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Introduction

In literature there are various definitions of characteristic classes of a vector
bundle. Some are analytical in nature and other are purely algebraic. We intro-
duce in various ways Chern classes of a vector bundle, and state the equivalence
between these a priori different definitions. Then we define Pontryagin classes and
the Atiyah class highlighting their relationships with Chern classes.
Furthermore we state some fundamental theorem, like Hopf index theorem, the
Atiyah-Singer index theorem, and the Grothendieck-Riemann-Roch theorem. In partic-
ular we discuss this latter theorem in the case of curves, surfaces and three-folds.
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CHAPTER 1

Vector Bundles

1.1. The Thom Isomorphism

Let π : E → M be an orientable vector bundle on the orientable manifold M.
Let Ω∗cv(E) be the complex of forms on E with compact support in the vertical direc-
tion, i.e. an n-form ω on E is in Ωn

cv(E) if and only if for any compact set K ⊆ M
the set π−1(K) ∩ Supp(ω) is compact. The cohomology H∗cv(E) of this complex is
called compact vertical cohomology.
Let {(Ui, ψi)} be an oriented trivialization of E. Let x1, ..., xm, y1, ..., ym be coordi-
nate functions on Ui and Uj respectively, and let t1, ..., tn, u1, ..., un be fiber coordi-
nates on E|Ui

and E|Uj
. Since {(Ui, ψi)} is oriented the fiber coordinates are related

by a transformation in GL+(n, R). Let ω ∈ Ω∗cv(E) be a form, ω is a real linear
combination of two types of forms:

(1) forms which do not contain as factor the n-form dt1 ∧ ...∧ dtn,
(2) forms which contain as factor the n-form dt1 ∧ ...∧ dtn.

We define a morphism π∗ : Ω∗cv(E) → Ω∗−n(M), to be zero on the first type
of forms, and to be the integral on the component dt1 ∧ ... ∧ dtn on the second
type. More precisely let ωi = (π∗Γi) f (x1, ..., xm, t1, ..., tn)dt1 ∧ ... ∧ dtn, where Γi ∈
Ω∗−n(M), then we define

π∗ωi = Γi

∫
Rn

f (x, t)dt1 ∧ ...∧ dtn.

Since E is an oriented vector bundle π∗ωi = π∗ωj, and the {π∗ωi} piece together
to give a global form π∗ω on M. Furthermore the integration along the fibers π∗
commutes with exterior differentials.

REMARK 1.1. A n + k-form on E can be written ad

ω = ∑ f (x1, ..., xm, t1, ..., tn)dxI ∧ dtJ ,

with |I|+ |J| = n+ k. If ω does not contain the term dt1 ∧ ...∧ dtn, then π∗ω = 0, if
ω contains this term then it can be integrated along the fibers to give a well defined
k-form π∗ω on M.
From the singular homology viewpoint the map π∗ is the contraction of a k + n-
simplex ∆ in E to a k-simplex in M that maps the points in ∆ ∩ Ex to the point
x ∈ M.

THEOREM 1.2. (Thom Isomorphism) The integration along the fibers

π∗ : H∗cv(E)→ H∗−n(M),

is an isomorphism. Its inverse T : H∗(M)→ H∗+n
cv (E) is called the Thom isomorphism.
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The image of 1 ∈ H0(M) determines a cohomology class T = T (1) ∈ Hn
cv(E)

called the Thom Class of the oriented vector bundle E. In terms of the Thom class
the Thom isomorphism can be written as

T (ω) = π∗(ω) ∧ T.

REMARK 1.3. Locally we can write ω ∈ Hk(M) as

ω(x1, ..., xm) = ∑ fi1,...,ik (x1, ..., xm)dxi1 ∧ ...∧ dxik .

The pullback π∗ gives a k-form on E, and the Thom isomorphism can be written
locally as

T (ω) = π∗(ω) ∧ T = π∗(ω) ∧ dt1 ∧ ...∧ dtn.

1.2. The Euler Class and The Thom Class

Let E be a rank 2 real orientable vector bundle on a orientable manifold M, and
let {Ui} be an open cover of M that trivializes E. Since E has a Riemannian struc-
ture, over each Ui we can choose a orthonormal frame, this defines on E|Ui

polar
coordinates ri, θi. If x1, ..., xn are local coordinates on Ui, then π∗x1, ..., π∗xn, ri, θi
are coordinates on E|Ui

. On Ui ∩Uj the radii ri, rj are equal, but the angular co-
ordinates θi, θj differ by a rotation. We define ϕi,j (up to a multiple of 2π) as the
angle of rotation in the counterclockwise direction form the i-coordinates to the
j-coordinates:

θj − θi = π∗ϕi,j, ϕi,j : Ui ∩Uj → R.

Note that on a triple intersection ϕi,j + ϕj,k − ϕi,k = θj − θi + θk − θj − θk + θi = 0,
so ϕi,j + ϕj,k− ϕi,k ∈ 2πZ. Clearly the 1-forms {dϕi,j} satisfy the cocycle condition.
Consider now the 1-form ξi on Ui given by

ξi =
1

2π ∑
k

ρkdϕk,i,

where {ρk} is a partition of unity subordinate to {Uk}. Then

ξ j − ξi =
1

2π ∑
k

ρkdϕk,j − dϕk,i =
1

2π
dϕi,j ∑

k
ρk =

1
2π

dϕi,j.

We see that dξi = dξ j on Ui ∩ Uj. Hence {dξi} piece together to give a global,
closed 2-form e on M. It is not necessarily exact since the ξi do not usually piece
together to give a global 1-form. The cohomology class of e in H2(M) is called the
Euler Class of the oriented vector bundle E.
If {3i} are a different choice of 1-forms such that 1

2π dϕi,j = xij − ξ i = ξ j − ξi, then
ξ j − ξ j = ξ i − ξi = ξ is a global form. So dξ i and dξi differ by an exact global form.
Then our construction of the Euler class is independent of the choice of ξ.
By the formulas 1

2π dϕi,j = ξ j − ξi and θj − θi = π∗ϕi,j, on E0 = E \ {zero section}
we have dθj − dθi = π∗dϕi,j = π∗2π(ξ j − ξi), so

dθj

2π
− π∗ξ j =

dθi
2π
− π∗ξi.

These forms then piece together to give a global angular 1-form ψ on E0, whose
restriction to each fiber is the angular form 1

2π dθ. Note that the global angular
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form is not closed:

dψ = d(
dθi
2π
− π∗ξi) = −π∗dξi = −π∗dξ j.

So we have a relation between the global angular form and the Euler class

dψ = −π∗e.

The Euler class e(E) can be written in terms of the transition functions. Let gi,j :
Ui ∩Uj → SO(2) be the transition functions of E. We can identify SO(2) as the
unit circle in the complex plane via(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
= eiθ .

So gi,j can be thought as the complex valued function gi,j = eiθ , and iθ = log(gi,j),
so the angle from the j-coordinates to the i-coordinates is θ = 1

i log(gi,j). We get

θj − θi = π∗ϕi,j = −π∗
1
i

log(gi,j).

Since π∗ is surjective, π∗ is injective, so

ϕi,j = −
1
i

log(gi,j).

Now let {ρk} be a partition of unity relative to {Uk}. Then ξi =
1

2π ∑k ρkdϕk,i =

− 1
2πi ∑k ρkd(log(gk,i)), and

e(E) = − 1
2πi ∑

k
d(ρkd(log(gk,i))).

EXAMPLE 1.4. Consider the holomorphic line bundle O(−1) on P1 = P(C2).
Its transition function are g0,1 = z1

z0
and g1,0 = z0

z1
, over the standard covering of

P1. If (1, z) is the coordinate in U0 and (w, 1) with w = 1
z is the coordinate on U1,

then the functions

ρ0 =
1

1 + |z|2 , ρ1 =
|w|2

1 + |w|2 ,

are a partition of unity relative to our covering. We have d(log(g0,1)) = d(log(z)) =
1
z dz, and d(ρ0

1
z dz) = d( 1

(z+z2z)
1
z dz) = − z2

(z+z2z)2 dz ∧ dz = 1
(1+zz)2 dz ∧ dz. So

e(O(−1)) =
1

2πi
1

(1 + zz)2 dz ∧ dz.

PROPOSITION 1.5. Let f : N → M be a smooth map, and let E be a rank 2 vector
bundle on M, then

e( f−1E) = f ∗e(E),
i.e. the Euler class is functorial.

PROOF. If gi,j are the transition function of E then f ∗gi,j are the transition func-
tion of f−1E. The Euler class of f−1E is given by

e( f−1E) = − 1
2πi ∑

k
d(ρkd log ( f ∗gi,j)) = f ∗e(E).

♠
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Consider now the cohomology class

T = d(ρ(r) · ψ) = dρ(r) · ψ + ρ(r)dψ = dρ(r) · ψ− ρ(r)π∗e.

Note that the form T is a global form on E since dρ ≡ 0 near the zero section, and
T has the following properties:

• T has compact support in the vertical direction,
• T is closed: dT = −dρ(r) · dψ− dρ(r)π∗e = 0,
• the restriction of T to each fiber has integral 1, indeed on each fiber we

have ∫ ∞

0

∫ 2π

0
dρ(r) · dθ

2π
= ρ(∞)− ρ(0) = 1,

• the cohomology class of T is independent of the choice of ρ(r).
Therefore T defines the Thom class. If s0 : M → E is the zero section of E, then
s∗0 T = s∗0(dρ(r) ·ψ− ρ(r)π∗e) = ds∗0ρ(r) · s∗0ψ− ρ(0)s∗0π∗e = dρ(0) · s∗0ψ− ρ(0)(π ◦
s0)
∗(e) = e. This proves the following fact.

PROPOSITION 1.6. The pullback of the Thom class to M via the zero section is the
Euler class.

