SOME EXAMPLES OF QUANTUM ALGEBRAS

Abstract

The term quantum groups stands for certain special Hopf algebras which are non-
trivial deformations of the enveloping Hopf algebras of Lie algebras. Quantum groups
have close connections with varied areas of mathematics and physics. In these notes
we first introduce the concepts of Lie algebra, Hopf algebra and envoloping algebra.
Then we will describe some important relations between two specific bialgebras or Hopf
algebras. We will see some examples of quantum algebras that are deformations of well
known algebras as M(2) and SL(2).
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1 Lie Algebras

DEFINITION 1.1. Let k be a field. A Lie algebra is a k-vector space L with an operation
LxL — L, denoted by (x,y) — [x,y]

and called the bracket or commutator of  and y, such that:

L1 The bracket operation is bilinear.
L2 [z,z] = 0 for all z € L.
L3 [z,[y,2]] + [y,[z2]] + [2[x,y]] = 0 for all x,y,z € L. (Jocobi Identity)

We note that [z+y,z+y] = [x,z] + [xy] + [v.2] + [y,y] = 0 implies [z,y] = -[y,x] and the
bracket is anticommutative. Conversely if char(k) # 2 we have that [z,y]/ = -[y,z/ for all
z,y € Limplies [r,2] = -[r,x], 2[r,x] = 0 and char(k) # 2 implies [z,z] = 0.

A morphism of Lie algebras is a morphism of k-vector spaces that is compatible with the

bracket operations.

DEFINITION 1.2. Let L,L" be two Lie algebras. A morphism of Lie algebras is a k-linear

map p:L — L such that o([z,y]) = |o(x),0(y)] for all z,y € L.
An isomorphism of Lie algebras is a morphism that is an isomorphism of k-vector spaces.

A Lie subalgebra of a Lie algebra L is a subvector space W of L such that [x,y] € W for
all z,y € W. In this way (W,/[,]) becomes a Lie algebra. Note that any nonzero element
x € L defines a one dimensional subalgebra k-z with a trivial multiplication since for
any u,v € k-x we have [u,v] = Jaz,fz] = af[r,z] = 0. Now we give some example of Lie
algebras.

1.1 Linear Lie Algebras

LL1 If V is a finite dimension k-vector space with dim(V) = n then
End(V) = {f:V — V[ fis k-linear}
is a k-vector space of dimension n?. We define the following operation on End(V)
End(V)xEnd(V) — End(V), (f,g9) — fg - gf.

Now we verify the axioms of definition 1.1, (L1) and (L2) are immediate, for (L3)
we compute [f,[g,h]] + [g,[h.f]] + [h.[f.9]] = [f.gh - hg] + [g,hf - fA] + [h.fg - gf] =
fgh - fhg - ghf + hgf + ghf - gfh - hfg + fhg + hfg - hgf - fgh + gfh = 0.

We note that End(V) is a k-algebra with the usual associative decomposition of
function. To distinguish the new algebra structure we write gl(V) for End(V) and
call this Lie algebra the general linear algebra, since it is closely related to the general
linear group GL('V) consisting of all invertible endomorphisms of V. Any subalgebra
of gl(V) is called a linear Lie algebra.

LL2 We denote by sl(V) the set of endomorphism of V having trace zero. Since Tr(f

+g) = Tr(f) + Tr(g) and Tr(fg) = Tr(gf) implies Tr(fg - gf) = Tr([f.9]) = 0 we
have that s[(V) is a Lie subalgebra of gl(V) called the special linear algebra. It
is closely related to the special linear group consisting of all endomorphism of V'
having determinant equal to one. The map



Tr:End(V) — k, f— Tr(f)

is a surjective k-linear map and we note that ker(Tr) = sl( V'), by dimension theorem
we have dim(sl(V)) = dim(End(V)) - 1 = n? - 1. We see that sl(V) is a hyperplane
in End(V).

LL3 Let dim(V) = 2n and let (vy,...,v2,) be a basis of V. We define a skew-symmetric

form F on V by the matrix

The set sp(V) of endomorphisms of V such that Mif = M. In terms of the skew-
symmetric form F we have that f € sp(V) if and only if F(f(v),w) = -F(v,f(w)).
Let f,g € sp(V) then M[f,g] = M(fg - gf) = Mfg - Mgf = fMg - ¢'Mf = f¢'M -
g M = ((gf )' - (fg)! )M = [f,g]'ML. So sp(V) is a Lie subalgebra of gl( V') called the
symplectic algebra. We note that the condition Mif = ffM forces Tr(f) = 0 so sp(V)
Csl(V).

LL4 Let dim(V) = 2n + 1 be odd and let F' be a nondegenerate bilinear form on V

whose matrix is

1 0 0
N=|0 0 I,
0 I, O

The orthogonal algebra O(V') consists of all endomorphisms f of V satisfying
F(f(v),w) = -F(v,f(w)) in other words such that Nf = f'N.

LL5 In the case dim(V) = 2n even and with the simpler matrix

N_(o h)
I, 0

We consider the algebra consisting of all endomorphisms f such that Nf = £N. This

new algebra is called again orthogonal algebra.

