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INTRODUCTION

These are lecture notes for a curse I gave at the IMPA-UFF Escola Transguanabara de Geometria
Algébrica in February 2020.

The goal of the minimal model program is to construct a birational model of any complex pro-
jective variety which is as simple as possible in a suitable sense. This subject has its origins in the
classical birational geometry of surfaces studied by the Italian school. In 1988 S. Mori extended
the concept of minimal model to 3-folds by allowing suitable singularities on them. In 2010 there
was a great breakthrough in the minimal model theory when C. Birkar, P. Cascini, C. Hacon and
J. McKernan proved the existence of minimal models for varieties of log general type.

Mori Dream Spaces, introduced by Y. Hu and S. Keel in 2002, form a class of algebraic varieties
that behave very well from the point of view of Mori’s minimal model program. They can be
algebraically characterized as varieties whose total coordinate ring, called the Cox ring, is finitely
generated. In addition to this algebraic characterization there are several algebraic varieties char-
acterized by some positivity property of the anti-canonical divisor, such as weak Fano and log Fano
varieties, that turn out to be Mori Dream Spaces.

Toric varieties are the easiest examples of Mori dream spaces, and provide an elementary way to
see many examples and phenomena in algebraic geometry. The goal of the course is to introduce
the notion of Cox ring with a particular attention to toric varieties and their birational geometry
from the point of view of Mori theory.

Date: February 9, 2020.
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1. QUOTIENT CONSTRUCTION OF TORIC VARIETIES

Let X be a normal projective variety. We denote by N1(X) the real vector space of Cartier
divisors and by ρX = dim(N1(X)) the Picard number of X.

- The effective cone Eff(X) is the convex cone in N1(X) generated by classes of effective divi-
sors. In general it is not a closed cone.

- The nef cone Nef(X) is the convex cone in N1(X) generated by classes of divisors D such
that D · C ≥ 0 for any curve C ⊂ X. It is closed, but in general it is neither polyhedral nor
rational.

- A divisor D ⊂ X is called movable if its stable base locus is in codimension greater or equal
that two. The movable cone Mov(X) is the convex cone in N1(X) generated by classes of
movable divisors. In general, it is not closed.

A small Q-factorial transformation of X is a birational map f : X 99K Y to another normal Q-
factorial projective variety Y, such that f is an isomorphism in codimension one.
The exponential exact sequence

0 7→ Z → OX → O∗
X 7→ 0

induces the following exact sequence in cohomology

0 7→ H1(X, Z) → H1(X,OX) → H1(X,O∗
X) → H2(X, Z) → H2(X,OX)

The complex torus H1(X,OX)/H1(X, Z) is the Picard variety of X. This variety Pic0(X) is the con-
nected component of the identity of Pic(X) ∼= H1(X,O∗

X) and it is an abelian variety. The image of
Pic(X) inside H2(X, Z) is isomorphic to Pic(X)/ Pic0(X). The group NS(X) ∼= Pic(X)/ Pic0(X) is
a finitely generated abelian group called the Néron-Severi group. The group NS(X) parametrizes
divisor on X modulo numerical equivalence.

Example 1.1. Let us consider a smooth projective curve X of genus g. That is X is a compact
Riemann surface with g handles. Then H0(X, Z) ∼= H2(X, Z) ∼= Z because X is connected, and
H1(X, Z) ∼= Z2g. Since H0(X,OX) ∼= Cg we have Pic0(X) ∼= Cg/Z2g ∼= Jac(X), the Jacobian
variety of X. In this case the degree gives an isomorphism NS(X) ∼= Z.

Now, let XΣ be an n-dimensional toric variety associated to a fan Σ ⊂ NR with no torus factor
that is such that NR is generated by {uρ | ρ ∈ Σ(1)}. Applying HomZ(−, C∗) to the exact sequence

0 → M →
⊕

ρ∈Σ(1)

ZDρ → Cl(XΣ) → 0

we get
1 → HomZ(Cl(XΣ), C∗) → HomZ(Z

|Σ(1)|, C∗) → HomZ(M, C∗) → 1

Now, TN
∼= HomZ(M, C∗), HomZ(Z

|Σ(1)|, C∗) ∼= (C∗)|Σ(1)|, and set G := HomZ(Cl(XΣ), C∗).
Note that the map M → Z|Σ(1)| is defined by m 7→ (〈m, urho〉)ρ∈Σ(1), and hence

G =



(tρ) ∈ (C∗)|Σ(1)| | ∏

ρ∈Σ(1)

t
〈e1,uρ〉
ρ = 1, i = 1, . . . , n





We want to construct XΣ as a quotient of C|Σ(1)| by G. In order to do this we have specify the
exceptional set of non semi-stable points Z ⊂ C|Σ(1)| that we must remove from C|Σ(1)| before
taking the quotient.
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Note that G and C|Σ(1)| depend only on Σ(1), and to get back XΣ we need to take into account
also the rest of the fan Σ. In order to do this for each ray ρ ∈ Σ(1) we introduce the variable xρ

and consider the total coordinate ring

S = C[xρ | ρ ∈ Σ(1)]

Then Spec(S) = C|Σ(1)|. Now, for each cone σ ∈ Σ define the monomial

xσ̂ = ∏
ρ/∈σ(1)

xρ

and defined the irrelevant ideal

B(Σ) =
〈

xσ̂ | σ ∈ Σ
〉
=

〈
xσ̂ | σ ∈ Σ(n)

〉
⊂ S

Note that Σ(1) and B(Σ) uniquely determine Σ. The irrelevant locus is defined as

Z(Σ) = Z(B(Σ)) ⊂ C|Σ(1)|

and hence Z(Σ) is a union of coordinate subspaces of C|Σ(1)|.
With respect to a fixed basis {D1, . . . , Dρ−n} of Cl(XΣ) we may write

Dx1 = α1
1D1 + · · ·+ α

ρ−n
1 Dρ−n, . . . , Dxρ = α1

ρD1 + · · ·+ α
ρ−n
ρ Dρ−n

Then the grading matrix of Dx1 , . . . , Dxρ with respect to the fixed basis is



α1
1 α1

2 . . . α1
ρ

...
...

. . .
...

α
ρ−n
1 α

ρ−n
2 . . . α

ρ−n
ρ




and hence the action of G on C|Σ(1)| ∼= (C∗)ρ is given by

(λ1, . . . , λρ−n) · (x1, . . . , xρ) = (λ
α1

1
1 . . . λ

α
ρ−n
1

ρ−n x1, . . . , λ
α1

ρ

1 . . . λ
α

ρ−n
ρ

ρ−n xρ)

The toric variety XΣ is isomorphic to the quotient

(C|Σ(1)| \ Z(Σ))//G

We refer to [CLS11, Section 5.1] for details on this construction.

Example 1.2. Consider XΣ = P2. The rays of Σ are generated by u1 = (1, 0), u2 = (0, 1) and
u0 = (−1,−1). Then (t0, t1, t2) ∈ (C∗)|Σ(1)| ∼= (C∗)3 lies in G if and only if t1

0t1 = t1
0t2 = 1 that is

t0 = t1 = t2. The irrelevant locus is given by Z(Σ) = {x = y = z = 0}, and therefore we get back
the projective plane as the quotient of C3 \ {(0, 0, 0)} by G acting via λ · (x, y, z) = (λx, λy, λz).