Let {Ui} be a trivializing cover for E, let {ρi} be a partition of unity relative to
this cover, and let gi,j be the transition function of E. Since

ψ =
dθi
2π
− π∗ξi =

dθi
2π

+
1

2πi
π∗∑

k
ρkd log gk,i,

we have

T = d(ρ(r) · ψ) = d(ρ(r)
dθi
2π

) +
1

2πi
d(ρ(r)π∗∑

k
ρkd log gk,i).

This is an explicit formula for the Thom class.

1.2.1. The Thom Isomorphism for non orientable Vector Bundles. Let π :
E → M be any rank n vector bundle on M, and let U be a good cover for M. We
define a presheafHn

cv on M by

U ⊆ M 7→ Hn
cv(π

−1(U)),

then there is an isomorphism (the Thom isomorphism)

H∗cv(E) ∼= H∗−n(U ,Hn
cv).

1.2.2. Thom Class and Poincaré Duality. Let S be a closed oriented subman-
ifold of dimension k in an oriented manifold M, with dim(M) = n. The Poincaré
dual of S is the cohomology class of the closed (n− k)-form ωS, characterized by
the property ∫

S
α =

∫
M

α ∧ωS,

for any closed k-form α with compact support on M.
The submanifold S has a tubular neighborhood in M that is diffeomorphic to the
normal bundle NS/M of S in M. Since S and M are orientable the tangent bundles
TS and TM are orientable, and by the exact sequence

0 7→ TS → TM|S → NS/M 7→ 0,
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we conclude that NS/M is also orientable. Let j : NS/M → M be the inclusion if the
tubular neighborhood in M. Since NS/M is a rank (n− k)-vector bundle on S we
can apply the Thom isomorphism theorem. So we have a composition of maps

H∗(S) ∧T→ H∗+n−k
cv (NS/M)

j∗→ H∗+n−k(M),

where T is the Thom class of the tubular neighborhood N = NS/M, and j∗ is the
extension by zero.

PROPOSITION 1.7. The Poincaré dual of a closed oriented submanifold S in a oriented
manifold M is the Thom class of the normal bundle of S, more precisely

ωS = j∗T, in Hn−k(M).

Furthermore the Thom class of an oriented vector bundle E → M over an oriented man-
ifold M and the Poincaré dual of the zero section of E can be represented by the same
form.

PROOF. We have to show that j∗T satisfies the defining property of the Poincaré
dual ωS. Let α be a closed k-form with compact support on M, and let i : S → N
be the inclusion, regarded as the zero section of the bundle π : N → S. Since π
is a deformation retraction, π∗ and i∗ are inverse morphism in cohomology, so on
level of forms α and π∗i∗α differ by an exact form, i.e. α = π∗i∗α+ dγ.We compute∫

M α∧ i∗T =
∫

N α∧T because Supp(j∗T) ⊆ N. Furthermore
∫

N α∧T =
∫

N(π
∗i∗α+

dγ)∧ T =
∫

N(π
∗i∗α)∧ T, since

∫
N(dγ∧ T) =

∫
N d(γ∧ T) = 0 by Stokes theorem.

Now by projection formula we get∫
N
(π∗i∗α) ∧ T =

∫
S

i∗α ∧ π∗T =
∫

S
i∗α,

because π∗T = 1.
Now suppose that E is an oriented vector bundle over an oriented manifold M.
Embed M diffeomorphically in E as the zero section, there is an exact sequence

0 7→ TM → TE|M → E 7→ 0,

so the normal bundle of M in E is E itself. By the first part of the proof we conclude
that the Poincaré dual of M in E is the Thom class of E. ♠

1.2.3. The Euler Class and the general section. The preceding argument on
rank 2 orientable vector bundle can be generalized to rank n orientable vector
bundle, we define similarly the Thom and the Euler class, and again the Euler
class turns out to be the pullback of the Thom class via the zero section.
Let π : E→ M be a vector bundle, and let S0 ⊆ E be the image of the zero section.
A section s of E is transversal if its image S = s(M) intersects S0 transversally.

PROPOSITION 1.8. Let Z be the zero locus of a general section (in particular it is
transversal). Then Z is a submanifold of M and its normal bundle in M is NZ/M

∼= E|Z.

PROOF. Let S = s(M) be the image of the section s. The fact that Z is a sub-
manifold of M is a consequence of the transversality. Note that since E is locally
trivial its tangent bundle on S0 can be written as

TE|S0
= E|S0

⊕ TS0 .



10 1. VECTOR BUNDLES

By the transversality of S ∩ S0, we have TS + TS0 = TE = E ⊕ TS0 on S ∩ S0.
So the projection TS → E over S ∩ S0 is surjective with kernel TS ∩ TS0 . But by
transversality we have TS ∩ TS0 = TS∩S0 . So we have an exact sequence

0 7→ TS∩S0 → TS|S∩S0
→ E|S∩S0

7→ 0.

Then NS∩S0/M
∼= E|S∩S0

. ♠

PROPOSITION 1.9. Let π : E → M be an oriented vector bundle over an oriented
manifold M. The the Euler class e(E) is Poincaré dual to the zero locus of a general section.

PROOF. We identify M with its image S0 in E via the zero section. Let S be
the image of a general section s : M → E, then Z = S ∩ S0 is a closed oriented
submanifold of M, and its normal bundle is NZ/M

∼= E|Z. Choose the Thom class
T of E to have support enough close to the zero section such that T restricted to
the tubular neighborhood NZ/S in S has compact support in the vertical direction.
The pullback s∗T is the Thom class of the tubular neighborhood NZ/M in M. We
know that s∗T = e(E). Since the Thom class of NZ/M is Poincaré dual to Z in M,
then the Euler class is Poincaré dual to Z in M. ♠

1.3. Chern Classes

A complex vector bundle of rank r is a bundle with fiber Cr and structure
group GL(r, C). The structure group of a real vector vector bundle can be reduces
to the orthogonal group O(r), and similarly the structure group of a rank r com-
plex vector bundle can be reduced to the unitary group U(r). Clearly if E is a
complex vector bundle of rank 2r we can consider the underlying real vector bun-
dle ER of rank 2r. Since U(1) and SO(2, R) are isomorphic as algebraic groups
there is a bijective correspondence between complex line bundles and oriented
rank r real bundles.

DEFINITION 1.10. The first Chern class of a complex line bundle L over a man-
ifold M is the Euler class of the underlying real vector bundle LR,

c1(L) = e(LR) ∈ H2(M).

REMARK 1.11. Recall that for the Euler class of a real rank 2 vector bundle we
have e(E) = − 1

2πi ∑k d(ρkd(log(gk,i))). If L and L
′

are two complex line bundle
given by the transition functions {gi,j} and {g′i,j}, then L ⊗ L

′
has {gi,jg

′
i,j} has

transition functions. Since d log(gi,jg
′
i,j) = d log(gi,h) + d log(g

′
i,j) we get

c1(L⊗ L
′
) = c1(L) + c1(L

′
).

If L∗ is the dual of L we know Hom(L, L) = L⊗ L∗. Since Hom(L, L) has a nowhere
vanishing section given by the identity map, L⊗ L∗ is the trivial bundle. So c1(L⊗
L∗) = c1(L) + c1(L∗) = 0, and

c1(L∗) = −c1(L).

Let V be a C-vector space of dimension n. On the projective space P(V) we
have the product bundle P(V)×V and the tautological bundle S given by

S = {(l, v) ∈ P(V)×V | v ∈ l}.
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Furthermore we have the universal quotient bundle Q defined by the exact se-
quence

0 7→ S→ P(V)×V → Q 7→ 0.
This sequence is called the tautological sequence and S∗ is the hyperplane bundle.
Consider the natural projection π : S → V, if v 6= 0 the fiber π−1(v) consists of
a single point (l, v), where l is the line generated by v. But for v = 0 we have
π−1(0) = P(V). So S can be obtained from V by separating all the lines through
the origin in V, in other words π : S→ V is the blow-up of V at the origin.
Now we choose an hermitian structure on V, and let E be the unit sphere bundle
of the universal bundle S,

E = {(l, v) | v ∈ l, ‖ v ‖= 1}.
Note that π−1(0) is the zero section of the universal bundle S. Since S and V are
birational, and S \ σ−1(0) is diffeomorphic to V \ {0}, we have that E is diffeomor-
phic to the sphere S2n−1 in V. The map π : E→ P(V) gives a fibration

S1 → S2n−1 ∼= E→ P(V).

Let x = c1(S∗) = −c1(S) be the first Chern class of the hyperplane bundle, using
this fibration and and Leray spectral sequence we get that the cohomology ring
H∗(P(V)) is generated by x and

H∗(P(V)) = R[x]/(xn),

where n = dim(V). Recall that the Poincaré series of a manifold M is

Pt(M) =
∞

∑
j=0

dim(H j(M))tj.

Since the projective space P(V) = Pn−1 has cohomology only in even degree, and
more precisely dim(H j(P(V))) = 0 for j odd, and dim(H j(P(V))) = 1 for j even,
with j = 0, ..., 2n− 2, we get

Pt(P(V)) = 1 + t2 + t4 + ... + t2n−2 =
1− t2n

1− t2 .

Let E→ M be a complex vector bundle and let π : P(E)→ M be the projectivized
bundle. On π : P(E) → M there is the tautological bundle π−1E, the universal
bundle S and the universal quotient bundle Q defined by the sequence

0 7→ S→ π−1E→ Q 7→ 0.

Let x = c1(S∗) be the Chern class of the hyperplane bundle, then x is a cohomol-
ogy class in H2(P(E)). The restriction S to a fiber P(Ep) is the universal bundle Sp
on the projective space P(Ep), then c1(Sp) is the restriction of −x to P(Ep). So the
cohomology classes 1, x, ..., xn−1 are cohomology classes on P(E) whose restric-
tions to each fiber P(Ep) freely generate the cohomology of the fiber P(Ep). Recall
now the Leray-Hirsch theorem.

