □

Proposition 31.5. Let A ∈Mn(K), with K any field. Then A is similar to tA.

Proof. Let f ∈ End(E) be such that A = Mat(f ;B′,B′) where B′ is any basis of E.

By Theorem 30.1 there exists a decomposition E = F1 ⊕ · · · ⊕ Fr of E into cyclic

subspaces Fi = ⟨vi⟩f . If t := dimFi and Bi = (ei = f i−1(vi)) is the associated

cyclic basis, then (Lemma 31.4) F ∗
i is cyclic. Set Bi = (e∗t ◦ f i), 0 ≤ i ≤ t − 1. In

particular, we have an isomorphism Φi : Fi → F ∗
i : ei → e∗t ◦ f i−1. Putting these

isomorphisms together we obtain an isomorphism Φ : E → E∗ which allows us to

write E∗ = F ∗
1 ⊕ · · · ⊕ F ∗

r (the problem is that if F ⊂ E is a proper subspace, F ∗

is not naturally a subspace of E∗).

The matrix of f in the basis B = (B1, . . . ,Br) is the block diagonal matrix with

block companion matrices C(Pfi), where fi = f|Fi
. The matrix of tf in the basis

B = (B1, . . . ,Br) is the block diagonal matrix with companion blocks C(Ptfi). Now,

Pfi = Ptfi implies Mat(f ;B,B) = Mat(tf ;B,B) := M , and since A ≈ M , tA ≈ M

we have A ≈ tA. □

31.3. Similarity invariants and field extensions

Let A ∈ Mn(R), since R ⊂ C, we can consider A as an element of Mn(C). Since

PA(x) = det(xIn−A) depends only on the coefficients of A (determinant formula),

the characteristic polynomial of A considered as an element ofMn(R) is equal to the
characteristic polynomial of A considered as an element of Mn(C). What happens

with the minimum polynomial? It is not clear a priori that we have MA|R =MB|C.

Let us consider the general case where K ⊂ K ′ is a field extension. If A ∈
Mn(K) we will indicate with MA|K the minimal polynomial of A as an element of

Mn(K) (same notation for the characteristic polynomial).

Proposition 31.6. Let K ⊂ K ′ be a field extension and A ∈Mn(K).

(1) The similarity invariants of A as an element of Mn(K) are also the similarity

invariants of A as an element of Mn(K
′).

(2) PA|K = PA|K′ and MA|K =MA|K′ .

(3) Let A,B ∈ Mn(K). The matrices A,B are similar as elements of Mn(K
′) if

and only if they are similar as elements of Mn(K).

Proof. (1) Comes from the uniqueness of the similarity invariants (Theorem 30.1).

(2) Follows from (1): if (P1, . . . , Pr) are the similarity invariants of A, then P1 =
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MA|K =MA|K′ and P1 · · ·Pr = PA|K = PA|K′ .

(3) Follows from (1). □

31.4. Nilpotent matrices

As we know an endomorphism f ∈ End(E) (respectively a matrix A ∈ Mn(K)) is

nilpotent if there exists t such that f t = 0 (At = 0).

If λ is an eigenvalue of f then f(v) = λv, v ̸= 0, and f t(v) = λtv = 0. It follows

that λ = 0. So all eigenvalues of f are zero, and Pf (x) = xn (n = dimE). Hence,

Mf (x) = xm, withm ≤ n andMf (f) = fm = 0. In particular, min{i | f i = 0} ≤ n.

Clearly, the similarity invariants of f will be of the form (P1 = xm1 , P2 =

xm2 , . . . , Pr = xmr ), with m1 ≥ m2 ≥ · · · ≥ mr ≥ 1 and m1 + · · ·+mr = n.

Conversely, it is clear that an endomorphism with similarity invariants of this

type is nilpotent (because P1 =Mf , therefore f
m1 = 0).

Definition 31.7. A partition of the integer n is a sequence of integers (m1, . . . ,mr)

with m1 ≥ · · · ≥ mr ≥ 1 and m1 + · · · +mr = n. We denote by P(n) the set of

partitions of n and p(n) := #P(n).

Example 31.8. We have 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 =

1 + 1 + 1 + 1 + 1. So p(5) = 7 ((n) is a partition of n). Obviously as n increases

things get more complicated, for example p(243) = 133 978 259 344 888. The study

of the numbers p(n) and their arithmetic properties is an important topic in number

theory [HW79, Chapter XIX].

Summarizing what has been done so far:

Proposition 31.9. The set of similarity classes of nilpotent matrices of order n is

in one-to-one correspondence with P(n), the set of partitions of n.

Remark 31.10. In Proposition 31.9 the zero endomorphism is included, it corre-

sponds to the partition 1+1+· · ·+1 (which corresponds to the invariant (x, . . . , x)).

Therefore Mf = x, i.e. f = 0).

Let A ∈ Mn(K) with An−1 ̸= 0 and An = 0. Then MA(x) = xn = PA(x), the

similarity invariants are (xn). In particular A is similar to the companion matrix

of xn, that is

A ≈ C(xn) =


0 0

1
. . .

...
. . .

. . . 0

1 0
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Definition 31.11. A Jordan block of order r relative to λ is a matrix J(λ, r) ∈
Mr(K) where

J(λ; r) =


λ 1

λ
. . .

. . . 1

λ


with λ on the diagonal, 1 on the superdiagonal, and all other coefficients zero.

Going back to nilpotent matrices:

Lemma 31.12. Let A ∈Mn(K), with An−1 ̸= 0, An = 0. Then A ≈ J(0;n).

Proof. We have A ≈ C(xn) = tJ(0;n). Using Proposition 31.5 we get A ≈ J(0;n).

□

More generally:

Theorem 31.13 (Jordan form of nilpotent matrices). Let A ∈ Mn(K) be a

nilpotent matrix with similarity invariants (xm1 , . . . , xmr ), m1 ≥ · · · ≥ mr ≥ 1,

m1 + · · ·+mr = n.

Then A is similar to D(J(0;m1), J(0;m2), . . . , J(0;mr)), the block diagonal

matrix with blocks J(0;mi). The matrix D(J(0;m1), J(0;m2), . . . , J(0;mr)) is the

Jordan form of A.

Proof. By Theorem 30.1 A is similar to the block-diagonal matrix, D0 with C(xmi)

blocks. We have t(C(xmi) = J(0;mi). By Proposition 31.5 C(xmi) ≈ J(0;mi).

We conclude that D0 ≈ D(J(0;m1), J(0;m2), . . . , J(0;mr)). In fact, if A =

D(A1, .., Ar), B = D(B1, . . . , Br) are two diagonal block matrices, with blocks of

the same order (Ai, Bi ∈ Mni(K)), then Ai ≈ Bi,∀i ⇒ A ≈ B. This follows from

the fact that the product of two such matrices is a block matrix of the following

form: AB = D(A1B1, . . . , ArBr). □

Remark 31.14. Let J = D(J(0;m1), . . . , J(0;mr)). Since a Jordan block J(0;m)

clearly has rank m − 1, the rank of J is
∑r

i=1(mi − 1) = n − r (consider the row

vectors), i.e. dimKer(J) = r. We conclude that the number of blocks in the Jordan

form of A is equal to dimKer(A).

31.5. Jordan form

Let f ∈ End(E), E a K-vector space. Under the hypothesis that Pf (x) has all its

roots in K, we show the existence of a basis B such that Mat(f ;B,B) = J , where

J is a block diagonal matrix, with Jordan blocks J(λi,mi) where the λi are the
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eigenvalues of f (the same λi may appear multiple times). The matrix J is uniquely

determined by the similarity class of f and is called the Jordan form of f (or of A

if A = Mat(f ;C,C), C a basis of E).

Definition 31.15. A Jordan matrix is a block-diagonal matrix, J , with Jordan

blocks. So J = D(J(α1,m1), . . . , J(αr,mr)) (note the αi are not necessarily dis-

tinct).

Theorem 31.16 (Jordan form). Let E be a K-vector space and f ∈ End(f).