Example 1.3. Consider XΣ = P1 × P1. Then (t1, t2, t3, t4) ∈ (C∗)|Σ(1)| ∼= (C∗)4 lies in G if and only
if t1t−1

2 = t3t−1
4 = 1 that is t1 = t2 and t3 = t4. So G ∼= {(u, u, λ, λ) | u, λ ∈ C∗} ∼= (C∗)2. Consider

Cox coordinates x1, x2, x3, x4. Their grading matrix, with respect to the standard basis of Pic(XΣ)
given by the two rulings, is (

1 0 1 0
0 1 0 1

)

and hence the action of G is given by (u, λ) · (x1, x2, x3, x4) = (ux1, λx2, ux3, λx4). Note that the
irrelevant locus is defined by

Z(Σ) = Z(x1x2, x3x4, x2x3, x1x4) = {x1 = x3 = 0} ∪ {x2 = x4 = 0}
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and (C4 \ Z(Σ))//G ∼= P1 × P1.

Example 1.4. Consider the cone σ = 〈2e1 − e2, e2〉 ⊂ R2, corresponding to the affine X cone over
a smooth conic. Then Cl(X) ∼= Z

2Z
and G = HomZ

(
Z
2Z

, C∗
)
∼= µ2. The grading matrix is simply

(1, 1) and hence X = C2//µ2 where µ2 acts via ǫ · (x, y) = (ǫx, ǫy).

Note that the group G in Example 1.4 has torsion. In general G is the product of a torus and a
finite abelian group. In particular, G is reductive.

Example 1.5. Let XΣ be the weighted projective space with weights a0, . . . , an. Then Z(Σ) =
{(0, . . . , 0)}, Cl(XΣ) ∼= Z[H], and the grading matrix is (a0, . . . , an). So G ∼= C∗ acts on Cn+1 \
{(0, . . . , 0)} via λ · (x0, . . . , xn) = (λa0 x0, . . . , λan xn), and XΣ

∼= (Cn+1 \ {(0, . . . , 0)})//G.

Example 1.6. Let XΣ be the blow-up of P2 at a point. Then Cl(XΣ) ∼= Z[H, E] and the torus
invariant divisors are

D1 ∼ H − E, D2 ∼ E, D3 ∼ H − E, D4 ∼ H

with grading matrix (
1 0 1 1
−1 1 −1 0

)

The group G ∼= (C∗)2 is defined in (C∗)4 by {t1 − t3 = t4 − t1t2 = 0} and acts on C4 via

(λ, u) · (x1, x2, x3, x4) = (λu−1x1, ux2, λu−1x3, λx4)

The irrelevant locus is defined by

{x3x4 = x1x4 = x1x2 = x2x3 = 0} = {x1 = x2 = 0} ∪ {x3 = x4 = 0}

Indeed, any divisor in 〈H, H − E〉 must be ample on XΣ so the locus where all of its sections vanish
needs to be removed.

If instead we look at divisors in 〈H, E〉 then we must remove

{x2x4 = x1x2 = x2x3 = 0} = {x2 = 0} ∪ {x1 = x3 = x4 = 0}

Since x2 6= 0 we may set x2 = 1. Hence the action of u identifies all the 3-spaces parallel to the
3-space x1, x3, x4, and we may set u = 1. Therefore, we are left with action of C∗ on C3 \ {(0, 0, 0)}
given by λ · (x1, x3, x4) = (λx1, λx3, λx4) so that the quotient is P2.

Note that in Example 1.6 varying the irrelevant locus we recover the birational models of XΣ

which in this case are just XΣ itself and P2. We will see, in Section 4, that this phenomenon holds
for toric varieties in general, and even for a larger class of varieties called Mori dream spaces.

2. SINGULARITIES

Canonical singularities appear as singularities of the canonical model of a projective variety, and
terminal singularities are special cases that appear as singularities of minimal models. Terminal
singularities are important in the minimal model program because smooth minimal models do
not always exist, and thus one must allow certain singularities, namely the terminal singularities.
For instance, two-dimensional terminal singularities are smooth. The singular locus of a variety
with at most terminal singularities has codimension at least three. In particular for curves and
surfaces all terminal singularities are smooth. For 3-folds terminal singularities are isolated and
have been classified by S. Mori.
Surface canonical singularities are exactly the du Val singularities, and are analytically isomorphic
to quotients of C2 by finite subgroups of SL2(C).
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2.1. Cyclic quotient singularities. Any cyclic quotient singularity is of the form An/µr , where µr

is the group of r-roots of unit. The action µr y An can be diagonalized, and then written in the
form

µr × An −→ An

(ǫ, x1, ..., xn) 7−→ (ǫa1 x1, ..., ǫan xn)

for some a1, ..., an ∈ Z/Zr . The singularity is thus determined by the numbers r, a1, ..., an. Follow-
ing the notation set by M. Reid in [?], we denote by 1

r (a1, ..., an) this type of singularity.

Example 2.1. Let us consider the action:

µ2 × A2 −→ A2

(ǫ, x0, x1) 7−→ (ǫx0, ǫx1)

The ring of invariants is given by:

k[x2
0, x0x1, x2

1]
∼= k[y0, y1, y2]/(y0y2 − y2

1)

and we see that the singularity X = A2/µ2 corresponds to the vertex v of the affine cone

X = Spec(k[x2
0, x0x1, x2

1]
∼= k[y0, y1, y2]/(y0y2 − y2

1))

that is the vertex of a quadric cone Q ⊂ P2 or equivalently the singularity 1
2 (1, 1) of the weighted

projective plane P(1, 1, 2). Now, dx0 ∧ dx1 is a basis of
∧2 ΩA2 , and (dx0 ∧ dx1)

⊗2 is invariant
under the action. The form

ω =
(dy0 ∧ dy1)

⊗2

y2
0

∈ (
2∧

Ωk(X))
⊗2

is a basis of (
∧2 ΩX)

⊗2 because the quotient map π : A2 → X is étale on X \ {v}, and π∗ω =
4(dx0 ∧ dx1)

⊗2.
Blowing-up the vertex v we get a resolution f : Y → X. If [λ0 : λ1 : λ2] are homogeneous
coordinates on P2 then the equations of Y in A3 × P2 are:





y0λ1 − y1λ0 = 0
y0λ2 − y2λ0 = 0
y1λ2 − y2λ1 = 0
y0y2 − y2

1

Therefore, y1 = λ1
λ0

y0, and λ2
λ1

= λ1
λ0

yields y2 = λ1
λ0

y1 = ( λ1
λ0
)2y0. Then, in Y we have an affine chart

isomorphic to A2 with coordinates (y0, t) where the resolution is given by (y0, t) 7→ (y0, y0t, y0t2),
with t = λ1

λ0
, and the exceptional divisor E over v is given by {y0 = 0}. We have

f ∗ω = (dy0 ∧ dt)⊗2

Therefore, f ∗ω has neither a pole nor a zero along E, and we may write KY = f ∗KX.