THEOREM 1.12. (Leray-Hirsch) Let E be a fiber bundle over a manifold M with
fiber F, suppose that M admits a finite good cover. If there are global cohomology classes
x1, ..., xn on E such that their restriction to each fiber freely generated the cohomology of
the fiber, then H∗(E) is a free module over H∗(M) with basis {x1, ..., xn}, i.e.

H∗(E) = H∗(M)⊗R{x1, ..., xn} = H∗(M)⊗ H∗(F).
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By Leray-Hirsch theorem xn can be written uniquely as a linear combination
of 1, x, ..., xn−1 with coefficients in H∗(M),

xn + c1(E)xn−1 + ... + cn(E) = 0.

The coefficients cj(E) ∈ H2j(M) are the Chern classes of E, their sum

c(E) = 1 + c1(E) + ... + cn(E) ∈ H∗(M)

is the total Chern class. Then the cohomology ring of P(E) is given by

H∗(P(E)) = H∗(M)[x]/(xn + c1(E)xn−1 + ... + cn(E)).

Furthermore by Leray-Hirsch we have H∗(P(E)) = H∗(M)⊗ H∗(Pn−1), and the
Poincaré series of P(E) is

Pt(P(E)) = Pt(M)
1− t2n

1− t2

Note that for a line bundle L, P(L) = M and π−1L = L. The universal bundle
S is L itself. So x = e(S∗R) = −e(SR) = −e(LR), and x + e(LR) = 0 proves that
c1(L) = e(LR). We see that our two definitions of first Chern class of a line bundle
are equivalent.

1.3.1. Properties of the Chern Classes.
• Let f : Y → X be a map end let E → X be complex vector bundle, then

cj( f−1E) = f ∗cj(E) for any j.
• (Whitney Formula) For the direct sum one has c(E⊕ F) = c(E)c(F).
• If E has a non-vanishing section then its top Chern class is zero.

To see this consider s : X → E a non-vanishing section, and take the
section f : X → P(E) induced by s. Then f−1SE is a line bundle on
X and its fiber at p is the line in Ep spanned by s(p). So f−1SE is a line
bundle with a non-vanishing section, then it is trivial. For the Chern class
we get f ∗c1(SE) = c1( f−1SE) = 0. This implies f ∗x = f ∗c1(S∗E) = 0, and
applying f ∗ to xn + c1xn−1 + ... + cn = 0 we get f ∗cn = 0, and finally
cn = 0.

• (Splitting Principle) Let E→ M be a complex vector bundle of rank r over
a manifold M. Then there exists a manifold F(E) called a split manifold of
E, with a map σ : F(E)→ M such that:
(1) the pullback of E to F(E) splits into a direct sum of line bundles

σ−1E = L1 ⊕ ...⊕ Ln;
(2) σ∗ embeds H∗(M) in H∗(F(E)).

• Let E = L1⊕ ...⊕ Lr be a splitting. By Whitney product c(E) = c(L1)...c(Lr) =
(1 + c1(L1))...(1 + c1(Lr)). For the dual bundle we have E∗ = L∗1 ⊕ ...L∗r ,
and c(E∗) = (1− c1(L1))...(1− c1(Lr)). Comparing the two expressions
we get the formula

cj(E∗) = (−1)jcj(E).

Now we apply the Whitney formula and the splitting principle to state the relation
between the top Chern class of E and its Euler class.

PROPOSITION 1.13. Let E → M be a complex vector bundle of rank r. The top
Chern class cr(E) of E is the Euler class e(LR) of the underlying real vector bundle LR.
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PROOF. Let σ : F(E) → M be a splitting manifold for E, and let σ−1E =
L1 ⊕ ... ⊕ Lr be the splitting. Then σ∗cn(E) = cn(σ−1E) = c1(L1)...c1(Lr) =
e((L1)R)...e((Lr)R) = e((L1)R)⊕ ...⊕ (Lr)R)) = e((σ−1E)R) = σ∗e(ER). By the
injectivity of σ∗ we get cn(E) = e(ER). ♠

1.4. Pontrjagin Classes

The Chern classes are invariants of complex bundles but the can be used to
define invariants for real vector bundles. Let E → M be areal vector bundle of
rank r, and let EC = E ⊗R C be the complexified vector bundle. We define the
Pontrjagin classes of E as the Chern classes of EC:

pj(E) = cj(E⊗R C),

the total Pontrjagin class is

p(E) = 1 + p1(E) + ... + pr(E).

By the properties of the Chern classes we have the Whitney formula for Pontrjagin
classes p(E ⊕ F) = p(E)p(F). The Pontrjagin classes of a manifold M are the
Pontrjagin classes of its tangent bundle TM.
Note that since E is real the transition function of EC are the same as those of
E, they are real valued and so E ×R C is isomorphic to its conjugate E⊗R C. So
cj(E ×R C) = cj(E⊗R C) = (−1)jcj(E ⊗R C). Then 2cj(E ⊗R C) = 0 for j odd.
We see that the odd Pontrjagin classes are zero in the De Rham cohomology, and
have torsion of order two in the integral cohomology.

1.5. The Hopf Index Theorem

Let M be a compact oriented manifold and let e(TM) be its Euler class. We
define the Euler number as

∫
M e(TM). One can prove that the Euler number is

equal to the Euler characteristic:∫
M

e(TM) = χ(M) = ∑(−1)jdim H j(M).

Let E → M be a (n − 1)-sphere bundle over a compact orientable manifold M
of dimension n. Let s be a section of E over a punctured neighborhood Dr of a
point x ∈ M, and choose Dr sufficiently small such that it is diffeomorphic to a
punctured dick in Rn and trivializes E. Choose an orientation on Sn−1 such that
E|Dr

∼= Dr × Sn−1 is a preserving orientation isomorphism. We have a map

δDr ∼= Sn−1 s→ E|Dr
∼= Dr × Sn−1 π→ Sn−1,

where π is the projection. It make sense to consider the degree of the composition
π ◦ s, and we define the local degree in x of the section s as

locdegx(s) = deg(π ◦ s).

One can prove that if E→ M is an oriented (n− 1)-sphere bundle over a compact
oriented manifold M of dimension n, and if E has a section s over M \ {x1, ..., xk},
then the Euler number is the sum of the local degrees of s at x1, ..., xk,∫

M
e(TE) = ∑ locdegxj(s).



14 1. VECTOR BUNDLES

Let V : M → TM be a vector field on a manifold M of dimension n with isolated
zeros x1, ..., xk. Then rank(TM) = n and we can consider the (n− 1)-sphere bundle
S(TM) of TM. Now the function

sV : M→ S(TM), x 7→ V(x)
‖ V(x) ‖ ,

is a section of the unit tangent bundle of M relative to some Riemannian metric on
M, and it is defined on M \ {x1, ..., xk}. We define the index of the vector field V in
xj as indxj V = locdegxj sV . Then the following theorem follows

THEOREM 1.14. (Hopf Index Theorem) The sum of the indexes of a vector field V on
a compact oriented manifold M is the Euler characteristic of M,

k

∑
j=1

indxj V =
∫

M
eTM = χ(M).

REMARK 1.15. The sum of the indexes of a vector field V seems to depend
strictly from the differentiable structure on the manifold M, but the Hopf index
theorem reveals that it is equal to the Euler characteristic, so it depends only on the
topology of M. Recall that the Euler characteristic depends only on the topology
because by De Rham’s theorem there is an isomorphism between De Rham coho-
mology and singular homology.



CHAPTER 2

The Complex Analytic Viewpoint

Let E be a complex vector bundle over a real manifold M.

DEFINITION 2.1. An hermitian structure h on E → M is an hermitian scalar
product hx on each fiber E(x) for any x ∈ M which depends smoothly on x. The
pair (E, h) is called an hermitian vector bundle.

EXAMPLE 2.2. Let L = O(−1) be the tautological line bundle on P1. Over a
point z = [z0 : z1] ∈ P1 the fiber Lz is the line generated by the vector (z0, z1) ∈ C2,
i.e.

Lz = {(λz0, λz1) | λ ∈ C}.
On the open set U0 = {z0 6= 0} we have a local trivialization

ϕ0 : L|U0
→ U0 ×C, (λz0, λz1) 7→ ((1 : w), λw),

where w = z1
z0

. We can define an hermitian product on the fiber as

h(λ) =
|λw|2

1 + |w|2 .

2.1. Connections

We denote by
∧p,q M⊗ E the twisted form bundle, and by Ap,q(E) its sheaf of

sections.

DEFINITION 2.3. A connection on a vector bundle E is a C-linear morphism of
shaves ∇ : A0(E)→ A1(E), which satisfies the Leibniz rule

∇( f · s) = d f ⊗ s + f · ∇(s),
for any local function f on M and any local section s of E. A section s of E is called
flat with respect to ∇ if ∇(s) = 0.

Now let∇ be a connection on E, and let a ∈ A1(End(E)). Then a acts on A0(E)
by multiplication on the form part (i.e on

∧0 M), and by evaluation on End(E)×
E→ E on the bundle part. We compute (∇+ a)( f · s) = ∇( f · s) + a( f · s) = d f ⊗
s + f · ∇(s) + da(s) = d f ⊗ s + f · (∇+ a)(s). Thus ∇+ a is again a connection.
We conclude that:
The set of all connections on a vector bundle E is an affine space over the complex vector
space A1(End(E)).
Suppose E to be the trivial bundle E = M × Cr, then a section of

∧k X ⊗ E is of
the form s = (s1, ..., sr) with si ∈ Ak

M. We can define a connection on E by the
usual Cartan differential d : A0(E) → A1(E). Any other connection is of the form
∇ = d + A, with A ∈ A1(End(E)).

