NAKAYAMA'S LEMMA

A.M.

Contents

1. I	Nakayama's Lemma	2
1.1.	Applications in Commutative Algebra	4
1.2.	Applications in Algebraic Geometry	6

Date: May 14, 2009.

A.M.

1. Nakayama's Lemma

We begin with some notations. Let R be a ring.

- $\Omega_l(R) = \{I \mid I \text{ is a left maximal ideal of } R\}.$
- $\Omega_r(R) = \{I \mid I \text{ is a right maximal ideal of } R\}.$
- $\Omega(R) = \{I \mid I \text{ is a twosided maximal ideal of } R\}.$

Let M be a left R-module. If $x \in M$ the submodule generated by x is the set

$$\{rx \mid r \in R\}$$

and is denoted by (x) or by Rx. If $M = \sum_{i \in I} Rx_i$ with $x_i \in M$ then the x_i are said to be a set of generators of M. A left R-module is said to be finitely generated if it has a finite set of generators.

A free left *R*-module is one which is isomorphic to a left *R*-module of the form $\bigoplus_{i \in I} M_i$ with $M_i \cong R$. A finitely generated left *R*-module is one which is isomorphic to $R^n = R \oplus ... \oplus R$, for $n \in \mathbb{N}$, $n \geq 1$.

DEFINITION 1. Let R be a ring. The Jacobson radical of R is defined by

$$Jac(R) = \bigcap_{J \in \Omega_l(R)} J = \bigcap_{J \in \Omega_r(R)} J.$$

Note that if $R \neq 0$, maximal left ideals always exist by Zorn's Lemma. If R = 0, then there are no maximal left ideals; in this case, we define the Jacobson radical to be zero.

LEMMA 1. (Nakayama) Let R be a ring. For any left ideal I of R the following facts are equivalent:

- (1) $I \subseteq Jac(R)$.
- (2) For any finitely generated left R-module M, $I \cdot M = M$ implies that $M = \{0\}$.
- (3) For any left R-modules $N \subseteq M$ such that $\frac{M}{N}$ is finitely generated, $N + I \cdot M = M$ implies that N = M.

Proof. (1) \Rightarrow (2) Suppose $M \neq \{0\}$ and consider the set

 $X = \{ N \mid N \text{ is a submodule of } M \text{ and } N \neq M \}.$

We note that $\{0\} \in X$ and so $X \neq \emptyset$. Since M is finitely generated every chain of elements of X has a upper bound. Let $N_1 \subseteq N_2 \subseteq ... \subseteq N_r \subseteq ...$ be a chain of elements in X, then $\bigcup N_i$ is an upper bound for the chain. If $\bigcup N_i = M$, since Mis finitely generated we have $M = Rx_1 + ... + Rx_n$. Then there exists an N_j such that $x_i \in N_j$ for any i = 1, ..., n and so $M = N_j$, a contradiction. We conclude that $\bigcup N_i \in X$.

By Zorn's lemma the set X contains a maximal element S. Since the submodules

of M/S are of the form N/S where N is a submodule of M such that $N \supseteq S$, the left R-module M/S is simple. There exists an element $x \in M/S$, $x \neq 0$. We consider the submodule Rx, since M/S is simple we have Rx = M/S and $R/Ann_R(x) \cong Rx = M/S$. We know that $R/Ann_R(x)$ is simple if and only if $Ann_R(x)$ is a maximal ideal. Then $Jac(R) \subseteq Ann_R(x)$ and $I \subseteq Ann_R(x)$. We have that ax = 0 for any $a \in I$ for a generic $x \in M/S$, i.e. $I \cdot \frac{M}{S} = \{0\}$. Finally $I \cdot \frac{M}{S} = \frac{I \cdot M + S}{S} = \{0\}$ implies $I \cdot M + S = S$ and so $I \cdot M \subseteq S$, in particular $I \cdot M \neq M$.

 $(2) \Rightarrow (3)$ We consider the finitely generated left *R*-module *M/N*. By (2) we have that *I*. $\frac{M}{N} = \frac{M}{N}$ implies $M/N = \{0\}$. We have that

$$I \cdot \frac{M}{N} \cong \frac{M + I \cdot M}{N} \cong \frac{M}{N}$$

implies $M/N = \{0\}$, so M = N.

 $(3) \Rightarrow (1)$ Suppose to have $x \in I$ such that $x \notin Jac(R)$. Then there exists a maximal left ideal \mathfrak{m} of R such that $x \notin \mathfrak{m}$. Now $\mathfrak{m} \subset \mathfrak{m} + I$ and $\mathfrak{m} \neq \mathfrak{m} + I$ implies $\mathfrak{m} + I = R$, so a fortiori, we have $\mathfrak{m} + I \cdot R = R$ and by (3) we get $\mathfrak{m} = R$, a contradiction. \Box

In the following proposition we state a direct consequence of Nakayama's lemma that is very useful in Algebraic Geometry.