Example 2.2. Let us consider the action:

µ3 × A2 −→ A2

(ǫ, x0, x1) 7−→ (ǫx0, ǫx1)

The ring of invariants is given by:

k[x3
0, x2

0x1, x0x2
1, x3

1]
∼= k[y0, y1, y2, y3]/(y0y3 − y1y2, y0y2 − y2

1, y1y3 − y2
2)
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and we see that the singularity X = A2/µ3 corresponds to the vertex v of the affine cone

X = Spec(k[y0, y1, y2, y3]/(y0y3 − y1y2, y0y2 − y2
1, y1y3 − y2

2))

over a twisted cubic C ⊂ P3. Now, dx0 ∧ dx1 is a basis of
∧2 ΩA2 , and (dx0 ∧ dx1)

⊗3 is invariant
under the action. The form

ω =
(dy0 ∧ dy1)

⊗3

y4
0

∈ (
2∧

Ωk(X))
⊗3

is a basis of (
∧2 ΩX)

⊗3 because the quotient map π : A2 → X is étale on X \ {v}, and

π∗ω =
(3x4

0(dx0 ∧ dx1))
⊗3

x12
0

= 27(dx0 ∧ dx1)
⊗3

Blowing-up the vertex v we get a resolution f : Y → X, and we have an affine chart isomorphic to
A2 with coordinates (y0, t) where the resolution is given by (y0, t) 7→ (y0, y0t, y0t2, y0t3), and the
exceptional divisor E over v is given by {y0 = 0}. We have

f ∗ω =
(dy0 ∧ (y0dt + tdy0))⊗3

y4
0

=
(dy0 ∧ dt)⊗3

y0

Therefore, f ∗ω has a pole along E, and we may write KY = f ∗KX − 1
3 E.

Example 2.3. Now, let us consider the action:

µ2 × A3 −→ A3

(ǫ, x0, x1, x2) 7−→ (ǫx0, ǫx1, ǫx2)

The ring of invariants is given by:

k[x2
0, x0x1, x0x2, x2

1, x1x2, x2
2]
∼=

k[y0, y1, y2, y3, y4, y5]

(y0y3 − y2
1, y0y4 − y1y2, y0y5 − y2

2, y1y4 − y2y3, y1y5 − y2y4, y3y5 − y2
4)

The singularity X = A3/µ2 corresponds to the vertex v of the affine cone X over a Veronese
surface V ⊂ P5. The differential form dx0 ∧ dx1 ∧ dx2 is a basis of

∧3 ΩA3 , and (dx0 ∧ dx1 ∧ dx2)⊗2

is invariant under the action. The form

ω =
(dy0 ∧ dy1 ∧ dy2)⊗2

y3
0

∈ (
3∧

Ωk(X))
⊗2

is a basis of (
∧3 ΩX)

⊗2 because the quotient map π : A3 → X is étale on X \ {v}, and

π∗ω =
(4x6

0(dx0 ∧ dx1 ∧ dx2))⊗2

x6
0

= 4(dx0 ∧ dx1 ∧ dx2)
⊗2

Blowing-up the vertex v we get a resolution f : Y → X, and we have an affine chart isomorphic to
A3 with coordinates (y0, s, t) where the resolution is given by (y0, s, t) 7→ (y0, y0s, y0t, y0s2, y0st, y0t2),
and the exceptional divisor E over v is given by {y0 = 0}. We have

f ∗ω = y0(dy0 ∧ ds ∧ dt)⊗2

Therefore, f ∗ω has a zero along E, and we may write KY = f ∗KX + 1
2 E.
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Definition 2.4. A normal variety X is terminal (canonical) if KX is Q-Cartier and there exists a resolution
f : Y → X such that

KY = f ∗KX + ∑
i

aiEi

with ai > 0 (ai ≥ 0). The rational numbers ai are called discrepancies.

For instance, the quadric cone in Example 2.1 is canonical but not terminal, the cone over the
twisted cubic in Example 2.2 is not even canonical, and the cone over the Veronese surface in Ex-
ample 2.3 is terminal.
A projective variety X has canonical singularities if it is normal, some power of the canonical bun-
dle of the smooth locus of X extends to a line bundle on V, and X has the same plurigenera as any
resolution of its singularities.
A normal projective variety X has terminal singularities, if some power of the canonical line bun-
dle of the smooth locus of X extends to a line bundle on X, and the pullback of any section of
ω⊗m

X vanishes along any codimension one component of the exceptional locus of a resolution of
the singularities of X.

Example 2.5. Let S be a terminal projective surface, and let f : Y → S be a resolution of S. Then

KY = f ∗KS + ∑
i

aiEi

with ai > 0. By Grauert-Mumford theorem the intersection matrix of the Ei is negative definite.
Therefore, there exists an Ej such that

Ej · (∑
i

aiEi) < 0.

Let us check this in the case of two components E1, E2. The general case will be clear. The inter-
section matrix

I =

(
E2

1 E1E2
E1E2 E2

2

)

is negative definite. In particular, if for the vector a = (a1, a2) we have

a · I · at = a2
1E2

1 + 2a1a2E1E2 + a2
2E2

2 < 0

On the other hand

a2
1E2

1 + 2a1a2E1E2 + a2
2E2

2 = a1E1(a1E1 + a2E2) + a2E2(a1E1 + a2E2) < 0.

Since a1, a2 > 0 the last inequality yields either E1(a1E1 + a2E2) < 0 or E2(a1E1 + a2E2) < 0.
Furthermore E2

j < 0. We conclude that there exists an Ej such that Ej · (∑i aiEi) < 0 and E2
j < 0.

By adjunction on the curve Ej we get

2g(Ej)− 2 = KY · Ej + E2
j < 0

Therefore, g(Ej) = 0 and KY · Ej + E2
j = −2. This forces, KY · Ej = E2

j = −1. By Castelnuovo
contractibility criterion [Har77, Theorem 5.7] we can contract Ej on a smooth surface. Proceeding
recursively we get that S is smooth. Therefore, a surface is terminal if and only if it is smooth.
Now, let S be a surface with canonical singularities, and let f : Y → S be a minimal resolution that
is there are no (−1)-curves contracted by f . We may write KY = f ∗KS + ∑i aiEi with ai ≥ 0. If S is
not smooth we have ai = 0, and

KY = f ∗KS



8 ALEX MASSARENTI

If E is a curve contracted by f we get KY · E = 0 and E2
< 0. This imply 2g(E)− 2 = KY · E + E2 =

E2
< 0, which in turn yields g(E) = 0 and E2 = −2. Since the intersection matrix is negative

definite (Ei + Ej)
2
< 0, and hence Ei · Ej ≤ 1. Therefore, any contracted fiber of f is a tree of

rational curves corresponding to one of the Dynkin diagrams: An, Dn, E6, E7, and E8. Canonical
surface singularities are the so called Rational Double Points, also known as Du Val singularities
or ADE singularities.

2.2. Singularities of Pairs. Let us consider a Q-Weil divisor D = ∑i diDi on a normal variety X.
We assume that the Di’s are distinct. We want to give a reasonable notion of singularities of the
pair (X, D). We require that KX + D is Q-Cartier. Then for a resolution f : Y → X we have the
formula

KY = f ∗(KX + D) + ∑
i

aiEi − D̃

where D̃ is the strict transform. Even when X is smooth D could be very singular. A resolution of
X is meaningless for the pair (X, D).

Definition 2.6. A divisor D = ∑i Di on a smooth variety X is simple normal crossing if D is reduced,
any component Di of D is smooth, and D is locally defined in a neighborhood of any point by an equation
in local analytic coordinates of the type

z1 · ... · zk = 0
with k ≤ dim(X).

Roughly speaking the singularities of D should locally look no worse that those of a union of
coordinate hyperplanes.

Example 2.7. Let D = ∑i Di where the Di’s are hyperplanes in Pn, and let pi ∈ Pn∗ be the point
corresponding to Di. Then D is simple normal crossing if and only if the pi’s are in linear general
position.

The following is a consequence of Hironaka’s theorem on resolution [Hir64] of singularities.

Theorem 2.8. Let X be an irreducible algebraic variety over C, and let D ⊂ X be an effective Cartier
divisor on X.

- There exists a projective birational morphism f : Y → X, where X is smooth and f−1D ∪ Exc( f )
is simple normal crossing. The morphism f is called a log resolution of the pair (X, D).

