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Introduction

In this work we prove a well known theorem due to Kodaira, which characterizes
the compact complex manifolds that can be embedded in a projective space i.e.
that are projective varieties.
Kodaira's theorem asserts that a compact complex manifold is projective if and
only if it has a positive line bundle. Recall that by Chow's theorem every complex,
projective manifold is indeed algebraic i.e. de�ned by the zeros of homogeneous
polynomials.
So, thanks to these two theorems, a question of Complex Analysis can be translated
in the language of Algebraic Geometry. This problem is developed by Serre in great
detail in his famous paper GAGA.
We will use the theory of harmonic forms to prove the Kodaira-Nakano vanishing
theorem, which is necessary in the proof of the Kodaira embedding theorem. The
vanishing theorem is proved using methods of complex analytic di�erential geom-
etry. If M is supposed to be a smooth, projective variety one can expect to �nd
an algebraic proof of the vanishing theorem but at the present there is no purely
algebraic proof.

1. Complex and Kähler Manifolds

Let M be a smooth manifold. An almost complex structure on M is an isomor-
phism J : TM → TM of the tangent bundle TM such that J2 = J ◦ J = −1. In
other words it consists of a family of isomorphisms of vector spaces Jx : TxM →
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TxM such that J2
x = −1 and the assignment x 7→ Jx is smooth. A smooth manifold

equipped with an almost complex structure is called an almost complex manifold.
In a certain sense the isomorphism J plays the role of the imaginary unit i ∈ C, in
fact if V is a R-vector space with an almost complex structure J we can de�ne the
multiplication by a scalar a+ ib ∈ C as (a+ ib)v := av + bJ(v) for any v ∈ V .
Let dim(M) = n be the dimension of M , suppose n = 2k + 1 odd. Then Pn(λ) =
det(J − λI) is a polynomial of odd degree in the variable λ and it has a real
root λ0 ∈ R. There exists an eigenvector v ∈ TM such that Jv = λ0v and
JJv = J(λ0v) = λ2

0v 6= −v since λ0 is real. A contradiction since J2 = −1. We
conclude that if M admits an almost complex structure it has even dimension.
Indeed starting from a R-vector space V of even dimension 2n one can de�ne

J(v) = J(v1, ..., vn, vn+1, ..., v2n) = (−vn+1, ...,−v2n, v1, ..., vn), ∀ v ∈ V.
Note that J2 = −IdV and so on every R-vector space of even dimension it is possible
to de�ne an almost complex structure. Then on any di�erentiable manifold M of
even dimension it is possible to de�ne point wise an almost complex structure
Jx : TxM → TxM for any x ∈ M , but in general these isomorphism do not
glue together to de�ne a global isomorphism J : TM → TM . Indeed this fact is
equivalent to say that the structure group GL(2n,R) of the tangent bundle TM is
reducible to the group GL(n,C).

De�nition 1.1. A complex manifold M is a di�erentiable manifold admitting
an open cover {Uα} and coordinate maps φα : Uα → Cn such that φα ◦ φ−1

β is

holomorphic on φβ(Uα ∩ Uβ) ⊆ Cn for any α, β.

Let X be a complex manifold and let XR be the underlying di�erentiable man-
ifold. We consider a point x ∈ X, the complex tangent space TxX and the real
tangent space TxXR. We claim that TxXR is canonically isomorphic to the un-
derlying real vector space of TxX, in this way TxX induces a complex structure
Jx on TxXR. Let (φ,U) be a complex holomorphic chart for X near x. We have
φ : U → Cn and we get a di�erentiable chart forXR near x de�ned by φR : U → R2n,

φR(x) = (Reφ1(x), Imφ1(x), ..., Reφn(x), Imφn(x)).

So it su�ces to prove the claim above for T0Cn and T0R2n in 0 ∈ Cn. Let { ∂
∂zj
}

for j = 1, ..., n be a basis for T0Cn, where ∂
∂zj

= ∂
∂xj

+ i ∂
∂yj

and zj = xj + iyj . The
map

T0Rn → T0Cn, (
∂

∂xj
,
∂

∂yj
) 7→ ∂

∂zj
,

de�nes an isomorphism between T0Cn and T0R2n. So T0Cn induces a complex
structure on T0R2n and more in general TxX induces a complex structure Jx on
TxXR. It is easy to see that the complex structure does not depend from the
complex chart chosen. We have see that any complex manifold is an almost complex
manifold. An almost complex manifold (X,J) is a complex manifold if the almost
complex structure J is of the form Jx.
Now we come to the de�nition of symplectic manifold. Let M be a di�erentiable
manifold. A symplectic form on M is a non-degenerate, skew-symmetric, closed,
di�erential two-form ω, where non-degenerate means that for any x ∈M does not
exists a non zero X ∈ TxM such that ω(X,Y ) = 0 for any Y ∈ TxM , the skew-
symmetric condition means that for all X,Y ∈ TxM we have ω(X,Y ) = −ω(Y,X),
the closed condition means dω = 0.
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De�nition 1.2. A symplectic manifold is a pair (M,ω), whereM is a di�erentiable
manifold and ω is a symplectic form on M .

A symplectic manifold has always even dimension. For instance R2n with the
coordinate system {x1, y1, ..., xn, yn} and the two-form ω =

∑n
j=1 dxj ∧ dyj is a

symplectic manifold.
To introduce the concept of Kähler Manifold we begin with the de�nition of Her-
mitian form. Let V be a C-vector space of dimension n.

De�nition 1.3. A Hermitian form on V is a map h : V × V → C such that

(1) h(y, x) = h(x, y), ∀x, y ∈ V,
(2) h(α1x1 + α2x2, y) = α1h(x1, y) + α2h(x2, y), ∀x1, x2, y ∈ V, α1, α2 ∈ C.