Let R be a commutative local ring and let \mathfrak{m} be its maximal ideal. Let $k = R/\mathfrak{m}$ be the residue field. We consider a finitely generated R-module M. Then $M/\mathfrak{m}M$ is annihilated by \mathfrak{m} and then it has a structure of R/\mathfrak{m} -module i.e. $M/\mathfrak{m}M$ is a k-vector space of finite dimension.

PROPOSITION 1. Let x_i , $1 \le i \le n$, be elements of M, and let

 $\pi \colon M \to M/\mathfrak{m}M, \ defined \ by \ x \mapsto x+\mathfrak{m}M$

be the projection map. If the elements $\pi(x_i)$, $1 \le i \le n$, form a basis of the k-vector space $M/\mathfrak{m}M$, then the x_i generate M.

Proof. We consider the submodule N of M generated by the x_i , and the composition map

$$N \xrightarrow{i} M \xrightarrow{\pi} M/\mathfrak{m}M.$$

Since the $\pi(x_i)$, $1 \le i \le n$, form a basis of the k-vector space $M/\mathfrak{m}M$, the composition map is surjective. Let $x \in M$ and let $x+\mathfrak{m}M$ its class in $M/\mathfrak{m}M$, then there exists $y \in N$ such that $y+\mathfrak{m}M = x+\mathfrak{m}M$. So $x-y \in \mathfrak{m}M$ and there exists $z \in \mathfrak{m}M$ such that x-y = z, so $x = y+z \in N+\mathfrak{m}M$. We conclude that $N+\mathfrak{m}M = M$ and hence by (3) of lemma 1 we get N = M. LEMMA 2. Let R be a ring, let I be an ideal of R and let M be an R-module. Then $\frac{R}{T} \otimes_R M$ is isomorphic to $\frac{M}{IM}$.

Proof. We consider the exact sequence

$$0 \mapsto I \to R \to R/I \mapsto 0$$

tensorizing by M we obtain a exact sequence

$$0 \mapsto I \otimes M \to R \otimes M \to R/I \otimes M \mapsto 0$$

since the map $i \otimes M : I \otimes M \to R \otimes M$ is injective. Now $I \otimes M \cong IM$ and $R \otimes M \cong M$. Then we have the exact sequence

$$0 \mapsto IM \to M \to R/I \otimes M \mapsto 0$$

and so $R/I \otimes M \cong M/IM$.

LEMMA 3. Let R be a local ring and let M,N be finitely generated R-modules. Then $M \otimes_R N = 0$ implies M = 0 or N = 0.

Proof. Let \mathfrak{m} be the maximal ideal of R and let $k = R/\mathfrak{m}$ be the residue field. We denote $M_k = k \otimes_R M \cong M/\mathfrak{m}M$ by lemma 2. Now $M \otimes_R N = 0$ implies $(M \otimes_R N)_k = 0$ then $M_k \otimes_k N_k = 0$ and since M_k , N_k are vector spaces, we have $M_k = 0$ or $N_k = 0$. By Nakayama's lemma we conclude that M = 0 or N = 0. \Box

1.1. **Applications in Commutative Algebra.** In this section we state some proposition which proves need Nakayma's lemma. In the following all rings are commutative.

DEFINITION 2. Let A and B be local rings with maximal ideals \mathfrak{m}_A and \mathfrak{m}_B respectively. A local morphism of local rings is a morphism of rings $\varphi: A \to B$ such that $\varphi^{-1}(\mathfrak{m}_B) = \mathfrak{m}_A$.

Let A and B be local rings and let \mathfrak{m}_A and \mathfrak{m}_B their maximal ideals. A local morphism $\varphi: A \to B$ induces two morphisms

- $\alpha: A/\mathfrak{m}_A \to B/\mathfrak{m}_B, a+\mathfrak{m}_A \mapsto \varphi(a)+\mathfrak{m}_B.$
- $\beta:\mathfrak{m}_A \to \mathfrak{m}_B/\mathfrak{m}_B^2, \ a \mapsto \varphi(a) + \mathfrak{m}_B^2.$

Suppose $x+\mathfrak{m}_A = y+\mathfrak{m}_A$ then $x-y \in \mathfrak{m}_A$. Since φ is a local morphism $\varphi(x-y) = \varphi(x)-\varphi(y) \in \mathfrak{m}_B$ and $\alpha(x+\mathfrak{m}_A) = \alpha(y+\mathfrak{m}_B)$.