- The smooth variety Y can be constructed as a sequence of blow-ups along smooth centers supported
in the singular loci of D and X. In particular f is an isomorphism over X \ (Sing(X) ∪ Sing(D)).

We will need many times the following result.

Proposition 2.9. Let X be a smooth variety, Z ⊂ X a smooth subvariety with codimZ(Y) = c ≥ 2, and
π : Y → X the blow-up of X along Z with exceptional divisor E. Then

Pic(Y) ∼= Pic(X)⊕ Z

Furthermore,
KY = π∗KX + (c − 1)E

Proof. Let us consider the map
ψ : Z → Pic(Y)

n 7−→ nE
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By [Har77, Proposition 6.5] we have an exact sequence

Z → Pic(Y) → Pic(Y \ E) → 0

Let us assume that nE ∼ 0 for some n 6= 0. Then there exists f ∈ k(Y) with a zero of order n along
E. Since π is surjective and birational, the function f induces a function g ∈ k(X) having only a
zero of order n a long Z. A contradiction because c = codimZ(Y) ≥ 2. Therefore we have the
exact sequence

(2.1) 0 7→ Z → Pic(Y) → Pic(Y \ E) 7→ 0.

Since π is an isomorphism outside E we have Pic(Y \ E) ∼= Pic(X \ Z), furthermore c ≥ 2 yields
Pic(X \ Z) ∼= Pic(X), and

Pic(Y \ E) ∼= Pic(X \ Z) ∼= Pic(X)

Therefore, the pull-back map π∗ : Pic(X) → Pic(Y) gives a section of the second map in the exact
sequence 2.1. This implies that the sequence 2.1 splits and Pic(Y) ∼= Pic(X)⊕ Z.
Now, we may write KY = π∗D + qE for some D ∈ Pic(X). The isomorphism X \ Z ∼= Y \ E yields
KY|Y\E

∼= KX|X\Z. Since Pic(X \ Z) ∼= Pic(X) we get D = KX, and KY = π∗KX + qE.
Now, our aim is to determine the integer q. By adjunction and using OY(E)|E = OE(−1) we get

KE
∼= (KY + E)|E ∼= (π∗KX + (q + 1)E)|E = π∗KX − (q + 1)E

Let F = z ×Z E be the fiber over a point z ∈ Z. Then

ωF = π∗
1 ωz ⊗ π∗

2ωE = π∗
1ωz ⊗ π∗

2(π
∗ωX ⊗OE(−q − 1)) = π∗

2(π
∗ωX ⊗OE(−q − 1))

Now, a differential form on Y that is the pullback of a differential form on X must vanish on E. In
particular π∗

2(π
∗ωX) is trivial, and

ωF
∼= π∗

2(OE(−q − 1)) ∼= OF(−q − 1)

On the other hand, F ∼= Pc−1. Therefore, ωF
∼= OF(−c) implies q = c − 1. �

Example 2.10. Let Z ⊂ Pn be a smooth variety of codimension c, π : Y → Pn the blow-up of Z, H
the pullback of the hyperplane class of Pn and E the exceptional divisor. Then

KY = (−n − 1)H + (c − 1)E

Now, let us assume that X and D are both smooth and consider (1 + ǫ)D. The IdX : X → X is a
log resolution and

KX = Id∗X(KX + (1 + ǫ)D)− (1 + ǫ)D

Let π1 : X1 → X be the blow-up of a codimension two smooth subvariety Z1 ⊂ D. Then

KX1 = π∗
1(KX + (1 + ǫ)D)− ǫE1 − (1 + ǫ)D1

where D1 is the strict transform of D. Now, let f : X2 → X1 be the blow-up of D1 ∩ E1, and
π2 = f ◦ π1. Then

KX2 = π∗
2(KX + (1 + ǫ)D)− 2ǫE2 − ǫE1 − (1 + ǫ)D2

Proceeding like this we see that starting with a discrepancy less than −1 we can produce arbitrarily
negative discrepancies. This motivates the following definition.
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Definition 2.11. Let X be a normal variety and D = ∑j djDj be a Q-Weil divisor. Assume that KX + D

is Q-Cartier. Let f : Y → X be a log resolution of the pair (X, D) and write

KY = f ∗(KX + D) + ∑
i

aiEi − D̃

The pair (X, D) is

terminal if ai > 0 for any i,
canonical if ai ≥ 0 for any i,
klt if ai > −1 and dj < 1 for any i, j,
plt if ai > −1 for any i,
lc if ai ≥ −1 for any i.

Here klt, plt, lc stands for Kawamata log terminal, purely log terminal, and log canonical respectively.

Example 2.12. Assume that D is a simple normal crossing divisor, and that X is smooth. Then IdX

is a log resolution. If 0 < ǫ < 1 is a rational number then we have KX = Id∗X(KX + ǫD)− ǫD. The
pair (X, ǫD) is Kawamata log terminal.
Let D ⊂ P2 an irreducible curve with one node, and let f : Y → P2 be the blow-up of the node.
Then f−1D∪ E is simple normal crossing. Furthermore KY = f ∗KP2 + E and f ∗D = D̃+ 2E where
D̃ is the strict transform of D, yield

KY = f ∗(KP2 + D)− D̃ − E

Therefore the pair (P2, D) is log canonical.
Now, let us consider a cusp D ⊂ P2 to have a log resolution we have to blow-up three times.

C

E1

C1

C2

E1
E2

E1

E2

E3

C3

Let ǫ1 : X1 → P2 be the first blow-up. We have KX1 = ǫ∗1KP2 + E1 and C1 = ǫ∗1C − 2E1. If
ǫ2 : X2 → X1 is the second blow-up we have KX2 = ǫ∗2(ǫ

∗
1KP2 + E1) + E2 = ǫ∗2ǫ∗1KP2 + E1 + 2E2

and C2 = ǫ∗2C1 − E2 = ǫ∗2ǫ∗1C − 2E1 − 3E2. Finally, let ǫ3 : X3 → X2 be the third blow-up.
Then KX3 = ǫ∗3ǫ∗2ǫ∗1KP2 + E1 + 2E2 + 4E3 and C3 = ǫ∗3C2 − E3 = ǫ∗3ǫ∗2ǫ∗1C − 2E1 − 3E2 − 6E3. Let
ǫ = ǫ1 ◦ ǫ2 ◦ ǫ3. Summing up we have

KX3 = ǫ∗KP2 + E1 + 2E2 + 4E3
C3 = ǫ∗C − 2E1 − 3E2 − 6E3

Therefore, we get
KX3 = ǫ∗(KP2 + C)− C3 − E1 − E2 − 2E3

In particular, ai(E3, P2, D) = −2 and (P2, D) is not log canonical.

Now, let us consider a slightly more complicated example.
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Example 2.13. Let us consider the cubic surface

S = {x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0} ⊂ P3

known as the Cayley nodal cubic surface. By taking partial derivatives it is easy to see that the
singular locus of S consists of the four coordinates points of P3, and that each of them is a point
of multiplicity two for S. Let us consider the point p = [1 : 0 : 0 : 0]. In the chart U0 := {x0 6= 0}
the equation of S is given by {x1x2 + x1x3 + x2x3 + x1x2x3 = 0}. Therefore, the projective tangent
cone of S in p is the conic {x1x2 + x1x3 + x2x3 = 0} ⊂ P3. Since this conic is smooth p is an
ordinary double point. We conclude that the fundamental points of P3 are ordinary singularities
for S, and hence S can be resolved simply by blowing-up these four points. Now, let π : Y → P3

be the blow-up with exceptional divisors E1, ..., E4. Then we may write

KY = π∗KP3 + 2(E1 + E2 + E3 + E4)

and
ǫD̃ = π∗(ǫD)− 2ǫ(E1 + E2 + E3 + E4)

Therefore
KY = π∗(KP3 + ǫD) + (2 − 2ǫ)(E1 + E2 + E3 + E4)

and since 2 − 2ǫ > −1 if and only if ǫ <
3
2 we get that (P3, ǫS) is klt if and only if ǫ < 1.

