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1. NAKAYAMA’S LEMMA

We begin with some notations. Let R be a ring.

o (Y(R) = {I]Iis aleft maximal ideal of R}.
o O (R) = {I|Iis a right mazimal ideal of R}.
e Q(R) = {I] I is a twosided mazximal ideal of R}.
Let M be a left R-module. If 2 € M the submodule generated by z is the set
{rz|re R}
and is denoted by (z) or by Rz. If M =
to be a set of generators of M. A left R-module is said to be finitely generated if it

ser Bz with z; € M then the z; are said
has a finite set of generators.

A free left R-module is one which is isomorphic to a left R-module of the form
D, M; with M; = R. A finitely generated left R-module is one which is isomorphic
to R" = R®...®R, forn e N, n > 1.

DEFINITION 1. Let R be a ring. The Jacobson radical of R is defined by
Jac(R) = ﬂJGQL(R) J = mJEQr(R) J.

Note that if R # 0, maximal left ideals always exist by Zorn’s Lemma. If R = 0,
then there are no maximal left ideals; in this case, we define the Jacobson radical

to be zero.

LEmMA 1. (Nakayama) Let R be a ring. For any left ideal I of R the following
facts are equivalent:
(1) IC Jac(R).
(2) For any finitely generated left R-module M, I M — M implies that M = {0}.
(3) For any left R-modules N C M such that % is finitely generated, N + I-M
= M implies that N = M.

Proof. (1)=(2) Suppose M # {0} and consider the set
X = {N | N is a submodule of M and N # M}.

We note that {0} € X and so X # &. Since M is finitely generated every chain
of elements of X has a upper bound. Let Ny C Ny C ... C N, C ... be a chain of
elements in X, then |J N; is an upper bound for the chain. If |JN; = M, since M
is finitely generated we have M = Rx1 + ... + Rx,. Then there exists an N; such
that z; € N; for any i = 1,...,n and so M = Nj, a contradiction. We conclude that
UN; e X.

By Zorn’s lemma the set X contains a maximal element S. Since the submodules
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of M/S are of the form N/S where N is a submodule of M such that N D S,
the left R-module M/S is simple. There exists an element z € M/S, x # 0.
We consider the submodule Rz, since M/S is simple we have Rx = M/S and
R/Anng(x) &2 Rx = M/S. We know that R/Anng(z) is simple if and only if
Anng(z) is a maximal ideal. Then Jac(R) C Anng(x) and I C Anng(xz). We
have that az = 0 for any a € I for a generic € M/S, i.e. I-% = {0}. Finally
I-% = % = {0} implies [ - M +S =S and so [ - M C S, in particular I- M #
M.

(2)=(3) We consider the finitely generated left R-module M/N. By (2) we have
that I & = M implies M/N = {0}. We have that

~
=S
1
2
T~
g
1
2=

implies M/N = {0}, so M = N.

(8)=(1) Suppose to have z € I such that z ¢ Jac(R). Then there exists a maximal
left ideal m of R such that ¢ m. Now m C m+I and m # m-+/ implies m+I = R,
so a fortiori, we have m+I-R = R and by (3) we get m = R, a contradiction. [

In the following proposition we state a direct consequence of Nakayama’s lemma
that is very useful in Algebraic Geometry.
Let R be a commutative local ring and let m be its maximal ideal. Let ¥ = R/m
be the residue field. We consider a finitely generated R-module M. Then M/mM
is annihilated by m and then it has a structure of R/m-module i.e. M/mM is a

k-vector space of finite dimension.

PROPOSITION 1. Let x;, 1<i<n, be elements of M, and let
w: M — M/mM, defined by © — x+mM

be the projection map. If the elements m(x;), 1<i<n, form a basis of the k-vector
space M/mM, then the z; generate M.

Proof. We consider the submodule N of M generated by the z;, and the composition

map
N5 MZI M/mM.