15
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DEFINITION 2.4. Let (E, h) be an hermitian vector bundle. A connection∇ on
E is an hermitian connection with respect to h if for any local sections s1, s2, one has

d(h(s1, s2)) = h(∇(s1), s2) + h(s1,∇(s2)).

In what follows we consider a holomorphic vector bundle E on a complex
manifold X. In this case we have a δ-operator δ : A0(E) → A0,1(E). Using the
decomposition A1(E) = A1,0(E)⊕ A0,1(E) we can decompose the connection∇ =
∇1,0 ⊕∇0,1 with

∇1,0 : A0(E)→ A1,0(E), ∇0,1 : A0(E)→ A0,1(E).

Note that ∇( f · s) = d f ⊗ s + f · ∇(s) = (δ + δ) f ⊗ s + f · ∇(s) = δ f ⊗ s +
δ f ⊗ s + f · ∇1,0(s) + f · ∇0,1(s) = (δ f ⊗ s + f · ∇1,0s) + (δ f ⊗ s + f · ∇0,1(s)) =
∇1,0( f · s) +∇0,1( f · s). So ∇0,1 behaves similarly to δ.

DEFINITION 2.5. A connection∇ on a holomorphic vector bundle E is compat-
ible with the holomorphic structure if ∇0,1 = δ.

As for arbitrary connections for connections compatible with the holomorphic
structure we have that
The space of connections ∇ on a holomorphic vector bundle E compatible with the holo-
morphic structure forms an affine space over the complex vector space A1,0(End(E)).

THEOREM 2.6. Let (E, h) be a holomorphic vector bundle with an hermitian struc-
ture. Then there exists a unique hermitian connection ∇ that is compatible with the holo-
morphic structure. This connection is called the Chern connection.

PROOF. The problem is local, so assume E to be the trivial holomorphic vector
bundle E = X ×Cr. The connection is of the form ∇ = d + A, where A = (ai,j) is
a matrix valued one-form on X. The hermitian structure on E is given by a map H
that associates to any x ∈ X a positive definite hermitian matrix H(x) = (hi,j(x)).
Let ei be the constant unit vector considered as a section of E. Then ∇(ei) =
dei + ∑ ak,iek, and since ∇ has to be compatible with the hermitian structure we
have dh(ei, ej) = h(∑ ak,iek, ej) + h(ei, ∑ al,j)el , or in matrix form

dH = At · H + H · A.

The connection∇ is compatible with δ, so the matrix A has to be of type (1, 0). By
δH + δH = AtH + H · A we get δH = H · A, and after conjugation

A = H−1
δ(H).

Thus A and a fortiori ∇ are uniquely determined by H. ♠

REMARK 2.7. If E = L is a holomorphic line bundle, then an hermitian struc-
ture h on L is given by a positive real valued function. In this case H = (h) is a
1× 1 matrix, and δ log(h) = 1

h δ h = H−1
δ(H). So the Chern connection on L is

locally given by
∇ = d + δ log(h).

EXAMPLE 2.8. Consider the example 2.2. The hermitian metric is given by

h =
|w|2

1 + |w|2 =
ww

1 + ww
.
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We compute δ log(h) = 1+ww
ww

w
(1+|w|2)2 dw. The Chern connection is

∇ = d +
1

w(1 + |w|2)dw.

2.2. The Atiyah Class

We discuss the notion of holomorphic connection, which should not be con-
fused with the notion compatible with the holomorphic structure. This notion is
much more restrictive, but it generalize to pure algebraic setting.

DEFINITION 2.9. Let E be a holomorphic vector bundle on a complex manifold
X. A holomorphic connection on E is a C-linear of sheaves D : E → ΩX ⊗ E such
that

D( f · s) = d f ⊗ s + f · D(s),
for any local holomorphic function f on X and any local holomorphic section s of
E.

Note that if f is a holomorphic function then δ( f ) is holomorphic, in fact
δδ( f ) = −δδ( f ) = 0. Locally any holomorphic connection can be written as
D = δ + A, where A is a holomorphic section of ΩX ⊗ End(E). Thus D looks
like the (1, 0)-part of an ordinary connection. Indeed ∇ = D + δ defines an ordi-
nary connection. However the (1, 0)-part of an arbitrary connection need not to
be a holomorphic connection in general. It might map a holomorphic section of
E to a non-holomorphic section of A1,0(E). We want to introduce a cohomology
class whose vanishing decides whether a holomorphic connection on a holomor-
phic vector bundle can be found.
Let {Ui} be an open covering of X such that there are holomorphic trivializations
ψi : E|Ui

→ Ui ×Cr, and transition function ψi,j = ψiψ
−1
j : Cr → Cr. Consider the

differentials dψi,j : Cr → Cr, and the compositions ψ−1
j (ψ−1

i,j dψi,j)ψj. Since {ψi,j} is

a cocycle also {ψ−1
j (ψ−1

i,j dψi,j)ψj} is a cocycle. The class given by the Čeach cocycle

{ψ−1
j (ψ−1

i,j dψi,j)ψj} is denoted by

A(E) = {Ui,j, ψ−1
j (ψ−1

i,j dψi,j)ψj} ∈ H1(X, ΩX ⊗ End(E)),

and is called the Atiyah Class of the holomorphic vector bundle E.

PROPOSITION 2.10. A holomorphic vector bundle E admits a holomorphic connec-
tion if and only if its Atiyah class A(E) ∈ H1(X, ΩX ⊗ End(E)) is trivial.

PROOF. The ψi,j are holomorphic, so dψi,j = δψi,j. The local holomorphic con-
nection on Ui ×Cr are of the form δ + Ai, and can be glued together if and only if
ψ−1

i (δ + Ai)ψi = ψ−1
j (δ + Aj)ψj on Ui,j. Then we have

ψ−1
i δψi − ψ−1

j δψj = ψ−1
j Ajψj − ψ−1

i Aiψi.

The left hand side of this equation can be written as ψ−1
j (ψ−1

i,j δψiψ
−1
j )ψj−ψ−1

j δψj =

ψ−1
j (ψ−1

i,j δψi,j − δ)ψj = ψ−1
j (ψ−1

i,j δψi,j)ψj. The right hand side is the coboundary of

{Si ∈ Γ(Ui, Ω⊗ End(E))}, where Si = ψ−1
i Aiψi. We conclude that a global holo-

morphic connection on E exists if and only if the cocycle {Ui,j, ψ−1
j (ψ−1

i,j δψi,j)ψj} is
a coboundary, in other words if and only if the Atiyah class A(E) of E is trivial. ♠
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2.3. Curvature

Let ∇ be a connection on a vector bundle E. In general ∇ does not satisfy
∇2 = 0. The obstruction for a connection to be a differential is measured by its
curvature.
Let E be a vector bundle on a manifold M, and let ∇ : A0(E) → A1(E) be a
connection on E. We consider the natural extension∇ : Ak(E)→ Ak+1(E) defined
as follows, if α is a local k-form on M and s is a local section of E then

∇(α⊗ s) = dα⊗ s + (−1)kα ∧∇(s).

In particular the composition

F∇ = ∇ ◦∇ : A0(E)→ A1(E)→ A2(E),

is called the curvature of the connection ∇ on the vector bundle E. Note that for
any local section s of E and for any local function f on M we have F∇( f · s) =
∇(d f ⊗ s + f · ∇(s)) = d2 f ⊗ s − d f ∧ ∇(s) + d f ∧ ∇(s) + f∇(∇(s)) = f (∇ ◦
∇)(s) = f · F∇(s), so the curvature homomorphism is A0-linear.
Now let E = M×Cr be the trivial bundle, if ∇ = d is the trivial connection, then
F∇ = d2 = 0. We can write any other connection in the form ∇ = d + A where
A is a matrix of one-form on M with coefficients in End(E). If s is a section of E
we get F∇(s) = (d + A)(d + A)(s) = (d + A)(ds + A · s) = d2s + d(A · s) + A ·
ds + A(A(s)) = d(A · s) + A · ds + A(A(s)) = d(A)(s) + (−1)1(A · ds) + A · ds +
A(A(s)) = d(A)(s) + (A∧ A)(s), so the curvature homomorphism can be written
as

F∇ = d(A) + A ∧ A, where ∇ = d + A.
Note that for a line bundle A∧ A = 0, and the curvature F∇ = d(A) is an ordinary
two-form.
If a ∈ A1(M, End(E)) the two-form a ∧ a ∈ A2(M, End(E)) is given by wedge
product in the form part and composition on End(E). If ∇ is a connection then
F∇+a(s) = (∇+ a)(∇s + a · s) = ∇2s +∇(a)s + (−1)1a∇(s) + (a ∧ a)(s), so

F∇+a = F∇ +∇(a) + a ∧ a.

Let E be a holomorphic vector bundle with an hermitian structure h. One can
prove that the curvature of the Chern connection ∇ is of type (1, 1), real, and
skewhermitian.
The hermitian structure on E is locally given by a matrix H, and we know that
the Chern connection is of the form ∇ = d + H−1

∂H. So the curvature is F∇ =

d(H−1
∂H)+ (H−1

∂H)∧ (H−1
∂H) = ∂H−1

∂H+ ∂H−1
∂H+(H−1

∂H)∧ (H−1
∂H),

but the last two therms are of type (2, 0) and then vanish. We get

F∇ = ∂(H−1
∂(H)).

In particular if E is a line bundle the hermitian matrix is just a positive real function
h, in this case we have

F∇ = ∂∂ log(h).

REMARK 2.11. Let (X, g) be an hermitian manifold. Then the hermitian struc-
ture on X induces an hermitian structure on the tangent bundle TX . The curvature
of the Chern connection on TX is called the curvature of the hermitian manifold (X, g).
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If X is a Kähler manifold then the Chern connection and the Levi-Civita connec-
tion on the tangent bundle coincide, so the curvature of the Kähler manifold X is
the curvature of the underlying Riemannian manifold.

