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Introduction

Let F ∈ k[x0, ..., xn]d be a homogeneous polynomial of degree d. Consider its
decompositions as sum of linear forms

F = Ld1 + ...+ Ldh.

We know that in some cases the decomposition is unique. As instance the following.

d n h Reference
2h− 1 1 h Sylvester

5 2 7 Hilbert
3 3 5 Sylvester

We will give some explicit methods to compute the decomposition in these cases,
and compute some examples using symbolic and numerical calculus softwares such
as MacAulay2 and Bertini.

1. Apolarity

We work over an algebraically closed field of characteristic zero. We mainly
follow notations and definitions of [Do]. Let V be a vector space of dimension n+1
and let P(V ) = Pn the corresponding projective space. For any finite set of points
{p1, ..., ph} ⊆ Pn we consider the linear space of homogeneous forms F of degree d
on Pn such that Z(F ) contains the points p1, ..., ph, and we denote it by

Ld(p1, ..., ph) = {F ∈ k[x0, ..., xn]d | pi ∈ Z(F ) ∀ 1 ≤ i ≤ h}.

Definition 1.1. An unordered set of points {[L1], ..., [Lh]} ⊆ PV ∗ is a polar h-
polyhedron of F ∈ k[x0, ..., xn]d if

F = λ1L
d
1 + ...+ λhL

d
h,
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2 ALEX MASSARENTI

for some nonzero scalars λ1, ..., λh ∈ k and moreover the Ldi are linearly independent
in k[x0, ..., xn]d.

We briefly introduce the concept of Apolar form to a given homogeneous form
to state the connection between the set of h-polyhedra of F and the space of apolar
forms of F . This correspondence will be very important to reconstruct the h-
polyhedra of F .
We fix a system of coordinates {x0, ..., xn} on V and the dual coordinates {ξ0, ..., ξn}
on V ∗.
Let φ = φ(ξ0, ..., ξn) be a homogeneous polynomial of degree t on V ∗. We consider
the differential operator

Dφ = φ(∂0, ..., ∂n), with ∂i = ∂
∂xi

.
This operator acts on φ substituting the variable ξi with the partial derivative
∂i = ∂

∂xi
. For any F ∈ k[x0, ..., xn]d we write

< φ,F >= Dφ(F ).
We call this pairing the apolarity pairing.
In general φ is of the form φ(ξ0, ..., ξn) =

∑
i0+...+in=t αi0,...,inξ

i0
0 ...ξ

in
n and F is of

the form F (x0, ..., xn) =
∑
j0+...+jn=d fi0,...,inx

j0
0 ...x

jn
n . Then

Dφ(F ) = (
∑
i0+...+in=t αi0,...,in∂

i0
0 ...∂

in
n )(F ).

We see that F is derived i0 + ... + in = t times. So we obtain a homogeneous
polynomial of degree d− t on V .
Fixed F ∈ k[x0, ..., xn]d we have the map

aptF : k[ξ0, ..., ξn]t → k[x0, ..., xn]d−t, φ 7→ Dφ(F ).
The map aptF is linear and we can consider the subspace Ker(aptF ) of k[ξ0, ..., ξn]t.

Definition 1.2. A homogeneous form φ ∈ k[ξ0, ..., ξn]t is called apolar to a ho-
mogeneous form F ∈ k[x0, ..., xn]d if Dφ(F ) = 0, in other words if φ ∈ Ker(aptF ).
The vector subspace of k[ξ0, ..., ξn]t of apolar forms of degree t to F is denoted by
APt(F ).

Lemma 1.3. The set P = {[L1], ..., [Lh]} is a polar h-polyhedron of F if and only
if

Ld([L1], ..., [Lh]) ⊆ APd(F ),
and the inclusion is not true if we delete any [Li] from P.

Remark 1.4 (Partial Derivatives). Let {[L1], ..., [Lh]} be a h-polar polyhedron for
the homogeneous polynomial F ∈ k[x0, ..., xn]d. We write

F = λ1L
d
1 + ...+ λhL

d
h.