3. MORI DREAM SPACES

In this section we address the notion of Mori dream space.

Definition 3.1. A normal projective variety X is a Mori Dream Space if

(a) X is Q-factorial and Pic(X)Q
∼= N1(X)Q;

(b) Nef(X) is generated by finitely many semi-ample line bundles;
(c) there exist finitely many small Q-factorial modifications fi : X 99K Xi such that each Xi satisfies

(a), (b), and Mov(X) us the union of f ∗i Nef(Xi).

Remark 3.2. Condition (a) is equivalent to the finite generation of Pic(X) which is equivalent to
h1(X,OX) = 0. Note that if X is a Mori Dream Space then the Xi are Mori Dream Spaces as well.

- A normal Q-factorial projective variety of Picard number is one is a Mori Dream Space if
and only if Pic(X) is finitely generated.

- Let X be a normal Q-factorial projective surface satisfying (a), (b), then Nef(X) = Mov(X)
and, by taking IdX , we see that (c) is satisfied as well.

- Any projective Q-factorial toric variety and any smooth Fano variety is a Mori Dream
Space.

- If X is a smooth rational surface and −KX is big the X is a Mori Dream Space.
- A smooth K3 surface is a Mori Dream Space if and only if its automorphism group is finite.

We recall two important facts about Mori Dream Space.

Proposition 3.3. Let X a be a Mori Dream Space.

- Any normal projective variety Y which is a small Q-factorial modification of X is a Mori Dream
Space. Furthermore the fi of Definition 3.1 are the only small Q-factorial transformations of X,
[HK00, Proposition 1.11].

- If there is a surjective morphism X → Y on a normal Q-factorial projective variety Y, then Y is a
Mori Dream Space, [Oka16, Theorem 1.1].
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Definition 3.4. Let Γ be a semigroup of Weil divisors on X. We can consider the Γ-graded ring:

RX(Γ) =
⊕

D∈Γ

H0(X,OX(D))

If the divisor class group Cl(X) is finitely generated and Γ is a group of Weil divisors such that ΓQ
∼=

Cl(X)Q then the ring RX(Γ) is denoted by Cox(X), and called the Cox ring of X.

Remark 3.5. Let X be a normal and Q-factorial projective variety with finitely generated and free
Picard group and Picard number ρX . Let D1, ..., DρX

be a basis of Cartier divisors of Pic(X). Then

Cox(X) =
⊕

m1,...,mρX
∈Z

H0(X,
ρX

∑
i=1

miDi)

Different choices of divisors D1, ..., DρX
yield isomorphic algebras.

For the details of the proof of the following Theorem we refer to [HK00, Proposition 2.9].

Theorem 3.6. A Q-factorial projective variety X with Pic(X)Q
∼= N1(X)Q is a Mori Dream Space if

and only if Cox(X) is finitely generated. In this case X is a GIT quotient of the affine variety Y =
Spec(Cox(X)) by a torus of dimension ρX .

Proof. Let X be a Mori Dream Space. Then the effective cone is rational and polyhedral and we
have a decomposition:

Eff(X) =
k⋃

i=1

Pi

where the Pi’s are rational polyhedra. Furthermore there are finitely many rational maps fi : X 99K

Xi such that if D ∈ Eff(X) then fD = fi for some i = 1, ..., k. Let us take D1, ..., Dh divisors gener-
ating the cone Pi. The cone RX(D1, ..., Dh) does not change by replacing X with Xi and D1, ..., Dh

by the corresponding divisors D1,i, ..., Dh,i on Xi. On Xi the divisors D1,i, ..., Dh,i are semi-ample.
Then RXi

(D1,i, ..., Dh,i), and hence RX(D1, ..., Dh) are finitely generated.
Now, let us assume that Cox(X) is finitely generated. Then we have an equivariant embedding,
with respect a torus G, of Y = Spec(Cox(X)) is An. Taking the GIT quotient we have an embed-
ding Y ⊆ Q = An//G. Since G is a torus Q is a toric variety and hence a Mori Dream Space. Fur-
thermore if r : X 99K Y is a rational map then there is a rational map of toric varieties t : M 99K N
inducing r by restriction. Therefore X is a Mori Dream Space. �

3.1. Fano-type varieties. In this section we address log Fano and weak Fano varieties.

Definition 3.7. Let X be a smooth projective variety. We say that X is:

- weak Fano if −KX is nef and big,
- log Fano if there exists an effective divisor D such that −(KX + D) is ample and the pair (X, D) is

Kawamata log terminal. In particular if D = 0 we have terminal Fano varieties,
- weak log Fano if there exists an effective divisor D such that −(KX + D) is neg and big, and the

pair (X, D) is Kawamata log terminal.

For instance, any toric variety is log Fano, a smooth hypersurface X ⊂ Pn of degree d is log
Fano if and only if d ≤ n.
If X is a normal Q projective variety with ρ(X) = 1 then X is a Mori Dream Space if and only if
Pic(X) is finitely generated. For instance, the only Mori Dream Space of dimension one is P1.
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The bridge between Mori Dream Spaces and log Fano varieties is the content of the following
proposition.

Proposition 3.8. [BCHM10, Corollary 1.3.2] Let X be a smooth projective variety. If X is log Fano then
X is a Mori Dream Space .

Remark 3.9. On the other hand a Mori Dream Space is not necessarily log Fano. Indeed, by
Grothendieck-Lefschetz theorem if X ⊂ Pn is a general hypersurface and n ≥ 4 then Pic(X) ∼= Z

is generated by X ∩ H where H is a general hyperplane in Pn. Therefore, X is a Mori Dream
Space. On the other hand, if d = deg(X) then X is not rationally connected as soon as d ≥ n + 1.
In particular if d ≥ n + 1 the hypersurface X is not log Fano.
By Noether-Lefschetz theorem we have Pic(Sd) ∼= Z and generated by the restriction of the hy-
perplane section of P3 for a general surface of degree d ≥ 4 in P3. These give other examples of
Mori Dream Spaces that are not log Fano.
Even when X is a Mori Dream Space with big and movable anti-canonical divisor it is not neces-
sarily log Fano. Indeed we have the following:

Proposition 3.10. [CG13, Proposition 2.6] Let X be a projective Q-factorial variety which is a Mori
Dream Space, and let L1, ..., Lm be ample line bundles on X. Then

Y = P(
m⊕

i=1

Li)

is a Mori Dream Space.

Now, following [CG13, Example 5.1] we consider a smooth projective variety X of general type
such that H1(X,OX) = 0 and ρ(X) = 1. Let E = L1 ⊕ L2 ⊕ (ω∨

X ⊕ L∨
1 ⊕ L∨

2 ), and Y = P(E). Then
−KY is big and movable. On the other hand if Y would be rationally connected then X would
be rationally connected as well. A contradiction because X is of general type. Therefore Y is not
rationally connected and in particular it is not log Fano.

The following is an important result in order to achieve, among other things, an useful charac-
terization of big divisors.