EXAMPLE 2.12. Consider again the metric h = w2

1+|w|2 over the line bundle

O(1)→ P1. Then ∂ log(h) = 1
w(1+ww)

dw, and F∇ = ∂∂ log(h) = − 1
(1+ww)2 dw∧ dw.

Now recall that the Fubini Study metric over a standard open set on P1 is given
by h = 1 + |w|2 and the corresponding Kähler form is ωFS = i

2π ∂∂log(1 + |w|2) =
∂( w

1+ww dw) = − 1
(1+ww)2 dw ∧ dw. We conclude that

ωFS =
i

2π
F∇.

REMARK 2.13. Clearly the previous assertion holds on Pn. If L is a holomor-
phic line bundle on a complex manifold X generated by global sections s0, ..., sn,
and if h is the hermitian structure induced by these sections, then h is the pull-
back of the hermitian structure on O(1) under the morphism ψL : X → Pn, x 7→
[s0(x) : ... : sn(x)]. If F∇ is the curvature of the Chern connection on L one has

i
2π F∇ = ψ∗LωFS, where ωFS is the Fubini Study form on Pn.

By the Bianchi identity ∇(F∇) = 0, for the Chern connection of a holomor-
phic hermitian bundle we have (∇(F∇))1,2 = ∂(F∇) = 0. So F∇ as an element of
A1,1(X, End(E)) is ∂-closed. So the curvature yields a Dolbeault cohomology class
[F∇] ∈ H1(X, ΩX ⊗ End(E)). The following proposition shows that this cohomol-
ogy class does not depend on the chosen hermitian structure.

PROPOSITION 2.14. For the curvature F∇ of the Chern connection on an hermitian
holomorphic vector bundle (E, h) one has

[F∇] = A(E) ∈ H1(X, ΩX ⊗ End(E)).

PROOF. Consider the following diagram

ΩX ⊗ End(E) C0({Ui}, ΩX ⊗ End(E)) C1({Ui}, ΩX ⊗ End(E))

A1,0(End(E)) C0({Ui}, A1,0(End(E))) C1({Ui}, A1,0(End(E)))

C0({Ui}, A1,1(End(E))) C0({Ui}, A1,1(End(E)))

δ1

G

∂
δ0

Let {Ui} be a trivializing covering for E with isomorphisms ψi : E|Ui
→ Ui ×

Cr. With respect to the trivialization on Ui the hermitian structure h is given by
an hermitian matrix Hi. The curvature of the Chern connection on E is given by
F∇|Ui

= ψ−1
i (∂(H−1

i ∂Hi))ψi. So

δ0(F∇) = {Ui, ψ−1
i (∂(H−1

i ∂Hi))ψi} = ∂{Ui, ψ−1
i (H−1

i ∂Hi)ψi},

because the ψi are holomorphic. Now one has to show that

G({Ui,j, ψ−1
j (ψ−1

i,j dψi,j)ψj}) = δ1({Ui, ψ−1
i (H−1

i ∂Hi)ψi}),
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because the left hand side is the Atiyah class of E. This follows from the definition
of δ1, the equality ψt

i,j Hiψi,j = Hj, and ∂ψi,j = 0. ♠

2.4. Another definition of Chern classes

Let E→ X be a rank r vector bundle with a connection∇. Consider the degree
j homogeneous polynomials Pj defined as

det(Id + Y) = 1 + P1(Y) + ... + Pr(Y).

One can prove that these polynomials are invariant, and we define the Chern
forms of E with respect to ∇ as

cj(E,∇) = Pj(
i

2π
F∇) ∈ A2k(X).

Their cohomology classes are independent from the connection, we define the
Chern classes of E as

cj(E) = [cj(E,∇)].
Note that c0(E) = 1 and cj(E) = 0 for j > rank(E).

REMARK 2.15. The following two remarks are fundamental in the theory of
Chern classes.

• Let E be an hermitian bundle and let ∇ be an hermitian connection on
E. With respect to the hermitian trivialization of E the curvature satisfies
F∗∇ = Ft

∇ = −F∇. So i
2π F∇ = i

2π Ft
∇. We get c(E,∇) = det(Id + i

2π F∇) =

det(I + i
2π Ft
∇) = det(Id + i

2π F∇) = c(E,∇), we see that c(E,∇) is a real
form and

c(E) ∈ H∗(M, R).

• If E is a holomorphic vector bundle over a complex manifold X we can
choose an hermitian connection ∇ that is compatible with the holomor-
phic structure on E. Since in this case the curvature F∇ is a (1, 1)-form
then also the Chern forms cj(E,∇) are of type (j, j).
Furthermore if X is compact Kähler we have the Hodge decomposition at
level of cohomology H2j(X, C) =

⊕
p+q=2j Hp,q(X). Then for the Chern

classes we get

cj(E) ∈ H2j(X, R) ∩ H j,j(X).

Recall that for the first Chern class there exists another definition. Consider
the exponential sequence

0 7→ Z→ OX → O∗X 7→ 0,

and the long exact sequence in cohomology

...→ H1(X,OX)→ H1(X,O∗X)
c1→ H2(X, Z)→ ...

since H1(X,O∗X) ∼= Pic(X) we get a map

c1 : Pic(X)→ H2(X, Z),

and the image c1(L) ∈ H2(X, Z) is the first Chern class of the line bundle L.
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2.5. Comparison with the definitions of First Chern Class

For a holomorphic line bundle L on a complex manifold X we have three def-
initions of Chern class:

(1) Using the curvature c1(L) = [c1(L,∇)] = [ i
2π F∇] where∇ is a connection

on L.
(2) Via the Atiyah class A(L) ∈ H1(X, ΩX) = H1(X, ΩX ⊗ End(E)).
(3) Via the exponential sequence and the boundary map H1(X,O∗X)→ H2(X, Z).

By proposition 2.14 the first two definitions are compatible. Indeed we can choose
on L an hermitian structure and the Chern connection ∇, so A(L) = [F∇]. If X is
compact Kähler we can embed H1(X, ΩX) = H1,1(X) ⊆ H2(X, C), so we get

c1(L) = [
i

2π
F∇] =

i
2π

A(L).

We consider the comparison between (1) and (3) in the more general context of a
complex line bundle L on a differentiable manifold M. In this case L is describer
by a cocycle {Ui,j, ψi,j} ∈ H1(M, C∗C). The smooth exponential sequence

0 7→ Z→ CC → C∗C 7→ 0

induce a boundary isomorphism δ : H1(M, C∗C) → H2(M, Z) because CC is a soft
sheaf. Now H2(M, Z) maps to H2(M, R) ⊆ H2(M, C), then we can compare c1(L)
and δ(L).

PROPOSITION 2.16. Let L be a complex line bundle on a differentiable manifold M.
The image of δ(L) under the map H2(M, Z)→ H2(M, C) is equal to −c1(L).

PROOF. We consider the resolutions of the constant sheaf C over M given by
de Rham and Čeach complexes.

C C0({Ui}, C) C1({Ui}, C) C2({Ui}, C)

A0 C1({Ui}, A0) C2({Ui}, A0)

A1 C0({Ui}, A1) C1({Ui}, A1)

A2 C0({Ui}, A2)

d

δ1

δ0

i

δ2

d

Let M =
⋃

Ui be an open covering trivializing L, let {ψi} be the trivializing iso-
morphisms and ψi,j = ψiψ

−1
j are sections of C∗C(Ui,j). We can choose a branch

of the logarithm for any Ui,j and ϕi,j ∈ CC(Ui,j) with exp(2πiϕi,j) = ψi,j. The
boundary map δ(L) = δ{ψi,j} is given by {Ui,j,k, ϕj,k − ϕi,k + ϕi,j} which takes
values in the locally constant sheaf Z. Let ∇ be a connection on L, locally with
respect to ψi we have∇ = d + Ai. The compatibility condition yields ψ−1

i,j d(ψi,j) +
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ψ−1
i,j Aiψi,j = Aj, so Aj − Ai = ψ−1

i,j d(ψi,j) = (2πi)d(ϕi,j) because rank(L) = 1 im-

plies ψ−1
i,j Aiψi,j = Ai. Since L is a line bundle for the curvature we have F∇ =

d(Ai) + Ai ∧ Ai = d(Ai). We compute
• δ0(

i
2π F∇) = {Ui, i

2π d(Ai)} = d{Ui, i
2π Ai},

• δ1{Ui, i
2π Ai} = {Ui,j, i

2π (Aj − Ai)} = −d{Ui,j, ϕi,j},
• −δ2{Ui,j, ϕi,j} = −{Ui,j,k, ϕjk − ϕik + ϕij}.

This conclude the proof. ♠



CHAPTER 3

The Grothendieck Riemann Roch Theorem

3.1. Segre and Chern Classes from the pure algebraic viewpoint

Let L be a line bundle on a scheme X. For any subvariety Y of X the restriction
L|Y of L on Y is isomorphic to OY(D) for some Cartier divisor D on Y. The Weyl
divisor [D] determines an element in Ak−1X, which we denoted by c1(L) ∩ [Y] =
[D]. Extending by linearity we obtain a morphism

c1(L) : AkX → Ak−1X, α 7→ c1(L) ∩ α.

Let E → X be a rank r + 1 vector bundle on the scheme X, let P(E) be the projec-
tive bundle of lines in E, and let π : P(E)→ X be the projection. On P(E) there is
a canonical line bundle O(1).
Let α ∈ AkX be a k-cycle on X, then π∗α is a k+ r-cycle on P(E) and π∗(c1(O(1))r+i ∩
π∗α) is a (k− i)-cycle on X. We define a morphism

AkX → Ak−iX, α 7→ si(E) ∩ α,

where si(E) ∩ α = π∗(c1(O(1))r+i ∩ π∗α). The morphisms si(E) are called the
Segre Classes of E. Note that if E is a line bundle on X then P(E) = X and
OE(−1) = E, so OE(1) = Ĕ and

s1(E) ∩ α = c1(OE(1)) ∩ α = −c1(E) ∩ α.