Choosing coordinates on V we can write h in the form h(x, y) =
∑
hj,kxjxk,

whit hj,k = hk,j . Viewing V has a R-vector space of dimension 2n, and writ-
ing h(x, y) = α(x, y) + iβ(x, y), we get two R-bilinear forms with α symmetric
and β skewsymmetric. Note that h(ix, iy) = α(ix, iy) + iβ(ix, iy) and h(ix, iy) =
ih(x, iy) = −i2h(x, y) = h(x, y) = α(x, y) + iβ(x, y) and we have α(ix, iy) =
α(x, y), β(ix, iy) = β(x, y). Moreover from h(ix, y) = α(ix, y) + iβ(ix, y) and
ih(x, y) = iα(x, y)− β(ix, y), we conclude α(x, y) = β(ix, y).
Conversely, if β is any skewsymmetric R-bilinear form such that α(x, y) = β(ix, y),
then this relation determines the form α uniquely and h = α + iβ is a Her-
mitian form. The form ω = −β is called the associated skewsymmetric bilinear

form of the skewsymmetric form φ. We consider ω as an element of
∧2

V ∗. If
h(x, y) =

∑
hj,kxjyk we have

ω(x, y) =
i

2

∑
(hj,kxjyk − hj,kxjyk) =

i

2

∑
hj,k(xjyk − yjxk).

In other words , ω = i
2

∑
hj,kξjξk, where ξk is the basis of V ∗ dual to the chosen

basis of V . If the Hermitian form is de�nite positive there exists a basis of V such
that

h(x, y) =
∑

xjxj , ω =
i

2

∑
ξj ∧ ξj .

Let X be a complex manifold and let h be a Hermitian form on X that is a
positive Hermitian form hx on TxX for any x ∈ X such that the assignment
x 7→ hx is holomorphic. In a neighborhood U with local coordinates (z1, ..., zn)
we can write h =

∑
hj,kdzjdzk, where the hj,k are complex analytic function of

z1, ..., zn, z1, ..., zn. The form h de�nes a Hermitian metric on X.
It is well known that on a Riemannian Manifold (M, g) there exists a system of
coordinates in a neighborhood of any point p ∈M , called normal or geodesic coor-

dinates, such that gj,k(p) = δj,k and (∂gj,k

∂xi
)(p) = 0. The obstruction to make the

metric g �at involves the second partial derivatives of the coe�cients of g, this is
the curvature tensor.
In the complex case the situation is more delicate. We can �nd a complex ana-
lytic change of coordinates such that hj,k(p) = δj,k. There is an obstruction to

�nd a coordinate system such that
∂hj,k

∂zt
(p) = ∂hj,k

∂zt
(p) = 0, that is already the

�rst derivatives of the coe�cients of the Hermitian metric distinguished it from a
�at metric. Consider the skewsymmetric form ω associated to the Hermitian form
h. This de�nes a di�erential 2-form ω = i

2

∑
hj,kdzj ∧ dzk in local coordinates.

The condition dω = 0 is independent from the local coordinate system chosen and
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is a necessary condition for the metric to be �at. We can write explicitly these
conditions as

∂hj,k
∂zt

=
∂ht,k
∂zj

,
∂hj,k
∂zt

=
∂hj,t
∂zk

.

De�nition 1.4. A Hermitian metric h on a complex manifold X such that the
associated Hermitian form ω is closed i.e. dω = 0 is called a Kähler metric. A
complex manifold with a given Kähler metric is called a Kähler manifold.

We have seen that h = g − iω. Note that on a Kähler manifold g de�nes
a Riemannian metric and ω a symplectic structure. So a Kähler manifold is in
particular a complex manifold, a Riemannian manifold and a symplectic manifold.

Example 1.5. Let x0, ..., xn be homogeneous coordinates on Pn. We write d =
d
′

+ d
′′
, where d

′
is the di�erential with respect zj and d

′′
is the di�erential with

respect zj. We consider the a�ne chart U0 = {x0 6= 0} ∼= An. Set

H = log
∑n

j=1
|zj |2, ω = id

′
d
′′
H.

Since d(d
′
d′′h) = 0 for any function h, the form ω is clearly closed. We have the

following coordinate expression

ω =
i

2
d
′
d
′′
log
∑n

j=1
|zj |2 =

i

2
d
′
∑
zjdzj∑
|zj |2

=
i

2

∑
dzj ∧ dzj∑
|zj |2

− i
2

(
∑
zjdzj) ∧ (

∑
zjdzj)

(
∑
|zj |2)2

.

In p = [1 : 0 : ... : 0] we have ω = i
2

∑n
j=1 dzj ∧ dzj that is de�nite positive, by

symmetry we see that ω is de�nite positive on U0. The associated Hermitian form
is
∑
dzjdzj. The Kähler metric we have de�ned is called the Fubini-Study metric

on Pn. With this metric Pn is a Kähler manifold.
Let X be a Kähler manifold and let Y ⊆ X be a complex submanifold. The restric-
tion of di�erential forms in X to Y takes closed forms in closed forms, any de�nite
positive Hermitian form on X restrict to a de�nite positive Hermitian form on Y ,
�nally the relation with a Hermitian form and its associated 2-form is preserved
by restriction. It follows that any complex submanifold of a Kähler manifold is a
Kähler manifold with the restriction of the Kähler metric of X.
In particular if X is a projective variety then it is a Kähler manifold with the metric
induced by the Fubini-Study metric on Pn. Clearly the Kähler structure on X is
not an intrinsic property but depends from its embedding in Pn.

1.1. Connections on Holomorphic Vector Bundles. Let E be a complex vec-
tor bundle on a complex manifold M , an hermitian metric on E is an hermitian
inner product on each �ber Ex that varies smoothly with x ∈ M . An holomor-
phic vector bundle equipped with an hermitian metric is called an hermitian vector
bundle.