Similarly if $x \in \mathfrak{m}_A$ then $\varphi(x) \in \mathfrak{m}_B$ and β is well defined.

PROPOSITION 2. Let $\varphi: A \to B$ be a local morphism of local noetherian rings such that

- (1) $\alpha: A/\mathfrak{m}_A \to B/\mathfrak{m}_B$ is an isomorphism,
- (2) $\beta:\mathfrak{m}_A \to \mathfrak{m}_B/\mathfrak{m}_B^2$ is surjective,
- (3) B is a finitely generated A-module.

Then φ is surjective.

Proof. The ring B becomes an A-module defining $ab = \varphi(a)b$. We consider in B the ideal $\mathcal{I} = \mathfrak{m}_A B$, then $\mathcal{I} \subseteq \mathfrak{m}_B$. By (2) \mathcal{I} contains a set of generators for $\mathfrak{m}_B/\mathfrak{m}_B^2$. We note that since B is noetherian the ideal \mathfrak{m}_B is finitely generated. We apply Nakayama's lemma to the local ring B and to the finitely generated B-module \mathfrak{m}_B , we conclude that $\mathcal{I} = \mathfrak{m}_B$. Now we apply Nakayama's lemma to the A-module B. By (3) B is finitely generated as A-module and the element $1 \in B$ is a generator for $B/\mathfrak{m}_A B = B/\mathfrak{m}_A = A/\mathfrak{m}_B$ by (1). Then 1 is also a generator for B as an A-module and for any $b \in B$ there exists $a \in A$ such that $b = 1\varphi(a) = \varphi(a)$, i.e, φ is surjective.

PROPOSITION 3. Let A be a noetherian local integral domain with residue field k and quotient field K. If M is a finitely generated A-module and if $\dim_k M \otimes_A k = \dim_K M \otimes_A K = n$, then M is free of rank n.

Proof. Let \mathfrak{m} be the maximal ideal of A, we have $M \otimes k = M \otimes A/\mathfrak{m} \cong M/\mathfrak{m}M$. Since $\dim_k M \otimes_A k = n$ by Nakayama's lemma M can be generated by n elements and we have a surjective morphism $A^n \to M \mapsto 0$. If R is its kernel, we have an exact sequence

$$0\mapsto R\to A^n\to M\mapsto 0.$$

Tensorizing by the quotient field K which is flat we obtain the sequence

$$0\mapsto R\otimes K\to A^n\otimes K\to M\otimes K\mapsto 0.$$

We recall that $A^n \otimes K \cong K^n$ and we have

$$0\mapsto R\otimes K\to K^n\to M\otimes K\mapsto 0.$$

Now $\dim_K M \otimes_A K = \dim_K K^n = n$ implies $R \otimes K = 0$. Let $(r_1, ..., r_n)$ be a non zero element of R, with $r_i \in A$. If $a \in A$ is such that $a(r_1, ..., r_n) = (0, ..., 0)$, then there exist an $r_j \neq 0$ such that $ar_j = 0$. Since A is an integral domain we have a = 0. We have proved that R is torsion free and so $R \otimes K = 0$ implies R = 0. We conclude that $M \cong A^n$.

1.2. Applications in Algebraic Geometry. Let (X, \mathcal{O}_X) be a noetherian scheme. For any $x \in X$ the ring \mathcal{O}_x , whose elements are the germs of regular function in a neighborhood of x is a local ring. Its maximal ideal is the ideal \mathfrak{m}_x of regular functions vanishing in x. We denote by $k(x) = \mathcal{O}_x/\mathfrak{m}_x$ the residue field. A sheaf of \mathcal{O}_X -modules on X is a sheaf of abelian groups \mathcal{F} on X, such that for any open subset \mathcal{U} of X, $\mathcal{F}(\mathcal{U})$ is an $\mathcal{O}_X(\mathcal{U})$ -module. The stalk \mathcal{F}_x of \mathcal{F} in x has a structure of \mathcal{O}_x -module.

DEFINITION 3. Let $x \in X$ be a point and let \mathcal{F} be a sheaf of \mathcal{O}_X -modules. The sheaf \mathcal{F} is of finite type in x if there exist an open subset \mathcal{U} of X and a surjective morphism $\mathcal{O}_{X|\mathcal{U}}^n \to \mathcal{F}_{|\mathcal{U}} \mapsto 0$, for some integer n. The sheaf \mathcal{F} is of finite type on X if it is of finite type in any $x \in X$.

