Fermat’s Last Theorem over Finite Fields
Schur’s theorem, and Ramsey graphs

Alex Massarenti

Abstract

Fermat’s Last Theorem (FLT) says that 2™ 4+ y™ = z™ has no nontrivial integer solutions
when n > 2. Over finite fields the story changes dramatically: for a fixed exponent n, the same
equation does have nontrivial solutions in sufficiently large finite fields. We build the necessary
background on fields and finite fields, introduce Schur’s theorem in Ramsey theory, prove it via
monochromatic triangles in edge-colored complete graphs, and then use it to produce solutions
to FLT modulo primes.

1  Warm-up: the classical Fermat’s Last Theorem

Theorem 1 (Fermat’s Last Theorem). For integers n > 2, the Diophantine equation

n

" +y"t =z
has no nontrivial solutions in nonzero integers x,y, z.

Remark 1. When n = 2 there are infinitely many solutions (Pythagorean triples), e.g. 32 4 42
The theorem says this phenomenon stops completely for n > 2 over the integers.

The same-looking equation behaves very differently over finite number systems.

2 Fields and finite fields

Definition 1. A field is a set K with two operations + and - such that:
o (K,+) is an abelian group with identity 0;

o (K \ {0},-) is an abelian group with identity 1;
o multiplication distributes over addition.

Examples: Q,R, C.

2.1 Prime fields F,
Fix a prime p. The field ), can be realized as integers modulo p:
F,=Z/pZ ={0,1,2,...,p—1}

with addition and multiplication performed modulo p.

InF,: 4+5=2(mod?7), 3-5=1(mod 7).
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2.2 The multiplicative group is cyclic

Theorem 2. For a prime p, the nonzero elements IF; =T, \ {0} form a cyclic group of order p—1
under multiplication.

Remark 2. So there is a generator g € F) such that every nonzero element is g* for some k (mod

p—1).

2.3 The nth-power map

Fix n > 1. Consider the map
on Ty =Ty, on(t) =t".

If t = ¢g¥, then t" = ¢g™* so ¢, acts on exponents by multiplication by n modulo p — 1.
Proposition 1. Let d = ged(n,p — 1). Then the image (F;)" = {t" : t € F;} is a subgroup of
index d in ¥ . Equivalently, ¥ splits into d cosets of (F;)".

2.4 A very easy reason FLT can fail in F,

Proposition 2 (When ged(n,p — 1) = 1, FLT collapses to « + y = z). If ged(n,p — 1) =1, then
t = t" is a bijection on Fy (and extends to a bijection on [F,). Hence z" + y™ = 2" has many
nontrivial solutions in .

Proof. 1f ged(n,p — 1) = 1, there exists m with nm = 1(mod ()p — 1). Then (t")™ = t"" =t for all
t € F, sot— t" is invertible. Now pick any nonzero a,b € F), with a + b # 0 and set

x=a", y=0b", z=(a+b™
Then 2" =a, y" =0b, and 2" =a + b, so 2" + ¢y = 2" ]
Remark 3 (A concrete example). In F5 with n = 3, we have ged(3,4) = 1. Indeed,
14+13=2 (mod 5), 3*=27=2 (mod 5),

so 13 4+ 13 = 33 gives a nontrivial solution.

3 Schur’s theorem

3.1 Colorings and monochromatic equations

Definition 2. An r-coloring of {1,2,..., N} is a function
x:{1,2,...,N} =- {1,2,...,7}.
A triple (z,vy, z) is monochromatic if x(z) = x(y) = x(2).

Theorem 3 (Schur’s theorem). For every integer r > 1 there exists N such that every r-coloring of
{1,2,..., N} contains a monochromatic solution to

r+y==z.



3.2 Schur numbers

Definition 3. Define S(r) to be the smallest N with the Schur property: every r-coloring of
{1,..., N} contains a monochromatic triple (z,y, z) with x +y = z.

Remark 4. Some sources use the shifted convention s(r) = S(r) — 1, the largest M for which
{1,..., M} can be colored with r colors without a monochromatic = + y = z. With our convention,
the known values are

S(1)=2, S(2)=5, S(3)=14, S(4) =45 S(5) = 16L.

4 Ramsey graph theory

4.1 Complete graphs and edge colorings

Let Ky be the complete graph on vertices {1,...,N}. An r-edge-coloring assigns to each edge
{i,7} one of r colors.

