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Abstract

A minimal surface is a surface whose mean curvature vanishes everywhere; equivalently, it
is a critical point of the area functional. Soap films provide a physical model: they minimize
area subject to a boundary wire frame. We introduce curvature (principal, mean, Gaussian),
define minimal surfaces, derive the minimal surface equation for graphs, and work through classic
examples in detail: planes, catenoids, and helicoids (plus a quick look at Scherk’s surface). We
then connect the math to soap films, bubbles, and applications in architecture, materials science,
and biology.

1 Motivation: soap films and “least area”
Dip a bent wire loop into soapy water: the film that forms spans the loop and (approximately)
minimizes surface area. This is a real-world optimization problem: among all surfaces with the same
boundary, the soap film chooses one with the smallest area.

The mathematics of minimal surfaces connects geometry (curvature) and optimization (area
minimization).

2 Curvature of a surface: k1, k2, mean curvature H, Gaussian
curvature K

2.1 Surfaces and tangent planes

A smooth surface in R3 can be given parametrically by a map

X(u, v) ∈ R3, (u, v) ∈ U ⊂ R2,

with Xu and Xv linearly independent. The tangent plane is spanned by Xu and Xv.

2.2 Normal vector and normal sections

At each point, a unit normal vector is

N = Xu × Xv

∥Xu × Xv∥
.

Intersect the surface with planes containing the normal N ; each intersection gives a curve on the
surface called a normal section. Different normal sections curve by different amounts.
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2.3 Principal curvatures

Among all normal sections, the maximum and minimum curvatures are called the principal curvatures
k1 and k2.

Definition 1 (Mean and Gaussian curvature).

H = k1 + k2
2 (mean curvature), K = k1k2 (Gaussian curvature).

Remark 1. Intuition: H measures how the surface bends on average, while K measures how
saddle-like vs. dome-like it is. Many minimal surfaces have K < 0 (saddle behavior), except the
plane where K = 0.

3 What is a minimal surface? Two equivalent definitions

3.1 Geometric definition: zero mean curvature

Definition 2 (Minimal surface). A smooth surface in R3 is minimal if its mean curvature satisfies

H ≡ 0 everywhere on the surface.

3.2 Variational definition: critical points of area

If a surface is given as a graph z = u(x, y) over a domain Ω ⊂ R2, its area is

Area(u) =
∫∫

Ω

√
1 + u2

x + u2
y dx dy.

A minimal surface is a critical point of this functional.

3.3 First variation and the minimal surface equation for graphs

Let ut = u + tφ where φ is a smooth test function vanishing on the boundary (so the boundary stays
fixed). Differentiating the area functional (details omitted in a first talk, but doable in multivariable
calculus) gives the Euler–Lagrange equation:

∂

∂x

 ux√
1 + u2

x + u2
y

+ ∂

∂y

 uy√
1 + u2

x + u2
y

 = 0.

Equivalently,
(1 + u2

y)uxx − 2uxuyuxy + (1 + u2
x)uyy = 0, (1)

called the minimal surface equation.

Remark 2 (Curvature connection). For a graph z = u(x, y), one can show

2H = div
(

∇u√
1 + ∥∇u∥2

)
.

So the PDE above is exactly H = 0 written in coordinates.
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4 Worked examples in detail

4.1 Example 1: planes are minimal

Let u(x, y) = ax + by + c. Then uxx = uyy = uxy = 0, so (1) holds. Thus every plane is a minimal
surface.

4.2 Example 2: why cylinders are not minimal

A circular cylinder of radius R has one principal curvature k1 = 1/R (bending around the circle)
and the other k2 = 0 (straight along the axis). Hence

H = 1/R + 0
2 = 1

2R
̸= 0.

So cylinders are not minimal.

4.3 Example 3: spheres and soap bubbles
A sphere of radius R has k1 = k2 = 1/R, so H = 1/R. A soap bubble (a closed surface enclosing
air) has a pressure difference across the film. The Young–Laplace law says: pressure difference ∆P
is proportional to H. So bubbles prefer constant mean curvature surfaces, and the sphere is the
simplest one.

4.4 Example 4: the catenoid, derived by calculus of variations

The catenoid is the minimal surface obtained by rotating a catenary curve. It is the classic soap
film between two parallel circular rings.

Set-up: surfaces of revolution

Consider a surface of revolution around the z-axis given by a profile curve r 7→ (r, f(r)) rotated:

X(r, θ) =
(
r cos θ, r sin θ, f(r)

)
, r ∈ [r0, r1], θ ∈ [0, 2π].

