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Abstract

A minimal surface is a surface whose mean curvature vanishes everywhere; equivalently, it
is a critical point of the area functional. Soap films provide a physical model: they minimize
area subject to a boundary wire frame. We introduce curvature (principal, mean, Gaussian),
define minimal surfaces, derive the minimal surface equation for graphs, and work through classic
examples in detail: planes, catenoids, and helicoids (plus a quick look at Scherk’s surface). We
then connect the math to soap films, bubbles, and applications in architecture, materials science,
and biology.

1 Motivation: soap films and “least area”

Dip a bent wire loop into soapy water: the film that forms spans the loop and (approximately)
minimizes surface area. This is a real-world optimization problem: among all surfaces with the same
boundary, the soap film chooses one with the smallest area.

The mathematics of minimal surfaces connects geometry (curvature) and optimization (area
minimization,).

2 Curvature of a surface: ki, k), mean curvature H, (Gaussian
curvature K
2.1 Surfaces and tangent planes

A smooth surface in R3 can be given parametrically by a map
X (u,v) € R3, (u,v) € U C R?,

with X, and X, linearly independent. The tangent plane is spanned by X, and X,,.

2.2 Normal vector and normal sections

At each point, a unit normal vector is

X X X,

N=—"——.
[ Xu x Xo|

Intersect the surface with planes containing the normal N; each intersection gives a curve on the
surface called a normal section. Different normal sections curve by different amounts.



2.3 Principal curvatures

Among all normal sections, the maximum and minimum curvatures are called the principal curvatures
k‘l and k‘Q.

Definition 1 (Mean and Gaussian curvature).

_ ky+ ko

H
2

(mean curvature), K = kiko (Gaussian curvature).

Remark 1. Intuition: H measures how the surface bends on average, while K measures how
saddle-like vs. dome-like it is. Many minimal surfaces have K < 0 (saddle behavior), except the
plane where K = 0.

3 What is a minimal surface? Two equivalent definitions

3.1 Geometric definition: zero mean curvature

Definition 2 (Minimal surface). A smooth surface in R? is minimal if its mean curvature satisfies

H =0 everywhere on the surface.

3.2 Variational definition: critical points of area

If a surface is given as a graph z = u(z,y) over a domain Q C R?, its area is
Area(u) = //Q 1+ w2+ de dy.
A minimal surface is a critical point of this functional.

3.3 First variation and the minimal surface equation for graphs

Let uy = u+tp where ¢ is a smooth test function vanishing on the boundary (so the boundary stays
fixed). Differentiating the area functional (details omitted in a first talk, but doable in multivariable
calculus) gives the Euler-Lagrange equation:

O e N N R
Oz V1 +us +ul dy 14 u2 + uf .

(1 + Ul gz — 2Uaglytigy + (1 + ul)uy, =0, (1)

Equivalently,

called the minimal surface equation.

Remark 2 (Curvature connection). For a graph z = u(x,y), one can show

Vu
2H =div| ——— | .
<\/1—|—|Vu||2>

So the PDE above is exactly H = 0 written in coordinates.



4 Worked examples in detail

4.1 Example 1: planes are minimal

Let u(z,y) = ax + by + c¢. Then ug, = uyy = uyy = 0, so (1) holds. Thus every plane is a minimal
surface.

4.2 Example 2: why cylinders are not minimal

A circular cylinder of radius R has one principal curvature k; = 1/R (bending around the circle)
and the other k2 = 0 (straight along the axis). Hence

1/R+0 1

So cylinders are not minimal.

4.3 Example 3: spheres and soap bubbles

A sphere of radius R has k1 = ko = 1/R, so H =1/R. A soap bubble (a closed surface enclosing
air) has a pressure difference across the film. The Young—Laplace law says: pressure difference AP
is proportional to H. So bubbles prefer constant mean curvature surfaces, and the sphere is the
simplest one.

4.4 Example 4: the catenoid, derived by calculus of variations

The catenoid is the minimal surface obtained by rotating a catenary curve. It is the classic soap
film between two parallel circular rings.

Set-up: surfaces of revolution

Consider a surface of revolution around the z-axis given by a profile curve r — (r, f(r)) rotated:
X(r,0) = (rcosf, rsing, f(r)), r € [ro,m], 6 € [0,27].