Definition 4. The multicolor Ramsey number R,.(3) is the smallest N such that every r-edge-coloring
of Ky contains a monochromatic triangle.

Remark 5. For intuition:
R2(3) =6 (any red/blue coloring of edges of K¢ has a monochromatic triangle),
and
R3(3) =17 (the exact value for three colors).
4.2 A picture: K5 can avoid monochromatic triangles in two colors

The following is a classic red/blue coloring of K5 with no monochromatic triangle: color a 5-cycle
red and the remaining diagonals blue.
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Figure 1: K5 can be edge-colored with two colors without a monochromatic triangle, so Ra(3) > 5.

4.3 A picture idea behind Ry(3) =6

Pick a vertex v in Kg. Among the 5 edges from v, at least 3 share a color (say red). If any edge
among those 3 neighbors is red, we get a red triangle; otherwise all three connecting edges are blue,
giving a blue triangle.



Figure 2: The standard idea proving Rs(3) = 6.

5 Proof of Schur’s theorem
Now we prove Schur’s theorem using monochromatic triangles.
Theorem 4 (Schur from Ramsey). For every r > 1,
S(r) < Ry(3) — 1.
In particular, S(r) exists (is finite) for every r.
Proof. Let N = R,(3), and consider an arbitrary r-coloring
x:{L,2,....N—-1} = {1,2,...,r}.
We use y to define an r-edge-coloring X’ of the complete graph Ky on vertices {0,1,..., N — 1} by
X' ({i. i) =x(i—j)  @#4).

By definition of N = R,.(3), the edge-colored Ky contains a monochromatic triangle with vertices
1 < j < k. That means

x(j—i)=x(k—j)=x(k—1).
Set x =j—i,y=k—j,and z = k—i. Then z,y,z € {1,..., N — 1}, they share the same color, and
r+y=G—-i)+(k—j)=k—i=z

So {1,...,N — 1} contains a monochromatic solution to x + y = z under y. Since x was arbitrary,
this proves S(r) < N — 1. O

6 Back to finite fields: FLT over F,

We now explain a theorem (going back to Schur’s 1916 ideas) showing that for each exponent n, the
Fermat equation has nontrivial solutions modulo sufficiently large primes.



G — i) 1 N

i X(k — i) k

r=j—t,y=k—j, z2=k—1
and x +y =z

Figure 3: A monochromatic triangle in Ky forces a monochromatic solution to x + y = z.

6.1 Coloring by nth-power residue classes

Fix n > 3 and a prime p. Let H = (F,7)" be the subgroup of nth powers, and let
F;; =CiuCyld---UCy

be its decomposition into cosets, where d = [F : H] = ged(n,p — 1).
Define a coloring of the integers {1,2,...,p — 1} by

x(a) = the coset C; containing a € F.

This is an d-coloring (and note d < n always).

6.2 Schur’s “finite-field FLT” theorem
Theorem 5 (A finite-field FLT statement (Schur)). Fiz n > 3 and let p be a prime. If
p—1>S5(d) whered=ged(n,p—1),

then the equation
n

" +y"t =z
has a nontrivial solution in F, (with z,y,z #0).
Proof. Consider the d-coloring x of {1,...,p — 1} by cosets of H = (F;)". Since p —1 > S(d),
Schur’s theorem gives a,b,c € {1,...,p — 1} such that
a+b=c (asintegers) and x(a) = x(b) = x(c).

The last condition means a, b, ¢ lie in the same coset uH for some u € F,;. So there exist a, 3,y € F);
with
a = ua", b=up", c=uwy" inF).

Reducing a + b = ¢ modulo p gives ua™ + u" = uy" in F),. Since u # 0, divide by u to obtain

a’ + gt ="
with o, 8,7 # 0. This is a nontrivial solution in [F),. O
Remark 6 (A clean special case). If p = 1(mod n), then d = ged(n,p — 1) = n, so the theorem

reads:
p—1>8(n) = 3xyzeclFy: 2" +y"=2"

(Using Dirichlet’s theorem on primes in arithmetic progressions, there are infinitely many primes
p = 1(mod n), so for each fixed n the Fermat equation has nontrivial solutions in infinitely many
prime fields.)
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