Lemma 3.11. (Kodaira’s Lemma) Let D and E be respectively a big and an effective Cartier divisor on a
projective variety X. Then

H0(X, mD − E) 6= 0

for m ≫ 0.

Proof. Since D is big there exists a constant c > 0 such that h0(X,OX(mD)) ≥ c · mdim(X) for
m ≫ 0. On the other hand dim(E) = dim(X)− 1 implies that h0(X,OE(mD)) grows at most like
mdim(X)−1, and h0(X,OX(mD)) > h0(X,OE(mD)) for m ≫ 0.
Now, let us consider the following exact sequence:

0 → OX(mD − E) → OX(mD) → OE(mD) → 0

By taking cohomology we get

h0(X,OX(mD − E)) ≥ h0(X,OX(mD))− h0(X,OE(mD)) > 0

for m ≫ 0. �
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Lemma 3.12. Let D be a divisor on an irreducible projective variety X then D is big if and only if for any
integer ample divisor A on X there exist an integer m and an effective divisor E such that mD ∼lin A + E.

Proof. Assume that D is big and consider mD − rA with r ≫ 0. Then rA and (r − 1)A are both
effective and by Lemma 3.11 we get H0(X, mD − rA) 6= 0. Therefore, there exists an effective
divisor E such that mD − rA ∼lin E. That is

mD ∼lin A + (r − 1)A + E = A + E
′

where E
′
= (r − 1)A + E is effective.

Now, let mD ∼lin A + E with A ample and E effective. Therefore, possibly passing to an higher
multiple, we have r · mD ∼lin rA + rE with H = rA very ample, and rE effective. Then

kod(X, D) ≥ kod(X, H) = dim(X)

and D is big. �

Remark 3.13. Note that in the proof of Lemma we have to consider a multiple of A in order to
have an effective divisor. To see this for instance consider three general points p1, p2, p3 ∈ C
where C is a smooth curve of genus g = 2. The divisor D = p1 + p2 − p3 is ample, indeed
deg(5D) = 5 = 2g + 1 and by [Har77, Corollary 3.2] 5D is very ample. Then D is ample. Now,
let us consider D

′
= p1 + p2. Then deg(KC − D

′
) = 0. If h0(KC − D

′
) 6= 0 then deg(KC − D

′
) = 0

yields KC − D
′
∼ 0 and h0(KC − D

′
) = 1. On the other hand h0(KC) = 2, and since p1, p2 are

general they impose independent conditions to the differential forms on C, that is h0(KC −D
′
) = 0.

By Riemann-Roch this gives h0(p1 + p2) = 1. Now, assume that h0(p1 + p2 − p3) 6= 0. The
inclusion H0(C, p1 + p2 − p3) ⊆ H0(C, p1 + p2) forces H0(C, p1 + p2 − p3) = H0(C, p1 + p2), that
is any global section s ∈ H0(C, p1 + p2) ∼= k vanishes at p3. Therefore s is zero because it is
constant. This implies h0(p1 + p2) = 0, a contradiction. We conclude that H0(C, p1 + p2 − p3) = 0,
that is there is no effective divisor on C linearly equivalent to p1 + p2 − p3.

Lemma 3.14. Let D be a nef and big divisor on an irreducible projective variety X. Then there exist an
effective divisor E such that D − ǫE is ample for 0 < ǫ ≪ 1.

Proof. Let D be a nef and big divisor. Since D is big, by Lemma 3.13, there exist an ample divisor
A, an effective divisor E, and a positive integer k such that kD ≡ A + E. If h > k we can write
hD ≡ (h − k)D + A + E. The divisor D

′
= (h − k)D + A is a sum of a nef and an ample divisor.

Therefore D
′
is ample. If ǫ = 1

h we get that

D − ǫE ≡ ǫD
′

is ample. �

Proposition 3.15. Let X be normal, irreducible, projective variety with at most klt singularities. If X is
weak Fano then X is log Fano.

Proof. Since X is weak Fano −KX is nef and big. By Lemma 3.14 there exists an effective divisor D
and a rational number 0 < ǫ ≪ 1 such that −KX − ǫD = −(KX + ǫD) is ample. The pair (X, ǫD)
is klt for ǫ ≪ 1 because X has at most klt singularities. �

Remark 3.16. The converse of Proposition 3.15 is false. For instance the Hirzebruch surface Xe =
P(OP1 ⊕ OP1(−e)) is a toric surface and hence log Fano. The anti-canonical divisor is −KXe =
2C0 + (2 + e)F, where C0 is the section and F is the fiber. Therefore −KXe · C0 = 2C2

0 + 2 + e =
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−e + 2, and −KXe is not nef for e > 2. We conclude that for any e > 2 the Hirzebruch surface Xe is
log Fano but not weak Fano.

It is quite easy to see that projective toric varieties are log Fano.

Lemma 3.17. Let D = ∑i diDi be a Q-divisor on a normal projective variety X such that di < 1 and the
pair (X, ⌈D⌉) is lc. Then (X, D) is klt.

Proof. Let f : Y → X be a log resolution of the pair (X, ⌈D⌉). We have

KY = f ∗KX + ∑
i

aiEi

and
⌈D̃⌉ = f ∗⌈D⌉ −∑

i

biEi

where ⌈D̃⌉ is the strict transform of ⌈D⌉. Therefore,

KY = f ∗(KX + ⌈D⌉) + ∑
i

(ai − bi)− ⌈D̃⌉

and since (X, ⌈D⌉) is lc we have ai − b1 ≥ −1. On the other hand

D̃ = f ∗D − ∑
i

tiEi

with ti < bi because di < 1 for any i. This yields ai − ti > ai − bi ≥ −1, and the pair (X, D) is
klt. �

Proposition 3.18. Let X be a projective toric variety. Then X is log Fano.

Proof. Let DX
1 , ..., DX

r be the irreducible toric invariant divisors on X. Then we have KX = −∑i DX
i .

Now, let A = ∑i aiD
X
i be an ample toric invariant divisor, and ǫ a rational number 0 < ǫ ≪ 1.

Therefore
−KX − ǫA = ∑

i

(1 − ǫai)DX
i

with 1 − ǫai < 1. The divisor D = ∑i(1 − ǫai)DX
i is such that ǫA = −KX − D is ample. Note that

⌈D⌉ ∼ −KX. Let f : Y → X be a toric log resolution of (X, ⌈D⌉), and let DY
1 , ..., DY

h be the invariant
toric divisors on Y. We have

KY = f ∗(KX + ⌈D⌉) +∑ aiEi − ⌈D̃⌉ = ∑ aiEi − ⌈D̃⌉

because ⌈D⌉ ∼ −KX. On the other hand KY = −∑i DY
i yields

KY = ∑ aiEi − ⌈D̃⌉ = −∑
i

DY
i

This forces ai = −1 for any i. Therefore, the pair (X, ⌈D⌉) is lc. To conclude it is enough to apply
Lemma 3.17. �

It turns out that weak log Fano is equivalent to log Fano.

Proposition 3.19. Let X be a projective variety with at most klt singularities. Then X is log Fano if and
only if X is weak log Fano.
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Proof. Clearly X log Fano implies X weak log Fano. Now, let X be weak log Fano. Then there exists
an effective divisor D such that −KX − D is big and nef and (X, D) is klt. By Lemma 3.14 there
exists an effective divisor E such that −KX − D − ǫE = −KX − (D + ǫE) is ample for 0 < ǫ ≪ 1.
Let D

′
= D + ǫE. Therefore, D

′
is effective and −KX − D

′
is ample. Furthermore, since X has at

most klt singularities and (X, D) is klt we get that (X, D
′
) is klt for 0 < ǫ ≪ 1. �

Finally, we have two important facts about log Fano varieties. We will prove just the latter, for
the first one we refer to [GOST15].