DEFINITION 4. Let \mathcal{F} be a sheaf of \mathcal{O}_X -modules. The sheaf \mathcal{F} is coherent if:

- The sheaf \mathcal{F} is of finite type.
- For any open subset U of X and for any morphism φ : Oⁿ_{X|U} → F_{|U}, the sheaf ker(φ) is of finite type.

One can prove that if \mathcal{F} is a coherent sheaf and if $s_1, ..., s_n$ generate the stalk \mathcal{F}_x , then there exists an open neighborhood \mathcal{U} of x in X such that $s_1, ..., s_n$ generates \mathcal{F} on \mathcal{U} .

DEFINITION 5. Let X be a topological space. A map $\varphi : X \to \mathbb{Z}$ is uppersemicontinuous if for each $x \in X$ there is an open neighborhood \mathcal{U} of x in X, such that $\varphi(u) \leq \varphi(x)$ for any $u \in \mathcal{U}$.

PROPOSITION 4. Let X be a noetherian scheme and let \mathcal{F} be a coherent sheaf on X. We consider the map

 $\varphi: X \to \mathbb{Z}$, defined by $\varphi(x) = \dim_{k(x)} \mathcal{F}_x \otimes_{\mathcal{O}_x} k(x)$.

Then we have the following results.

- (1) The map φ is uppersemicontinuous.
- (2) If X is irreducible, and φ is constant, then \mathcal{F} is locally free.
- (3) If \mathcal{F} is locally free, and X is connected, then φ is a constant map.

Proof. (1) By lemma 2 we have that $\mathcal{F}_x \otimes_{\mathcal{O}_x} k(x) = \mathcal{F}_x \otimes_{\mathcal{O}_x} \mathcal{O}_x / \mathfrak{m}_x \cong \mathcal{F}_x / \mathfrak{m}_x \mathcal{F}_x$. Then $\varphi(x)$ is equal to the number of elements of a basis of the k(x)-vector space $\mathcal{F}_x / \mathfrak{m}_x \mathcal{F}_x$, by Nakayama's lemma $\varphi(x)$ is equal to the minimal number of generators of the \mathcal{O}_x -module \mathcal{F}_x . If $s_1, \ldots, s_n \in \mathcal{F}_x$ are germs that form a minimal set of generators, then they extend to sections of \mathcal{F} is some neighborhood \mathcal{U} of x in X, and they generate \mathcal{F} is some neighborhood, because \mathcal{F} is coherent. If y is in

NAKAYAMA'S LEMMA

that neighborhood, then $\varphi(y)$, which is the minimal number of generators of \mathcal{F}_y by Nakayama's lemma, is $r \leq \varphi(x)$. Then for any $x \in X$ there exists a neighborhood \mathcal{V} of x in X such that $\varphi(y) \leq \varphi(x)$ for any $y \in \mathcal{V}$, i.e. the map φ is uppersemicontinuous.

(2) We have $\varphi(x) = n$ for any $x \in X$. Let $y \in X$ be a point, then $\varphi(y) = n$ and by Nakayama's lemma n is the minimal number of generators of \mathcal{F}_y . Since \mathcal{F} is coherent there exists an open neighborhood \mathcal{U} of y in X, such that $\mathcal{F}_{|\mathcal{U}}$ is generated by n sections and we have a surjective morphism $\mathcal{O}_{X|\mathcal{U}}^n \to \mathcal{F}_{|\mathcal{U}}$. If \mathcal{R} is the kernel of that morphism we have the exact sequence

$$0 \mapsto \mathcal{R} \to \mathcal{O}_{X|\mathcal{U}}^n \to \mathcal{F}_{|\mathcal{U}} \mapsto 0.$$

Let $\mathcal{V} \subseteq \mathcal{U}$ be an open subset, and let $(r_1, ..., r_n) \in \mathcal{R}_{|\mathcal{V}}$ then the r_i are regular function on \mathcal{V} such that $r_i(x) = 0$ for any $x \in \mathcal{V}$. Then $r_i = 0$ and $\mathcal{R} = 0$. We conclude that the morphism $\mathcal{O}_{X|\mathcal{U}}^n \to \mathcal{F}_{|\mathcal{U}}$ is an isomorphism and \mathcal{F} is free of rank n on \mathcal{U} . Since φ is a constant map the sheaf \mathcal{F} have to be locally free.

(3) Suppose that there exist $x, y \in X$ such that $\varphi(x) \neq \varphi(y)$. Then by (2) there exist \mathcal{U}, \mathcal{V} open neighborhood of x and y respectively, such that \mathcal{F} is locally free of rank n on \mathcal{U} and is locally free of rank m on \mathcal{V} , with $n \neq m$. A contradiction because \mathcal{F} is locally free and X is connected.