The partial derivatives of F are homogeneous polynomials of degree d− 1 decom-
posed in h linear factors

∂F
∂xi

= λ1αi1dL
d−1
1 + ...+ λhαihdL

d−1
h , for any i = 0, ..., n.

Then V SP (F, h)o ⊆ V SP ( ∂F∂xi
, h)o, taking closures we have

V SP (F, h) ⊆ V SP ( ∂F∂xi
, h).

The polynomial F has
(
n+l
l

)
partial derivatives of order l. Clearly these derivatives

are homogeneous polynomials of degree d− l decomposed in h-linear factors. Then
we have V SP (F, h) ⊆ V SP ( ∂lF

∂x
l0
0 ,...,∂x

ln
n

, h), where l0 + ...+ ln = l.
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2. The easy Case

In this section we present a way to rebuild decomposition under some special
hypothesis.

Construction 2.1. Let F ∈ k[x0, ..., xn]d be an homogeneous polynomial and let
F l1, ..., F

l
Dl
∈ k[x0, ..., xn]d−l be the partial derivatives of order l, with Dl =

(
n+l
l

)
.

We denote by PNl the projective space parametrizing the homogeneous polynomials
of degree d− l and consider the hyperplanes AP d−l(F l1), ..., AP d−l(F lDl

) ⊆ PNl .
Let h ∈ Z be a positive integer such that h − 1 < Nl and let {[l1], ..., [lh]} be an
h-polar polyhedron of F . Then by remark 1.4 and lemma 1.3 we know that

Ld−l(l1, ..., lh) ⊆
⋂Dl

i=1AP
d−l(F li ) = Hd−l ∼= PNl−Dl .

Since for a general h-polar polyhedron {[l1], ..., [lh]} we have dim(Ld−l(l1, ..., lh)) =
Nl − h, we get the rational map

φ : V SP (F, h) 99K G(Nl − h,Nl −Dl), {[l1], ..., [lh]} 7→ Ld−l(l1, ..., lh).
Suppose that the general (h − 1)-plane containing (AP d−l)∗ intersects the corre-
sponding Veronese variety in at least h points, so that the map φ is dominant.
In this case a general (Nl − h)-plane contained in Hd−l represents a linear system
of the type Ld−l(l1, ..., lh). If the intersection of n elements of this linear system
consists of (d − l)n = t points p1, ..., pt and if h ≤ t, then choosing h points from
the pi we get an h-polar polyhedron of F .
If Ld−l(l1, ..., lh) has a base locus B of positive dimension we can construct an h-
polar polyhedron of F simply by choosing h points on B.
This construction gives a method to find the h-polihedra of F under the required
hypothesis, in general to find the base locus of the linear system Ld−l(l1, ..., lh) is
not an easy task.

Example 2.2. Consider the cubic polynomial

F = x3 + x2y + x2z + xy2 + xyz + xz2 + y3 + y2z + yz2 + z3.

The operator Dφ is given by

Dφ = α0
∂2

∂x2
+ α1

∂2

∂y2
+ α2

∂2

∂z2
+ α3

∂2

∂x∂y
+ α4

∂2

∂x∂z
+ α5

∂2

∂y∂z
.

We are in the situation of construction 2.1, an the spaces of apolar forms are the
following

AP2(∂F∂x ) = Z(6α0 + 2α1 + 2α2 + 2α3 + 2α4 + α5);
AP2(∂F∂y ) = Z(2α0 + 6α1 + 2α2 + 2α3 + α4 + 2α5);
AP2(∂F∂z ) = Z(2α0 + 2α1 + 6α2 + α3 + 2α4 + 2α5).

Now we choose a line on the plane determined by these three equations, as instance
intersecting with the hyperplane H0 = Z(α0). Choosing two conics in this pencil
and computing the base locus we get the following decomposition for F .

