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1. Nakayama's Lemma

We begin with some notations. Let R be a ring.

• Ωl(R) = {I | I is a left maximal ideal of R}.

• Ωr(R) = {I | I is a right maximal ideal of R}.

• Ω(R) = {I | I is a twosided maximal ideal of R}.

Let M be a left R-module. If x ∈ M the submodule generated by x is the set

{rx | r ∈ R}

and is denoted by (x) or by Rx. If M =
∑
i∈IRxi with xi ∈ M then the xi are said

to be a set of generators of M. A left R-module is said to be �nitely generated if it

has a �nite set of generators.

A free left R-module is one which is isomorphic to a left R-module of the form⊕
i∈IMi withMi

∼= R. A �nitely generated left R-module is one which is isomorphic

to Rn = R⊕...⊕R, for n ∈ N, n ≥ 1.

Definition 1. Let R be a ring. The Jacobson radical of R is de�ned by

Jac(R) =
⋂
J∈Ωl(R) J =

⋂
J∈Ωr(R) J .

Note that if R 6= 0, maximal left ideals always exist by Zorn's Lemma. If R = 0,

then there are no maximal left ideals; in this case, we de�ne the Jacobson radical

to be zero.

Lemma 1. (Nakayama) Let R be a ring. For any left ideal I of R the following

facts are equivalent:

(1) I ⊆ Jac(R).

(2) For any �nitely generated left R-module M, I·M = M implies that M = {0}.

(3) For any left R-modules N ⊆ M such that M
N is �nitely generated, N + I·M

= M implies that N = M.

Proof. (1)⇒(2) Suppose M 6= {0} and consider the set

X = {N | N is a submodule of M and N 6= M }.

We note that {0} ∈ X and so X 6= ∅. Since M is �nitely generated every chain

of elements of X has a upper bound. Let N1 ⊆ N2 ⊆ ... ⊆ Nr ⊆ ... be a chain of

elements in X, then
⋃
Ni is an upper bound for the chain. If

⋃
Ni = M, since M

is �nitely generated we have M = Rx1 + ... + Rxn. Then there exists an Nj such

that xi ∈ Nj for any i = 1, ..., n and soM = Nj , a contradiction. We conclude that⋃
Ni ∈ X.

By Zorn's lemma the set X contains a maximal element S. Since the submodules
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of M/S are of the form N/S where N is a submodule of M such that N ⊇ S,

the left R-module M/S is simple. There exists an element x ∈ M/S, x 6= 0.

We consider the submodule Rx, since M/S is simple we have Rx = M/S and

R/AnnR(x) ∼= Rx = M/S. We know that R/AnnR(x) is simple if and only if

AnnR(x) is a maximal ideal. Then Jac(R) ⊆ AnnR(x) and I ⊆ AnnR(x). We

have that ax = 0 for any a ∈ I for a generic x ∈ M/S, i.e. I ·MS = {0}. Finally

I ·MS = I·M+S
S = {0} implies I ·M + S = S and so I ·M ⊆ S, in particular I·M 6=

M.

(2)⇒(3) We consider the �nitely generated left R-module M/N. By (2) we have

that I· MN = M
N implies M/N = {0}. We have that

I· MN ∼=
N+I·M
N

∼= M
N

implies M/N = {0}, so M = N.

(3)⇒(1) Suppose to have x ∈ I such that x /∈ Jac(R). Then there exists a maximal

left ideal m of R such that x /∈ m. Now m ⊂ m+I and m 6= m+I implies m+I = R,

so a fortiori, we have m+I·R = R and by (3) we get m = R, a contradiction. �

In the following proposition we state a direct consequence of Nakayama's lemma

that is very useful in Algebraic Geometry.

Let R be a commutative local ring and let m be its maximal ideal. Let k = R/m

be the residue �eld. We consider a �nitely generated R-module M. Then M/mM

is annihilated by m and then it has a structure of R/m-module i.e. M/mM is a

k -vector space of �nite dimension.

Proposition 1. Let xi, 1≤i≤n, be elements of M, and let

π: M → M/mM, de�ned by x 7→ x+mM

be the projection map. If the elements π(xi), 1≤i≤n, form a basis of the k-vector

space M/mM, then the xi generate M.

Proof. We consider the submodule N ofM generated by the xi, and the composition

map

N
i→ M

π→ M/mM.