Since the 7(z;), 1<i<n, form a basis of the k-vector space M/mM, the composition
map is surjective. Let x € M and let z+mM its class in M/mM, then there exists y
€ N such that y+mM = z+mM. So z-y € mM and there exists z € mM such that
-y = 2,80 £ = y+z € N+mM. We conclude that N+mM — M and hence by (3)
of lemma 1 we get N = M. O
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LEMMA 2. Let R be a ring, let I be an ideal of R and let M be an R-module. Then

? ®Rpr M 1is isomorphic to %
Proof. We consider the exact sequence
0—~I—-R—R/I—0
tensorizing by M we obtain a exact sequence
0—I®M—>RM — R/I® M~ 0

since the map i @ M : I ® M — R ® M is injective. Now I ® M = IM and
R® M = M. Then we have the exact sequence

0—~IM—->M-—>R/IQM—0
and so R/I® M = M/IM. O

LEMMA 3. Let R be a local ring and let M,N be finitely generated R-modules. Then
M ®r N =0 implies M =0 or N = 0.

Proof. Let m be the maximal ideal of R and let k¥ = R/m be the residue field.
We denote My, = k ®g M =2 M/mM by lemma 2. Now M ®r N = 0 implies
(M ®g N)i = 0 then My ®; N = 0 and since My, Ny, are vector spaces, we have
M, =0 or Ny = 0. By Nakayama’s lemma we conclude that M =0 or N =0. O

1.1. Applications in Commutative Algebra. In this section we state some
proposition which proves need Nakayma’s lemma. In the following all rings are

commutative.

DEFINITION 2. Let A and B be local rings with mazimal ideals my and mp respec-
tively. A local morphism of local rings is a morphism of rings p:A — B such that

e~ (mp) = my.

Let A and B be local rings and let m4 and mp their maximal ideals. A local
morphism ¢:A — B induces two morphisms
e a:A/my — B/mp, a+my — p(a)+mp.
o fmy — mp/m%, a— p(a)+m%.
Suppose z+m4 = y+my then z-y € ma. Since ¢ is a local morphism ¢ (z-y) =
o(r)-p(y) € mp and a(z+my) = a(y+mp).
Similarly if z € m4 then ¢(z) € mp and 3 is well defined.
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PROPOSITION 2. Let p:A — B be a local morphism of local noetherian rings such
that

(1) a:A/my — B/mp is an isomorphism,

(2) Bma — mp/m% is surjective,

(3) B is a finitely generated A-module.

Then ¢ is surjective.

Proof. The ring B becomes an A-module defining ab = ¢(a)b. We consider in B
the ideal Z = m4 B, then Z C mp. By (2) Z contains a set of generators for mp/m%.
We note that since B is noetherian the ideal mp is finitely generated. We apply
Nakayama’s lemma to the local ring B and to the finitely generated B-module mp,
we conclude that Z = mp. Now we apply Nakayama’s lemma to the A-module B.
By (3) B is finitely generated as A-module and the element 1 € B is a generator
for B/maB = B/my = A/mpg by (1). Then 1 is also a generator for B as an
A-module and for any b € B there exists a € A such that b = 1p(a) = ¢(a), i€, ¢

is surjective. O

PROPOSITION 3. Let A be a noetherian local integral domain with residue field k
and quotient field K. If M is a finitely generated A-module and if dimyM @4 k =
dimgM ® 4 K = n, then M is free of rank n.

Proof. Let m be the maximal ideal of A, we have M @ k = M ® A/m = M/mM.
Since dimy M ® 4 k = n by Nakayama’s lemma M can be generated by n elements
and we have a surjective morphism A" — M +— 0. If R is its kernel, we have an

exact sequence
0—R— A" — M — 0.
Tensorizing by the quotient field K which is flat we obtain the sequence
0~ RIK—-A"QK - M®K — 0.
We recall that A” ® K =2 K™ and we have
00— RIK—-K"—>M®®K+—D0.