Lemma 3.20. [GOST15, Corollary 1.3] Let f : X → Y be a projective surjective morphism between
normal projective varieties over an algebraically closed field of characteristic zero. If X is log Fano then Y is
log Fano.

The second result says that being log Fano is preserved under small transformations.

Lemma 3.21. Let X and Y be normal varieties over a field of characteristic zero that are isomorphic in
codimension one. Then X is log Fano if and only if Y is so.

Proof. There exists a small transformation f : X 99K Y. Such a small transformation can be factored
as f = fk ◦ ... ◦ f1 where any fi : Xi 99K Xi+1 is small, and fits in a diagram of the following form

Xi Xi+1

Zi

gi ri

fi

where fi is a small projective birational contraction. To conclude, we have to prove that if X and
Y are normal varieties over a field of characteristic zero and f : X → Y is a small birational
morphism the X is log Fano if and only if Y is log Fano.
Assume that X is log Fano. Then there exists D effective such that −KX − D is ample and (X, D) is
klt. Let us take an ample divisor H on Y such that −KX − D − ǫ f ∗H is ample and (X, D + ǫ f ∗H)
is klt. Note that since f is small f∗(D + ǫ f ∗H) may not be Q-Cartier. To deal with this we need
the following trick. We take an ample divisor A on X such that (X, D + ǫ f ∗H + A) is klt and

KX + D + ǫ f ∗H + A ∼Q 0

Therefore,
KY + f∗D + ǫH + f∗A = f∗(KX + D + ǫ f ∗H + A) ∼Q 0

Now, since f is small we have

f ∗(KY + f ∗D + ǫH + f∗A) = KX + D + ǫ f ∗H + A

We conclude that (Y, f∗D + f∗A) is klt and −(KY + f∗D + f∗A) ∼Q ǫH is ample.
Now, let us assume that Y is log Fano, and let D an effective divisor on Y such that −KY − D is
ample and (Y, D) is klt. Let D̃ be the strict transform of D in X. Since f is small we have

KX + D̃ = f ∗(KY + D)

Therefore, (X, D̃) is klt and −KX − D̃ is nef and big. This means that X is weak log Fano, and by
Proposition 3.19 it is log Fano. �
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4. DECOMPOSITIONS OF THE EFFECTIVE CONE

Let X be a Mori dream space. We describe a fan structure on the effective cone Eff(X), called
the Mori chamber decomposition. We refer to [HK00, Proposition 1.11] and [Oka16, Section 2.2] for
details. There are finitely many birational contractions from X to Mori dream spaces, denoted
by gi : X 99K Yi. The set Exc(gi) of exceptional prime divisors of gi has cardinality ρ(X/Yi) =
ρ(X)− ρ(Yi). The maximal cones C of the Mori chamber decomposition of Eff(X) are of the form:
Ci =

〈
g∗i
(

Nef(Yi)
)
, Exc(gi)

〉
. We call Ci or its interior C

◦

i a maximal chamber of Eff(X).
Let X be a normal Q-factorial projective variety, and let D be an effective Q-divisor on X. The

stable base locus B(D) of D is the set-theoretic intersection of the base loci of the complete linear
systems |sD| for all positive integers s such that sD is integral

B(D) =
⋂

s>0

B(sD)

Since stable base loci do not behave well with respect to numerical equivalence, we will assume
that h1(X,OX) = 0 so that linear and numerical equivalence of Q-divisors coincide.

Then numerically equivalent Q-divisors on X have the same stable base locus, and the pseudo-
effective cone Eff(X) of X can be decomposed into chambers depending on the stable base locus
of the corresponding linear series called stable base locus decomposition. The movable cone of X is
the convex cone Mov(X) ⊂ N1(X) generated by classes of movable divisors that is divisors whose
stable base locus has codimension at least two in X.

If X is a Mori dream space, satisfying then the condition h1(X,OX) = 0, determining the stable
base locus decomposition of Eff(X) is a first step in order to compute its Mori chamber decompo-
sition.

Remark 4.1. Recall that two divisors D1, D2 are said to be Mori equivalent if B(D1) = B(D2) and
the following diagram of rational maps is commutative

X

X(D1) X(D2)

˜

φD2
φD1

where the horizontal arrow is an isomorphism. Therefore, the Mori chamber decomposition is a
refinement of the stable base locus decomposition.

4.1. The Cox ring of a toric variety and the GKZ decomposition. Recall that given a toric variety
XΣ we have the total coordinate ring

S = C[xρ | ρ ∈ Σ(1)]

and the Cox ring

Cox(XΣ) =
⊕

(m1,...,mr)∈Zr

H0(XΣ,OXΣ
(m1D1 + · · ·+ mrDr))

where {D1, . . . , Dr} is a basis of Cl(XΣ).

Theorem 4.2. Let XΣ be a simplicial projective toric variety. The degree D part SD of S coincides with
H0(XΣ, D). In particular Cox(XΣ) ∼= S is finitely generated and hence XΣ is a Mori dream space.
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Proof. Let D = ∑ρ∈Σ(1) αρDρ. Then H0(XΣ, D) is generated by monomials xm such that
〈
m, uρ

〉
≥

−αρ for all ρ ∈ Σ(1). Consider the map

ψ : H0(XΣ, D) −→ SD

xm 7−→ (x
〈m,u1+α1〉
1 , . . . , x

〈m,uk+αk〉

k ))

where k = |Σ(1)|. Note that deg(x
〈m,u1+α1〉
1 . . . x

〈m,uk+αk〉

k )) = ∑ρ(
〈

m, uρ + αρ

〉
)Dρ = ∑ρ

〈
m, uρ

〉
Dρ +

∑ρ αρDρ = div(χm) + D ∼ D.

Since the uρ span NR the morphism ψ is injective. Now, let x
β1
1 . . . x

βk

k ∈ SD. Then ∑ρ(βρ −

αρ)Dρ ∼ D − D = 0. So the exact sequence

M → Z|Σ(1)| → Cl(XΣ) → 0

yields that there is an m ∈ M such that βρ − αρ =
〈
m, uρ

〉
for all ρ ∈ Σ(1). Furthermore, βρ −

αρ ≥ −αρ implies that xm ∈ H0(XΣ, D), and by construction ψ(xm) = x
β1
1 . . . x

βk

k . Hence ψ is an
isomorphism. �

Our aim in to describe the so called secondary fan of a toric variety that is the Mori chamber
decomposition of its effective cone. The first step consists in determining the effective cone itself.

Proposition 4.3. Let XΣ be a simplicial toric variety. The effective cone Eff(XΣ) is generated by classes of
torus invariant divisors, that is

Eff(XΣ) = Eff(XΣ) =
〈
[Dρ] | ρ ∈ Σ(1)

〉

Proof. Since XΣ is simplicial any Dρ is Q-Cartier and effective, so
〈
[Dρ] | ρ ∈ Σ(1)

〉
⊆ Eff(XΣ)

Now, let D be a torus invariant divisor. Since Cl(XΣ) is generated by torus invariant divisors
we may assume that D is torus invariant. Since D is effective we have that H0(XΣ,OΣ(D)) 6= 0.
Moreover, since

H0(XΣ,OΣ(D)) =
⊕

div(χm)+D≥0

Cχm

there exists m ∈ M such that div(χm) + D ≥ 0 and hence we conclude that [D] = [div(χm) + D] ∈〈
[Dρ] | ρ ∈ Σ(1)

〉
. �

Furthermore, we have the following description of the movable cone of a Mori dream space.