L1 = (−0.005006− i0.278616)x+(−0.008344− i0.464361)y+(−0.012516−
i0.696541)z;
L2 = (0.438881− i0.986000)x;
L3 = (−0.579402− i0.878415)y;
L4 = (−0.027303− i0.199112)x+(−0.081910− i0.597338)y+(−0.081910−
i0.597338)z.
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3. Polynomials on P1

In this section we consider the decomposition of a polynomial F ∈ k[x, y]2h−1 as
sum of h linear forms.

Theorem 3.1. (Sylvester) Let F be a generic homogeneous polynomial of degree
2h − 1 in two variables. There exists a unique decomposition of F as sum of h
linear forms.

Proof. : Let X be the rational normal curve of degree 2h − 1 in P2h−1. Since
dim(Sech−1(X)) = h+ (h− 1) = 2h− 1 there exists a decomposition of F .
Suppose that {l1, ..., lh} and {L1, ..., Lh} are two distinct decomposition of F . Let
Λl and ΛL the two (h − 1)-planes generated by the decompositions. The point
F2h−1 belongs to Λl ∩ ΛL so the linear spaceΓ =< Λl,ΛL > has dimension

dim(Γ) ≤ (h− 1) + (h− 1) = 2h− 2.

If Λl ∩ ΛL = {F}, then dim(Γ) = (h− 1) + (h− 1) = 2h− 2. So Γ is a hyperplane
in P2h−1 and Γ ·X ≥ 2h. A contradiction because deg(X) = 2h− 1.
If Λl and ΛL have k common points, then Λl and ΛL intersect in k + 1 points
Q1, ..., Qk, F . In this case Λl ∩ ΛL is a Pk and dim(Γ) = 2h− 2− k. We choose k
points P1, ..., Pk on X in general position so H =< Γ, P1, ..., Pk > is a hyperplane
such that H · X ≥ 2h − k + k = 2h, a contradiction. We conclude that the
decomposition of F in h linear factors is unique. �

In order to reconstruct the decomposition we consider the following construction

Construction 3.2. The partial derivatives of order h− 2 of F are
(
h−2+1

1

)
= h− 1

homogeneous polynomials of degree h + 1. Let νh+1 : P1 → Ph+1 be the (h + 1)-
Veronese embedding and let X = νh+1(P1) be the corresponding rational normal
curve. Consider the projection

π : Ph+1 \H∂ → P2

from the (h − 2)-plane H∂ spanned by the partial derivatives. Since the decom-
position {L1, ..., Lh} of F is unique, the projection X = π(X) will have an unique
singular point pL = π(< Lh+1

1 , ..., Lh+1
h >) of multiplicity h. Now to find the de-

composition, we have to compute the intersection H ·X = {Lh+1
1 , ..., Lh+1

h }, where
H =< H∂ , pL >.

Example 3.3. We consider the polynomial

F = x3 + x2y − xy2 + y3 ∈ k[x, y]3.

i.e. the point [F ] = [1 : 1 : 1 : 1] ∈ P3. The projection from [F ] to the plane
(X = 0) ∼= P2 is given by

π : P3 99K P2, [X : Y : Z : W ] 7→ [Y −X : X + Z : W −X].

Using the following sequence of MacAulay2 we compute the projection C = π(X)
of the twisted cubic curve X.

Macaulay2, version1.3.1

i1 : P3 = QQ[X,Y,Z,W]

o1 = P3

o1 : PolynomialRing
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i2 : P1 = QQ[s,t]

o2 = P1

o2 : PolynomialRing

i3 : TC = map(P1, P3, s3, 3s2t, 3st2, t3)

o3 = map(P1, P3, s3, 3s2t, 3st2, t3)

o3 : RingMap P1 < P3

i4 : ITC = kernelTC

o4 = ideal(Z2-3YW, YZ-9XW, Y2-3XZ)

o4 : Idealof P3

i5 : RTC = P3/ITC

o5 = RTC

o5 : QuotientRing

i6 : P2 = QQ[A,B,C]

o6 = P2

o6 : PolynomialRing

i7 : projmap = map(RTC, P2, Y-X, X+Z, W-X)

o7 = map(RTC, P2, -X+Y, X+Z, -X+W)

o7 : RingMap RTC < P2

i8 : I = kernelprojmap

o8 = ideal(14A3+15A2B+15AB2-13B3-18A2C+45ABC-18B2C+54AC2)

o8 : Ideal of P2

The latter is the equation of C = π(X). Using the following function of Bertini

CONFIG

END;