Assume that Pf (x) has all its roots in K. Then there exists a basis B of E such

that Mat(f ;B,B) = J is a Jordan matrix. The matrix J is uniquely determined by

the similarity class of f .

Proof. By hypothesis we have Pf (X) =
∏r

i=1(x − λi)
αi (λi ̸= λj if i ̸= j) and

therefore (Corollary 27.6)Mf (x) =
∏r

i=1(x−λi)βi , with 1 ≤ βi ≤ αi and α1+ · · ·+
αr = n := dimE. By Theorem 29.3 we have the decomposition into characteristic

subspaces: E = E1 ⊕ · · ·⊕Er, where Ei = Ker(λiId− f)βi . Furthermore dimEi =

αi (Theorem 29.6). Since Ei is stable fi = f|Ei
∈ End(Ei) and therefore also

gi = fi − λiIdEi
∈ End(Ei).

The endomorphism gi is obviously nilpotent (Ei = Ker(gβi

i )). Then by Theo-

rem 31.13 there exists a basis Bi of Ei such that

Mat(gi;Bi,Bi) = D(J(0;mj1), . . . , J(0;mji))

where the integers mj1 , . . . ,mji are determined by the similarity invariants of gi.

Since fi = gi + λiId, we have Mat(fi;Bi,Bi) = D(J(λi;mj1), . . . , J(λi;mji)) =

Ji, where Ji is a Jordan matrix. If B = (B1, . . . ,Br), then Mat(f ;B,B) = J =

D(J1, . . . , Jr) is a Jordan matrix .

From what we have seen on nilpotent matrices it is clear that J depends only

on the similarity class ofM = Mat(f ;B,B) (B any basis). Note that if B = A−λIn,
B′ = A′ − λIn we have B ≈ B′ if and only if A ≈ A′. □

Remark 31.17. So if A ∈ Mn(K) is such that PA(x) has all its roots in K, then

A ≈ J = D(J(α1,m1), . . . , J(αr,mr)) where the αi are not necessarily distinct.

From the previous proof we see that every αi is an eigenvalue and that every

eigenvalue of A appears among the αi. Furthermore, if λk is an eigenvalue then

#{i | αi = λk} = dimEA(λk), where EA(λk) indicates the eigenspace relative to λk.

Said differently, the number of blocks in which λk appears is equal to dimEA(λk).

This follows from Remark 31.14 and the previous proof.
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Example 31.18. Let

B =

 3 2 −5

2 6 −10

1 2 −3

 ∈M3(R).

Then PB(x) = (x − 2)3. There is a Jordan form for B. Since 2 is the only

eigenvalue it is just a matter of figuring out how many blocks there are. We have

rk(2I3 −B) = 1, i.e. dimEB(2) = 2. So there are two blocks and, necessarily,

B ≈

 2 1 0

0 2 0

0 0 2

 .

31.6. How to find the Jordan form

Let us start with a simple but important observation. Let J = J(0, n) be a Jordan

matrix of order n for the eigenvalue 0. Then J is an n × n matrix with all 0 on

the diagonal, all 1 above the diagonal, and the other coefficients are zero. If J

corresponds to the endomorphism f , f is nilpotent with fn = 0, f (n−1) ̸= 0. We

have rk(J) = n− 1 and dimKer(f) = 1.

Then if di = dimKer(f i) we have di = i if 1 ≤ i ≤ n and dk = n if k ≥ n.

In fact we have f(e1) = 0, f(ei) = ei−1. So f2(e2) = f(e1) = 0, if i > 2, f2(ei) =

f(ei−1) = ei−2 ̸= 0. More generally we can write fk(ei) = ei−k with the convention

ei−k = 0 if i− k ≤ 0. Hence dk = k.

Let us now consider the general nilpotent case J = D(J(0,m1), . . . , J(0,mr))

withm1 ≥ · · · ≥ mr, m1+· · ·+mr = n. The matrix J has rank
∑r

(mi−1) = n−r,
so if di = dimKer(J i), we have d1 = r, that is, d1 gives us the number of blocks.

When we multiply by J , as we saw before, the dimension of the kernel of each non-

zero block increases by one. So, for i ≤ mr, di = ir, if there are t blocks of dimension

mr (i.e. if mr = mr−1 = · · · = mr−(t−1)), we will have dmr+1 = rmr + (r − t),

there are only r − t non zero blocks each increasing the dimension of the kernel by

one. The zero blocks do not increase the dimension of the kernel.

Set d0 = 0 and δi = di − di−1. We have δi = r for i ≤ mr and δmr+1 = r − t.

Continuing in this way we see that δi is the number of blocks of dimension at least

i. Furthermore, mi = #{t | δt ≥ i}. We also have that the number of blocks of

dimension j is equal to δj − δj+1.

In conclusion, the sequence dimKer(J i) determines the Jordan form (this

proves the uniqueness, modulo the order of the blocks, of the Jordan form).

The previous considerations apply to the general case with multiple eigenvalues

that are not necessarily zero, in this case we must consider the matrices J − λiIn
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for each eigenvalue λi and observe that the blocks J(λk,mi) − λiIn are invertible

if λk ̸= λi.

Example 31.19. Consider the matrix

A =


5 0 4 −2 −3

−2 3 −3 2 4

0 0 3 0 0

0 0 0 3 1

1 0 2 −1 1

 .

It turns out that PA(x) = (x − 3)5. Furthermore dimEA(3) = 2. The matrix is

not diagonalizable but has a Jordan form. We know that the Jordan form has two

blocks, so there are two possibilities: (4, 1) or (3, 2).

The matrix B = A− 3I5 is nilpotent and if A ≈ J then B ≈ J − 3I5. So it is

enough to find the Jordan form of B.

The idea is to calculate B3. If B3 ̸= 0 then we are in case (4, 1) otherwise we

are in case (3, 2). Actually, one just needs to calculate B2.

We see B2 has rank 1, therefore a kernel of dimension 4. So d1 = 2, d2 = 4.

In particular δ2 = 2 i.e. there are two blocks of dimension at least 2 and we are in

case (3, 2).
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Exercises

Exercise 31.20. 1) Prove Proposition 31.1 in the case n = 2.

2) Conclude the proof of Proposition 31.1.

Exercise 31.21. Show that there exist two matrices 4 × 4 with coefficients in K

which have the same characteristic polynomial and the same minimal polynomial

but which are not similar.

Exercise 31.22. Let K ⊂ K ′ be a field extension, E a K-vector space, F a

K ′-vector space, and B = (e1, . . . , en) a basis of E. Assume that there exists

a K-linear map φ : E → F (note that F is also a K-vector space) such that

C = (φ(e1), . . . , φ(en)) is a basis of the K ′-vector space F (an example of this sit-

uation is the following φ : Rn → Cn which sends the canonical basis of Rn to the

canonical basis of Cn.

1) Compute dimK(F ) and dimK(Ker(φ)).

2) Is Im(φ) ⊂ F a K ′-subvector space of F?

3) Let v1, . . . , vm bem linearly independent vectors of E. Show that φ(v1), . . . , φ(vm)

are linearly independent in the K ′-vector space F .

4) Let f ∈ End(E) be such that Mat(f ;B,B) = A. We define an endomorphism,

f̃ , of the K ′-vector space F by f̃(φ(ei)) = φ(f(ei)). Determine Mat(f̃ ; C, C).

Exercise 31.23. Let K ⊂ K ′ be a field extension and A ∈ Mn(K) with minimal

polynomialmA(x) ∈ K[x] of degree d. Via the natural inclusionMn(K) ↪→Mn(K
′)

we can see A as an element of Mn(K
′). Let MA(x) ∈ K ′[x] be the minimal

polynomial of A on K ′. We have that MA(x) | mA(x) in K ′[x] and, a priori, we

could have MA(x) ̸= mA(x). Using Exercise 31.22 prove that MA(x) = mA(x).

Exercise 31.24. We resume the situation of Exercise 31.22 with R ⊂ C and

φ : Rn → Cn which sends the canonical basis to the canonical basis.