De�nition 1.6. A connection on a complex vector bundle E on M is a map

∇ : Γ(E)→ Γ(E ⊗ TM∗),
that satis�es the Leibniz's rule

∇(f · σ) = f · ∇(σ) + df ⊗ σ
for any f ∈ C∞(M), σ ∈ Γ(E).
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Essentially a connection gives a way to di�erentiate sections of a vector bundle.
Let U be an open subset of M on which E is trivial and let {e1, ..., en} be a frame
for E on U , we can think ei as a section of E and write

∇(ei) =
∑

θi,jej ,

where the θi,j are section of the cotangent bundle TM∗ i.e. 1-forms on M . The
matrix θ = (θi,j) is called the connection matrix with respect to {e1, ..., en}. Now
if σ is a section of E on U we can write σ =

∑
σiei, and we have

∇(σ) =
∑

dσiei +
∑

σi∇(ei) =
∑

j
(dσj +

∑
i
σiθi,j)ej .

We see that the data {e1, ..., en} and θi,j determine uniquely the connection ∇. In
general there is no canonical connection on a vector bundle E, but if M is complex
and E is hermitian we can require two facts that dictate a natural connection.
We denote with TM∗ the complex cotangent bundle and with TM∗h and TM∗ah
respectively the holomorphic and antiholomorphic cotangent bundle. Using the
decomposition TM∗ = TM∗h ⊕ TM∗ah we can write ∇ = ∇h +∇ah, with

∇h : Γ(E)→ Γ1,0(E ⊗ TM∗), ∇ah : Γ(E)→ Γ0,1(E ⊗ TM∗).

We say that the connection is compatible with the complex structure if ∇ah = ∂.
If E is hermitian, we say that∇ is compatible with the metric if d(s, σ) = (∇(s), σ)+
(s,∇(σ))
One can prove that if E is an hermitian vector bundle then there exists a unique
connection ∇ on E that is compatible with both the metric and the complex struc-
ture. This connection is called metric connection. In particular if E = TM is the
complex tangent bundle on M the unique connection on TM compatible with the
metric and the complex structure is called the Chern connection and denoted by
∇C .
Now given a connection ∇ on E we can de�ne an operator

∇p+1 : Γ(E)→ Γ(
∧p

E ⊗ TM∗)

forcing the Leibniz rule

∇p+1(ψ ∧ f) = dψ ⊗ f + (−1)pψ ∧∇f.

for ψ ∈ Γ(
∧p

E), f ∈ Γ(E). In particular consider the operator

∇2 : Γ(E)→ Γ(
∧2

E ⊗ TM∗),

note that is linear in fact for σ section of E and f smooth function,

∇2(fσ) = ∇(df ⊗ σ + f · ∇(σ)) = −df ∧∇(σ) + df ∧∇(σ) + f · ∇2(σ) = f · ∇2(σ).

Again we can write

∇2ei =
∑

Θi,j ⊗ ej ,
where the Θi,j are 2-forms. The matrix Θe = (Θi,j) is called the curvature matrix
of ∇ in terms of the frame {e1, ..., en}. By de�nition

∇2ei = ∇(
∑

θi,j ⊗ ej) =
∑

(dθi,j −
∑

θi,k ∧ θk,j)⊗ ej ,

and we have the so called Cartan structure equation

Θe = dθe − θe ∧ θe.
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2. Line Bundle and Morphism in Projective Spaces

Let M be a compact complex manifold and let L be a holomorphic line bundle
on M . Any subspace W ⊆ P(H0(M,O(L)) determines a linear system |W | =
{s}s∈W ⊆ Div(M). Since M is compact (s) = (s

′
) if and only if s = λs

′
for some

λ ∈ C∗, |W | is parametrized by the projective space P(W ).
If the linear system |W | has no base point then for each p ∈ W the set of sections
s ∈W vanishing at p forms a Hyperplane Hp ⊆ P(W ), and we have a map

φ : M → P(W )∗, p 7→ Hp.

Now we describe this map in a more explicit way. Let {s0, ..., sN} be a basis of
W and let U be an open subset of M and ϕ a local trivialization of L on U . Let
si,f = ϕ∗(si), then [s0,f (p) : ... : sN,f (p)] is independent from the local chart and
we denote it by [s0(p) : ... : sN (p)]. In this terms the map φ is given by

φ(p) = [s0(p) : ... : sN (p)].

Clearly the map φ is holomorphic and L = φ∗|W (OPN (1)). If the linear system

|W | is very ample i.e. its elements separates points and tangent vectors then the
morphism φ is an embedding.
A variety X ⊆ PN is called normal if the linear system on X giving the embedding
X ↪→ PN is complete i.e. if the restriction map

H0(PN ,OPN (1))→ H0(X,OX(1))

is surjective.
Let X be an hypersurface in PN . From the exact sequence of shaves

0 7→ OPN (H \ V )→ OPN (H)→ OV (H) 7→ 0,

we have an exact sequence in cohomology

...→ H0(PN ,OPN (H))→ H0(X,OX(H))→ H1(PN ,OPN (H \X))→ ...

but

H1(PN ,OPN (H \X)) = H1(PN ,OPN (1)⊗OPN (−d)) = H1(PN ,OPN (1− d)) = 0,

where d = deg(X) > 1, implies that X is normal.
We return to our problem. Let L be a holomorphic line bundle on M and let
φL : M → PN be the map induced by L. First of all L cannot have base points i.e.
for any x ∈M the map

H0(M,OM (L))→ Lx, s 7→ s(x)

must be surjective. The map φL will be an embedding if and only if the following
two conditions are satis�ed.