INPUT

homvariablegroup A,B,C;

function f1, f2, f3, f4;

f1 = 14A3+15A2B+15AB2-13B3-18A2C+45ABC-18B2C+54AC2);

f2 = (42(A2))+(30AB)+(45CB)-(36CA)+(15(B2))+(54(C2));

f3 = (15(A2))+(30AB)+(45AC)-(39(B2))-(36*B*C);

f4 = (45AB)+(108AC)-(18(A2))-(18(B2));

END;

we compute the singular point of C,

P = Sing(C) = [4 : 10 : 9].

The line generated by P and [F ] is given by the following equations

L = (6X − 10Y − 4Z = 5X − 9Y + 4W = 0).

We compute the intersection X ·L, where X is the twisted cubic curve, with Bertini
and we find L3

1 = [0.0515957 : 0.4157801 : 1.1168439 : 1] and L3
2 = [155.0515957 :

86.5842198 : 16.1168439 : 1]. These points correspond to the linear forms

L1 = −0.3722812x+ y and L2 = 5.3722813x+ y.

Indeed we have

F = 0.99322 · (−0.3722812x+ y)3 + 0.00678 · (5.3722813x+ y)3.
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4. Hilbert Theorem

Consider the case d = 5, n = 2, h = 7.

Theorem 4.1. (Hilbert) Let P ∈ k[x, y, z]5 be a generic homogeneous polynomial
of degree five in three variables. Then P can be decomposed as sum of seven linear
forms

P = L5
1 + ...+ L5

7.

Furthermore the decomposition is unique.

The following construction provides a method to reconstruct the decomposition
starting from the polynomial.

Construction 4.2. If {[L1], ..., [L7]} is a decomposition of P , then it is also a de-
composition for its partial derivatives of any order. In particular P has six partial
derivatives of order 2 that are homogeneous polynomials of degree three in x, y, z.
We consider these derivatives as points in the projective space P9 = P(k[x, y, z]3),
parametrizing the homogeneous polynomials of degree three in three variables. We
denote by H∂ ⊆ P9 the 5-plane spanned by the derivatives, and with V the Veronese
variety V = ν(P2), where ν : P2 → P9 is the Veronese embedding of degree 3.
Since all the derivatives can be decomposed as sum of L3

1, ..., L
3
7 the 5-plane H∂

is contained in the 6-plane 7-secant to the the Veronese variety V ⊆ P9, given by
HL =< L3

1, ..., L
3
7 >.

Consider now the projection

π : P9 99K P3

form the linear space H∂ . The image of the Veronese variety π(V ) = V is a surface
of degree 9 in P3, furthermore it has a point pL of multiplicity 7, which comes
from the contraction of HL. This is the unique point of multiplicity 7 on V by the
uniqueness of the decomposition.
From this discussion we derive an algorithm to find the decomposition divided into
the following steps.

(1) Compute the partial derivative of order 2 of P .
(2) Compute the equation of the 5-plane H∂ spanned by the derivatives.
(3) Project the Veronese variety V in P3 from H∂ .
(4) Compute the point pL of multiplicity 7 on V .
(5) Compute the 6-plane H =< H∂ , pL > spanned by H∂ and the point pL.
(6) Compute the intersection V ·H = {L3

1, ..., L
3
7}.

Remark 4.3. To apply the algorithm is necessary to ensure that a point p ∈ X of
multiplicity r, where X ⊆ Pn is a hypersurface, is mapped by an automorphism
ω : Pn → Pn, in a point ω(p) ∈ ω(X) of multiplicity r.