Now consider the formal power series

st(E) =
∞

∑
i=0

si(E)ti = 1 + s1t + s2t2 + ... + sntn + ...

and let

ct(E) =
∞

∑
i=0

ci(E)ti = 1 + c1t + c2t2 + ... + cntn + ...

be its inverse power series. One can prove that ct(E) is a polynomial called the
Chern Polynomial of E. Explicitly we have

• c0(E) = 1,
• c1(E) = −s1(E),
• c2(E) = s1(E)2 − s2(E),
• cn(E) = −s1(E)cn−1(E)− s2(E)cn−2(E)− ...− sn(E).

We interpret the si and the ci as endomorphisms of the Crow ring A∗X, and we
write ci(E) ∩ α for the element of Ak−iX obtained by applying the endomorphism
ci(E) to α ∈ AkX.
We define the total Chern class as the sum

c(E) = 1 + c1(E) + ... + cr(E), r = rank(E),

23
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then c(E) ∩ α = ∑r
i=0 ci(E) ∩ α. In the same way we define the total Segre class as

s(E) = 1 + s1(E) + ... + sr(E) + ...,

and s(E) ∩ α = ∑∞
i=0 si(E) ∩ α.

The Chern classes of a rank r vector bundle satisfy the following properties.

(1) (Vanishing) ci(E) = 0 for all i > r,

(2) (Whitney sum) If 0 7→ E
′ → E → E

′′ 7→ 0 is a short exact sequence of
vector bundles on X, then

ct(E) = ct(E
′
) · ct(E

′′
).

Suppose that E has a filtration

E = Er ⊇ Er−1 ⊇ ... ⊇ E0 = {0},

such that the quotient Li = Ei/Ei−1 are line bundle. Then the Chern polynomial
of E i factored as

ct(E) =
r

∏
i=0

(1 + αit),

where αi = c1(Li) are called the Chern roots of E. Since if the formula holds in
this special case and the relation among the bundles are preserved by flat pull-
back, the formula holds in general. From this fact we can deduce the following
properties

• ci(Ĕ) = (−1)ic1(E),
• c1(

∧r E) = c1(E).

The Chern Character and the Todd Class of E are defined as

ch(E) =
r

∑
i=1

exp(αi), td(E) =
r

∏
i=1

αi
1− exp(αi)

.

If 0 7→ E
′ → E→ E

′′ 7→ 0 is an exact sequence of vector bundles we have

ch(E) = ch(E
′
) + ch(E

′′
), td(E) = td(E

′
) · td(E

′′
),

for tensor product we have

ch(E⊗ E
′
) = ch(E) · ch(E

′
).

The Chern character and the Todd class of a smooth scheme X are defined as

ch(X) = ch(TX), td(X) = td(TX).

EXAMPLE 3.1. Consider the case rank(E) = 2. The Chern polynomial is

ct(E) = (1 + α1t)(1 + α2t) = 1 + (α1 + α2)t + α1α2t2 = 1 + c1t + c2t2.

Then the relations among the Chern classes and the Chern roots are c1 = α1 +
α2, c2 = α1α2. The Chern character is of the form ch(E) = exp(α1)+ exp(α2) = 1+

α1 +
α2

1
2 +

α3
1

6 + ...+ 1+ α2 +
α2

2
2 +

α3
2

6 + ... = 2+ 1
2 (c

2
1− 2c2)+

1
6 (c

3
1− 3c1c2 + 3c3)+ ...

and for the Todd class td(E) = 1 + 1
2 c1 +

1
12 (c

2
1 + c2) + ...
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EXAMPLE 3.2. Consider the Euler exact sequence

0 7→ OPn → OPn(1)⊕(n+1) → TPn 7→ 0.

For the Chern polynomial of the tangent bundle we have ct(TPn) = ct(OPn(1)⊕(n+1)) =

(ct(OPn(1)))⊕(n+1) = (c0 + c1t)⊕(n+1) = (1 + Ht)⊕(n+1), where H is the hyper-
plane section of Pn.

EXAMPLE 3.3. Let i : X → Y be a closed embedding of codimension d of
smooth varieties. We have the exact sequence

0 7→ TX → TY|X → NX/Y 7→ 0,

and ct(TX) = ct(TY|X)/ct(NX/Y). Consider the case X = D1 ∩ ... ∩ Dd i.e. X
is intersection of d divisors on Y. Then the normal bundle has a decomposition
NX/Y = (OX(D1)⊕ ...⊕OX(Dd))X . So

ct(NX/Y) =
d

∏
i=1

ct(OX(Di)) =
d

∏
i=1

(1 + c1(OX(Di)|X)t).

As instance take Y = PN and Di divisors of degree mi, then ct(NX/Y) = ∏d
i=1(1 +

mi Ht)), and

ct(TX) = ct(TY|X)/ct(NX/Y) = (1 + Ht)N+1/
d

∏
i=1

(1 + mi Ht).

Let X ⊆ P3 be a smooth quartic curve complete intersection of two smooth quadric
surfaces Q1 and Q2. Then ct(TX) = (1+ Ht)4/(1+ 2Ht)2 and 4H + c1(TX) = 16H.
Taking degrees we get deg(c1(TX)) = 0, on the other hand c1(TX) = −c1(KX)
and since X is a smooth quartic curve on a quadric surface Q1 in Pic(Q1) it is
a divisor of type (a, b) = (2, 2), then its genus is g = (a − 1)(b − 1) = 1, and
deg(KX) = 2g− 2 = 0.

EXAMPLE 3.4. If C is an effective Cartier divisor an a surface X, then C2 =
c1(N)|C, where N is the normal bundle of C in X. If C and X are smooth, then
N = TX|C/TC, so C2 = (c1(TX|C) − c1(TC))|C and C · (C + K) = 2g − 2 (adjunc-
tion formula), where K = −c1(TX) is the canonical class of X and g is the genus of C.
If X is a smooth hypersurface of degree d in P3 we get C2 = 2g− 2− deg(K)deg(C) =
2g− 2+ (4− d)deg(C), because KX = OX(d− 4). In particular for a line L one has
L2 = 2− d, and a surfaces admits lines with negative self-intersection if and only
if deg(X) ≥ 3.

EXAMPLE 3.5. Let ν : Pn → PN , with N = (n+d
d )− 1 be the Veronese embed-

ding induced by OPn(d), and let H be the hyperplane class of Pn. Then

ct(N) = (1 + dHt)N+1/(1 + h)n+1.

In particular for the Veronese surface V ⊆ P5 we get (1 + c1t + c2t2 + c3t3)(1 +
ht)3 = 1 + 12ht + 60h2t2, then c3 = 0, 3h + c1 = 12h, 3h2 + 3c1h + c2 = 60h2, and
c3 = 0, c1 = 9h, c2 = 30h2. The Chern polynomial of the normal bundle NV/P5 is

ct(N) = 1 + 9ht + 30h2t2.
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3.1.1. Riemann Hurwitz Theorem. Let φ : X → Y be a morphism of smooth
varieties of the same dimension dim(X) = dim(Y) = n. Let R(φ) be the subset of
points of X where the induced map on the tangent spaces is not an isomorphism.
Clearly the scheme structure on R(φ) is given locally by the vanishing of the Jaco-
bian determinant, R(φ) is the zero scheme of the map

∧n d f :
∧n TX →

∧n φ∗TT ,
or equivalently the zero scheme of a section of the line bundle

∧n φ∗TY ⊗
∧n Tˇ

X .
Then

[R(φ)] = (c1(φ
∗TY)− c1(TX)) ∩ [X].

As instance take n = 1 and degrees of both sides. We get deg(R(φ)) = deg(φ)(2−
2gY)− (2− 2gX), and the Riemann-Hurwitz formula

2gX − 2 = deg(φ)(2gY − 2) + deg(R(φ)).

3.2. Algebraic and Analytic definitions of first Chern Class

Let D ⊆ X be a smooth cycle of codimension one in a compact complex
manifold X of dimension n. We can interpret D as real codimension two sub-
variety of X, by Poincaré duality its fundamental class [D] defines a two form in
H2(X, R). We can associate to D the line bundleOX(D). From the algebraic view-
point the first Chern class of OX(D) is the class [D], but we can also consider the
Chern class c1(OX(D)) from the analytic viewpoint. A priori it is not clear that
c1(OX(D)) = [D].

THEOREM 3.6. Let X be a compact complex manifold and let D ⊆ X be an irreducible
cycle. The fundamental class [D] of D is in fact contained in the image of H2(X, Z) →
H2(X, R). Consider the line bundle OX(D) associated to D. Then the algebraic and the
analytic definitions of Chern class are the same, i.e.

c1(OX(D)) = [D].