(1) φL is injective if and only if for any x, y ∈ M with x 6= y there exists a
section s ∈ H0(M,OM (L)) such that s(x) = 0 but s(y) 6= 0. In other words
if and only if the restriction map

H0(M,OM (L))→ Lx ⊗ Ly, s 7→ s(x)⊗ s(y)

is surjective for all x, y ∈ M with x 6= y. In particular if L satis�es this
condition it must be base point free.
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(2) The map φL has nonzero di�erential everywhere. Let ψx be a trivialization
of L near x and let v ∈ TxM be a tangent vector, we require the existence
of a section s ∈ H0(M,OM (L)) such that s(x) = 0 and ds(x) = v, where
s = φ∗L(s). More intrinsically let Ix the sheaf of holomorphic function on
M vanishing at x and let Ix(L) the sheaf of section of L vanishing at x. If
s is a such section, α, β are trivialization of L near x and sα = α∗s, sβ =
β∗(s), sα = gα,βsβ , where gα,β is the transition function, we have

dsα = dsβ · gα,β + dgα,β · sβ = dsβ · gα,β

at x, since sβ(x) = 0. We have a map

dx : H0(M, Ix(L))→ Tx ⊗ Lx.

Condition (2) can be stated requiring that the map dx be surjective for all
x ∈M .

Note that (2) is the limit of (1) when y 7→ x.

3. The Kodaira-Nakano Vanishing Theorem

In this section we denote with M a compact Kähler manifold.

De�nition 3.1. A line bundle L onM is positive if there exists a metric on L with

curvature form Θ such that
√
−1

2π Θ is a positive (1, 1)-form; L is negative if L∗ is
positive.

The following proposition gives another characterization of the positivity of a
line bundle. First we need a lemma which proof is omitted.

Lemma 3.2. Let ξ be a (p, q)-form on a compact Kähler manifold such that ξ is

d, ∂ or ∂-exact. Then ξ = ∂∂ρ for some (p− 1, q − 1)-form ρ. Furthermore in the
case p = q and ξ real we can take

√
−1 · ρ to be real.

Proposition 3.3. Let ω be a real, closed, (1, 1)-form on M such that [ω] = c1(L) ∈
H2
dR(M). Then there exists a metric connection on L with curvature form Θ =√
−1

2π ω. The line bundle L is positive if and only if its Chern class c1(L) can be

represented by a positive form in H2
dR(M).

Proof. Let |h|2 be a metric on L with curvature form Θ and let φ : L|U → U ×C be
a trivialization of L over U . Let σ : U → L|U ∼= U ×C, z 7→ (z, σ|U (z)) be a section
of L over U .Then |h|2 = f(z)|σ|U |2 where f is a real valued, positive function.

Suppose that L is positive, then we can assume that
√
−1

2π Θ is a positive (1, 1)-form.
Now the curvature form is given by

Θ = −∂∂logf(z),

then Θ is a real, close (1, 1)-form. Furthermore we have

c1(L) = [
√
−1

2π
Θ] ∈ H2

dR(M),

and
√
−1

2π Θ is positive by hypothesis.

Now let |h′ |2 another metric on L and let Θ
′
be its curvature form. Again we have



8 ALEX MASSARENTI

|h′ |2 = f
′
(z)|σ|U |2, and locally we can write f

′
(z) = eα(z)f(z), where α is a real

C∞ function on M . Then we have |h
′
|2

|h|2 = eα. For the curvature form Θ
′
we have

Θ
′

= −∂∂logf
′

= −∂∂logeαf = −∂∂(logeα + logf) = −∂∂α+ Θ.

Then Θ = ∂∂α+ Θ
′
, so [

√
−1

2π Θ] = [
√
−1

2π Θ
′
].

Conversely suppose that c1(L) is represented in H2
dR(M) by the real, closed (1, 1)-

form
√
−1

2π γ. By the preceding argument if we can solve the equation Θ = ∂∂β + γ

for a real, smooth function β, then the metric eβ |σ|2 on L will have curvature form
γ. But this come from lemma 3.2. �

Thanks to this proposition we can give an equivalent de�nition of positive line
bundle.

De�nition 3.4. Let L be a holomorphic line bundle on M and let c1(L) be its
Chern class. Then L is said to be positive if there exists a real, closed (1, 1)-form
η such that η ∈ c1(L) and η is positive.

Let Ωp,q(M) be the space of (p, q)-forms on M and let ω the Kähler form on M .
We de�ne the Lefschetz operator

L : Ωp,q(M)→ Ωp+1,q+1(M), ξ 7→ ξ ∧ ω,

and let

Λ : Ωp,q → Ωp−1,q−1

its adjoint operator.
If [A,B] = AB −BA denotes the commutator of two operators the following iden-
tities hold

[Λ, ∂] = −
√
−1 · ∂∗, [Λ, ∂] =

√
−1 · ∂∗, [L,Λ] = p+ q − n,

where n = dim(M).
Let E be a vector bundle on M and let Ωp,q(E) the space of E-valued (p, q)-forms.
Consider the operator

∆ = ∂ ∂
∗

+ ∂
∗
∂ : Ωp,q(E)→ Ωp,q(E).

We let

Hp,q(E) = Ker(∆)

be the space of E-valued harmonic forms. By harmonic theory we know that

Hq(M,Ωp(E)) ∼= Hp,q(E).

Now let D = D
′

+ D′′, with D
′′

= ∂, be the metric connection on E. By [Λ, ∂] =
−
√
−1 · ∂∗ we get the formula

[Λ, ∂] = −
√
−1 ·D

′∗.

Now we come the principal result of this section that will we be fundamental in the
proof of Kodaira embedding theorem.