Compute the area element:

X, = (cosb,sinb, f'(r)), Xg=(—rsind,rcosb,0),

| X x Xg|| =ry/1+ f/(r)2
Hence the area is
2 r1
Area(f =/ / r 1+f’(r2d7’d0:27r/ r/14 F(r)2 dr.
=)y [, ey R

So we minimize the 1D functional

J(f) = /rl 1+ f(r)2 dr.

To



Euler—Lagrange and the first integral
The integrand depends on r and f’(r) but not on f(r) itself. Let L(r, f’) = ry/1 + f"2. A standard

trick (“conservation law” for autonomous f) gives:

oL tont
—— = constant.
af
Compute
oL I
_— =  — 0/7
af V14 f7
for some constant a > 0. Solve for f’:
f, _a 2 a? / - a
VIt o =/ R R flr)==+ 2 —a?

Integrate:

a

f(r) = +a arcosh<r) +C.

Equivalently, solving for r gives the catenary form
z—C
r= acosh() .
a

Rotating this curve produces the catenoid. It satisfies H = 0, hence is minimal.

4.5 Example 5: the helicoid

The helicoid is a ruled surface generated by a line rotating and translating upward. A standard
parametrization is
X (u,v) = (ucosv, usinv, cv), u€ER, veER,

where ¢ # 0 controls the pitch of the helix.

Step 1: first fundamental form

Compute
Xy = (coswv,sinv,0), Xy = (—usinv, ucosv, c).

Then
E=(X,X,)=1 F=(X,X,)=0, G=(X,,X,)=1u>+c

Step 2: a unit normal
Xy x Xy = (csinv, —ccosv, u), | Xy X Xo| = Vu? + 2.

So 1
N = ——(csinv, —ccosv, u).

Vu? 4 c?



Step 3: second fundamental form and mean curvature

Second derivatives:

Xuu = (0,0,0), Xup = (—sinv, cosv,0), Xy = (—ucosv, —usinwv,0).

Coefficients of the second fundamental form:

Cc

€=<qu,N>:07 f:<XuvaN>:—W7
Mean curvature for a parametrized surface satisfies

eG — 2fF + gE
EG — F2

2H =

g = (Xy, N)=0.

Since e = g = 0 and F' = 0, we get H = 0 everywhere. Therefore the helicoid is minimal.

Helicoid

a minimal ruled surface

4.6 Example 6: a nontrivial minimal graph (Scherk’s surface)

A famous explicit minimal graph is

cosy

u(z,y) = 10g<

COST

One can compute u, = tanx, uy = —tany, and check that (1) holds. This gives a periodic “saddle

surface with alternating asymptotic planes.

5 Soap films vs. soap bubbles

e Soap film (spanning a wire frame): typically has (approximately) zero pressure jump

across it, so it aims for H = 0.

o Soap bubble (closed surface enclosing air): has nonzero pressure jump, so it aims for

constant mean curvature H = const.

Remark 3 (Plateau’s problem). Given a closed curve in space, does there exist a surface of least
area spanning it? This is Plateau’s problem; soap films give a physical existence experiment, while

mathematics provides rigorous existence theorems.

) (defined where cosz,cosy > 0).



6 Applications in the real world

Minimal surfaces show up wherever area minimization and efficient distribution of stress appear.

Architecture and structural design: tensile membranes and lightweight roofs often follow
minimal (or near-minimal) shapes. Classic “soap-film models” (physical form-finding) inspire
efficient structures.

Materials science: triply periodic minimal surfaces (TPMS) appear in self-assembled
materials (e.g. certain block copolymers), and in porous scaffolds where high surface area and
uniform channels are desired.

Biology: cell membranes and biological interfaces can adopt shapes balancing curvature
energies; minimal/CMC models appear as idealizations.

Engineering and manufacturing: lattice infill patterns and 3D-printed structures can use
minimal-surface-like geometries to achieve high stiffness-to-weight ratios.

Computer graphics / geometry processing: minimal surfaces arise in smoothing, mesh
fairing, and surface reconstruction algorithms.
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