1) Each vector w ∈ Cn is written (uniquely) as w = u + iv with u, v ∈ Rn. In

the situation of item 4) of Exercise 31.22, show that f(w) = f(u) + if(v) (use

A = Mat(f ;B,B)).
2) Let λ be a non-real eigenvalue (λ = a+ ib, a, b ∈ R, b ̸= 0)) of the matrix A and

let w = u + iv be an associated eigenvector. Observe that Aw = λw = Au + iAv.

Show that the subspace ⟨u, v⟩ ⊂ Rn is stable, of dimension two, under A (i.e. under

f). In conclusion, a complex, non-real root of Pf (x) provides a stable subspace of

f , of dimension two.

3) Give an example of an endomorphism f of R3, non-diagonalizable and such that

R3 = F ⊕G, with F,G stable.
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Exercise 31.25. Find the Jordan form and the invariant factors of

A =

 3 2 −5

2 6 −10

1 2 −3

 ∈M3(R).

Exercise 31.26. Consider the matrix

A =

 4 3 −2

−3 −1 3

2 3 0

 ∈M3(R).

1) State whether A is diagonalizable and find bases of the eigenspaces.

2) If v2 is a vector such that Av2 = 2v2, look for a vector v3 such that (A−2I3)v3 =

v2 (this involves solving a linear system, explain why the system is solvable).

3) Find an invertible matrix P such that A = PJP−1, where J is the Jordan form

of A.

Exercise 31.27. 1) We take the matrix A from Example 31.19, and set

A = Mat(f ; C, C)

where C is the canonical basis of R5. Reasoning as in Exercise 31.26, find a basis B
such that Mat(f ;B,B) = J , where J is the Jordan form of A.

2) Describe a general method for finding the Jordan form.

Exercise 31.28. Consider the matrix

A =


1 −1 2 1

−1 4 −7 −1

0 1 −1 3

0 0 0 1

 ∈M4(R).

State whether A has a Jordan form and, if the answer is positive, determine it.

Exercise 31.29. 1) Show that a Jordan block J(λ, n) is similar to its transpose

(do a clever base change).

2) Let A ∈Mn(K) be such that PA(x) has all its roots in K. Show that A is similar

to its transpose.

Exercise 31.30. The aim of this exercise is to show that if K is algebraically

closed, with char(K) ̸= 2, then every matrix of Mn(K) is similar to a symmetric

matrix.

1) Show that if S ∈ Mn(K) is a symmetric matrix of rank n, then there exists an

invertible matrix P such that S = tPP .

2) Show with a counterexample that 1) is not verified if char(K) = 2 (consider an

antidiagonal symmetric matrix 2× 2).
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3) If J = J(λ, n) is a Jordan block, using Exercise 31.29, show that there exists a

symmetric matrix S of rank n such that

S−1JS = tJ.

4) By 1) S = tPP . Show that (with the notations of 2)) P tJP−1 is symmetric.

5) Conclude that every A ∈ Mn(K), K algebraically closed with char(K) ̸= 2, is

similar to a symmetric matrix.

6) So every matrix A ∈ Mn(C) is similar to a symmetric matrix. Therefore, as we

have seen, there exist symmetric matrices S ∈Mn(C) that are not diagonalizable.





Part 6

Projective Geometry



Projective geometry has its origins in the early Italian Renaissance, in particular

the architectural drawings of Filippo Brunelleschi (1377–1446) and Leon Battista

Alberti (1404–72), who invented the method of perspective. The eye of the painter

is connected to points on the landscape by the sight lines. The intersection of these

sight lines with a vertical picture plane generates the drawing. Thus, the reality

plane is projected onto the picture plane, hence the name projective geometry.

The French mathematicians Girard Desargues (1591–1661) and Blaise Pas-

cal (1623–62) took the first steps by studying the properties of figures that were

preserved under perspective mappings. The importance of projective geometry,

however, became clear only after 1800 in the works of several other French math-

ematicians, notably Jean-Victor Poncelet (1788–1867). Ignoring geometric mea-

surements such as distances and angles, projective geometry provides a clearer

understanding of some properties of geometric objects.

Euclidean geometry is contained within projective geometry, with the latter

having a simpler foundation. General results in Euclidean geometry may be derived

in a more transparent manner, and different but similar theorems of Euclidean

geometry may be handled collectively within the framework of projective geometry.

For instance, parallel and non parallel lines need not be treated as separate cases,

rather the projective plane is endowed of a line at infinity along which lines, that

would be parallel in the affine plane, meet.



Chapter 32

Projective spaces

Definition 32.1. Let V be a K-vector space. The projective space P(V ) is the set

of 1-dimensional subvector spaces of V . If the vector space V has dimension n+ 1

then Pn := P(V ) has dimension n.

Take K = R. A line through the origin in Rn+1 intersects the sphere

Sn =

{
x ∈ Rn+1 |

n+1∑
i=1

x2i = 1

}
in two antipodal points. Hence, P(Rn+1) can be viewed as Sn with the antipodal

points identified.

Note that any line through the origin intersects the upper hemisphere in a

point. So, in order to construct P(Rn+1) one could remove the lower hemisphere

and identify the antipodal points on the equator. For instance, for n = 1 one gets

an identification between P(R2) and S1.

We now introduce the construction of P(V ) as a quotient of V . On V we

consider the following equivalence relation:

v ∼λ w ⇐⇒ v = λw for some λ ∈ K∗.

The quotient

P(V ) =
V \ {0}
∼λ

is exactly the projective space of 1-dimensional subvector spaces of V . We will

write [v] ∈ P(V ) for the point of P(V ) corresponding to the vector v ∈ V .

Let (e0, . . . , en) be a basis of V . We can write a vector v =
∑n

i=0 xiei on the

chosen basis, and we will indicate by [v] = [x0 : · · · : xn] the so called homogeneous

coordinates of the point [v] ∈ P(V ).

357
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On the the subset

U0 = {[x0 : · · · : xn] | x0 ̸= 0} ⊂ P(V )

we can write

[x0 : · · · : xn] =
[
1 :

x1
x0

: · · · : xn
x0

]
yielding an identification

U0
∼= Kn.

The complementary set

Uc
0 = {[0 : x1 : · · · : xn]} ⊂ P(V )

is a projective space Pn−1 with homogeneous coordinates [x1 : · · · : xn]. Therefore,

Pn = U0 ∪ Uc
0 = Kn ∪ Pn−1.

Actually on Pn we have n+ 1 affine charts

Ui = {[x0 : · · · : xn] | xi ̸= 0} ⊂ Pn

for i = 0, . . . , n. The set

Uc
i = {[x0 : · · · : xi−1 : 0 : xi+1 : · · · : xn]} ⊂ Pn

is called the hyperplane at infinity of the chart Ui.

Definition 32.2. A linear subspace P(W ) of the projective space P(V ) is the set

of 1-dimensional subvector spaces of a subvector space W ⊂ V .

Note that P(W ) is a projective space of dimension dim(W )−1. If dimP(W ) = 1

we will say that P(W ) is a projective line and that it is a projective plane when

dimP(W ) = 2.

Proposition 32.3. Let [v], [w] ∈ P(V ) be two distinct points. There exists a unique

line ⟨[v], [w]⟩ ⊂ P(V ) passing through [v] and [w].

Proof. Since [v] ̸= [w] the vectors v, w ∈ V are independent, and hence v, w

generate a 2-dimensional subvector space ⟨v, w⟩ ⊂ V . The projectivization P(⟨v, w⟩)
is a line through [v] and [w].

Now, let P(W1),P(W2) be two lines in P(V ) through [v] and [w]. Then W1,W2

are two 2-dimensional subvector spaces containing the pair of independent vectors

v, w. Hence, W1 =W2 and P(W1) = P(W2). □

The following result is probably the most representative difference between the

affine plane and the projective plane.
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Proposition 32.4. Let V be a K-vector space of dimension three. Consider two

distinct lines P(W1),P(W2) ⊂ P(V ) = P2. Then P(W1),P(W2) intersect in a unique

point.