Theorem 3.5. (Kodaira-Nakano Vanishing Theorem) Let L be a positive line bun-
dle on a compact Kähler manifold M of dimension n. Then

Hq(M,Ωp(L)) = 0 ∀ p+ q > n.
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Proof. By harmonic theory we know that Hq(M,Ωp(L)) ∼= Hp,q(L), our aim is
to show that on M there are not L-valued harmonic forms of degree larger than
n = dim(M).
By hypothesis there exists a metric on L such that ω =

√
−1

2π Θ, where Θ is the
curvature form associated to the metric and ω is the Kähler form on M . Now let
ξ ∈ Hp,q(L) an harmonic form, we have Θ = D2 = (D

′
+∂) · (D′ +∂) = ∂D

′
+D

′
∂

and since ∂ξ = 0 we get Θξ = ∂D
′
ξ. Now we compute

2
√
−1(ΛΘξ, ξ) = 2

√
−1(Λ∂D

′
ξ, ξ) = 2

√
−1((∂Λ−

√
−1
2 D

′∗)D
′
ξ, ξ) = (D

′∗D
′
ξ, ξ) =

(D
′
ξ,D

′
ξ) ≥ 0, since (∂ΛD

′
ξ, ξ) = (ΛD

′
ξ, ∂
∗
ξ) = 0.

On the other hand we have
2
√
−1(ΘΛξ, ξ) = 2

√
−1(D

′
∂Λξ, ξ) = 2

√
−1(D

′
(Λ∂+

√
−1
2 D

′∗)ξ, ξ) = −(D
′
D
′∗ξ, ξ) =

−(D
′∗ξ,D

′∗ξ) ≤ 0.
Subtracting the two inequalities we get

2
√
−1([Λ,Θ]ξ, ξ) ≥ 0.

So far we have interpreted the curvature operator Θη = Θ ∧ η as D2η, now we
reinterpret it as 2π√

−1
L(η). Since Θ = 2π√

−1
L we have

2
√
−1([Λ,Θ]ξ, ξ) = 4π([Λ, L]ξ, ξ) = 4π(n− p− q)|ξ|2 ≥ 0,

and this implies n− p− q ≥ 0 i.e. n ≥ p+ q. Then p+ q > n implies ξ = 0. �

Note that dualizing the vanishing theorem, we obtain:

Hq(M,Ωp(L)) = 0 ∀ p+ q < n

if L→M is a negative line bundle.

4. The Kodaira Embedding Theorem

The embedding theorem was proved by Kunihiko Kodaira in 1954 and appeared
in his article "On Kähler varieties of restricted type (an intrinsic characterization
of algebraic varieties)", published on Annals of Mathematics.
We begin this section recalling brie�y some results on functions of several complex
variables.

4.1. Hartog's Theorem. Many results in several complex variables come directly
from the theory of one complex variable. As instance

• The Identity Theorem: If f, g are two holomorphic functions on a connected
open set U ⊆ Cn such that f = g on a nonempty open subset of U , then
f = g on U .
• The Maximum Principle: The absolute value |f | of a holomorphic function
f on a open set U has no maximum in U .

However there are some di�erences the one and many complex variables theory. As
instance let

∆(R) = {z ∈ Cn | |z| < R}
be the polydisc of radius R and let ∆(R

′
) be a smaller polydisc, R

′
< R.

Theorem 4.1. (Hartog's Theorem) Let f be a holomorphic function in a neigh-

borhood of ∆(R) \∆(R
′
). Then f extends to a holomorphic function on ∆(R).
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Proof. For simplicity of notation we prove the assertion in the case n = 2, the
same argument also works in the general case. In a slice z1 = constant the set

∆(R) \ ∆(R
′
) looks either like a disk |z2| < R or like a annulus R

′
< |z2| < R.

Consider the Cauchy formula and set

F (z1, z2) =
1

2π
√
−1

∫
|w2|=R

f(z1, w2)
w2 − z2

dw2.

The function F is de�ned on ∆(R) and since |w2| = R and |z2| < R it is holomorphic

in z2. Moreover ∂f
∂z1

= 0 implies that F is holomorphic in z1. Finally by Cauchy

formula in the open subset |z1| > R
′
of ∆(R)\∆(R

′
) we have F (z1, z2) = f(z1, z2),

so F|∆(R)\∆(R′ ) = f . �

Remark 4.2. Often Hartog's Theorem is applied in the following form:
A holomorphic function on the complement of a �nite number of points in an open
set U ⊆ Cn, with n > 1, extends to a holomorphic function in all of U .

Theorem 4.3. (Kodaira Embedding Theorem) Let M be a compact complex mani-

fold and L→M be a positive line bundle on M . There exists k such that for k ≥ k
the map

φLk : M → P(H0(M,Lk)∗)
de�ned by Lk is an embedding.

Proof. Our aim is to prove that there exists an integer k such that

(1) The restriction map

Rx,y : H0(M,OM (Lk))→ Lkx ⊗ Lky ,

is surjective for all x 6= y in M , k ≥ k.
(2) The di�erential map

dx : H0(M, Ix(Lk))→ Tx ⊗ Lkx,
is surjective for all x ∈M , k ≥ k.

Let M̃
π−→M be the blow-up ofM at the points x, y ∈M and let Ex = π−1(x), Ey =

π−1(y) be the exceptional divisors. We denote E = Ex + Ey and L̃ = π∗(L). We
assume that n = dim(M) ≥ 2; in the case dim(M) = 1, i.e. M is a Riemann

surface, the following argument will work for M̃ = M and π = Id.
The blow-up map π induces the pullback map

π∗ : H0(M,OM (Lk))→ H0(M̃,OM̃ (L̃k)).

Clearly this map is injective, if s ∈ H0(M,OM (Lk)) is such that π∗(s) = s̃ = 0
then it must be s = 0 since M and M̃ are birational via π. Furthermore if s̃ ∈
H0(M̃,OM̃ (L̃k)) then the corresponding section s de�ned a priori on M \ {x, y}
extends by Hartog's theorem to a global section on M . So the morphism π∗ is an
isomorphism.