Lemma 4.4. Let X ⊆ Pn be a hypersurface, p ∈ X a point, and ω : Pn → Pn
an automorphism of Pn. Then p ∈ X is a point of multiplicity r if and only if
ω(p) ∈ ω(X) is a point of multiplicity r.

Proof. Let F ∈ k[x0, ..., xn]d be the polynomial of X i.e. X = Z(F ) and let

ω(x0, ..., xn) = (ω0(x0, ..., xn), ..., ωn(x0, ..., xn)),
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be the automorphism of Pn. Then ω(X) = Z(F ), where F ∈ k[ω0, ..., ωn]d is such
that F = F ◦ ω. The partial derivatives of F are given by

∂kF (x0, ..., xn)
∂xk00 ...∂x

kn
n

=
∑

j0+...+jn=k

∂kF (ω0, ..., ωn)
∂ωj00 ...∂ω

jn
n

Hk0,...,kn .

The matrix H = (Hk0,...,kn
) is a

(
n+k
n

)
×
(
n+k
n

)
square matrix. Since it is formed

by blocks that are products of the matrix of ω, it is non singular. Then the linear
system

∂kF (x0, ..., xn)
∂xk00 ...∂x

kn
n

=
∑

j0+...+jn=k

∂kF (ω0, ..., ωn)
∂ωj00 ...∂ω

jn
n

Hk0,...,kn
= 0, k0 + ...+ kn = k,

has a unique trivial solution. In other words ∂kF (x0,...,xn)

∂x
k0
0 ...∂xkn

n

= 0 for any k0+...+kn = k

if and only if ∂
kF (ω0,...,ωn)

∂ω
j0
0 ...∂ωjn

n

= 0 for any j0+...+jn = k, where ωi = ωi(x0, ..., xn). �

Example 4.5. Consider the polynomial P ∈ k[x, y, z]5 given by
P = x5 + x4y2 − x2y3 − y5 + z5 + x3z2 + x2z3 − x4y + x4z − 4x3yz + 6x2y2z
− 6x2yz2 + xy4 − 4xy3z + 6xy2z2 − 4xyz3 + xz4 + y4z − 2y3z2 + 2y2z3 − yz4.
On P9 = P(k[x, y, z]3) we fix homogeneous coordinates [X0 : ... : X9] corresponding
respectively to the monomials {x3, x2y, x2z, xyz, xy2, xz2, y3, y2z, yz2, z2}. In these
coordinates the linear space H∂ spanned by the second partial derivatives is given
by the following equations.

H∂,1: −1701X0 − 4455X1 + 567X2 − 4455X3 − 567X5 − 1458X6 + 81X7 = 0;
H∂,2: −4536X0 − 13392X1 − 13392X3 − 4455X6 + 216X7 − 567X9;
H∂,3: 216X1 + 216X2 + 216X3 − 216X5 + 81X6 + 81X9 = 0;
H∂,4: 13392X4 − 26784X8 = 0.

We project on the linear space (X0 = X1 = X2 = X3 = X4 = X5 = 0) ∼= P3. The
projection π : P9 \H∂ → P3 has equations
π(X0, ..., X9) = [−(42X0 +110X1−14X2 +110X3 +X4 +14X5 +36X6) : −18(X4 +
2X7) : 18(X4 − 2X8) : (42X0 + 14X1 − 110X2 + 14X3 +X4 + 110X5 − 36X9)].
We compute the projection of the Veronese variety V by the following function in
MacAulay2

Macaulay2, version 1.3.1

i1 : P2 = QQ[x,y,z]

o1 = P2

o1 : PolynomialRing

i2 : P9 = QQ[X0,X1,X2,X3,X4,X5,X6,X7,X8,X9]

o2 = P9

o2 : PolynomialRing

i3 : VerMap = map(P2,P9,x3,3x2y,3x2z,6xyz,3xy2,3xz2,y3,3y2z,3yz2,z3)

o3 = map(P2,P9,x3,3x2y,3x2z,6xyz,3xy2,3xz2,y3,3y2z,3yz2,z3)

o3 : RingMap P2 <--- P9

i4 : IVer = kernel VerMap

o4 : Ideal of P9

i5 : RVer = P9/IVer

o5 = RVer

o5 : QuotientRing
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i6 : P3 = QQ[X,Y,Z,W]

o6 = P3

o6 : PolynomialRing

i7 : Projection = map(RVer,P3,"Equations of the Projection")

o7 = map(RVer,P3,"Equations of the Projection")

o7 : RingMap RVer <--- P3

i8 : IProjVer = kernel Projection

o8 : Ideal of P3

In this way we obtain the equation of V = Z(F ) where F = F (X,Y, Z,W ) is a
homogeneous polynomial of degree 9 = deg(V ). Now we use Bertini to compute the
point of multiplicity 7 on V .

CONFIG

TRACKTOLBEFOREEG: 1e-8;

TRACKTOLDURINGEG: 1e-11;

FINALTOL: 1e-14;

MPTYPE: 1;

PRECISION: 128;

END;

INPUT

homvariablegroup X,Y,Z,W;

function f1, f2, f3, f4, f5;

f1 = F;

f2 = ∂6F
∂X6 ;

f3 = ∂6F
∂Y 6 ;

f4 = ∂6F
∂Z6 ;

f5 = ∂6F
∂W 6 ;

END;

The singular point is pL = [−5.0632364198314 : 0 : 0 : 35.442654938835]. Again
using Bertini we compute the intersection V ·H = {L3

1, ..., L
3
7} and we obtain the

linear forms

L1 = 0.98274177184x− 0.12482457140y;
L2 = −0.65071281231x+ 0.65071281231y;
L3 = 0.12482457140x− 0.98274177184y;
L4 = (0.18975376061−i0.33683479696)x+(0.83442021400−i0.082003524422)z;
L5 = (0.04447250903−i0.38403953709)x−(0.62685967129+i0.556802140865)z;
L6 = (−0.12154672768+i0.37408236279)x+(0.18089826609−i0.55674761546)z;
L7 = 0.72477966367x− 0.72477966495y + 0.72477965837z.

These forms give the unique decomposition of our polynomial.

5. Sylvester Theorem

Consider the case d = 3, n = 3, h = 5.

Theorem 5.1. (Sylvester) Let F ∈ k[x, y, z, w]3 be a generic homogeneous polyno-
mial of degree three in four variables. Then F can be decomposed as sum of seven
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linear forms
F = L3

1 + ...+ L3
5.

Furthermore the decomposition is unique.

Proof. Let F = F3 ∈ P9 be a homogeneous form of degree three. We know that a
5 -polar polyhedron of F exists. The polar form of F in a point ξ = [ξ0 : ξ1 : ξ2 :
ξ3] ∈ P3 is the quadric

PξF = ξ0
∂F
∂x0

+ ξ1
∂F
∂x1

+ ξ2
∂F
∂x2

+ ξ3
∂F
∂x3

.

Let {L1, ..., L5} be a 5-polar polyhedron of F , then F = L3
1 + ... + L3

5. The polar
form is of the type

PξF =
∑5
i=1 ξiλiL

2
i

and it has rank 2 on the points ξ ∈ P3 on which three of the linear form Li vanish
simultaneously. These points are

(
5
3

)
= 10.

Now we consider the subvariety X2 of P9 parametrizing the quadrics of rank 2. A
quadric Q of rank 2 is the union of two plane, then dim(X2) = 6. To find the degree
of X2 we have to intersect with a 3-plane, that is intersection of 6 hyperplanes. So
the degree of X2 is equal to the number of quadrics of rank 2 passing through 6
general points of P3. If we choose three points then the plane through these points is
determined, and also the quadric is determined. Then these quadric are 1

2

(
6
3

)
= 10.

We have seen that dim(X2) = 6 and deg(X2) = 10.
Now the linear space

Γ = {PξF | ξ ∈ P3} ⊆ P9

is clearly a 3-plane in P9.
Then Γ∩X2 = {PξF |rank(PξF ) = 2} is a set of 10 points. These points have to be
the 10 points we have found in the first part of the proof. Then the decomposition
of F in five linear factor is unique. �

This proof suggests us an algorithm to reconstruct the decomposition.

Construction 5.2. Consider F and its first partial derivatives.
(1) Compute the 3-plane Γ spanned by the partial derivatives of F .
(2) Compute the intersection Γ ·X2, where X2 is the variety parametrizing the

rank 2 quadrics in P3.
(3) Consider the 10 points in the intersection. By construction on each plane

we are looking for there are 6 of these points, furthermore on each plane
there are 4 triples of collinear points. Then with these 10 points we can

construct exactly (10
3 )

(6
3)+4

= 5 planes. These planes gives the decomposition

of F . Note that a priori we have
(
10
6

)
= 210 choices, but we are interested

in combinations of six points {Pj1 , ..., Pj6} which lie on the same plane. We
know that there are exactly five of these. To find the five combinations we
use the following script in Matlab.

P1 = input(’Point 1:’);
...
P10 = input(’Point 10:’);
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q = input(’Precision:’);
A = [P1;P2;P3;P4;P5;P6;P7;P8;P9;P10];
t = 1;
B = [];
for a=1:5,
for b=a+1:6,
for c=b+1:7,
for d=c+1:8,
for f=d+1:9,
for g=f+1:10,
M = [A(a,:);A(b,:);A(c,:);A(d,:);A(f,:);A(g,:)];
disp(t);
t = t+1;
v = [];
for a1 = 1:3,
for a2 = a1+1:4,
for a3 = a2+1:5,
for a4 = a3+1:6,
v = [v,det([M(a1,:);M(a2,:);M(a3,:);M(a4,:)])];
end; end; end; end;
if abs(v(1))<q,abs(v(2))<q,abs(v(3))<q,abs(v(4))<q,abs(v(5))<q,
abs(v(6))<q,abs(v(7))<q,abs(v(8))<q,abs(v(9))<q,abs(v(10))<q,
abs(v(11))<q,abs(v(12))<q,abs(v(13))<q,abs(v(14))<q,abs(v(15))<q,
B = [B M];
end; end; end; end; end; end; end;
[n,m] = size(B);
s = 1;
for r=1:4:m-3,
disp(’Matrix’), disp(s),
s = s+1;
B(:,r:r+3),
end;

This script constructs a matrix A whose lines are the then points and then computes
the 6× 4 submatrices of rank 3 of A.

Example 5.3. Consider the polynomial
F = x3 + x2y + x2z + x2w + xy2 + xyz + xyw + xz2 + xzw + xw2 + y3 + y2z +
y2w + yz2 + yzw + yw2 + z3 + z2w + zw2 + w3.
We compute the equations of the linear space Γ, the equations of the variety X2, and
verify that their intersection is a subscheme of dimension zero and length 10. In the
P9 parametrizing the quadrics on P3 we fix homogeneous coordinates [X0 : ... : X9],
corresponding to the monomials {x2, xy, xz, xw, y2, yz, yw, z2, zw,w2}.

Macaulay2, version 1.3.1

i1 : P9 = QQ[X0,X1,X2,X3,X4,X5,X6,X7,X8,X9]

o1 = P9

o1 : PolynomialRing

i2 : MDer = matrix {{X0,X1,X2,X3,X4,X5,X6,X7,X8,X9},{3,2,2,2,1,1,1,1,1,1},
{1,2,1,1,3,2,2,1,1,1},{1,1,2,1,1,2,1,3,2,1},{1,1,1,2,1,1,2,1,2,3}}
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o2 : Matrix P9 <--- P9

i3 : IDer = minors(5,MDer)

o3 : Ideal of P9

i4 : MQuad = matrix {{X0,X1/2,X2/2,X3/2},{X1/2,X4,X5/2,X6/2},{X2/2,X5/2,X7,X8/2},
{X3/2,X6/2,X8/2,X9}}
o4 : Matrix P9 <--- P9

i5 : IRTQuad = minors(3,MQuad)

o5 : Ideal of P9

i6 : X2 = variety IRTQuad

o6 = X2

o6 : ProjectiveVariety

i7 : DerSpace = variety IDer

o7 = DerSpace

o7 : ProjectiveVariety

i8 : IdInt = IDer+IRTQuad

o8 : Ideal of P9

i9 : Int = variety IdInt

o9 = Int

o9 : ProjectiveVariety

i10 : dim Int

o10 = 0

i11 : degree Int

o11 = 10

In these coordinates the 3-plane spanned by the partial derivatives has equations

H∂,1: X7 − 2X8 +X9 = 0;
H∂,2: X5 −X6 −X8 +X9 = 0;
H∂,3: X4 − 2X6 +X9 = 0;
H∂,4: X2 −X3 −X8 +X9 = 0;
H∂,5: X1 −X3 −X6 +X9 = 0;
H∂,6: X0 − 2X3 +X9 = 0.

The following function in Bertini allows us to calculate the intersection of H∂ with
the variety X2 parametrizing the quadrics of rank 2.

CONFIG

END;

INPUT

homvariablegroup X0,X1,X2,X3,X4,X5,X6,X7,X8,X9;

function f1,f2,f3,f4,f5,f6,f7,...,f22;

f1 = X7-2X8+X9;

f2 = X5-X6-X8+X9;

f3 = X4-2X6+X9;

f4 = X2-X3-X8+X9;

f5 = X1-X3-X6+X9;

f6 = X0-2X3+X9;

f7 = ....;
...



12 ALEX MASSARENTI

f22 = ...;

END;

Where f7, ..., f22, are the equations cutting X2 in P9. We find 10 = deg(X2)
points on H∂ that corresponds to the following points in P3.

P1 = [−0.0538−0.0089i : −0.0538−0.0089i : −0.0538−0.0089i : 0.2692 + 0.0447i];
P2 = [0.9291 + 0.1127i : 0− 0.9291− 0.1127i : 0];
P3 = [0 : 0 : −0.3198− 0.0488i : 0.3198 + 0.0488i];
P4 = [0 : 0.4297 + 0.7502i : −0.4297− 0.7502i : 0];
P5 = [0 : −0.3850 + 0.0834i : 0 : 0.3850− 0.0834i];
P6 = [0.4850− 0.8736i : −0.4850 + 0.8736i : 0 : 0];
P7 = [−0.4873− 0.0825i : 0 : 0 : 0.4873 + 0.0825i];
P8 = [0.7990 + 0.1275i : −0.1598−0.0255i : −0.1598−0.0255i : −0.1598−0.0255i];
P9 = [2.3960− 1.8505i : 2.3960− 1.8505i : −11.9800 + 9.2523i : 2.3960− 1.8505i];
P10 = [−0.0652−0.1273i : 0.3260+0.6364i : −0.0652−0.1273i : −0.0652−0.1273i].

Thanks to the previous Matlab script we can compute the five combinations of six
coplanar points, and then the linear forms.

L1 = (0.0149652 + 0.0069738i)x+ (0.0449377 + 0.020996i)y+ (0.0149652 +
0.0069738i)z + (0.0149652 + 0.0069738i)w;
L2 = (0.00927286+0.0448705i)x+(0.00310162+0.0149327i)y+(0.00310162+
0.0149327i)z + (0.00310162 + .0149327i)w;
L3 = (0.0278039−0.0573066i)x+(0.0278039−0.0573066i)y+(0.0834118−
0.17192i)z + (0.02780390.0573066i)w;
L4 = (−0.0642594−0.253748i)x+(−0.0642594−0.253748i)y+(−0.0642594−
0.253748i)z + (−0.06425940.253748i)w;
L5 = (−0.0312783−0.127146i)x+(−0.0312783−0.127146i)y+(−0.0312783−
0.127146i)z + (−0.0938348− 0.381437i)w.
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