Proof. The subvector spaces W1,W2 ⊂ V are two distinct planes. Since V has

dimension three W1 ∩ W2 is a vector line L = ⟨v⟩ with v ∈ V \ {0}. Hence

[v] ∈ P(W1) ∩ P(W2).

Now, assume that P(W1) ∩ P(W2) contains another point [w] ̸= [v]. Then

⟨v, w⟩ ⊂W1 ∩W2. Hence W1 =W2 and P(W1) = P(W2), a contradiction. □

Proposition 32.5. Two linear subspaces P(W1),P(W2) ⊂ P(V ) = Pn intersect in

linear subspace of dimension at least dimP(W1) + dimP(W2)− n.

Proof. By the Grassmann formula W1,W2 ⊂ V intersect in a subvector space

of dimension at least dimW1 + dimW2 − (n + 1). Therefore, P(W1) ∩ P(W2) =

P(W1 ∩W2) has dimension at least dimP(W1) + dimP(W2)− n. □

32.1. Projectivities

Let V,W be two K-vector spaces and F : V → W a linear map. Assume that the

kernel of F is trivial. Then a 1-dimensional subvector space L ⊂ V gets mapped

to a 1-dimensional subvector space F (L) ⊂ W , and hence F yields a well-defined

map

f : P(V ) → P(W )

called a projectivity from P(V ) to P(W ).

Proposition 32.6. Two linear maps F,G : V →W define the same projectivity if

and only if F = λG for some λ ∈ K∗.

Proof. Assume that G = λF for some λ ∈ K∗. Then

[F (v)] = [λG(v)] = [G(v)]

for any v ∈ V , and hence F,G define the same projectivity.

Now, assume that F,G define the same projectivity f : P(V ) → P(W ) and fix

a basis (e0, . . . , en) of V . Since

[F (ei)] = f([ei]) = [G(ei)]

we have G(ei) = λiF (ei) for some λi ∈ K∗, and

G(

n∑
i=0

ei) = λF (

n∑
i=0

ei)
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for some λ ∈ K∗. Therefore,
n∑

i=0

λF (ei) = λF (

n∑
i=0

ei) = G(

n∑
i=0

ei) =

n∑
i=0

G(ei) =

n∑
i=0

λiF (ei)

and hence
n∑

i=0

(λ− λi)F (ei).

Since F is injective the F (ei) are independent and hence λi = λ for any i = 0, . . . , n.

Finally, G(ei) = λF (ei) for any i = 0, . . . , n and since (e0, . . . , en) is a basis of

V we get that G = λF . □

Example 32.7. Consider two distinct projective planes H1, H2 ⊂ P3 and a point

[v] ∈ P3 \H1 ∪H2. For any point [v1] ∈ H1 the projective line L ⊂ P3 through [v1]

and [v] intersects H2 in a unique point [F (v1)]. This yields a projectivity

f : H1 → H2 : [v1] → [F (v1)].

Fix homogeneous coordinates [x0, . . . , x3] on P3. We may assume that H1 = {x1 =

0}, H2 = {x2 = 0} and [v] = [0 : 1 : 1 : 0]. Take a point [a] = [a0 : 0 : a2 : a3] ∈ H1.

The line through [v] and [a] is given by

L = {a0x1 − a0x2 + a2x0 = a2x3 + a3x1 − a3x2 = 0}

and it intersects the plane H2 in the point

[a0 : −a2 : 0 : a3].

Therefore, in homogeneous coordinates the map f is given by

f : H1 → H2 : [a0 : 0 : a2 : a3] → [a0 : −a2 : 0 : a3].

The following is the projective analogue of linear independence.

Definition 32.8. Let p1, . . . , pn+2 ∈ P(V ) be n + 2 points in an n-dimensional

projective space. The pi are in general position if each subset {pi1 , . . . , pin+1
} ⊂

{p1, . . . , pn+2} of n + 1 points has representative vector vij with pij = [vij ] such

that vi1 , . . . , vin+1 are linearly independent.

For instance, any three distinct points of P1 are in general position.

Theorem 32.9. Let p1, . . . , pn+2 ∈ P(V ) and q1, . . . , qn+2 ∈ P(W ) be two sets of

n+2 points in general position. Then there exists a unique projectivity f : P(V ) →
P(W ) such that qi = f(pi) for i = 1, . . . , n+ 2.

Proof. Let v1, . . . , vn+2 ∈ V be representative vectors for p1, . . . , pn+2 ∈ P(V ).

Since the pi are in general position v1, . . . , vn+1 form a basis of V , and we can

write vn+2 =
∑n+1

i=1 λivi. Again since the pi are in general position we must have
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λi ̸= 0 for any i = 1, . . . , n + 1 otherwise we would have a linear relation among

n + 1 of the vi. Hence [λivi] = [vi] = pi. So we could choose λi = 1 and write

vn+2 =
∑n+1

i=1 λivi =
∑n+1

i=1 vi.

Similarly, we can choose representative vectors w1, . . . , wn+2 ∈W for the points

q1, . . . , qn+2 ∈ P(W ) such that wn+2 =
∑n+1

i=1 wi.

Now, there exists a unique linear map F : V → W such that F (vi) = wi for

i = 1, . . . , n+1, and since w1, . . . , wn+1 form a basis of W the map F is invertible.

Moreover

F (vn+2) = F (

n+1∑
i=1

vi) =

n+1∑
i=1

F (vi) =

n+1∑
i=1

wi = wn+2

and hence f(pi) = qi for i = 1, . . . , n+2, where f : P(V ) → P(W ) is the projectivity

induced by F : V →W .

Now, let g : P(V ) → P(W ) be another projectivity, induced by a linear map

G : V → W , such that g(pi) = qi for i = 1, . . . , n + 2. Then G(vi) = αiwi for

i = 1, . . . , n+ 2, and

G(vn+2) = αn+2wn+2 = G(

n+1∑
i=1

vi) =

n+1∑
i=1

G(vi) =

n+1∑
i=1

αiwi.

Therefore,
n+1∑
i=1

αiwi = αn+2wn+2 = αn+2

n+1∑
i=1

wi =

n+1∑
i=1

αn+2wi

that is
∑n+1

i=1 (αi − αn+2)wi = 0, and since w1, . . . , wn+2 are linearly independent

we get αi = αn+2 for i = 1, . . . , n+ 1. So

G(vi) = αiwi = αiF (vi) = αn+2F (vi)

for i = 1, . . . , n+ 2. Finally, G = αn+2F and hence g = f . □

Remark 32.10. Let p1, . . . , pn+2 ∈ Pn be n+2 points in general position. Theorem

32.9 says that there exists a unique projectivity Pn → Pn moving p1, . . . , pn+2 to

the fundamental points [1 : 0 : · · · : 0], . . . , [0 : · · · : 0 : 1], . . . , [1 : · · · : 1] ∈ Pn.

32.2. Dual projective space

The dual of the n-dimensional projective space P(V ) is the n-dimensional projective

space Pn = P(V ∗) where V ∗ is the dual K-vector space of V . A point of P(V ∗)

corresponds to a linear form on V , modulo scalar multiplication, which in turn

defines a hyperplane in V and hence in P(V ). Therefore, the points of P(V ∗) are

in 1-to-1 correspondence with the hyperplanes of P(V ).
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Proposition 32.11. The points of a subspace P(U) ⊂ P(V ∗) of dimension r cor-

respond to the hyperplanes of P(V ) containing a fixed linear subspace P(W ) ⊂ P(V )

of dimension n− r − 1.

Proof. The subvector space U ⊂ V ∗ consists of the linear forms V → K vanishing

on a subvector space W ⊂ V . Furthermore, W has dimension dim(V )− dim(U) =

n+1−(r+1) = n−r. Such linear forms in turn are in bijection with the hyperplanes

of P(V ) containing P(W ) which is a linear subspace of dimension dim(W ) − 1 =

n− r − 1. □

Remark 32.12. For instance, lines in P2 through a fixed point p ∈ Pn are in 1-to-1

correspondence with points of P2∗ contained in a line. Therefore, the lines in P2

through a fixed point are in bijection with the points of P1.