By de�nition L̃k|Ex
= Ex × Lkx, L̃k|Ey

= Ey × Lky , and L̃k is trivial along Ex and

Ey, so H
0(E,OE(L̃k)) ∼= Lkx ⊕ Lky . Consider the restriction map

H0(M̃,OM̃ (L̃k)) RE−−→ H0(E,OE(L̃k)),

and suppose that it be surjective. This means that any section in H0(E,OE(L̃k))
extends to a section in H0(M̃,OM̃ (L̃k)), in particular a section that vanishes on Ex
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and is everywhere nonzero on Ey extends to a global section on M̃ that determines

a global section of Lk on M that vanishes at x but is di�erent from zero at y. The
last assertion means that the restriction map Rx,y is surjective.

On M̃ we have the following exact sequence of shaves

0 7→ OM̃ (L̃k)⊗OM̃ (−E)→ OM̃ (L̃k) RE−−→ OE(L̃k) 7→ 0.

We can choose k1, k2 such that Lk1 +K∗M is positive on M and L̃k−nE is positive

on M̃ for k ≥ k2, where n = dim(M) = dim(M̃). We denote K̃M = π∗(KM ) and
we have

KM̃ = K̃M + (n− 1)E.

For k ≥ k = k1 + k2 we have,

OM̃ (L̃k)⊗OM̃ (−E) = OM̃ (L̃k−E) = ωM̃ (L̃k−E+K∗
M̃

) = ωM̃ ((L̃k1+K̃∗M )+(L̃h−nE)),

where h ≥ k2.

Now Lk1 +K∗M is positive on M and L̃h−nE is positive on M̃ . Then L̃k1 +K∗
M̃

+

L̃h − nE is positive on M̃ and by Kodaira vanishing theorem we have,

H1(M̃,OM̃ (L̃k − E)) = H1(M̃,Ωn
M̃

(L̃k1 + K̃∗M + L̃h − nE)) = 0.

From the above exact sequence we obtain the following sequence in cohomology,

0 7→ H0(M̃,OM̃ (L̃k − E))→ H0(M̃,OM̃ (L̃k)) RE−−→ H0(E,OE(L̃k)) 7→ 0,

and the map H0(M̃,OM̃ (L̃k)) RE−−→ H0(E,OE(L̃k)) is surjective.
Now we have to prove (2), let M̃

π−→M be the blow-up ofM at the point x ∈M and
let E = Ex = π−1(x) be the exceptional divisor. Again we have an isomorphism
given by the pullback map

π∗ : H0(M,OM (Lk))→ H0(M̃,OM̃ (L̃k)).

If s ∈ H0(M,OM (Lk)) then s(x) = 0 if and only if s̃ = π∗s vanishes on E, and π∗

restricts to an isomorphism

π∗ : H0(M, Ix(Lk))→ H0(M̃,OM̃ (L̃k − E)).

Again we have

H0(E,OE(L̃k − E)) = Lkx ⊗H0(E,OE(−E)) ∼= Lkx ⊗ Tx.
So to prove that dx : H0(M, Ix(Lk))→ Tx⊗Lkx, is surjective is equivalent to prove
that H0(M̃,OM̃ (L̃k − E)) RE−−→ H0(E,OE(L̃k − E)) is surjective.
Note that on M̃ we have the exact sequence of shaves

0 7→ OM̃ (L̃k − 2E)→ OM̃ (L̃k − E) RE−−→ OE(L̃k − E) 7→ 0.

Again We can choose k1, k2 such that Lk1 +K∗M is positive onM and L̃k−(n+1)E
is positive on M̃ for k ≥ k2. So for k ≥ k1 + k2 we have

OM̃ (L̃k − 2E) = ωM̃ ((L̃k1 + K̃∗M ) + (L̃k − (n+ 1)E)),

and by Kodaira vanishing theorem we have H1(M̃,OM̃ (L̃k − 2E)) = 0. Consid-

ering the cohomology sequence we see that the map H0(M̃,OM̃ (L̃k − E)) RE−−→
H0(E,OE(L̃k − E)) is surjective.
Clearly if φL is de�ned at x, y ∈ M with φL(x) 6= φL(y) the same holds for any x
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in a neighborhood of x and y in a neighborhood of y. Furthermore if φL is smooth
at x then it is smooth in any x near x and separate points x 6= x̃. Then there is an
open covering {Ux} of M such that φL is an embedding on Ux for any x, since M
is compact we can �nd a �nite open subcovering and the theorem is proved. �

An immediate consequence of the Kodaira Theorem is the following proposition.

Proposition 4.4. A compact complex manifold M is embeddable in a projective
space if and only if M is a Hodge manifold i.e. there exists a close, positive (1, 1)-
form ω on M whose cohomology class [ω] is rational.

Proof. We have [ω] ∈ H2(M,Q), then [kω] ∈ H2(M,Z) for some k. Consider the
exponential exact sequence

0 7→ Z i−→ OM
exp−−→ O∗M 7→ 0.

In cohomology we have

...→ H1(M,O∗M )
f−→ H2(M,Z) i∗−→ H2(M,OM )→ ...

and i∗([kω]) = 0. So [kω] ∈ Ker(i∗) = Im(f) and since H1(M,O∗M ) = Pic(M)
there exists a line bundle L on M whose �rst Chern class is c1(L) = [kω], then by
proposition 3.3 the line bundle L is positive and by Kodaira embedding theorem
we conclude.
Conversely if M ⊆ Pn is embedded in a projective space then the restriction of
the Fubini-Study metric of Pn on M gives a Kähler metric on M whose associated
Kähler form is an integral, positive and closed (1, 1)-form on M . �

Remark 4.5. By Kodaira's Theorem any compact Hodge manifold X admits an
embedding in a projective space X ⊆ PN . If n = dim(X), the dimension of the
�rst secant variety of X is

expdim(Sec(X)) = 2n+ 1, dim(Sec(X)) ≤ 2n+ 1.