Since the π(xi), 1≤i≤n, form a basis of the k -vector space M/mM, the composition

map is surjective. Let x ∈ M and let x+mM its class in M/mM, then there exists y

∈ N such that y+mM = x+mM. So x-y ∈ mM and there exists z ∈ mM such that

x-y = z, so x = y+z ∈ N+mM. We conclude that N+mM = M and hence by (3)

of lemma 1 we get N = M. �
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Lemma 2. Let R be a ring, let I be an ideal of R and let M be an R-module. Then
R
I ⊗RM is isomorphic to M

IM .

Proof. We consider the exact sequence

0 7→ I → R→ R/I 7→ 0

tensorizing by M we obtain a exact sequence

0 7→ I ⊗M → R⊗M → R/I ⊗M 7→ 0

since the map i ⊗ M : I ⊗ M → R ⊗ M is injective. Now I ⊗ M ∼= IM and

R⊗M ∼= M . Then we have the exact sequence

0 7→ IM →M → R/I ⊗M 7→ 0

and so R/I ⊗M ∼= M/IM . �

Lemma 3. Let R be a local ring and let M,N be �nitely generated R-modules. Then

M ⊗R N = 0 implies M = 0 or N = 0.

Proof. Let m be the maximal ideal of R and let k = R/m be the residue �eld.

We denote Mk = k ⊗R M ∼= M/mM by lemma 2. Now M ⊗R N = 0 implies

(M ⊗R N)k = 0 then Mk ⊗k Nk = 0 and since Mk, Nk are vector spaces, we have

Mk = 0 or Nk = 0. By Nakayama's lemma we conclude that M = 0 or N = 0. �

1.1. Applications in Commutative Algebra. In this section we state some

proposition which proves need Nakayma's lemma. In the following all rings are

commutative.

Definition 2. Let A and B be local rings with maximal ideals mA and mB respec-

tively. A local morphism of local rings is a morphism of rings ϕ:A → B such that

ϕ−1(mB) = mA.

Let A and B be local rings and let mA and mB their maximal ideals. A local

morphism ϕ:A → B induces two morphisms

• α:A/mA → B/mB, a+mA 7→ ϕ(a)+mB.

• β:mA → mB/m
2
B, a7→ ϕ(a)+m2

B.

Suppose x+mA = y+mA then x-y ∈ mA. Since ϕ is a local morphism ϕ(x-y) =

ϕ(x)-ϕ(y) ∈ mB and α(x+mA) = α(y+mB).

Similarly if x ∈ mA then ϕ(x ) ∈ mB and β is well de�ned.
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Proposition 2. Let ϕ:A → B be a local morphism of local noetherian rings such

that

(1) α:A/mA → B/mB is an isomorphism,

(2) β:mA → mB/m
2
B is surjective,

(3) B is a �nitely generated A-module.

Then ϕ is surjective.

Proof. The ring B becomes an A-module de�ning ab = ϕ(a)b. We consider in B

the ideal I = mAB, then I ⊆ mB . By (2) I contains a set of generators for mB/m
2
B .

We note that since B is noetherian the ideal mB is �nitely generated. We apply

Nakayama's lemma to the local ring B and to the �nitely generated B -module mB ,

we conclude that I = mB . Now we apply Nakayama's lemma to the A-module B.

By (3 ) B is �nitely generated as A-module and the element 1 ∈ B is a generator

for B/mAB = B/mA = A/mB by (1 ). Then 1 is also a generator for B as an

A-module and for any b ∈ B there exists a ∈ A such that b = 1ϕ(a) = ϕ(a), i.e, ϕ

is surjective. �

Proposition 3. Let A be a noetherian local integral domain with residue �eld k

and quotient �eld K. If M is a �nitely generated A-module and if dimkM ⊗A k =

dimKM ⊗A K = n, then M is free of rank n.

Proof. Let m be the maximal ideal of A, we have M ⊗ k = M ⊗ A/m ∼= M/mM .

Since dimkM ⊗A k = n by Nakayama's lemma M can be generated by n elements

and we have a surjective morphism An → M 7→ 0. If R is its kernel, we have an

exact sequence

0 7→ R→ An →M 7→ 0.

Tensorizing by the quotient �eld K which is �at we obtain the sequence

0 7→ R⊗K → An ⊗K →M ⊗K 7→ 0.

We recall that An ⊗K ∼= Kn and we have

0 7→ R⊗K → Kn →M ⊗K 7→ 0.