Remark 32.13. Duality allows us to associate to a statement its dual statement

whose proof could be easier than that of the original statement. Here is a basic

example: Consider the statement

S : two distinct lines in P2 intersect in a unique point.

The dual statement is

S∗ : two distinct points in P2∗ lie on a unique line.
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Exercises

Exercise 32.14. Compute the projectivity f : P2 → P2 of the projective plane P2

such that f([1 : 0 : 0]) = [0 : 1 : 0], f([0 : 1 : 0]) = [1 : 1 : 1], f([0 : 0 : 1]) = [1 : 0 : 0],

f([1 : 1 : 1]) = [0 : 0 : 1].

Exercise 32.15. Compute the duals in P3∗ of the point p = [1 : 2 : −1 : 3] ∈ P3,

the line L = {x0−x3 = x1+x2 = 0} ⊂ P3 and the plane H = {x0−x1+x2−x3 =

0} ⊂ P3, where [x0 : · · · : x3] are homogeneous coordinates on P3.

Exercise 32.16. Let f : P(V ) → P(V ) be the projectivity induced by the invertible

linear map F : V → V . Show that

(1) if v ∈ V is an eigenvector of F then [v] ∈ P(V ) is a fixed point of f ;

(2) if V is an R-vector space of dimension two then any projectivity f : P(V ) →
P(V ) has a fixed point.

Exercise 32.17. Let L,R ⊂ P3 be two disjoint lines and p ∈ P3 \ {L∪R} a point.

Show that there is a unique line Lp such that

p ∈ Lp and Lp intersects both L and R.

Exercise 32.18 (Linear projections). Let H ⊂ Pn be a linear subspace of dimen-

sion m. Fix a linear subspace Λ ⊂ Pn of dimension n−m− 1 such that H ∩Λ = ∅.
Given a point p ∈ Pn \H let ⟨p,H⟩ be the subspace generated by p and H.

(1) Show that ⟨p,H⟩ intersects Λ in a point πH(p).

(2) The map

πH : Pn \H → Λ : p→ πH(p)

is the linear projection from H. Show that πH is not defined at the points of

H.

(3) Let H ′ ⊂ Pn be a linear subspace of dimension h, not entirely contained in H,

and intersecting H in a linear subspace of dimension s. Show that πH(H ′) is

a linear subspace of Λ of dimension h− s− 1.
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Quadric hypersurfaces

A hypersurface Xd of degree d in Pn is the zero locus of a homogeneous polynomial

f ∈ K[x0, . . . , xn]d of degree d that is

Xd = {[x0 : · · · : xn] ∈ Pn | f(x0, . . . , xn) = 0, f ∈ K[x0, . . . , xn]d}.

A hyperplane is a hypersurface of degree d = 1, a quadric is a hypersurface of

degree d = 2. A quadric in P2 is called a conic.

We will always assume that the characteristic of the base field K is different

from two so that there is a bijective correspondence between quadric hypersurfaces

and symmetric bilinear forms. A quadric is said to be smooth or non singular if

the associated symmetric bilinear form is non degenerated.

We know that, up to a change of basis, a polynomial f ∈ K[x0, . . . , xn]2 can

be written as

- f =
∑r

i=0 x
2
i if K = C;

- f =
∑p

i=0 x
2
i −

∑q
j=p+1 x

2
j if K = R.

The number of squares appearing in the expression of f is the rank of X2, and

the ordered pair made of the numbers of squares with coefficient 1 and those with

coefficient −1 is the signature of X2.

Example 33.1. A quadric X2 ⊂ P1 is either empty, when the polynomial f does

not have roots in K, or a single point with multiplicity two or a pair of points.

Example 33.2. Consider the conic

X2 = {f = x0x1 + x1x2 + x0x2 = 0} ⊂ P2

365
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withK = R. Setting y0 = x0+x1

2 , y1 = x0−x1

2 and then z0 = y0+x2, z1 = y1, z2 = y2

we get f = z20 −z21 −z22 . So that X2 is smooth (it has rank three) and has signature

(1, 2).

Example 33.3. Consider the conic

X2 = {x0x1 − x22 = 0} ⊂ P2.

In the affine charts U0 = {x0 ̸= 0} and U1 = {x1 ̸= 0} the conic X2 looks like a

parabola while in the chart U2 = {x2 ̸= 0} it looks like a hyperbola.

Definition 33.4. Let X2 = {f = 0} ⊂ Pn be a quadric. The singular locus

Sing(X2) of X2 is the locus of points of X2 where all the partial derivatives of f

vanish. A point in X2 \ Sing(X2) is called a smooth point of X2.

Given a point p ∈ X2 the tangent space of X2 in p is defined as

TpX2 =

{
x0

∂f

∂x0
(p) + · · ·+ x0

∂f

∂xn
(p) = 0

}
⊂ Pn.

In particular, if p ∈ Sing(X2) then TpX2 = Pn while if p is a smooth point of X2

then TpX2 is a hyperplane in Pn.

Let K = C. Then we may write f =
∑r

i=0 x
2
i . Let us distinguish three cases

depending on r:

r = 0 In this case X2 = {x20 = 0} ⊂ Pn has rank one and it is the hyperplane

{x0 = 0} counted with multiplicity two. We say that X2 is irreducible (just

one piece) but non reduced (with multiplicity two).

r = 1 In this caseX2 = {x20+x21 = (x0+ix1)(x0−ix1) = 0} ⊂ Pn has rank two and it

is the union of the hyperplanes H+ = {x0+ix1 = 0} and H− = {x0−ix1 = 0}.
We say that X2 is reducible (two pieces) and reduced (both with multiplicity

one).

r ≥ 3 The singular locus of X2 is given by

Sing(X2) = {x0 = · · · = xr = 0} ⊂ Pn

which is a linear subspace of dimension n−r−1. The quadricX2 is irreducible.

We say that X2 is a cone of vertex Sing(X2). In particular, X2 is smooth if

and only if r = n.

33.1. Conics

Assume that char(K) ̸= 2 and fix homogeneous coordinates [x0 : x1 : x2] on P2. To

a conic

X2 =
{
Z0x

2
0 + Z1x0x1 + Z2x0x2 + Z3x

2
1 + Z4x1x2 + Z5x

2
2 = 0

}
⊂ P2
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we can associate the symmetric matrix

MX2
=

 Z0
Z1

2
Z2

2
Z1

2 Z3
Z4

2
Z2

2
Z4

2 Z5

 .

The points of the degree three hypersurface

X3 = {det(MX2
) = 0} ⊂ P5

where [Z0 : · · · : Z5] are the homogeneous coordinates on P5, correspond to singular

conics.

A pencil of conics is a line in P5. Now, take two smooth conics C,C ′ ∈ P5 and

let L = ⟨C,C ′⟩ ⊂ P5 be the pencil generated by them. Note that L is not contained

in X3 since C,C ′ belongs to L. Hence, L intersects X3 in three points counted

with multiplicity that is in a pencil generated by two smooth conics there are three

(counted with multiplicity) singular conics.

33.2. Projective spaces parametrizing quadrics

Assume that char(K) ̸= 2 and fix homogeneous coordinates [x0 : · · · : xn] on Pn. A

quadric is a hypersurface of the form

X2 =
{
Z0x

2
0 + Z1x0x1 + Z2x0x2 + · · ·+ ZN2x

2
n = 0

}
⊂ Pn

where [Z0 : · · · : ZN2
] are homogeneous coordinates on the projective space PN2 ,

with N2 =
(
n+2
2

)
−1, whose points parametrize homogeneous polynomials of degree

two in x0, . . . , xn modulo scalar that is quadric hypersurfaces in Pn. To X2 we can

associated the symmetric matrix

MX2
=


Z0 . . . Zn

2
...

. . .
...

Zn

2 . . . ZN2

 .

Let Rs ⊂ PN2 be the locus of points at which all the (s + 1) × (s + 1) minors of

MX2
vanish. Then the points of Rs correspond to quadrics of rank at most s and

we have a chain of inclusions

R1 ⊂ R2 ⊂ · · · ⊂ Rn+1 ⊂ PN2 .