PROOF. We consider the Chern connection ∇ on L = OX(D) with respect to
a hermitian structure h. To prove that [ i

2π F∇] = c1(L) is equal to [D] one has to
show that for any closed real form α ∈ H2n−2(M, R)∫

D
α =

i
2π

∫
X

F∇ ∧ α,

where n is the complex dimension of X. Fix a trivializing covering ψi : L|Ui
→

Ui × C. On Ui the hermitian structure h is given by the function hi : Ui → R+,
h(s(x)) = h(s(x), s(x)) = hi(x)|ψi(s(x))|2 for any local section s.
Let s be a holomorphic section on Ui vanishing on D, then ∂∂ log(h ◦ s) = ∂∂ log(hi)

on Ui \ D, where we used the fact that ψi holomorphic implies ∂∂ log(ψi ◦ s) =

∂∂ log(ψi ◦ s) = 0.
Let s ∈ H0(X, L) be the global holomorphic section defining D i.e. D = {x ∈
X | s(x) = 0}, and denote with Dε = {x ∈ X | |h(s(x)) < ε|} the tubular neighbor-
hood of D of radius ε. Then

i
2π

∫
X F∇ ∧ α = limε→0

i
2π

∫
X\Dε

F∇ ∧ α = limε→0
i

2π

∫
X\Dε

∂∂ log(h ◦ s) ∧ α =

limε→0
i

4π

∫
X\Dε

d(∂ − ∂) log(h ◦ s) ∧ α = limε→0
i

4π

∫
δDε

(∂ − ∂) log(h ◦ s) ∧ α, in
the latter equality we use Stokes theorem and dα = 0.
On Ui we can write (∂ − ∂)log(h ◦ s) = (∂ − ∂)log(ψi ◦ s) + (∂ − ∂)log(ψi ◦ s) +
(∂− ∂)log(hi) = ∂ log(ψi ◦ s)− ∂ log(ψi ◦ s) + (∂− ∂)log(hi) = (2i)Im(∂ log(ψi ◦
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s)) + (∂ − ∂)log(hi). Note that hi is bounded from below by some δ > 0 so the
second summand does not contribute to the integral for ε 7→ 0. Thus it suffices to
show

limε→0
1

2π

∫
δDε∩Ui

m(∂ log(ψi ◦ s)) ∧ α = −
∫

D∩Ui

α.

Since this is a local statement we may assume that Dε is given by z1 = 0 in a
polydisc B. Furthermore |h(z1)| = hi|zi|, where h is given by hi in Ui. So δDε =

{z | |z1| = ε
hi
}. Moreover ∂ log(ψi ◦ s) = ∂ log(z1) = dz1

z1
and α = f (dz2 ∧ ... ∧

dzn) ∧ (dz2 ∧ ... ∧ dzn) + dz1 ∧ β + dz1 ∧ β. Note that ∂ log(ψi ◦ s) ∧ (dz1 ∧ β) = 0
and ∂ log(ψi ◦ s) ∧ (dz1 ∧ β) = (dz1 ∧ dz1) ∧ ( 1

z1
β) does not contribute to the inte-

gral over δDε. We compute∫
z1=0 α =

∫
f (0, z2, ..., zn)(dz2 ∧ ...∧ dzn) ∧ (dz2 ∧ ...dzn) and∫

δDε
∂ log(ψi ◦ s) ∧ α = −

∫
|h(z1)|=ε

f
z1

dz1 ∧ (dz2 ∧ ...∧ dzn) ∧ (dz2 ∧ ...dzn).
The minus sign appears as we initially integrated over the exterior domain. By
Cauchy integral formula
limε→0

∫
δDε

∂ log(ψi ◦ s) ∧ α = −limε→0
∫
|z1=ε/hi |(

∫
zi>1 f · (dz2 ∧ ... ∧ dzn ∧ dz2 ∧

...∧ dzn))
dz1
z1

= (−2πi)
∫

z1=0 f (0, z2, ..., zn)(dz2∧ ...∧ dzn ∧ dz2∧ ...∧ dzn) = −2πi
∫

z1=0 α,
so we get

limε→0
1

2π

∫
δDε

Im(∂ log(ψi ◦ s) ∧ α) = −Im(
∫

z1=0
i · α) = −

∫
z1=0

α.

♠

REMARK 3.7. In the proof we assume D smooth but the same argument can
be adjusted to the general case. Furthermore since the first Chern class and taking
the fundamental class are both linear the assertion is true for arbitrary divisor i.e.
c1(OX(∑ niDi)) = ∑ ni[Di].

3.3. Grothendieck Riemann Roch

3.3.1. Grothendieck Groups. Let A be an essentially small abelian category,
and let F be the free abelian group generated by the set of isomorphism classes
of objects in A. For each exact sequence 0 7→ A

′ → A → A
′′ 7→ 0, consider the

element [A
′
] + [A

′′
] − [A] ∈ F, and let R be the subgroup of F generated by the

elements of this form. The quotient group K(A) = F/R is called the Grothendieck
group of A.
In particular if X is a noetherian scheme, then K(X) = K(Coh(X)) is the Grothendieck
group of X. Similarly we define K1(X) as the quotient F1/R1, where F1 is the free
abelian group generated by isomorphism classes of locally free shaves on X, and
R1 is generated by the expressions [E

′
] + [E

′′
]− [E] for any short exact sequence

0 7→ E
′ → E → E

′′ 7→ 0 of locally free shaves. Clearly there is a morphism
ε : K1(X)→ K0(X), the unexpected fact is that ε is an isomorphism from a smooth
scheme X. Then if X is smooth we can compute K(X) using only locally free
shaves.
Because of the additivity property of the Chern classes, the Chern polynomial de-
fines a map

ct : K(X)→ A(X)[t],
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and the Chern character extends to a map

ch : K(X)→ A(X)⊗Q.

Furthermore K(X) has a ring structure given by (E ,F ) → E ⊗F , and ch is a ring
homomorphism.

3.3.2. Grothendieck Riemann Roch. Let f : X → Y be a morphism of smooth
schemes, then there is a ring homomorphism

f ! : K(Y)→ K(X), E 7→ f ∗E ,

for E locally free shaves. Then if f : X → Y is a proper morphism, we define an
additive map

f! : K(X)→ K(Y), F 7→∑(−1)iRi f∗(F ).
The map f ! commutes with the Chern character, however the map f! does not com-
mute with ch. A measure of which it fails to commute is the generalized Riemann-
Roch theorem of Grothendieck.

THEOREM 3.8. (Grothendieck-Riemann-Roch) Let π : X → Y be a proper morphism
of schemes with smooth base Y, then

ch(π!(E)) · td(Y) = π∗(ch(E) · td(X)),

for any E ∈ K(X), where td(Y) = td(TY) and td(X) = td(TX).

REMARK 3.9. Using the fact that the Todd class is multiplicative on exact se-
quences, we have td(TX)/td(TB) = td(Tπ), where Tπ is the relative tangent bun-
dle of π. Then we can rewrite the formula as

ch(π!(E)) = π∗(ch(E) · td(Tπ)).

Recall that if f : X → Y is a continuous map between topological spaces,
we define the higher direct image functors Ri f∗ : Ab(X) → Ab(Y) to be the right
derived functors of the direct image functor f∗, this make sense, in fact f∗ is left
exact and Ab(X) has enough injective. Furthermore for each i ≥ 0 and each E ∈
Ab(X), we have that Ri f∗E is the sheaf associated to the presheaf

V 7→ Hi( f−1V, E| f−1(V)),

on Y. In particular if π : X → Spec(k) is a morphism of X on a point, then Riπ∗E
is the sheaf Speck 7→ Hi(π−1(Spec(k)), E|π−1(Spec(k))) = Hi(X, E), and

π!(E) = ∑(−1)iRiπ∗(E) = ∑ Hi(X, E) = χ(E),

is the Euler characteristic of E . In this case we have also td(E = 1, and from
the Grothendieck-Riemann-Roch formula we get the Hirzebruch-Riemann-Roch for-
mula.

THEOREM 3.10. (Hirzebruch-Riemann-Roch) Let E be a locally free sheaf on a smooth
scheme X of dimension n, then

χ(E) = deg(ch(E) · td(TX))n,

where the expression on the right denotes the component of degree n in A(X)⊗Q.
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REMARK 3.11. (Riemann-Roch for Curves) Let X be curve and L = OX(D) be
an invertible sheaf on X. Then c1(L) = D and ch(L) = 1 + D. Furthermore
c1(TX) = −c1(KX) and td(TX) = 1 + 1

2 c1(TX) = 1− 1
2 KX . By 3.10 we have

χ(OX(D)) = deg((1 + D)(1− 1
2

K))1 = deg(D− 1
2

KX).

For OX(D) = OX we get 1 − g = h0(OX) − h0(OX(KX) = − 1
2 deg(KX), and

deg(KX) = 2g− 2. We recover the Riemann-Roch theorem for smooth curves

χ(OX(D)) = h0(OX)− h1(OX) = deg(D)− g + 1.

REMARK 3.12. (Riemann-Roch for Surfaces) Let X be smooth surface and let
OX(D) be a line bundle on X. Then c1(OX(D)) = D and ch(OX(D)) = 1 +
D + 1

2 D2. The Chern class c1 and c2 of the tangent sheaf depends only on X and
are called the Chern classes of X. Note that

c1(TX) = c1(
2∧

TX) = −c1(
2∧

ΩX) = −c1(K).

Then the Todd class is of the form td(TX) = 1− 1
2 K + 1

12 (K
2 + c2). By 3.10 we get

χ(OX(D)) =
1
2

D · (D + KX) +
1

12
(K2 + c2),

and for OX(D) = OX we have 1
12 (K

2 + c2) = χ(OX) = 1 + pa, where pa is the
arithmetic genus (on a scheme X of dimension n the arithmetic genus is defined
as pa = (−1)n(χ(OX) − 1)). Then c2 = 12(1 + pa) − K2, and we recover the
Riemann-Roch formula for surfaces

χ(OX(D)) =
1
2

D · (D− K) + pa + 1.

EXAMPLE 3.13. Let X ⊆ P4 be a smooth surface of degree d, in A(Proj4) it
is rationally equivalent to d times a plane, then X · X = d2. Consider the exact
sequence

0 7→ TX → TP4|X → N 7→ 0.

Note that ct(TP4|X) = 1 + 5Ht + 10H2t2, since Hk = 0 on X for any h ≥ 3. We
get (1 + c1t + c2t2)(1 + c1(N)t + c2(N)t2) = 1 + 5Ht + 10H2t2, and substituting
c1 = c1(T|X) = −c1(

∧2 ΩX) = −K, we have

(1− Kt + c2t2)(1 + c1(N)t + c2(N)t2) = 1 + 5Ht + 10H2t2.