Proposition 4.4. [ADHL15, Proposition 3.3.2.3] Let X be a Mori dream space and { fi, i ∈ I} be any
system of pairwise distinct generators of Cox(X). Then

Mov(X) =
⋂

i∈I

〈
deg( f j), j ∈ I \ {i}

〉

Now, consider on Eff(XΣ the subdivision in cones obtained by considering all the subspaces
of Cl(XΣ)R generated by all the subsets of a fixed set of generators of Cox(XΣ). This subdivi-
sion induces a wall-and-chamber decomposition on Eff(XΣ called Gelfand-Kapranov-Zelevinsky
decomposition, GKZ for short, of Eff(XΣ.

A divisor D ∈ Eff(XΣ yields a map φD : Xσ 99K XD, and
- if [D] lies in the interior of Nef(XΣ), that is D is ample, then φD is an isomorphism;
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- if [D] lies in the interior of a chamber of Mov(XΣ) but not in the interior of Nef(XΣ) then
φD is a small Q-factorial transformation;

- if [D] lies in the interior of a chamber of Eff(XΣ) but not of Mov(XΣ) then φD is a divisorial
contraction;

- if Eff(XΣ) and Mov(XΣ) share a wall and [D] lies in this wall then φD is a rational fibration.

In particular, all the birational geometry of XΣ is encoded in its secondary fan, and for any effective
divisor D on XΣ the MMP with respect to D terminates.

Example 4.5. Let X be the blow-up of P3 at two distinct points x1, x2. Let H be the pullback of
the hyperplane section and E1, E2 the two exceptional divisors. The anti-canonical divisor of X
is −KX = 4H − 2E1 − 2E2. If L is the strict transform of the line 〈x1, x2〉 we have −KX · L = 0.
Therefore X is not Fano. The Picard group of X is generated by H, E1, E1 and ρX = 3. Clearly X is
a toric variety. Therefore it is a Mori Dream Space.

Let |Ix1 ,x2(2)| be the linear system of quadrics in P3 through x1, x2. The corresponding linear
system on X induces an morphism

X

P3 Y ⊂ P7

ǫ
f

contracting L. Since the normal bundle of L is OL(−1)⊕2 the singular point f (L) ∈ f (X) = Y is a
node. Furthermore f is a small contraction and f (X) is not Q-factorial. Let us blow-up the curve
L and let Z be the blow-up. The exceptional divisor is isomorphic two P1 × P1. By contracting
one ruling we get X. On the other hand by contracting the other ruling we find another smooth
variety X

′
. The birational map g : X 99K X

′
is the flip of f . The situation is summarized in the

following diagram.

Z

X X
′

Y
f

g

The following is a section of Eff(X):

E1 H1,2

E2

H

H1

H2
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where H1,2 = H − E1 − E2, H1 = H − E1, H2 = H − E2. Let L be the strict transform of a
general line and R1, R2 the classes of a line in the exceptional divisors E1, E2. Then the strict
transform of the line through x1, x2 is given by C = L − E1 − E2. Now, let H1, H2, H12 be strict
transforms of planes through x1, x2 and containing the line 〈x1, x2〉 respectively. Consider D =
aH12 + bH1 + cH2. We have D · C = −a. Therefore D · C is always less or equal that zero and its
zero if and only if a = 0. On the other hand after the contraction of C any divisor of this form
becomes nef.
The variety X has exactly two small Q-factorial transformations: the identity and the flip g. Fur-
thermore we have Mov(X) = Nef(X) ∪ g∗ Nef(X

′
). In the picture Nef(X) is the cone generated

by H, H1, H2, and Nef(X
′
) is the cone generated by H1,2, H1, H2.

4.2. A non toric example: complete collineations. Let V be a K-vector spaces of dimensions n+ 1
over an algebraically closed field K of characteristic zero. We will denote by X (n) and Q(n) the
spaces of complete collineations and complete quadrics of V, respectively. These spaces are very
particular compactifications of the spaces of full rank linear maps and full-rank symmetric linear
maps of V, respectively.

In [Vai82], [Vai84], I. Vainsencher showed that these spaces can be understood as sequences of
blow-ups of the projective spaces parametrizing (n + 1)× (n + 1) matrices and symmetric matri-
ces modulo scalars along the subvariety parametrizing rank one matrices and the strict transforms
of their secant varieties in order of increasing dimension.

Recall that given an irreducible and reduced non-degenerate variety X ⊂ PN, and a positive
integer h ≤ N, the h-secant variety Sech(X) of X is the subvariety of PN obtained as the closure of
the union of all (h− 1)-planes spanned by h general points of X. Spaces of matrices and symmetric
matrices admit a natural stratification dictated by the rank and observe that a general point of the
h-secant variety of a Segre, or a Veronese, corresponds to a matrix of rank h. More precisely, let PN

be the projective space parametrizing (n+ 1)× (n+ 1) matrices modulo scalars, PN+ the subspace
of symmetric matrices, S ⊂ PN the Segre variety, and V ⊂ PN+ the Veronese variety. Since
Sech(V) = Sech(S) ∩ PN+ , the natural inclusion PN+ →֒ PN lifts to an embedding Q(n) →֒ X (n).

Example 4.6. The space Q(2) is well-known: the space of complete conics. It is the blow-up of the
projective space P5 of 3× 3 symmetric matrices along the Veronese surface V ⊂ P5. Similarly X (2)
is the blow-up of the projective space P8 along the Segre variety S ∼= P2 × P2 ⊂ P8. These spaces
have both Picard rank two. We will denote by H the strict transform of a general hyperplane of P8,
by E1 the exceptional divisor over S , by E2 the strict transform of Sec2(S), and by H+, E+

1 , E+
2 the

analogous divisors in Q(2). Then Eff(X (2)) is generated by E1, E2, Nef(X (2)) and Mov(X (2))
are generated by H, 2H − E1, the Mori chamber decomposition of Eff(X (2)) is the following:

E1

H

2H − E1

E2 ∼ 3H − 2E1

and the Mori chamber decomposition of Eff(Q(2)) is obtained from the previous one substituting
H, E1, E2 with H+, E+

1 , E+
2 .
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Example 4.7. The space X (3) is the blow-up of the projective space P15 along the Segre variety
S ∼= P3 × P3 ⊂ P15, and then along the strict transform of Sec2(S). We will denote by H the strict
transform of a general hyperplane of P15 and by E1, E2 the exceptional divisors over S and Sec2(S)
respectively. Similarly, Q(3) is the blow-up of the projective space P9 along the Veronese variety
V ⊂ P9, and then along the strict transform of Sec2(V). As before we will denote by H+, E2

1, E+
2

the divisors on Q(3) corresponding to H, E1, E2. The Mori chamber decomposition of Eff(X (3))
is displayed in the following two dimensional section of Eff(X (3)):

E1 E3

E2

D2

D1 D3

DM

where DM ∼ 6D1 − 3E1 − 2E2, D1 ∼ H, D2 ∼ 2H − E1, D3 ∼ 3H − 2E1 − E2, E3 ∼ 4H − 3E1 −
2E2 is the strict transform of Sec3(S), and Mov(X (3)) is generated by D1, D2, D3, DM. Further-
more, the same statements hold, by replacing H, E1, E2 with H+, E+

1 , E+
2 for the space of complete

quadrics Q(3).

For details on the constructions in Examples 4.6, 4.7 we refer to [Mas18], [Mas20], [HM18].
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