Now dimKM ⊗A K = dimKK
n = n implies R ⊗K = 0. Let (r1, ..., rn) be a non

zero element of R, with ri ∈ A. If a ∈ A is such that a(r1, ..., rn) = (0, ..., 0), then

there exist an rj 6= 0 such that arj = 0. Since A is an integral domain we have

a = 0. We have proved that R is torsion free and so R⊗K = 0 implies R = 0. We

conclude that M ∼= An. �
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1.2. Applications in Algebraic Geometry. Let (X,OX) be a noetherian scheme.

For any x ∈ X the ring Ox, whose elements are the germs of regular function in

a neighborhood of x is a local ring. Its maximal ideal is the ideal mx of regular

functions vanishing in x. We denote by k(x) = Ox/mx the residue �eld. A sheaf

of OX -modules on X is a sheaf of abelian groups F on X, such that for any open

subset U of X, F(U) is an OX(U)-module. The stalk Fx of F in x has a structure

of Ox-module.

Definition 3. Let x ∈ X be a point and let F be a sheaf of OX-modules. The

sheaf F is of �nite type in x if there exist an open subset U of X and a surjective

morphism OnX|U → F|U 7→ 0, for some integer n. The sheaf F is of �nite type on

X if it is of �nite type in any x ∈ X.

Definition 4. Let F be a sheaf of OX-modules. The sheaf F is coherent if:

• The sheaf F is of �nite type.

• For any open subset U of X and for any morphism ϕ : OnX|U → F|U , the
sheaf ker(ϕ) is of �nite type.

One can prove that if F is a coherent sheaf and if s1, ..., sn generate the stalk Fx,
then there exists an open neighborhood U of x in X such that s1, ..., sn generates

F on U .

Definition 5. Let X be a topological space. A map ϕ : X → Z is uppersemicon-

tinuous if for each x ∈ X there is an open neighborhood U of x in X, such that

ϕ(u) 6 ϕ(x) for any u ∈ U .

Proposition 4. Let X be a noetherian scheme and let F be a coherent sheaf on

X. We consider the map

ϕ : X → Z, de�ned by ϕ(x) = dimk(x)Fx ⊗Ox
k(x).

Then we have the following results.

(1) The map ϕ is uppersemicontinuous.

(2) If X is irreducible, and ϕ is constant, then F is locally free.

(3) If F is locally free, and X is connected, then ϕ is a constant map.

Proof. (1) By lemma 2 we have that Fx ⊗Ox
k(x) = Fx ⊗Ox

Ox/mx
∼= Fx/mxFx.

Then ϕ(x) is equal to the number of elements of a basis of the k(x)-vector space

Fx/mxFx, by Nakayama's lemma ϕ(x) is equal to the minimal number of gener-

ators of the Ox-module Fx. If s1, ..., sn ∈ Fx are germs that form a minimal set

of generators, then they extend to sections of F is some neighborhood U of x in

X, and they generate F is some neighborhood, because F is coherent. If y is in
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that neighborhood, then ϕ(y), which is the minimal number of generators of Fy by

Nakayama's lemma, is r 6 ϕ(x). Then for any x ∈ X there exists a neighborhood

V of x in X such that ϕ(y) 6 ϕ(x) for any y ∈ V, i.e. the map ϕ is uppersemicon-

tinuous.

(2) We have ϕ(x) = n for any x ∈ X. Let y ∈ X be a point, then ϕ(y) = n and

by Nakayama's lemma n is the minimal number of generators of Fy. Since F is

coherent there exists an open neighborhood U of y in X, such that F|U is generated

by n sections and we have a surjective morphism OnX|U → F|U . If R is the kernel

of that morphism we have the exact sequence

0 7→ R → OnX|U → F|U 7→ 0.

Let V ⊆ U be an open subset, and let (r1, ..., rn) ∈ R|V then the ri are regular

function on V such that ri(x) = 0 for any x ∈ V. Then ri = 0 and R = 0. We

conclude that the morphism OnX|U → F|U is an isomorphism and F is free of rank

n on U . Since ϕ is a constant map the sheaf F have to be locally free.

(3) Suppose that there exist x, y ∈ X such that ϕ(x) 6= ϕ(y). Then by (2) there

exist U , V open neighborhood of x and y respectively, such that F is locally free

of rank n on U and is locally free of rank m on V, with n 6= m. A contradiction

because F is locally free and X is connected. �


