POLYNOMIALS DECOMPOSITION AS SUMS OF POWERS

ALEX MASSARENTI

Contents

Introduction 1

1. Apolarity 1
2. The easy Case 3
3. Polynomials on \mathbb{P}^{1} 4
4. Hilbert Theorem 6
5. Sylvester Theorem 8
References 12

Introduction

Let $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ be a homogeneous polynomial of degree d. Consider its decompositions as sum of linear forms

$$
F=L_{1}^{d}+\ldots+L_{h}^{d}
$$

We know that in some cases the decomposition is unique. As instance the following.

d	n	h	Reference
$2 h-1$	1	h	Sylvester
5	2	7	Hilbert
3	3	5	Sylvester

We will give some explicit methods to compute the decomposition in these cases, and compute some examples using symbolic and numerical calculus softwares such as MacAulay2 and Bertini.

1. Apolarity

We work over an algebraically closed field of characteristic zero. We mainly follow notations and definitions of [Do]. Let V be a vector space of dimension $n+1$ and let $\mathbb{P}(V)=\mathbb{P}^{n}$ the corresponding projective space. For any finite set of points $\left\{p_{1}, \ldots, p_{h}\right\} \subseteq \mathbb{P}^{n}$ we consider the linear space of homogeneous forms F of degree d on \mathbb{P}^{n} such that $Z(F)$ contains the points p_{1}, \ldots, p_{h}, and we denote it by

$$
L_{d}\left(p_{1}, \ldots, p_{h}\right)=\left\{F \in k\left[x_{0}, \ldots, x_{n}\right]_{d} \mid p_{i} \in Z(F) \forall 1 \leq i \leq h\right\} .
$$

Definition 1.1. An unordered set of points $\left\{\left[L_{1}\right], \ldots,\left[L_{h}\right]\right\} \subseteq \mathbb{P}^{*}$ is a polar h polyhedron of $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ if

$$
F=\lambda_{1} L_{1}^{d}+\ldots+\lambda_{h} L_{h}^{d},
$$

Date: March 2009.
for some nonzero scalars $\lambda_{1}, \ldots, \lambda_{h} \in k$ and moreover the L_{i}^{d} are linearly independent in $k\left[x_{0}, \ldots, x_{n}\right]_{d}$.

We briefly introduce the concept of Apolar form to a given homogeneous form to state the connection between the set of h-polyhedra of F and the space of apolar forms of F. This correspondence will be very important to reconstruct the h polyhedra of F.
We fix a system of coordinates $\left\{x_{0}, \ldots, x_{n}\right\}$ on V and the dual coordinates $\left\{\xi_{0}, \ldots, \xi_{n}\right\}$ on V^{*}.
Let $\phi=\phi\left(\xi_{0}, \ldots, \xi_{n}\right)$ be a homogeneous polynomial of degree t on V^{*}. We consider the differential operator

$$
D_{\phi}=\phi\left(\partial_{0}, \ldots, \partial_{n}\right), \text { with } \partial_{i}=\frac{\partial}{\partial x_{i}}
$$

This operator acts on ϕ substituting the variable ξ_{i} with the partial derivative $\partial_{i}=\frac{\partial}{\partial x_{i}}$. For any $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ we write

$$
<\phi, F>=D_{\phi}(F)
$$

We call this pairing the apolarity pairing.
In general ϕ is of the form $\phi\left(\xi_{0}, \ldots, \xi_{n}\right)=\sum_{i_{0}+\ldots+i_{n}=t} \alpha_{i_{0}, \ldots, i_{n}} \xi_{0}^{i_{0}} \ldots \xi_{n}^{i_{n}}$ and F is of the form $F\left(x_{0}, \ldots, x_{n}\right)=\sum_{j_{0}+\ldots+j_{n}=d} f_{i_{0}, \ldots, i_{n}} x_{0}^{j_{0} \ldots x_{n}^{j_{n}}}$. Then

$$
D_{\phi}(F)=\left(\sum_{i_{0}+\ldots+i_{n}=t} \alpha_{i_{0}, \ldots, i_{n}} \partial_{0}^{i_{0}} \ldots \partial_{n}^{i_{n}}\right)(F) .
$$

We see that F is derived $i_{0}+\ldots+i_{n}=t$ times. So we obtain a homogeneous polynomial of degree $d-t$ on V.
Fixed $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ we have the map

$$
a p_{F}^{t}: k\left[\xi_{0}, \ldots, \xi_{n}\right]_{t} \rightarrow k\left[x_{0}, \ldots, x_{n}\right]_{d-t}, \phi \mapsto D_{\phi}(F) .
$$

The map $a p_{F}^{t}$ is linear and we can consider the subspace $\operatorname{Ker}\left(a p_{F}^{t}\right)$ of $k\left[\xi_{0}, \ldots, \xi_{n}\right]_{t}$.
Definition 1.2. A homogeneous form $\phi \in k\left[\xi_{0}, \ldots, \xi_{n}\right]_{t}$ is called apolar to a homogeneous form $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ if $D_{\phi}(F)=0$, in other words if $\phi \in \operatorname{Ker}\left(\operatorname{ap}_{F}^{t}\right)$. The vector subspace of $k\left[\xi_{0}, \ldots, \xi_{n}\right]_{t}$ of apolar forms of degree t to F is denoted by $A P_{t}(F)$.
Lemma 1.3. The set $\mathcal{P}=\left\{\left[L_{1}\right], \ldots,\left[L_{h}\right]\right\}$ is a polar h-polyhedron of F if and only if

$$
L_{d}\left(\left[L_{1}\right], \ldots,\left[L_{h}\right]\right) \subseteq A P_{d}(F)
$$

and the inclusion is not true if we delete any $\left[L_{i}\right]$ from \mathcal{P}.
Remark 1.4 (Partial Derivatives). Let $\left\{\left[L_{1}\right], \ldots,\left[L_{h}\right]\right\}$ be a h-polar polyhedron for the homogeneous polynomial $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$. We write

$$
F=\lambda_{1} L_{1}^{d}+\ldots+\lambda_{h} L_{h}^{d} .
$$

The partial derivatives of F are homogeneous polynomials of degree $d-1$ decomposed in h linear factors

$$
\frac{\partial F}{\partial x_{i}}=\lambda_{1} \alpha_{i_{1}} d L_{1}^{d-1}+\ldots+\lambda_{h} \alpha_{i_{h}} d L_{h}^{d-1}, \text { for any } i=0, \ldots, n
$$

Then $\operatorname{VSP}(F, h)^{o} \subseteq \operatorname{VSP}\left(\frac{\partial F}{\partial x_{i}}, h\right)^{o}$, taking closures we have

$$
V S P(F, h) \subseteq V S P\left(\frac{\partial F}{\partial x_{i}}, h\right)
$$

The polynomial F has $\binom{n+l}{l}$ partial derivatives of order l. Clearly these derivatives are homogeneous polynomials of degree $d-l$ decomposed in h-linear factors. Then we have $\operatorname{VSP}(F, h) \subseteq \operatorname{VSP}\left(\frac{\partial^{l} F}{\partial x_{0}^{l_{0}, \ldots, \partial x_{n}^{l_{n}}}}, h\right)$, where $l_{0}+\ldots+l_{n}=l$.

2. The easy Case

In this section we present a way to rebuild decomposition under some special hypothesis.

Construction 2.1. Let $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ be an homogeneous polynomial and let $F_{1}^{l}, \ldots, F_{D_{l}}^{l} \in k\left[x_{0}, \ldots, x_{n}\right]_{d-l}$ be the partial derivatives of order l, with $D_{l}=\binom{n+l}{l}$. We denote by $\mathbb{P}^{N_{l}}$ the projective space parametrizing the homogeneous polynomials of degree $d-l$ and consider the hyperplanes $A P^{d-l}\left(F_{1}^{l}\right), \ldots, A P^{d-l}\left(F_{D_{l}}^{l}\right) \subseteq \mathbb{P}^{N_{l}}$.
Let $h \in \mathbb{Z}$ be a positive integer such that $h-1<N_{l}$ and let $\left\{\left[l_{1}\right], \ldots,\left[l_{h}\right]\right\}$ be an h-polar polyhedron of F. Then by remark 1.4 and lemma 1.3 we know that

$$
L_{d-l}\left(l_{1}, \ldots, l_{h}\right) \subseteq \bigcap_{i=1}^{D_{l}} A P^{d-l}\left(F_{i}^{l}\right)=H^{d-l} \cong \mathbb{P}^{N_{l}-D_{l}}
$$

Since for a general h-polar polyhedron $\left\{\left[l_{1}\right], \ldots,\left[l_{h}\right]\right\}$ we have $\operatorname{dim}\left(L_{d-l}\left(l_{1}, \ldots, l_{h}\right)\right)=$ $N_{l}-h$, we get the rational map

$$
\phi: \operatorname{VSP}(F, h) \rightarrow \mathbb{G}\left(N_{l}-h, N_{l}-D_{l}\right),\left\{\left[l_{1}\right], \ldots,\left[l_{h}\right]\right\} \mapsto L_{d-l}\left(l_{1}, \ldots, l_{h}\right)
$$

Suppose that the general $(h-1)$-plane containing $\left(A P^{d-l}\right)^{*}$ intersects the corresponding Veronese variety in at least h points, so that the map ϕ is dominant.
In this case a general $\left(N_{l}-h\right)$-plane contained in H^{d-l} represents a linear system of the type $L_{d-l}\left(l_{1}, \ldots, l_{h}\right)$. If the intersection of n elements of this linear system consists of $(d-l)^{n}=t$ points p_{1}, \ldots, p_{t} and if $h \leq t$, then choosing h points from the p_{i} we get an h-polar polyhedron of F.
If $L_{d-l}\left(l_{1}, \ldots, l_{h}\right)$ has a base locus \mathcal{B} of positive dimension we can construct an h polar polyhedron of F simply by choosing h points on \mathcal{B}.
This construction gives a method to find the h-polihedra of F under the required hypothesis, in general to find the base locus of the linear system $L_{d-l}\left(l_{1}, \ldots, l_{h}\right)$ is not an easy task.

Example 2.2. Consider the cubic polynomial

$$
F=x^{3}+x^{2} y+x^{2} z+x y^{2}+x y z+x z^{2}+y^{3}+y^{2} z+y z^{2}+z^{3} .
$$

The operator D_{ϕ} is given by

$$
D_{\phi}=\alpha_{0} \frac{\partial^{2}}{\partial x^{2}}+\alpha_{1} \frac{\partial^{2}}{\partial y^{2}}+\alpha_{2} \frac{\partial^{2}}{\partial z^{2}}+\alpha_{3} \frac{\partial^{2}}{\partial x \partial y}+\alpha_{4} \frac{\partial^{2}}{\partial x \partial z}+\alpha_{5} \frac{\partial^{2}}{\partial y \partial z} .
$$

We are in the situation of construction 2.1, an the spaces of apolar forms are the following

$$
\begin{aligned}
& A P_{2}\left(\frac{\partial F}{\partial x}\right)=Z\left(6 \alpha_{0}+2 \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}\right) ; \\
& A P_{2}\left(\frac{\partial F}{\partial y}\right)=Z\left(2 \alpha_{0}+6 \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+2 \alpha_{5}\right) \\
& A P_{2}\left(\frac{\partial F}{\partial z}\right)=Z\left(2 \alpha_{0}+2 \alpha_{1}+6 \alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}\right) .
\end{aligned}
$$

Now we choose a line on the plane determined by these three equations, as instance intersecting with the hyperplane $H_{0}=Z\left(\alpha_{0}\right)$. Choosing two conics in this pencil and computing the base locus we get the following decomposition for F.

$$
\begin{aligned}
& L_{1}=(-0.005006-i 0.278616) x+(-0.008344-i 0.464361) y+(-0.012516- \\
& i 0.696541) z \\
& L_{2}=(0.438881-i 0.986000) x ; \\
& L_{3}=(-0.579402-i 0.878415) y ; \\
& L_{4}=(-0.027303-i 0.199112) x+(-0.081910-i 0.597338) y+(-0.081910- \\
& i 0.597338) z
\end{aligned}
$$

3. Polynomials on \mathbb{P}^{1}

In this section we consider the decomposition of a polynomial $F \in k[x, y]_{2 h-1}$ as sum of h linear forms.

Theorem 3.1. (Sylvester) Let F be a generic homogeneous polynomial of degree $2 h-1$ in two variables. There exists a unique decomposition of F as sum of h linear forms.
Proof. : Let X be the rational normal curve of degree $2 h-1$ in $\mathbb{P}^{2 h-1}$. Since $\operatorname{dim}\left(\operatorname{Sec}_{h-1}(X)\right)=h+(h-1)=2 h-1$ there exists a decomposition of F.
Suppose that $\left\{l_{1}, \ldots, l_{h}\right\}$ and $\left\{L_{1}, \ldots, L_{h}\right\}$ are two distinct decomposition of F. Let Λ_{l} and Λ_{L} the two $(h-1)$-planes generated by the decompositions. The point $F_{2 h-1}$ belongs to $\Lambda_{l} \cap \Lambda_{L}$ so the linear space $\Gamma=<\Lambda_{l}, \Lambda_{L}>$ has dimension

$$
\operatorname{dim}(\Gamma) \leq(h-1)+(h-1)=2 h-2 .
$$

If $\Lambda_{l} \cap \Lambda_{L}=\{F\}$, then $\operatorname{dim}(\Gamma)=(h-1)+(h-1)=2 h-2$. So Γ is a hyperplane in $\mathbb{P}^{2 h-1}$ and $\Gamma \cdot X \geq 2 h$. A contradiction because $\operatorname{deg}(X)=2 h-1$.
If Λ_{l} and Λ_{L} have k common points, then Λ_{l} and Λ_{L} intersect in $k+1$ points Q_{1}, \ldots, Q_{k}, F. In this case $\Lambda_{l} \cap \Lambda_{L}$ is a \mathbb{P}^{k} and $\operatorname{dim}(\Gamma)=2 h-2-k$. We choose k points P_{1}, \ldots, P_{k} on X in general position so $H=<\Gamma, P_{1}, \ldots, P_{k}>$ is a hyperplane such that $H \cdot X \geq 2 h-k+k=2 h$, a contradiction. We conclude that the decomposition of F in h linear factors is unique.

In order to reconstruct the decomposition we consider the following construction
Construction 3.2. The partial derivatives of order $h-2$ of F are $\binom{h-2+1}{1}=h-1$ homogeneous polynomials of degree $h+1$. Let $\nu_{h+1}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{h+1}$ be the $(h+1)$ Veronese embedding and let $X=\nu_{h+1}\left(\mathbb{P}^{1}\right)$ be the corresponding rational normal curve. Consider the projection

$$
\pi: \mathbb{P}^{h+1} \backslash H_{\partial} \rightarrow \mathbb{P}^{2}
$$

from the $(h-2)$-plane H_{∂} spanned by the partial derivatives. Since the decomposition $\left\{L_{1}, \ldots, L_{h}\right\}$ of F is unique, the projection $\bar{X}=\pi(X)$ will have an unique singular point $p_{L}=\pi\left(<L_{1}^{h+1}, \ldots, L_{h}^{h+1}>\right)$ of multiplicity h. Now to find the decomposition, we have to compute the intersection $H \cdot X=\left\{L_{1}^{h+1}, \ldots, L_{h}^{h+1}\right\}$, where $H=<H_{\partial}, p_{L}>$.

Example 3.3. We consider the polynomial

$$
F=x^{3}+x^{2} y-x y^{2}+y^{3} \in k[x, y]_{3} .
$$

i.e. the point $[F]=[1: 1: 1: 1] \in \mathbb{P}^{3}$. The projection from $[F]$ to the plane $(X=0) \cong \mathbb{P}^{2}$ is given by

$$
\pi: \mathbb{P}^{3} \rightarrow \mathbb{P}^{2},[X: Y: Z: W] \mapsto[Y-X: X+Z: W-X]
$$

Using the following sequence of MacAulay2 we compute the projection $C=\pi(X)$ of the twisted cubic curve X.

```
Macaulay2, version1.3.1
i1 : P3 = QQ[X,Y,Z,W]
01 = P3
o1 : PolynomialRing
```

```
i2 : P1 = QQ[s,t]
o2 = P1
o2 : PolynomialRing
i3 : TC = map (P1, P3, s}\mp@subsup{}{}{3},3\mp@subsup{s}{}{2}t,3s\mp@subsup{t}{}{2},\mp@subsup{t}{}{3}
o3 = map (P1, P3, s},3\mp@subsup{s}{}{2}t,3s\mp@subsup{t}{}{2},\mp@subsup{t}{}{3}
o3 : RingMap P1 < P3
i4 : ITC = kernelTC
04 = ideal(Z}\mp@subsup{Z}{}{2}-3YW, YZ-9XW, Y' Y'3XZ
04 : Idealof P3
i5 : RTC = P3/ITC
o5 = RTC
o5 : QuotientRing
i6 : P2 = QQ[A,B,C]
06 = P2
o6 : PolynomialRing
i7: projmap = map (RTC, P2, Y-X, X+Z, W-X)
o7 = map(RTC, P2, -X+Y, X+Z, -X+W)
o7: RingMap RTC < P2
i8 : I = kernelprojmap
08 = ideal (14A 3}+15\mp@subsup{A}{}{2}B+15A\mp@subsup{B}{}{2}-13\mp@subsup{B}{}{3}-18\mp@subsup{A}{}{2}C+45ABC-18\mp@subsup{B}{}{2}C+54A\mp@subsup{C}{}{2}
08 : Ideal of P2
```

The latter is the equation of $C=\pi(X)$. Using the following function of Bertini
CONFIG
END;
INPUT
homvariablegroup A, B, C;
function f1, f2, f3, f4;
$\left.f 1=14 A^{3}+15 A^{2} B+15 A B^{2}-13 B^{3}-18 A^{2} C+45 A B C-18 B^{2} C+54 A C^{2}\right)$;
$f 2=\left(42\left(A^{2}\right)\right)+(30 A B)+(45 C B)-(36 C A)+\left(15\left(B^{2}\right)\right)+\left(54\left(C^{2}\right)\right)$;
$f 3=\left(15\left(A^{2}\right)\right)+(30 A B)+(45 A C)-\left(39\left(B^{2}\right)\right)-(36 * B * C)$;
$f_{4}=(45 A B)+(108 A C)-\left(18\left(A^{2}\right)\right)-\left(18\left(B^{2}\right)\right)$;
END;
we compute the singular point of C,

$$
P=\operatorname{Sing}(C)=[4: 10: 9] .
$$

The line generated by P and $[F]$ is given by the following equations

$$
L=(6 X-10 Y-4 Z=5 X-9 Y+4 W=0)
$$

We compute the intersection $X \cdot L$, where X is the twisted cubic curve, with Bertini and we find $L_{1}^{3}=[0.0515957: 0.4157801: 1.1168439: 1]$ and $L_{2}^{3}=[155.0515957$: $86.5842198: 16.1168439: 1]$. These points correspond to the linear forms

$$
L_{1}=-0.3722812 x+y \text { and } L_{2}=5.3722813 x+y
$$

Indeed we have

$$
F=0.99322 \cdot(-0.3722812 x+y)^{3}+0.00678 \cdot(5.3722813 x+y)^{3} .
$$

4. Hilbert Theorem

Consider the case $d=5, n=2, h=7$.
Theorem 4.1. ($\underline{\text { Hilbert }})$ Let $P \in k[x, y, z]_{5}$ be a generic homogeneous polynomial of degree five in three variables. Then P can be decomposed as sum of seven linear forms

$$
P=L_{1}^{5}+\ldots+L_{7}^{5}
$$

Furthermore the decomposition is unique.
The following construction provides a method to reconstruct the decomposition starting from the polynomial.

Construction 4.2. If $\left\{\left[L_{1}\right], \ldots,\left[L_{7}\right]\right\}$ is a decomposition of P, then it is also a decomposition for its partial derivatives of any order. In particular P has six partial derivatives of order 2 that are homogeneous polynomials of degree three in x, y, z. We consider these derivatives as points in the projective space $\mathbb{P}^{9}=\mathbb{P}\left(k[x, y, z]_{3}\right)$, parametrizing the homogeneous polynomials of degree three in three variables. We denote by $H_{\partial} \subseteq \mathbb{P}^{9}$ the 5 -plane spanned by the derivatives, and with V the Veronese variety $V=\nu\left(\mathbb{P}^{2}\right)$, where $\nu: \mathbb{P}^{2} \rightarrow \mathbb{P}^{9}$ is the Veronese embedding of degree 3 .
Since all the derivatives can be decomposed as sum of $L_{1}^{3}, \ldots, L_{7}^{3}$ the 5 -plane H_{∂} is contained in the 6 -plane 7 -secant to the the Veronese variety $V \subseteq \mathbb{P}^{9}$, given by $H_{L}=<L_{1}^{3}, \ldots, L_{7}^{3}>$.
Consider now the projection

$$
\pi: \mathbb{P}^{9} \rightarrow \mathbb{P}^{3}
$$

form the linear space H_{∂}. The image of the Veronese variety $\pi(V)=\bar{V}$ is a surface of degree 9 in \mathbb{P}^{3}, furthermore it has a point p_{L} of multiplicity 7 , which comes from the contraction of H_{L}. This is the unique point of multiplicity 7 on \bar{V} by the uniqueness of the decomposition.
From this discussion we derive an algorithm to find the decomposition divided into the following steps.
(1) Compute the partial derivative of order 2 of P.
(2) Compute the equation of the 5 -plane H_{∂} spanned by the derivatives.
(3) Project the Veronese variety V in \mathbb{P}^{3} from H_{∂}.
(4) Compute the point p_{L} of multiplicity 7 on \bar{V}.
(5) Compute the 6 -plane $H=<H_{\partial}, p_{L}>$ spanned by H_{∂} and the point p_{L}.
(6) Compute the intersection $V \cdot H=\left\{L_{1}^{3}, \ldots, L_{7}^{3}\right\}$.

Remark 4.3. To apply the algorithm is necessary to ensure that a point $p \in X$ of multiplicity r, where $X \subseteq \mathbb{P}^{n}$ is a hypersurface, is mapped by an automorphism $\omega: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$, in a point $\omega(p) \in \omega(X)$ of multiplicity r.

Lemma 4.4. Let $X \subseteq \mathbb{P}^{n}$ be a hypersurface, $p \in X$ a point, and $\omega: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ an automorphism of \mathbb{P}^{n}. Then $p \in X$ is a point of multiplicity r if and only if $\omega(p) \in \omega(X)$ is a point of multiplicity r.

Proof. Let $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$ be the polynomial of X i.e. $X=Z(F)$ and let

$$
\omega\left(x_{0}, \ldots, x_{n}\right)=\left(\omega_{0}\left(x_{0}, \ldots, x_{n}\right), \ldots, \omega_{n}\left(x_{0}, \ldots, x_{n}\right)\right)
$$

be the automorphism of \mathbb{P}^{n}. Then $\omega(X)=Z(\bar{F})$, where $\bar{F} \in k\left[\omega_{0}, \ldots, \omega_{n}\right]_{d}$ is such that $F=\bar{F} \circ \omega$. The partial derivatives of F are given by

$$
\frac{\partial^{k} F\left(x_{0}, \ldots, x_{n}\right)}{\partial x_{0}^{k_{0}} \ldots \partial x_{n}^{k_{n}}}=\sum_{j_{0}+\ldots+j_{n}=k} \frac{\partial^{k} \bar{F}\left(\omega_{0}, \ldots, \omega_{n}\right)}{\partial \omega_{0}^{j_{0}} \ldots \partial \omega_{n}^{j_{n}}} H_{k_{0}, \ldots, k_{n}}
$$

The matrix $H=\left(H_{k_{0}, \ldots, k_{n}}\right)$ is a $\binom{n+k}{n} \times\binom{ n+k}{n}$ square matrix. Since it is formed by blocks that are products of the matrix of ω, it is non singular. Then the linear system
has a unique trivial solution. In other words $\frac{\partial^{k} F\left(\overline{x_{0}}, \ldots, \overline{x_{n}}\right)}{\partial x_{0}^{k_{0}} \ldots \partial x_{n}^{k n}}=0$ for any $k_{0}+\ldots+k_{n}=k$ if and only if $\frac{\partial^{k} \bar{F}\left(\overline{\omega_{0}}, \ldots, \overline{\omega_{n}}\right)}{\partial \omega_{0}^{j 0} \ldots \partial \omega_{n}^{j n}}=0$ for any $j_{0}+\ldots+j_{n}=k$, where $\overline{\omega_{i}}=\omega_{i}\left(\overline{x_{0}}, \ldots, \overline{x_{n}}\right)$.

Example 4.5. Consider the polynomial $P \in k[x, y, z]_{5}$ given by
$P=x^{5}+x^{4} y^{2}-x^{2} y^{3}-y^{5}+z^{5}+x^{3} z^{2}+x^{2} z^{3}-x^{4} y+x^{4} z-4 x^{3} y z+6 x^{2} y^{2} z$ $-6 x^{2} y z^{2}+x y^{4}-4 x y^{3} z+6 x y^{2} z^{2}-4 x y z^{3}+x z^{4}+y^{4} z-2 y^{3} z^{2}+2 y^{2} z^{3}-y z^{4}$.
On $\mathbb{P}^{9}=\mathbb{P}\left(k[x, y, z]_{3}\right)$ we fix homogeneous coordinates $\left[X_{0}: \ldots: X_{9}\right]$ corresponding respectively to the monomials $\left\{x^{3}, x^{2} y, x^{2} z, x y z, x y^{2}, x z^{2}, y^{3}, y^{2} z, y z^{2}, z^{2}\right\}$. In these coordinates the linear space H_{∂} spanned by the second partial derivatives is given by the following equations.

$$
\begin{aligned}
& H_{\partial, 1}:-1701 X_{0}-4455 X_{1}+567 X_{2}-4455 X_{3}-567 X_{5}-1458 X_{6}+81 X_{7}=0 ; \\
& H_{\partial, 2}:-4536 X_{0}-13392 X_{1}-13392 X_{3}-4455 X_{6}+216 X_{7}-567 X_{9} ; \\
& H_{\partial, 3}: 216 X_{1}+216 X_{2}+216 X_{3}-216 X_{5}+81 X_{6}+81 X_{9}=0 ; \\
& H_{\partial, 4}: 13392 X_{4}-26784 X_{8}=0 .
\end{aligned}
$$

We project on the linear space $\left(X_{0}=X_{1}=X_{2}=X_{3}=X_{4}=X_{5}=0\right) \cong \mathbb{P}^{3}$. The projection $\pi: \mathbb{P}^{9} \backslash H_{\partial} \rightarrow \mathbb{P}^{3}$ has equations $\pi\left(X_{0}, \ldots, X_{9}\right)=\left[-\left(42 X_{0}+110 X_{1}-14 X_{2}+110 X_{3}+X_{4}+14 X_{5}+36 X_{6}\right):-18\left(X_{4}+\right.\right.$ $\left.\left.2 X_{7}\right): 18\left(X_{4}-2 X_{8}\right):\left(42 X_{0}+14 X_{1}-110 X_{2}+14 X_{3}+X_{4}+110 X_{5}-36 X_{9}\right)\right]$.
We compute the projection of the Veronese variety V by the following function in MacAulay2

```
Macaulay2, version 1.3.1
i1 : P2 = QQ[x,y,z]
o1 = P2
o1 : PolynomialRing
```



```
o2 = P9
o2 : PolynomialRing
```



```
o3 : RingMap P2 <--- P9
i4 : IVer = kernel VerMap
04 : Ideal of P9
i5 : RVer = P9/IVer
05 = RVer
05 : QuotientRing
```

```
i6 : P3 = QQ[X,Y,Z,W]
06 = P3
06 : PolynomialRing
i7 : Projection = map(RVer,P3,"Equations of the Projection")
o7 = map(RVer,P3,"Equations of the Projection")
o7 : RingMap RVer <--- P3
i8 : IProjVer = kernel Projection
o8 : Ideal of P3
```

In this way we obtain the equation of $\bar{V}=Z(F)$ where $F=F(X, Y, Z, W)$ is a homogeneous polynomial of degree $9=\operatorname{deg}(V)$. Now we use Bertini to compute the point of multiplicity 7 on \bar{V}.

CONFIG
TRACKTOLBEFOREEG: 1e-8;
TRACKTOLDURINGEG: 1e-11;
FINALTOL: 1e-14;
MPTYPE: 1;
PRECISION: 128;
END;
INPUT
homvariablegroup X, Y, Z, W;
function f1, f2, f3, f4, f5;
f1 = F;
$f 2=\frac{\partial^{6} F}{\partial X^{6}} ;$
$f 3=\frac{\partial^{6} F}{\partial Y^{6}}$;
$f_{4}=\frac{\partial^{6} F}{\partial Z^{6}}$;
$f 5=\frac{\partial^{6} F}{\partial W^{6}}$;
END;
The singular point is $p_{L}=[-5.0632364198314: 0: 0: 35.442654938835]$. Again using Bertini we compute the intersection $V \cdot H=\left\{L_{1}^{3}, \ldots, L_{7}^{3}\right\}$ and we obtain the linear forms

$$
\begin{aligned}
& L_{1}=0.98274177184 x-0.12482457140 y \\
& L_{2}=-0.65071281231 x+0.65071281231 y \\
& L_{3}=0.12482457140 x-0.98274177184 y \\
& L_{4}=(0.18975376061-i 0.33683479696) x+(0.83442021400-i 0.082003524422) z \\
& L_{5}=(0.04447250903-i 0.38403953709) x-(0.62685967129+i 0.556802140865) z \\
& L_{6}=(-0.12154672768+i 0.37408236279) x+(0.18089826609-i 0.55674761546) z \\
& L_{7}=0.72477966367 x-0.72477966495 y+0.72477965837 z
\end{aligned}
$$

These forms give the unique decomposition of our polynomial.

5. Sylvester Theorem

Consider the case $d=3, n=3, h=5$.
Theorem 5.1. (Sylvester) Let $F \in k[x, y, z, w]_{3}$ be a generic homogeneous polynomial of degree three in four variables. Then F can be decomposed as sum of seven
linear forms

$$
F=L_{1}^{3}+\ldots+L_{5}^{3}
$$

Furthermore the decomposition is unique.

Proof. Let $F=F_{3} \in \mathbb{P}^{9}$ be a homogeneous form of degree three. We know that a 5-polar polyhedron of F exists. The polar form of F in a point $\xi=\left[\xi_{0}: \xi_{1}: \xi_{2}\right.$: $\left.\xi_{3}\right] \in \mathbb{P}^{3}$ is the quadric

$$
P_{\xi} F=\xi_{0} \frac{\partial F}{\partial x_{0}}+\xi_{1} \frac{\partial F}{\partial x_{1}}+\xi_{2} \frac{\partial F}{\partial x_{2}}+\xi_{3} \frac{\partial F}{\partial x_{3}}
$$

Let $\left\{L_{1}, \ldots, L_{5}\right\}$ be a 5 -polar polyhedron of F, then $F=L_{1}^{3}+\ldots+L_{5}^{3}$. The polar form is of the type

$$
P_{\xi} F=\sum_{i=1}^{5} \xi_{i} \lambda_{i} L_{i}^{2}
$$

and it has rank 2 on the points $\xi \in \mathbb{P}^{3}$ on which three of the linear form L^{i} vanish simultaneously. These points are $\binom{5}{3}=10$.
Now we consider the subvariety X_{2} of \mathbb{P}^{9} parametrizing the quadrics of rank 2. A quadric Q of rank 2 is the union of two plane, then $\operatorname{dim}\left(X_{2}\right)=6$. To find the degree of X_{2} we have to intersect with a 3 -plane, that is intersection of 6 hyperplanes. So the degree of X_{2} is equal to the number of quadrics of rank 2 passing through 6 general points of \mathbb{P}^{3}. If we choose three points then the plane through these points is determined, and also the quadric is determined. Then these quadric are $\frac{1}{2}\binom{6}{3}=10$. We have seen that $\operatorname{dim}\left(X_{2}\right)=6$ and $\operatorname{deg}\left(X_{2}\right)=10$.
Now the linear space

$$
\Gamma=\left\{P_{\xi} F \mid \xi \in \mathbb{P}^{3}\right\} \subseteq \mathbb{P}^{9}
$$

is clearly a 3 -plane in \mathbb{P}^{9}.
Then $\Gamma \cap X_{2}=\left\{P_{\xi} F \mid \operatorname{rank}\left(P_{\xi} F\right)=2\right\}$ is a set of 10 points. These points have to be the 10 points we have found in the first part of the proof. Then the decomposition of F in five linear factor is unique.

This proof suggests us an algorithm to reconstruct the decomposition.
Construction 5.2. Consider F and its first partial derivatives.
(1) Compute the 3-plane Γ spanned by the partial derivatives of F.
(2) Compute the intersection $\Gamma \cdot X_{2}$, where X_{2} is the variety parametrizing the rank 2 quadrics in \mathbb{P}^{3}.
(3) Consider the 10 points in the intersection. By construction on each plane we are looking for there are 6 of these points, furthermore on each plane there are 4 triples of collinear points. Then with these 10 points we can construct exactly $\frac{\binom{10}{3}}{\binom{6}{3}+4}=5$ planes. These planes gives the decomposition of F. Note that a priori we have $\binom{10}{6}=210$ choices, but we are interested in combinations of six points $\left\{P_{j_{1}}, \ldots, P_{j_{6}}\right\}$ which lie on the same plane. We know that there are exactly five of these. To find the five combinations we use the following script in Matlab.

```
P1 = input('Point 1:');
P10 = input('Point 10:');
```

```
q = input('Precision:');
A = [P1;P2;P3;P4;P5;P6;P7;P8;P9;P10];
t = 1;
B = [];
for a=1:5,
for b=a+1:6,
for c=b+1:7,
for d=c+1:8,
for f=d+1:9,
for g=f+1:10,
M=[A(a,:);A(b,:);A(c,:);A(d,: );A(f,:);A(g,:)];
disp(t);
t = t+1;
v = [];
for a1 = 1:3,
for a2 = a1+1:4,
for a3 = a2+1:5,
for a4 = a3+1:6,
v = [v, det ([M(a1, :);M(a2,:);M(a3,:);M(a4,:)])];
end; end; end; end;
if abs(v(1))<q,abs(v(2))<q,abs (v(3))<q,abs(v(4))<q,abs(v(5))<q,
abs(v(6))<q,abs (v(7))<q,abs(v(8))<q,abs(v(9))<q,abs (v(10))<q,
abs(v(11))<q,abs(v(12))<q,abs(v(13))<q,abs(v(14))<q,abs(v(15))<q,
B = [B M];
end; end; end; end; end; end; end;
[n,m] = size(B);
s = 1;
for r=1:4:m-3,
disp('Matrix'), disp(s),
s = s+1;
B(:,r:r+3),
end;
```

This script constructs a matrix A whose lines are the then points and then computes the 6×4 submatrices of rank 3 of A.

Example 5.3. Consider the polynomial
$F=x^{3}+x^{2} y+x^{2} z+x^{2} w+x y^{2}+x y z+x y w+x z^{2}+x z w+x w^{2}+y^{3}+y^{2} z+$ $y^{2} w+y z^{2}+y z w+y w^{2}+z^{3}+z^{2} w+z w^{2}+w^{3}$.
We compute the equations of the linear space Γ, the equations of the variety X_{2}, and verify that their intersection is a subscheme of dimension zero and length 10 . In the \mathbb{P}^{9} parametrizing the quadrics on \mathbb{P}^{3} we fix homogeneous coordinates $\left[X_{0}: \ldots: X_{9}\right]$, corresponding to the monomials $\left\{x^{2}, x y, x z, x w, y^{2}, y z, y w, z^{2}, z w, w^{2}\right\}$.

Macaulay2, version 1.3.1
i1: $P 9=Q Q\left[X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}\right]$
$01=P 9$
o1: PolynomialRing
i2 : MDer $=\operatorname{matrix}\left\{\left\{X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}\right\},\{3,2,2,2,1,1,1,1,1,1\}\right.$, $\{1,2,1,1,3,2,2,1,1,1\},\{1,1,2,1,1,2,1,3,2,1\},\{1,1,1,2,1,1,2,1,2,3\}\}$

```
o2 : Matrix P9 <--- P9
i3 : IDer = minors(5,MDer)
o3 : Ideal of P9
i4 : MQuad = matrix {{\mp@subsup{X}{0}{},\mp@subsup{X}{1}{}/2,\mp@subsup{X}{2}{}/2,\mp@subsup{X}{3}{}/2},{\mp@subsup{X}{1}{}/2,\mp@subsup{X}{4}{},\mp@subsup{X}{5}{\prime}/2,\mp@subsup{X}{6}{}/2},{\mp@subsup{X}{2}{}/2,\mp@subsup{X}{5}{\prime}/2,\mp@subsup{X}{7}{},\mp@subsup{X}{8}{}/2},
{\mp@subsup{X}{3}{}/2,\mp@subsup{X}{6}{}/2,\mp@subsup{X}{8}{\prime}/2,\mp@subsup{X}{9}{}}}
04 : Matrix P9 <--- P9
i5 : IRTQuad = minors(3,MQuad)
05 : Ideal of P9
i6 : X2 = variety IRTQuad
06 = X2
06 : ProjectiveVariety
i7 : DerSpace = variety IDer
o7 = DerSpace
o7 : ProjectiveVariety
i8 : IdInt = IDer+IRTQuad
08 : Ideal of P9
i9 : Int = variety IdInt
o9 = Int
09 : ProjectiveVariety
i10 : dim Int
o10 = 0
i11 : degree Int
o11 = 10
```

In these coordinates the 3-plane spanned by the partial derivatives has equations

$$
\begin{aligned}
& H_{\partial, 1}: X_{7}-2 X_{8}+X_{9}=0 \\
& H_{\partial, 2}: X_{5}-X_{6}-X_{8}+X_{9}=0 \\
& H_{\partial, 3}: X_{4}-2 X_{6}+X_{9}=0 \\
& H_{\partial, 4}: X_{2}-X_{3}-X_{8}+X_{9}=0 \\
& H_{\partial, 5}: X_{1}-X_{3}-X_{6}+X_{9}=0 \\
& H_{\partial, 6}: X_{0}-2 X_{3}+X_{9}=0
\end{aligned}
$$