Then by iterated projections we can embed any Hodge manifold of dimension n in
P2n+1.

Corollary 4.6. Any compact Riemann Surfaces M is embeddable in P3 as a pro-
jective curve.

Proof. Let ω be any positive (1, 1)-form on M , then dω = 0 since it is a form of
degree 3 on a manifold of real dimension 2. So ω is a Kähler form. We multiply
ω by a constant so that its volume is normalized

∫
M
ω = 1. Then [ω] ∈ H2

dR(M)
is an integral cohomology class and by Kodaira's theorem M can be embedded in
Pn. By remark 4.5 we conclude. �

Remark 4.7. Let ω, η be closed, integral, positive (1, 1)-forms on the compact
complex manifolds M,N respectively and let pM : M ×N →M, pN : M ×N → N
be the projections. Then p∗Mω + p∗Nη is a closed, integral, positive (1, 1)-form on
M ×N . We conclude that if M,N are embeddable in a projective space then also
M ×N is.
Let M be an algebraic variety and let M̃

π−→ M be the blowup of M at a point
x ∈M . In the proof of the embedding theorem we have seen that if L is a positive
line bundle on M and E = π−1(x) is the exceptional divisor then π∗Lk − E is a

positive line bundle on M̃ for k � 0. We conclude that also M̃ is an algebraic
variety.
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4.2. Riemann Surfaces. Let M be a connected, compact Riemann surface i.e. a
compact complex manifold of complex dimension one. By corollary 4.6 M can be
embedded in P3. In the one dimensional case there is a simpler proof that does not
use the Kodaira embedding theorem.

Lemma 4.8. Let L be a line bundle on M and D the divisor associated to L. Then

• the complete linear system |D| induces a morphism of M in a projective
space if and only if dim|D − P | = dim|D| − 1 for any point P ∈M ;

• the linear system D induces an embedding of M in a projective space if and
only if dim|D− P −Q| = dim|D| − 2 for any P,Q ∈M including the case
P = Q.

Proof. Consider the sheaves OM (D − P ), OM (D) and k(P ), where k(P ) is the
skyscraper sheaf on P . We have the exact sequence

0 7→ OM (D − P )→ OM (D)→ k(P ) 7→ 0.

This sequence induces the following sequence in cohomology

0 7→ H0(M,OM (D − P ))→ H0(M,OM (D))→ k,

and we have only two possibilities dim|D−P | = dim|D| or dim|D−P | = dim|D|−1.
The map

φ : |D − P | → |D|, E 7→ E + P

is injective. Then dim|D − P | = dim|D| if and only if φ is surjective if and only if
P is a base point of |D|. This prove the �rst assertion.
To prove the second assertion we have to verify that |D| separates point and tangent
vectors. Now |D| separates points is equivalent to say that for any P,Q ∈M , Q is
not a base point of |D − P | and by the �rst part of the proof this is equivalent to
say that

dim|D − P −Q| = dim|D| − 2.
The fact that |D| separates tangent vectors means that for any point P ∈M there
exists a divisor E ∈ |D| such that P occurs with multiplicity one in E, in fact
dimTPE = 0 if P has multiplicity one in E and dimTPE = 1 if mPE ≥ 2. This is
equivalent to say that P is not a base point of |D − P | and again by the �rst part
we have

dim|D − 2P | = dim|D| − 2.
�

Proposition 4.9. Let L be a line bundle on a Riemann Surface M of genus g. If
deg|L| ≥ 2g + 1 then L induces an embedding of M in P(H0(M,OM (L))∗).

Proof. Let D be the divisor associated to L. Since deg(K−D) ≤ 2g− 2− 2g− 1 =
−3 < 0 and deg(K − (D − P − Q)) ≤ 2g − 2 − (2g + 1 − 2) = −1 < 0 we have
h0(K − D) = h0(K − (D − P − Q)) = 0. By Riemann-Roch theorem on D and
D − P −Q we have

h0(D) = deg(D)−g+1, h0(D−P −Q) = deg(D−P −Q)−g+1 = deg(D)−g−1.

Comparing the two equalities we get h0(D)− h0(D − P −Q) = 2 that is

dim|D − P −Q| = dim|D| − 2,

the assertion follows from the preceding lemma. �
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We have seen that every compact Riemann Surface is projective, in fact in order
to embed M in a projective space we can choose any divisor D on M of degree

greater or equal to 2g + 1, where g is the genus of M . As instance D =
∑2g+1
i=1 Pi,

where Pi are 2g + 1 distinct points on M .
Now we can see a Riemann Surface as a curve X ⊆ Pn. Now the Secant Variety of
X has expected dimension

expdim(Sec(X)) = 2 · dim(X) + 1 = 3,

so its e�ective dimension is dim(Sec(X)) < 3. This means that through the general
point of Pn with n > 3 there are no secant lines to X, and so the projection of X
centered in the general point of Pn is an isomorphism.
Let Ph be a general point of Ph, we have a sequence of projections

X ⊆ Pn
πPn−−→ Xn−1 ⊆ Pn−1

πPn−1−−−−→ ...
πP4−−→ X3 ⊆ P3.

By a sequence of projections we can embed any Riemann Surfaces in P3.

4.3. Hopf Manifolds. We conclude giving two examples of non-projective com-
plex manifolds.
Let M = Cn \ {0} and let λ ∈ R, λ > 0. Let G be the group of transformations of
the form

M →M, (z1, ..., zn) 7→ (λhz1, ..., λ
hzn), h ∈ Z.

Clearly any point z ∈M can be written as

z = Rzvz, Rz > 0, vz = (vz1 , ..., v
z
n) | |vz1 |2 + ...+ |vzn|2 = 1,

and this representation is unique, we get an isomorphism

M → R+ × S2n−1, z 7→ (Rz, (vz1 , ..., v
z
n)).