In particular, the points of R1 corresponds to quadrics of rank one that is double

hyperplanes, the points of Rn+1 corresponds to quadrics of rank n that is quadric

cones with a point as vertex, and the points of PN2 \ Rn+1 correspond to smooth

quadrics. Note that Rn+1 is the degree n+1 hypersurface defined by the vanishing

of the determinant of MX2
.
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33.3. Parametrizations of quadrics

Let X2 ⊂ Pn be a quadric hypersurface of rank greater than or equal to three, and

p ∈ X2 a smooth point with homogeneous coordinates in the base field K. Fix a

hyperplane H ⊂ Pn not passing through p. Given a point x ∈ H we denote by

Lx ⊂ Pn the line spanned by x and p. For the intersection X2 ∩ Lx we have three

possibilities:

- Lx intersects X2 in p plus another point x ̸= p;

- Lx intersects X2 in p with multiplicity two;

- Lx is contained in X2.

Let P x = P|Lx
be the restriction of the polynomials P = P (x0, . . . , xn), defining

X2, to the line Lx. Then P x is a homogeneous polynomial of degree two in two

variables whose coefficients depend on the homogeneous coordinates of the point x.

Therefore, Lx intersects X2 in p with multiplicity two if and only if the dis-

criminant ∆Px
of P x vanishes, and Lx is contained in X2 if and only if all the

coefficients of P x vanish. Let us denote by C1 ⊂ H the locus of points x ∈ H for

which ∆Px
= 0 and C0 ⊂ H the locus of points x ∈ H such that all the coefficients

of P x vanish. Then C0 ⊂ C1 ⊂ H. Set U = H \ C1. Note that since x ∈ X2 is a

smooth point U is non empty.

Furthermore, let V ⊂ X2 be the set of points x ∈ X2 such that the line ⟨p, x⟩
intersects X2 in two distinct points.

Since for any point x ∈ U the line Lx intersects X2 in p plus another point

x ̸= p we get a map

φp : U ⊂ H → V ⊂ X2 : x→ x

whose inverse is the restriction to X2 of the linear projection πp : Pn \ {p} → H

from p. Hence, we have a bijective correspondence between the points of U and

those of V. The map φp is a rational parametrization of X2.

Now, let us focus on smooth conics X2 ⊂ Pn. Assume that X2 has a point

with homogeneous coordinates in the base field K, this is always the case if K for

instance is algebraically closed), but for example the conic

X2 = {x20 + x21 + x22 = 0} ⊂ P2

does not have any point defined over the field of real numbers R. In this situation

C0 = ∅. Indeed, if Lx ⊂ X2 then X2 = Lx ∪L would be the union of two lines and

hence it would have rank at most two.

Furthermore, there is just one line intersecting X2 with multiplicity two in p,

namely the tangent line TpX2 of X2 in p. Hence, C1 consists of a single point
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p ∈ H. Therefore, since the limit of πp(x) for x→ p is exactly p we can extend the

map πp|V to a bijection defined on the whole of X2 by mapping p→ p.

Finally, we proved that a smooth conic X2 over a field K with a point defined

over K is in bijection with the projective line P1 over K.

33.4. Dual quadrics

Let X2 ⊂ Pn be a smooth quadric hypersurface, and consider the set

I = {(x, TxX2), x ∈ X2} ⊂ X2 × Pn∗

X2 Pn∗

π2π1

with the projection π1, π2 onto the factors. Set X∗
2 = π2(I). As usual consider the

matrix

MX2
=


Z0 . . . Zn

2
...

. . .
...

Zn

2 . . . ZN2

 .

of X2. Let us focus on the case n = 2. The inverse of MX2
is given by

M−1
X2

=
1

det(MX2)

 4Z3Z5 − Z2
4 Z2Z4 − 2Z1Z5 Z1Z4 − 2Z2Z3

Z2Z4 − 2Z1Z5 4Z0Z5 − Z2
2 Z1Z2 − 2Z0Z4

Z1Z4 − 2Z2Z3 Z1Z2 − 2Z0Z4 4Z0Z3 − Z2
1


where

det(MX2
) = 4Z0Z3Z5 − Z0Z

2
4 − Z2

1Z5 + Z1Z2Z4 − Z2
2Z3.

For x ∈ X2 we have

TxX2 = [2Z0x0+Z1x1+Z2x2 : Z1x0+2Z3x1+Z4x2 : x0Z2+Z4x1+2Z5x2] ∈ P2∗.

and

TxX2 ·M−1
X2

· TxXt
2 = 4(Z0x

2
0 + Z1x0x1 + Z2x0x2 + Z3x

2
1 + Z4x1x2 + Z5x

2
2).

Since x ∈ X2 we get that TxX2 ·M−1
X2

· TxXt
2 = 0 that is

X∗
2 = {y ∈ Pn∗ | y ·M−1

X2
· yt = 0} ⊂ P2∗.

The conic X∗
2 ⊂ P2∗ is the dual conic of X2 ⊂ P2.

More generally the dual quadric X∗
2 ⊂ Pn∗ of the quadric

X2 = {x ·MX2
· xt = 0} ⊂ Pn

is the quadric

X∗
2 = {y ·M−1

X2
· yt = 0} ⊂ Pn∗

associated to the matrix M−1
X2

.
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Exercises

Exercise 33.5. Consider five points p1, . . . , p5 ∈ P2 such that no three are collinear.

Prove that there exists a unique smooth conic passing through all the pi.

Exercise 33.6. Let X2 ⊂ P2 be a smooth conic and p ∈ P2 \ X2 a point. Prove

that there are two lines passing through p that are tangent to X2.

Exercise 33.7. Let Γf ⊂ P1 × P1 be the graph of a projectivity f : P1 × P1 → P1.

Consider the embedding

s : P1 × P1 → P3 : ([u0 : u1], [v0 : v1]) → [u0v0 : u0v1 : u1v0 : u1v1].

Prove that s(Γf ) ⊂ P3 is the intersection of a quadric surface and a plane.

Exercise 33.8. Compute the dual conic X∗
2 ⊂ P2∗ of the conic

X2 = {x0x2 − x21 = 0} ⊂ P2

and the tangent lines of X2 passing through the point p = [0 : 1 : 0].

Exercise 33.9. Let p1, p2, p3 ∈ P2 be three non collinear points. Prove that the

conics of P2 passing through the pi form a plane Π in the projective space P5

parametrizing plane conics.

Moreover, prove that the conics through the pi and tangent to a fixed line form

a conic in Π.

Exercise 33.10. Let L1, L2, L3 ⊂ P3 be three pairwise skew lines. Prove that

through any point p ∈ L1 there is a unique line Lp passing through p and intersect-

ing L2 and L3 (Exercise 32.17). Consider the set

S =
⋃

p∈L1

Lp ⊂ P3.

Prove that S ⊂ P3 is a smooth quadric surface and that S ⊂ P3 is the unique

quadric surface containing L1, L2, L3 ⊂ P3.



Chapter 34

Grassmannians

We have seen in Section 12.1 the notion of multilinear form. In this chapter will see

how this concept in crucial in the construction of a geometric object parametrizing

lines in P3.

Definition 34.1. Let V be a K-vector space of dimension n+1. The p-th exterior

power
∧p

V is the dual space of the vector space of alternating p-linear forms on

V . The elements of
∧p

V are called p-vectors.

The exterior product v1 ∧ · · · ∧ vp ∈
∧p

V of the vectors v1, . . . , vp ∈ V is the

linear form on the vector space of alternating p-linear forms on V given by

(v1 ∧ · · · ∧ vp)(F ) = F (v1, . . . , vp)

where F is an alternating p-linear on V .

As we have seen in Section 12.1:

- v1 ∧ · · · ∧ vp is linear with respect to each vi;

- switching two of the vi changes the sign of the exterior product;

- if two of the vi are proportional then v1 ∧ · · · ∧ vp = 0.