Comparing the coefficients we get c1(N) = 5H + K and c2(N) = 10H2− c2 + 5H ·
K + K2. We take the degrees and note that deg(c2(N)) = d2 and deg(H2) = d. By
3.12 we know that c2 = 12(1 + pa)− K2, then c2(N) = 10H2 − 12− 12pa + 2K2 +
5HK, and taking degrees

d2 − 10d + 12pa + 12− 2K2 − 5HK = 0.

• Consider the rational cubic scroll X ⊆ P4. We can interpret X in many
ways: the projection of the Veronese surface V ⊆ P5 from a point p ∈ V,
the join in P4 of a conic and a line, the blow up of P2 at a point. We
consider this latter interpretation. If π : X → P2 is the blow up, the KX =
π∗KP2 + E, where E is the exceptional divisor. So HK = Hπ∗KP2 + HE =
−6 + 1 = −5, because KP2 = OP2(−3). Furthermore K2

X = K2
P2 − 1 = 8,
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in particular we see that the self-intersection of the canonical divisor is
not a birational invariant, in fact K2

P2 = 9. Now we verify the above
formula d2 − 10d + 12pa + 12− 2K2 − 5HK = 9− 30 + 12− 16 + 25 = 0.
• Let X ⊆ P4 be a K3 surface. Then KX = 0 and q = 0 implies that pa =

pg = 1. Substituting in the above formula we get d2 − 10d + 24 = 0 .
Then if X is a K3 surface in P4, then deg(X) = 4 or deg(X) = 6. As
instance if X is a quartic surface in P3 the KX = OX(4− 3− 1) = OX
and X is K3 of degree 4, if X is a complete intersection of a quadric and a
cubic hypersurface in P4, the deg(X) = 3 · 2 = 6, and KX = OX(2 + 3−
4− 1) = OX , so X is K3 of degree 6.
• Let X be an abelian surface in P4. Then pa = −1, pg = 1 and KX = 0.

Its irregularity is q = pg − pa = 2. Then d2 − 10d− 12 + 12 = 0 implies
d = 10. An abelian surface in P4 must have degree 10. Horrocks and
Mumford have shown that such abelian surfaces exist.

REMARK 3.14. (Riemann-Roch for 3-folds) Let X be a smooth projective 3-fold
with Chern classes c1, c2, c3, and let OX(D) be an invertible sheaf on X. We have
ch(OX(D)) = 1 + c1 +

1
2 c2

1 +
1
6 c3

1 = 1 + D + 1
2 D2 + 1

6 D3. Then td(TX) = 1 +
1
2 c1 +

1
12 (c

2
1 + c2) +

1
24 c1c2, and since c1(TX) = c1(

∧3 TX) = −c1(KX) = −K we
get td(TX) = 1− 1

2 K + 1
12 (K

2 + c2) +
1

24 c1c2. By 3.10 we get

χ(OX(D)) =
1
6

D3 − 1
4

KD2 +
1

12
D(K2 + c2) +

1
24

c1c2,

in particular for OX(D) = OX , the formula yields χ(OX) =
1

24 c1c2, so

1− pa =
1

24
c1c2.

Substituting the latest expression one has χ(OX(D)) = 1
6 D3 − 1

4 KD2 + 1
12 DK2 +

1
12 Dc2 + 1− pa, so

χ(OX(D)) =
1

12
D · (D− K) · (2D− K) +

1
12

D · c2 + 1− pa.

In particular if X is a Calabi-Yau 3-fold, since its canonical sheaf is trivial we get a
simplified formula

χ(OX(D)) =
1
6

D3 +
1

12
Dc2 + 1− pa.

3.4. The Atiyah-Singer Index Theorem

Let D : Γ(E) → Γ(F) be an elliptic differential operator between vector bun-
dles E and F on a compact oriented differentiable manifold X of dimension n.

(1) The topological index γ(D) of the operator D is ch(D)Td(X)[X], where
• Td(X) is the Todd class of X,
• ch(D) is equal to ϕ−1(ch(d(p∗E, p∗F, σ(D)),
• ϕ is the Thom isomorphism from Hk(X, Q) to Hn+k(B(X)/S(X), Q),
• B(X) is the unit ball bundle of the cotangent bundle of X, and S(X)

is its boundary, and p is the projection to X.
• ch is the Chern character from K-theory K(X) to the rational coho-

mology ring H(X, Q),
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• d(p∗E, p∗F, σ(D)) is the ”difference element” of K(B(X)/S(X)) as-
sociated to two vector bundles p∗E and p∗F on B(X) and an isomor-
phism σ(D) between them on the subspace S(X),
• σ(D) is the symbol of D.

(2) The elliptic differential operator D has a pseudoinverse, it is a Fredholm
operator. Its analytic index is defined as the difference between the finite
dimension of Ker(D) and the finite dimension Coker(D) i.e.

Index(D) = dimKer(D)dimCoker(D) = dimKer(D)dimKer(D∗).

THEOREM 3.15. (Atiyah-Singer) Let D : Γ(E) → Γ(F) be an elliptic differential
operator between vector bundles E and F on a compact oriented differentiable manifold X
of dimension n. Then the analytic index and the topological index of D are equal,

Index(D) = γ(D).

REMARK 3.16. The Grothendieck-Riemann-Roch theorem and the Hirzebruch-
Riemann-Roch theorem can be recovered by the Atiyah-Singer theorem by consid-
ering the appropriate elliptic differential operators. As instance for the Hirzebruch-
Riemann-Roch theorem one has to consider the Laplacian ∆∂E

.

3.5. Grassmannians and The Universal Bundle

Let f : M→ N be a map between manifolds. If E is a vector bundle on N, then
the pullback f−1E is a vector bundle on M less twisted than E. We want to find a
vector bundle so twisted that any bundle is a pullback of this universal bundle.
Let V be a C-vector space of dimension n, and let Gk(V) be the Grassmannian of
codimension k subspaces of V. Recall that on Gk(V) we have the universal bundle
S, the tautological bundle V̂, and the quotient bundle defined by the sequence

0 7→ S→ V̂ → Q 7→ 0.

One can prove that

• As a ring H∗(Gk(V)) =
R[c1(S),...,cn−k(S),c1(Q),...,ck(Q)]

(c(S)c(Q)=1) ,
• the Chern classes c1(Q), ..., ck(Q) of the quotient bundle generate the co-

homology ring H∗(Gk(V)),
• for a fixed k and a fixed j there are no polynomial relations of degree j

among c1(Q), ..., ck(Q) if dim(V) is large enough.

LEMMA 3.17. Let E be a rank r complex vector bundle over a differentiable manifold
M, suppose that M admits a finite good cover. Then there exists on M finitely many
smooth sections of E which span the fiber at every point.

PROPOSITION 3.18. Let E be a rank r complex vector bundle over a differentiable
manifold M of finite type. Suppose there are r global sections of E which spans the fiber at
every point. Then there is a map f : M → Gr(Cn) to some Grassmannian Gr(Cn) such
that E = f−1Q, where Q is the universal quotient bundle of Gr(Cn).

PROOF. We consider s1, ..., sr spanning sections of E, and let V be the C vector
space generated by s1, ..., sr. Clearly the evaluation map

evp : V → Ep
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is surjective for any p ∈ M. So Ker(evp) is a codimension r subspace of V i.e. a
point of the Grassmannian Gr(V). The fiber of the quotient bundle Q → Gr(V)
over the point Ker(evp) is the space V/Ker(evp) = Ep. We define a map

fE : M→ Gr(V), p 7→ Kerevp ,

then the quotient bundle Q pulls back to E via fE. ♠

REMARK 3.19. The map fE is called a classifying map for the bundle E. One can
show that the homotopy class of the map fE is uniquely determined by the vector
bundle E.

We denote by Vectr(M, C) the set of isomorphism classes of rank r complex vector
bundles on M, and by [X, Y] the set of homotopy classes of maps between X and
Y. Then for n sufficiently large there is a well defined map

ρ : Vectr(M, C)→ [M, Gr(C
n)], E 7→ fE.

Furthermore this is a bijective correspondence. In fact for n sufficiently large the map

ψ : [M, Gr(C
n)]→ Vectr(M, C), f 7→ f−1E

is the inverse of ρ.
Now we will show that the Chern classes are the only cohomological invariants of
a smooth complex vector bundles. We think

Vectr(−, C), H∗(−) : (Manifolds)→ (Sets),

as functors from the category of manifolds to the category of sets.

THEOREM 3.20. Every natural transformation from the isomorphism classes of com-
plex vector bundles over a manifold of finite type to the de Rham cohomology can be given
as a polynomial in the Chern classes.

PROOF. Let ϕ be a natural transformation between Vectr(−, C) and H∗(−) in
the category of manifolds of finite type. By the naturality of ϕ, if E is a rank r
complex vector bundle over M and fE : M → Gr(Cn) is a classifying map for
E, then ϕ(E) = ϕ( f−1

E Q) = f ∗E ϕ(Q). Since the cohomology of the Grassmannian
Gr(Cn) is generated by the Chern classes of Q, then ϕ(Q) can be written as ϕ(Q) =
Pϕ(c1(Q), ..., cr(Q)), for some polynomial Pϕ depending on ϕ. Finally we get

ϕ(E) = f ∗E ϕ(Q) = Pϕ( f ∗Ec1(Q), ..., f ∗Ecr(Q)) = Pϕ(c1(E), ..., cr(E)).

♠

REMARK 3.21. Similar results hold for real vector bundles. Note that one can
define the Chern class cj(E) as f ∗Ecj(Q). Finally if M does not have a finite good
cover one can repeat the preceding argument considering the infinite Grassman-
nian Gr(V∞), the evaluation map evp : V∞ → Ep 7→ 0. One gets a bijective
correspondence

Vectr(M, C)→ [M, Gr(C
∞)],

using the fact that the cohomology ring of the infinite Grassmannian is the free
polynomial algebra

H∗(Gr(C
∞)) = R[c1(Q), ..., cr(Q)].
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