Compute the area element:

Xr = (cos θ, sin θ, f ′(r)), Xθ = (−r sin θ, r cos θ, 0),

∥Xr × Xθ∥ = r
√

1 + f ′(r)2.

Hence the area is

Area(f) =
∫ 2π

0

∫ r1

r0
r
√

1 + f ′(r)2 dr dθ = 2π

∫ r1

r0
r
√

1 + f ′(r)2 dr.

So we minimize the 1D functional

J(f) =
∫ r1

r0
r
√

1 + f ′(r)2 dr.
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Euler–Lagrange and the first integral

The integrand depends on r and f ′(r) but not on f(r) itself. Let L(r, f ′) = r
√

1 + f ′2. A standard
trick (“conservation law” for autonomous f) gives:

∂L

∂f ′ = constant.

Compute
∂L

∂f ′ = r · f ′√
1 + f ′2 = a,

for some constant a > 0. Solve for f ′:

f ′√
1 + f ′2 = a

r
=⇒ f ′2 = a2

r2 − a2 =⇒ f ′(r) = ± a√
r2 − a2

.

Integrate:
f(r) = ±a arcosh

(
r

a

)
+ C.

Equivalently, solving for r gives the catenary form

r = a cosh
(

z − C

a

)
.

Rotating this curve produces the catenoid. It satisfies H ≡ 0, hence is minimal.

4.5 Example 5: the helicoid

The helicoid is a ruled surface generated by a line rotating and translating upward. A standard
parametrization is

X(u, v) =
(
u cos v, u sin v, c v

)
, u ∈ R, v ∈ R,

where c ̸= 0 controls the pitch of the helix.

Step 1: first fundamental form

Compute
Xu = (cos v, sin v, 0), Xv = (−u sin v, u cos v, c).

Then
E = ⟨Xu, Xu⟩ = 1, F = ⟨Xu, Xv⟩ = 0, G = ⟨Xv, Xv⟩ = u2 + c2.

Step 2: a unit normal

Xu × Xv =
(
c sin v, −c cos v, u

)
, ∥Xu × Xv∥ =

√
u2 + c2.

So
N = 1√

u2 + c2
(c sin v, −c cos v, u).
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Step 3: second fundamental form and mean curvature

Second derivatives:

Xuu = (0, 0, 0), Xuv = (− sin v, cos v, 0), Xvv = (−u cos v, −u sin v, 0).

Coefficients of the second fundamental form:

e = ⟨Xuu, N⟩ = 0, f = ⟨Xuv, N⟩ = − c√
u2 + c2

, g = ⟨Xvv, N⟩ = 0.

Mean curvature for a parametrized surface satisfies

2H = eG − 2fF + gE

EG − F 2 .

Since e = g = 0 and F = 0, we get H = 0 everywhere. Therefore the helicoid is minimal.

Helicoid
a minimal ruled surface

4.6 Example 6: a nontrivial minimal graph (Scherk’s surface)

A famous explicit minimal graph is

u(x, y) = log
(cos y

cos x

)
(defined where cos x, cos y > 0).

One can compute ux = tan x, uy = − tan y, and check that (1) holds. This gives a periodic “saddle”
surface with alternating asymptotic planes.

5 Soap films vs. soap bubbles
• Soap film (spanning a wire frame): typically has (approximately) zero pressure jump

across it, so it aims for H = 0.

• Soap bubble (closed surface enclosing air): has nonzero pressure jump, so it aims for
constant mean curvature H = const.

Remark 3 (Plateau’s problem). Given a closed curve in space, does there exist a surface of least
area spanning it? This is Plateau’s problem; soap films give a physical existence experiment, while
mathematics provides rigorous existence theorems.
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6 Applications in the real world
Minimal surfaces show up wherever area minimization and efficient distribution of stress appear.

• Architecture and structural design: tensile membranes and lightweight roofs often follow
minimal (or near-minimal) shapes. Classic “soap-film models” (physical form-finding) inspire
efficient structures.

• Materials science: triply periodic minimal surfaces (TPMS) appear in self-assembled
materials (e.g. certain block copolymers), and in porous scaffolds where high surface area and
uniform channels are desired.

• Biology: cell membranes and biological interfaces can adopt shapes balancing curvature
energies; minimal/CMC models appear as idealizations.

• Engineering and manufacturing: lattice infill patterns and 3D-printed structures can use
minimal-surface-like geometries to achieve high stiffness-to-weight ratios.

• Computer graphics / geometry processing: minimal surfaces arise in smoothing, mesh
fairing, and surface reconstruction algorithms.
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