Given a basis (e0, . . . , en) the p-vectors ei1 ∧ · · · ∧ eip with i1 < · · · < ip form a

basis of
∧p

V which has therefore dimension
(
n+1
p

)
. Now, given

v =
∑

i1<···<ip

ai1,...,ipv1 ∧ · · · ∧ vp ∈
p∧
V

and

w =
∑

j1<···<jq

bj1,...,jqw1 ∧ · · · ∧ wq ∈
q∧
V

371
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we define v ∧ w ∈
∧p+q

V by

(v ∧ w)(F ) =
∑

i1<···<ip; j1<···<jq

ai1,...,ipbj1,...,jqF (v1, . . . , vp, w1, . . . , wq)

where F is an alternating (p + q)-linear on V . Note that v ∧ w only depends on

v, w and not on how they are written on a basis of V . Furthermore

- u ∧ (v + w) = u ∧ v + u ∧ w for all u ∈
∧p

V ; v, w ∈
∧q

V ;

- (u ∧ v) ∧ w = u ∧ (v ∧ w) for all u ∈
∧p

V, v ∈
∧q

V,w ∈
∧r

V ;

- u ∧ v = (−1)pq(v ∧ u) for all u ∈
∧p

V, v ∈
∧q

V .

Lemma 34.2. The exterior product v1∧ · · ·∧vp ∈
∧p

V vanishes if and only if the

vi ∈ V are linearly dependent.

Proof. Assume that one the vi, say v1, is linear combination of the other vi. Then

v1 =
∑p

i=2 λivi and hence

v1 ∧ · · · ∧ vp =

(
p∑

i=2

λivi

)
∧ v2 ∧ · · · ∧ vp = 0

since each term has a repeated vi. If v1, . . . , vp ∈ V are linearly independent then

they can be completed to a basis of V . Hence, v1 ∧ · · · ∧ vp is a basis vector for∧p
V and in particular v1 ∧ · · · ∧ vp ̸= 0. □

34.1. Grassmannians of lines and 2-vectors

We want to characterize 2-vectors v ∈
∧2

V that are decomposable i.e. that can

written as v = v1 ∧ v2 with v1, v2 ∈ V .

Proposition 34.3. A 2-vector v ∈
∧2

V is decomposable if and only if v ∧ v = 0

in
∧4

V .

Proof. Assume that v ∧ v = 0. If dim(V ) ≤ 1 then dim(
∧2

V ) = 0. Furthermore,

if dim(V ) = 2 then dim(
∧2

V ) = 1 and v1 ∧ v2 ̸= 0 if and only if v1, v2 form a basis

of V , so any v ∈
∧2

V is decomposable. Consider the case dim(V ) = 3. For a fixed

v ∈
∧2

V we define the map

A : V →
3∧
V : w → v ∧ w.

Since dim(
∧3

V ) = 1 we have that the kernel of A has dimension at least two.

Choose linearly independent vectors v1, v2 ∈ Ker(A) and complete to a basis

(v1, v2, v3) of V . We can write

v = λ1v2 ∧ v3 + λ2v3 ∧ v1 + λ3v1 ∧ v2.
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Now, since v1, v2 ∈ Ker(A) we get

v ∧ v1 = λ1v2 ∧ v3 ∧ v1 = 0;

v ∧ v2 = λ2v3 ∧ v1 ∧ v2 = 0.

Hence, λ1 = λ2 = 0 and v = λ3v1 ∧ v2 is decomposable.

Assume that the result holds for dim(V ) ≤ n. Fix a basis (e0, . . . , en) of V and

write

v =
∑

0≤i<j≤n

ai,jei ∧ ej =
n−1∑
i=0

ai,nei ∧ vn +
∑

0≤i<j≤n−1

ai,jei ∧ ej = u ∧ en + v′

where u ∈ U = ⟨e0, . . . , en−1⟩ and v′ ∈
∧2

U . Note that dim(U) = n so that we

can proceed by induction on the dimension. We have

v ∧ v = 2u ∧ v′ ∧ en + v′ ∧ v′ = 0

and since en does not appear neither in the expansion of u∧v′ nor in that of v′∧v′

we get that u ∧ v′ = v′ ∧ v′ = 0.

By induction v′ ∧ v′ = 0 yields that v′ = v1 ∧ v2 with v1, v2 ∈ V , and so

u ∧ v1 ∧ v2 = 0. Therefore, Lemma 34.2 yields that there is a linear relation

λu+ λ1v1 + λ2v2 = 0.

If λ = 0 then v1, v2 are linearly dependent and v′ = v1 ∧ v2 = 0. So v = u ∧ en is

decomposable. If λ ̸= 0 then

u = α1v1 + α2v2

with αi =
λi

λ . So

v = (α1v1 + α2v2) ∧ en + v1 ∧ v2
in the subspace ⟨v1, v2, en⟩, and we conclude that v is decomposable by the 3-

dimensional case in the first part of the proof.

Conversely, if v = v1 ∧ v2 for v1, v2 ∈ V then

v ∧ v = v1 ∧ v2 ∧ v1 ∧ v2 = 0

since v1 (or equivalently v2) is repeated twice in the expression of v. □

34.2. The Grassmannian of lines in P3

The first interesting case is p = 2, n + 1 = 4. We construct a geometric object

parametrizing vector planes in V or equivalently projective lines in P(V ) = P3.

Fix a basis (e0, . . . , e3) of V . Then (e0∧e1, e0∧e2, e0∧e3, e1∧e2, e1∧e3, e2∧e3)
is a basis of

∧2
V and (e0 ∧ e1 ∧ e2 ∧ e3) is a basis of

∧4
V .

Now, if Π ⊂ V is a vector plane we can choose a basis (v, w) of Π and form

the 2-vector v ∧ w. If (v′, w′) is another basis of Π then v′ ∧ w′ = λ(v ∧ w) where
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λ is the determinant of the change of basis matrix. Hence, we can associated to Π

a well defined point [v ∧ w] ∈ P(
∧2

V ).

Conversely, take v ∈
∧2

V and write

v = Z0e0 ∧ e1 + Z1e0 ∧ e2 + Z2e0 ∧ e3 + Z3e1 ∧ e2 + Z4e1 ∧ e3 + Z5e2 ∧ e3.

By Proposition 34.3 we have that v ∈
∧2

V is decomposable if and only if v∧v = 0.

Now

v ∧ v = Z0Z5e0 ∧ e1 ∧ e2 ∧ e3 + Z1Z4e0 ∧ e2 ∧ e1 ∧ e3 + Z2Z3e0 ∧ e3 ∧ e1 ∧ e2+
Z3Z2e1 ∧ e2 ∧ e0 ∧ e3 + Z4Z1e1 ∧ e3 ∧ e0 ∧ e2 + Z5Z0e2 ∧ e3 ∧ e0 ∧ e1

= 2(Z0Z5 − Z1Z4 + Z2Z3)e0 ∧ e1 ∧ e2 ∧ e3.

Therefore v ∈
∧2

V is decomposable if and only if [v] = [Z0 : · · · : Z5] ∈ P(
∧2

V ) =

P5 belongs to the quadric hypersurface

(34.1) G(1, 3) = {Z0Z5 − Z1Z4 + Z2Z3 = 0} ⊂ P5

which is the Grassmannian parametrizing lines in P3.

Proposition 34.4. Let L1, L2 ⊂ P3 be two lines and [L1], [L2] ∈ G(1, 3) the corre-

sponding points. Then L1 ∩ L2 ̸= ∅ if and only if the line ⟨[L1], [L2]⟩ is contained

in G(1, 3).

Proof. Let U1, U2 ⊂ V be the two planes in V , where P3 = P(V ), such that

P(Ui) = Li. Assume that L1 ∩ L2 = {p} and v ∈ V such that [v] = p. Let (u, u1)

and (u, u2) be bases of U1 and U2. The line in P5 = P(
∧2

V ) spanned by [L1], [L2]

is then P(W ) where W ⊂
∧2

V is spanned by u ∧ u1 and u ∧ u2. Any 2-vector in

W is of the form

λ1u ∧ u1 + λ2u ∧ u2 = u ∧ (λ1u1 + λ2u2)

and hence it is decomposable. So [λ1u ∧ u1 + λ2u ∧ u2] ∈ G(1, 3).