The following function in Bertini allows us to calculate the intersection of H_{∂} with the variety X_{2} parametrizing the quadrics of rank 2 .

```
CONFIG
END;
INPUT
homvariablegroup }\mp@subsup{X}{0}{},\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\mp@subsup{X}{3}{},\mp@subsup{X}{4}{},\mp@subsup{X}{5}{},\mp@subsup{X}{6}{},\mp@subsup{X}{7}{},\mp@subsup{X}{8}{\prime},\mp@subsup{X}{9}{}
function f1,f2,f3,f4,f5,f6,f7,\ldots,f22;
f1 = X X - 2 X 
f2 = X 
f3 = X4}-2\mp@subsup{X}{6}{}+\mp@subsup{X}{9}{}
f4 = X 
f5 = X 
```



```
f7 = ....;
\vdots
```

```
f22 = ...;
END;
```

Where $f 7, \ldots, f 22$, are the equations cutting X_{2} in \mathbb{P}^{9}. We find $10=\operatorname{deg}\left(X_{2}\right)$ points on H_{∂} that corresponds to the following points in \mathbb{P}^{3}.
$P_{1}=[-0.0538-0.0089 i:-0.0538-0.0089 i:-0.0538-0.0089 i: 0.2692+0.0447 i] ;$
$P_{2}=[0.9291+0.1127 i: 0-0.9291-0.1127 i: 0]$;
$P_{3}=[0: 0:-0.3198-0.0488 i: 0.3198+0.0488 i]$;
$P_{4}=[0: 0.4297+0.7502 i:-0.4297-0.7502 i: 0] ;$
$P_{5}=[0:-0.3850+0.0834 i: 0: 0.3850-0.0834 i] ;$
$P_{6}=[0.4850-0.8736 i:-0.4850+0.8736 i: 0: 0]$;
$P_{7}=[-0.4873-0.0825 i: 0: 0: 0.4873+0.0825 i]$;
$P_{8}=[0.7990+0.1275 i:-0.1598-0.0255 i:-0.1598-0.0255 i:-0.1598-0.0255 i]$;
$P_{9}=[2.3960-1.8505 i: 2.3960-1.8505 i:-11.9800+9.2523 i: 2.3960-1.8505 i] ;$
$P_{10}=[-0.0652-0.1273 i: 0.3260+0.6364 i:-0.0652-0.1273 i:-0.0652-0.1273 i]$.

Thanks to the previous Matlab script we can compute the five combinations of six coplanar points, and then the linear forms.

$$
\begin{aligned}
& L_{1}=(0.0149652+0.0069738 i) x+(0.0449377+0.020996 i) y+(0.0149652+ \\
& 0.0069738 i) z+(0.0149652+0.0069738 i) w ; \\
& L_{2}=(0.00927286+0.0448705 i) x+(0.00310162+0.0149327 i) y+(0.00310162+ \\
& 0.014327 i) z+(0.00310162+.0149327 i) w ; \\
& L_{3}=(0.0278039-0.0573066 i) x+(0.0278039-0.0573066 i) y+(0.0834118- \\
& 0.17192 i) z+(0.02780390 .0573066 i) w ; \\
& L_{4}=(-0.0642594-0.253748 i) x+(-0.0642594-0.253748 i) y+(-0.0642594- \\
& 0.253748 i) z+(-0.06425940 .253748 i) w ; \\
& L_{5}=(-0.0312783-0.127146 i) x+(-0.0312783-0.127146 i) y+(-0.0312783- \\
& 0.127146 i) z+(-0.0938348-0.381437 i) w .
\end{aligned}
$$

References

[Di] L. Dickson, History of the theory of numbers. Vol. II: Diophantine analysis Chelsea Publishing Co., New York 1966 xxv+803 pp
[Do] I. Dolgachev, Dual homogeneous forms and varieties of power sums. Milan Journal of Mathematics, 99.
[DK] I. Dolgachev, V. Kanev, Polar covariants of plane cubics and quartics. Adv. in Math. 98 (1993), 216301.
[GHS] T. Graber, J. Harris, J. Starr, Families of rationally connected varieties, Preprint, 2001.
[Hi] D. Hilbert, Letter adresseé à M. Hermite, Gesam. Abh. vol II 148-153
[IK] A. Iarrobino, V. Kanev, Power Sums, Gorenstein Algebras and Determinantal Loci. Lecture notes in Mathematics, 1721, Springer, 1999.
[KMM] J.Kollar, Y.Miyaoka, S.Mori. Rationally connected varieties, J. Alg. Geom. 1 (1992), 429448.
[Me1] M.Mella Singularities of linear systems and the Waring problem Trans. Amer. Math. Soc. 358 (2006), no. 12, 5523-5538.
[Me2] M. Mella Base Loci of linear systems and the Waring problem Proc. Amer. Math. Soc. 137 (2009), no. 1, 91-98.
[Pa] F. Palatini, Sulla rappresentazione delle forme ternarie mediante la somma di potenze di forme lineari Rom. Acc. L. Rend. 12 (1903) 378-384
[RS] K. Ranestad, F.O. Schreier, Varieties of Sums of Powers. J. Reine Angew. Math, 525, 2000.
[Ri] H.W. Richmond, On canonical forms Quart. J. Pure Appl. Math. 33 (1904) 967-984
[Sy] J.J. Sylvester Collected works Cambridge University Press (1904)
SisSA, via Beirut 2-4, 34151 Trieste, ITALY
E-mail address: alex.massarenti@sissa.it