Now dimxgM ® 4 K = dimg K™ = n implies R® K = 0. Let (r1,...,7,) be a non
zero element of R, with r; € A. If a € A is such that a(rq,...,7,) = (0, ...,0), then
there exist an r; # 0 such that ar; = 0. Since A is an integral domain we have
a = 0. We have proved that R is torsion free and so R® K = 0 implies R = 0. We
conclude that M = A™. O
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1.2. Applications in Algebraic Geometry. Let (X, Ox) be a noetherian scheme.
For any =z € X the ring O,, whose elements are the germs of regular function in
a neighborhood of « is a local ring. Its maximal ideal is the ideal m, of regular
functions vanishing in . We denote by k(z) = O,/m, the residue field. A sheaf
of Ox-modules on X is a sheaf of abelian groups F on X, such that for any open
subset U of X, F(U) is an Ox (U)-module. The stalk F,, of F in z has a structure

of O, -module.

DEFINITION 3. Let x € X be a point and let F be a sheaf of Ox-modules. The
sheaf F is of finite type in x if there exist an open subset U of X and a surjective
morphism (’);L(IM — Fu + 0, for some integer n. The sheaf F is of finite type on
X if it is of finite type in any x € X.

DEFINITION 4. Let F be a sheaf of Ox-modules. The sheaf F is coherent if:

o The sheaf F is of finite type.
e For any open subset U of X and for any morphism ¢ : O?qu — Flu, the
sheaf ker(p) is of finite type.

One can prove that if F is a coherent sheaf and if sq, ..., s, generate the stalk F,,
then there exists an open neighborhood U/ of x in X such that si,..., s, generates
FonlU.

DEFINITION 5. Let X be a topological space. A map ¢ : X — Z is uppersemicon-
tinuous if for each x € X there is an open neighborhood U of x in X, such that
o(u) < ¢(z) for any u e Y.

PROPOSITION 4. Let X be a noetherian scheme and let F be a coherent sheaf on

X. We consider the map
0 : X — Z, defined by p(x) = dimy)Fr ®o, k(x).
Then we have the following results.

(1) The map ¢ is uppersemicontinuous.
(2) If X is irreducible, and p is constant, then F is locally free.
(3) If F is locally free, and X is connected, then ¢ is a constant map.

Proof. (1) By lemma 2 we have that F, ®o, k(r) = Fr ®0, Oy /my = Fp/mpFy.
Then ¢(z) is equal to the number of elements of a basis of the k(x)-vector space
Fr/myF,, by Nakayama’s lemma ¢(2) is equal to the minimal number of gener-
ators of the O, -module F,. If s1,...,s, € F, are germs that form a minimal set
of generators, then they extend to sections of F is some neighborhood U of = in

X, and they generate F is some neighborhood, because F is coherent. If y is in
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that neighborhood, then ¢(y), which is the minimal number of generators of F, by
Nakayama’s lemma, is r < ¢(x). Then for any « € X there exists a neighborhood
V of z in X such that ¢(y) < ¢(z) for any y € V, i.e. the map ¢ is uppersemicon-
tinuous.

(2) We have p(z) = n for any x € X. Let y € X be a point, then ¢(y) = n and
by Nakayama’s lemma n is the minimal number of generators of F,. Since F is
coherent there exists an open neighborhood U of y in X, such that Fj;, is generated
by n sections and we have a surjective morphism O?qu — Flu- If R is the kernel

of that morphism we have the exact sequence
OHRHO}WH}"UHO.

Let V C U be an open subset, and let (ry,...,7,) € Ry then the r; are regular
function on V such that r;(x) = 0 for any x € V. Then r; = 0 and R = 0. We
conclude that the morphism O?{\u — Flu is an isomorphism and F is free of rank
n on U. Since p is a constant map the sheaf F have to be locally free.

(3) Suppose that there exist z,y € X such that p(z) # ¢(y). Then by (2) there
exist U, V open neighborhood of = and y respectively, such that F is locally free
of rank n on U and is locally free of rank m on V, with n # m. A contradiction

because F is locally free and X is connected. ([