Now, assume that L1 ∩ L2 = ∅ that is U1 ∩ U2 = {0}. Let (u1, v1), (u2, v2)

be bases of U1, U2. Then V = U1 ⊕ U2 and (u1, v1, u2, v2) is a basis of V . So

u1 ∧ v1 ∧ u2 ∧ v2 ̸= 0. A point on the line spanned by [L1], [L2] is represented by a

vector of the form v = λ1u1 ∧ v1 + λ2u2 ∧ v2, and

v ∧ v = 2λ1λ2u1 ∧ v1 ∧ u2 ∧ v2.

So v ∧ v = 0 if and only if either λ1 = 0 or λ2 = 0. Therefore, the line spanned by

[L1], [L2] intersects G(1, 3) only at the points [L1], [L2]. □

Proposition 34.5. The lines in P3 passing through a fixed point correspond to the

points of a plane contained in G(1, 3).
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Proof. The line P(U) passes through a fixed point [v] ∈ P3 if and only if v ∈ U .

Let (v, v1, v2, v3) be a basis of V . A decomposable 2-vector of the form v ∧ u can

be written as

v ∧ (λv + λ1v1 + λ2v2 + λ3v3) =

3∑
i=1

λiv ∧ vi.

Hence, a line P(U) that passes through [v] ∈ P3 yields a point of the plane spanned

by v ∧ v1, v ∧ v2, v ∧ v3 in G(1, 3) and any point in such plane corresponds to a line

through [v] ∈ P3. □

Proposition 34.6. The lines in P3 contained in a plane correspond to the points

of a plane contained in G(1, 3).

Proof. The lines in P3 contained in a plane Π correspond to the lines in P3∗ passing

through the point Π∗ which by Proposition 34.5 form a plane in the Grassmannian

of lines in P3∗. Finally, by duality the lines in P3 contained in Π form a plane in

G(1, 3). □

Theorem 34.7. Let H ⊂ G(1, 3) be a plane. Then H parametrizes either the lines

through a fixed point or the lines contained in a fixed plane.

Proof. Let [L1], [L2], [L3] ∈ H be three non collinear points. The lines joining two

of the [Li] is contained in H and hence in G(1, 3). So Proposition 34.4 yields that

Li ∩ Lj ̸= ∅ for all i, j = 1, 2, 3. We distinguish two cases:

- the Li intersect in a point p. Let Hp ⊂ G(1, 3) be the plane parametrizing the

lines through p. Then Hp and H intersect in the three non collinear points

[L1], [L2], [L3], and so H = Hp.

- The Li intersect in three distinct points. Let v1, v2, v3 be representative vectors

for these three points. Then v2 ∧ v3, v1 ∧ v3, v1 ∧ v2 are representative vectors

for [L1], [L2], [L3]. A point of the plane H can then be written as

λ1v2 ∧ v3 + λ2v1 ∧ v3 + λ3v1 ∧ v2.

So L1, L2, L3 ⊂ Π where Π is the plane generated by [v1], [v2], [v3]. Let Hv ⊂
G(1, 3) be the plane parametrizing the lines contained in Π. Since Hv and H

intersect in the three non collinear points [L1], [L2], [L3] we get that H = Hv.

We conclude that H is a plane either of the type in Proposition 34.5 or of the type

in Proposition 34.6. □

34.3. The Plücker embedding of G(k, n)

We will denote by G(k, n) the set of k-dimensional linear subspaces of Pn = P(V ):

G(k, n) = {P(H) ⊂ Pn where H ⊂ V is a subvector space and dim(H) = k + 1}.
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The geometric object G(k, n) is the Grassmannian parametrizing the k-dimensional

linear subspaces of Pn. For instance, G(0, n) = Pn, G(n − 1, n) = Pn∗ and G(1, 3)

is the Grassmannian of lines in P3 constructed in Section 34.2.

Remark 34.8. Recall that by duality there is a bijection between the k-dimensional

linear subspaces of Pn and the (n− k− 1)-dimensional linear subspaces of Pn−k−1.

Therefore, the is a bijective correspondence between G(k, n) and G(n− k − 1, n).

Now, let (e0, . . . , en) be a basis of V , H ⊂ V a subvector space of dimension

k+1, and (v0, . . . , vk) a basis of H. Write vi =
∑n

j=0 xijej and consider the matrix

MH =


x00 x01 . . . x0n
...

...
. . .

...

xk0 xk1 . . . xkn

 .

Note that the coordinates of the (k+ 1)-vector v0 ∧ · · · ∧ vk ∈
∧k+1

V , in the basis

(ei0 ∧ · · · ∧ eik)0≤i0<···<in≤n, are given by the determinants of the (k + 1) × (k +

1) submatrices MH;i0,...,ik obtained extracting from MH the columns indexed by

i0, . . . , ik:

v0 ∧ · · · ∧ vk =
∑

0≤i0<···<in≤n

det(MH;i0,...,ik)ei0 ∧ · · · ∧ eik .

Furthermore, if (v′0, . . . , v
′
k) is another basis of H we have that v′0 ∧ · · · ∧ v′k =

det(N)v0 ∧ · · · ∧ vk where N is the base change matrix. Therefore, the is a well

defined map

plk,n : G(k, n) → P(
k+1∧

V ) = PNk,n : H → [v0 ∧ · · · ∧ vk]

where Nk,n =
(
n+1
k+1

)
− 1. The map plk,n is called the Plücker embedding of G(k, n)

and allows us to realize G(k, n) as an object living inside PNk,n .

Example 34.9. Let P(H) ⊂ P3 be a line, and (v0, v1) a basis of H. Write v0 =

x00e0 + x01e1 + x02e2 + x03e3, v1 = x10e0 + x11e1 + x12e2 + x13e3 and consider the

matrix

MH =

(
x00 x01 x02 x03

x10 x11 x12 x13

)
.

Then the Plücker embedding is the map

pl1,3 : G(1, 3) → P(
2∧
V ) = P5

mapping H to the point [v0 ∧ v1] = [x00x11 − x01x10 : x00x12 − x02x10 : x00x13 −
x03x10 : x01x12 − x02x11 : x01x13 − x03x11 : x02x13 − x03x12] ∈ P5. Note that, if

[Z0 : · · · : Z5] are homogeneous coordinates on P5 then the coordinates of [v0 ∧ v1]
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satisfy the quadratic relation Z0Z5−Z1Z4+Z2Z3 = 0 which is exactly the equation

(34.1) defining G(1, 3) ⊂ P5.
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Exercises

Exercise 34.10. Show that G(1, 3) ⊂ P5 is smooth.

Exercise 34.11. Let L ⊂ P3 be a line. Show that the lines in P3 intersecting L

correspond to the points in the intersection of G(1, 3) with a hyperplane in P5.

Exercise 34.12. Let Π ⊂ P3 be a plane and p ∈ Π a point. Show that the lines

contained in Π and passing through p correspond to the points of a line in G(1, 3).

Exercise 34.13. Consider the quadric surface Q = {x0x3 − x1x2 = 0} ⊂ P3.

- Show that Q is smooth.

- Show that Q contains two families Fα,Fβ of lines such that two lines of the

same family do not intersect and two lines of different families intersect in a

point.

- Show that the lines of the families Fα,Fβ correspond to the points of two

smooth conics Cα, Cβ ⊂ G(1, 3), and that the planes Πα,Πβ generated by

Cα, Cβ do not intersect.

Exercise 34.14. Write down the Plücker embedding of G(1, 4), the Grassmannian

of lines in P4, in P9 and work out five homogeneous polynomials of degree two, in

the homogeneous coordinates of P9, vanishing on G(1, 4).

Exercise 34.15. Prove that through any two points [L1], [L2] ∈ G(1, n) ⊂ PN1

there passes a conic contained in G(1, n).
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