In this representation G acts trivially on S2n−1 and on R+ multiplying by a power
of λ. Consider the function log : R+ → R, since log(rλh) = log(r) + h · log(λ) the
action of G becomes the translation by vectors of the lattice Zα where α = log(λ).
From this it is clear that G acts freely and discretely onM and soM/G is a complex
manifold homeomorphic to R+/Z× S2n−1 ∼= S1 × S2n−1, called Hopf Manifold.
Recall that on a Kähler manifold X we have the Hodge decomposition

Hk(X,C) =
⊕

p+q=k
Hp,q(X),

it follows that bk =
∑
p+q=k h

p,q(X), where bk is the k − th Betti number of X.

Since the complex structure is compatible with the di�erentials we have Hp,q(X) ∼=
Hq,p(X) and hp,q = hq,p. If k = 2m+ 1 is odd it follows that

bk =
∑

p+q=k
hp,q(X) = 2

∑
p≤m

hp,2m+1−p(X).

Then the odd dimensional Betti number of a Kähler manifold are even.
Return to our Hopf Manifold M/G ∼= S1×S2n−1 and consider as instance the case
n = 2. Recall the Künneth theorem

Theorem 4.10. (Künneth) Let X,Y be topological spaces and let F be a sheaf of
abelian groups de�ned on X and Y . Then for any integer k we have

Hk(X × Y,F) ∼=
⊕

i+j=k
Hi(X,F)⊗Hj(Y,F).
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By Künneth formula on b3(M/G) = b3(S1 × S3) we have

b3(M/G) = b0(S1) · b3(S3) = 1.

So for X = (C2 \ {0})/G the Betti number b3 is odd and X can not be a Kähler
manifold, in particular it can not be projective. More generally any Hopf Manifold
is a non-projective complex manifold.

4.4. K3 Surfaces. Let S be a K3 surface i.e. a complex compact surface with
irregularity q(S) = 0 and trivial canonical bundle ωS = OS , so its geometric genus
and its arithmetic genus are equal pa = pg = 1.
Andre Weil named them in honor of three Algebraic Geometers, Kummer, Kähler
and Kodaira, and "La belle Montagne K2 au Cachemire" (The beautiful Mountain
K2 in Kashmir).
By Riemann-Roch theorem we know that if D is any divisor on a surface X then

h0(D)− h1(D) + h0(K −D) =
1
2
D · (D −K) + 1 + pa.

On the structure sheaf OS of S we have

h0(OS)− h1(OS) + h0(O∗S) = 2,

now h0(OS) = h2(OS) = 1 since S is compact, so h1(OS) = 0. We conclude that
the Euler holomorphic characteristic of S is

χhol(S) = h0(OS)− h1(OS) + h2(OS) = 2.

Every compact analytic manifold X has a moduli space parametrizing small defor-
mation of X. By in�nitesimal deformation theory we know that if H2(X,TX) = 0
then the moduli space is smooth and of dimension h1(TX). Our aim is to compute
h1(OS) for a K3 surface S.
Note that for a K3 surface H2(S, TS) = H2(S,Ω∗S) ∼= H0(S,ΩS)∗ = 0 since
H1(S,ΩS) ∼= H1(S,OS) = 0 and h1,0 = h0,1.
By Dolbeault theorem we have H1(S, TS) = H1(S,Ω∗S) ∼= H1,1(S). We want to
compute H1,1(S). By Hodge decomposition

H2(S,C) = H2,0(S,C)⊕H1,1(S,C)⊕H0,2(S,C),

furthermoreH2,0(S) ∼= H0(S,Ω2
S) ∼= C implies h2,0(S) = h0,2(S) = 1. By Noether's

formula we know that

χhol(OS) =
1
12

(c1(K)2 + χtop(S)),

in our case the canonical bundle is trivial, so 2 = χhol(OS) = 1
12χtop(S) implies

χtop(S) = 24. On the other hand

χtop(S) = b0(S)− b1(S) + b2(S)− b3(S) + b4(S).

Since S is compact and simply connected for the homologyH1(S,Z) = Ab(Π1(S)) =
0, and by duality H1(S,C) = 0. By Poincarè duality H3(S,C) = 0. Since S is
compact H0(S,C) = H2(S,C) = C. Then

24 = χtop(S) = 1 + b2(S) + 1,

implies b2(S) = dimH2(S,C) = 22. We conclude that h1,1(S) = 20 and the K3
surfaces are parametrized by a moduli space of dimension 20.
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Now suppose that S has a positive line bundle L, the by Kodaira embedding theo-
rem it is projective. Let C be the divisor associated to L. By adjunction formula

2g − 2 = C · (C +K)

where g is the genus of the curve C and K is the canonical divisor of S. So
2g − 2 = C2, we �x g = 3 and we have 2g − 2 = C2 = 4. By Riemann-Roch
theorem

h0(C) =
1
2
C2 + 1 + pa = 3 + 1 = 4.

This means that L induces an embedding of S in P3 as a surface of degree 4 and
that any projective K3 surface that admits a line bundle L whose associated divisor
is a curve of genus g = 3 can be realized as a smooth quartic in P3. We estimate
the dimension of the moduli space of K3 surface of this type doing some heuristic
calculation.
The projective space P(H0(P3,OP3(4)) parametrizing homogeneous polynomials of

degree 4 in 4 variables, has dimension
(

4+3
3

)
− 1 = 34. We subtract the automor-

phism of P3, the space PGL(3) has dimension 4 · 4− 1 = 15. We conclude that our
moduli space has dimension 34− 15 = 19.
We conclude that the projective K3 surface are a subvariety of dimension 19 of
the moduli space parametrizing the K3 surface which has dimension 20 and the
generic K3 surface in non-projective. Indeed Siu in 1983 showed that all complex
K3 surfaces are Kähler manifolds.
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