LL6 We denote by t(V') the set of upper triangular matrices. The product and the sum
of upper triangular matrices are again upper triangular matrices, so t(V) is closed
under the bracket. The same is true for the set n(V') of strictly upper triangular
matrices and for the set (V') of diagonal matrices. Then t(V'), n(V), (V) are Lie
subalgebras of gl(V).

1.2 Lie Algebras of Derivations

In what follows by a k-algebra (not necessarily associative) we mean a k-vector space A
endowed with a bilinear map AxA — A (if A is a Lie algebra we use the bracket).

DEeFINITION 1.3. A derivation of A is a k-linear map 0:A — A such that
d(zy) = 29(y) + d(x)y for all z,y € A (Leibniz rule).

The set of all derivations of A is denoted by Der(A).



Let 4,0’:4 — A be two derivations of A. We compute

(6 +06")(xy) = 6(xy) + &' (wy) = 2b(y) + 6(x)y + 0" (y) + ' (w)y = (6 + 0')(y) + (6 +
8 )(z). So 6 + &' € Der(A) and Der(A) is a subvector space of End(A).

Now we note that the usual pointwise product of two derivations is not necessarily a
derivation. For example consider the R-algebra

C>®(R?) = {fR?* — R | fis indefinitely differentiable}.

We choose the functions f(z,y) = zy, g(x,y) = € and as derivations the usual partial
derivatives 9,,0,:C>® (R?) — C> (R?). Then

(afrau)(yel) - a:r (yea:)ay (yel) - y€2x and y(azay)(ex) + (azay)(y)ex = 0.

We see that (0-0y)(fg) # f(0z-0y)(9) + (0z-0y)(f)g. On then contrary the following
lemma is true

LEMMA 1.4. Let 6,0’ € Der(A) be two derivations of A. Then the bracket
[6,6'] = 60" - 0"
is a derivation of A.

Proof: We compute [6,0'[(xy) = 86 (xy) - §'0 (xy) = 6 (xy)d' (zy) - 0’ (xy)d (xy) = (60" )(y)
+6(x)0'(y) + &' ()5 (y) + (66" )(x)y - 2(8'6)(y) - 6" (x)é(y) - 6(x)8" (y) - (6'6)(x)y = w(66"
-0'0)(y) + (68" - 8'5)(x)y = x[6.0'[(y) + [6,5"](x)y. O

Then Der(A) is a Lie subalgebra of gl(A).

2 Examples of Bialgebras and Hopf algebras

DEFINITION 2.1. Let k be a field. A k-bialgebra is a Sth-uple (B,m,u,A,c) such that
(B,m,u) is a k-algebra, (B,Ae) is a k-coalgebra and

A:B — B®B, €:B — k are k-algebras morphisms.

DEFINITION 2.2. A Hopf algebra is a 6th-uple (H,m,u,Ae,S) where (Hm,u,Ae) is a
bialgebra and S:H — H is a linear map that is an inverse for Idy in the convolution
algebra Hom(HC ,H”) with H® = (H,A,c) and H* = (H,m,u) i.e.

SxIdg =uoe =1dg xS

The map S is called an antipode for H.

OBSERVATION 2.3. Consider the polynomial ring k{X1,...,X,} and let R be a k-algebra.
Then any algebra morphism of k{X1,...,Xn } in R is uniquely determined by its values r;

on X;. We denote the evaluation morphism by

Er v kX1, X} — R, F F(r,...,ry,) = Er . (F).



Let F(r,....;tn) = Ep,...v, (F) for any F € k{Xq,...,. X, }.

Let Fy,...,F, € k{Xy,...,X,,} and let I be the ideal of k{X1,...,Xn} generated by Fy,...,F,,.
For any i=1,...,n we denote by x; = X;+I the class of X; and let A = k{X1,...,.X, } /L
Let R be a k-algebra then to give a morphism of algebras ®:A— R is equivalent to give
a n-uple (r1,...,r) of elements of R such that F;(r1,...,ts) = Ep ..+, (Fi) = 0 for any
1=1,...,n.

2.1 The Tensor Algebra

Let V be a k-vector space. We define
TO(V) =k, T'(V) = V and T"(V) = V¥ if n > 1.

The isomorphism 7"(V) @ T™ (V) = T"*"™ (V) induces an associative product on the
vector space T(V) = @,,~,T" (V) explicitly given by

(11®...QLp ) (Tn1®..QLntm) = T1®...QL Ly 11®...Q0%ntm

The k-vector space T(V) = @, ~,T" (V) equipped with this structure is a k-algebra
called the Tensor Algebra of V. -

One can prove the following universal property of T(V).

Let ig:k — T(V) and i :V — T(V) the canonical embeddings. Then for any k-algebra A
if fi:V — A k-linear map, there exists a unique k-algebras morphisms F:T(V) — A such
that Foiy = fi.

We note that the k-algebra T(V) is graded and T™ (V) is the subspace of degree n ele-
ments.

In particular if V is finite dimensional and {ey,...,e, } is a basis of V, then T(V) is iso-
morphic to the algebra k{X;,..., X, } of the polynomials in the noncommutative variables
Xi,...,X,, where X; = 4 (¢;).

We consider the two-sided ideal I of T(V) generated by the elements of type zy-yxz where
z,y run in V. Then S(V) = T(V)/I is a k-algebra called the symmetric algebra of V. If
dim(V) = n then S(V) is isomorphic to k/X,...,X,/.

2.2 The Quantum Plane

We consider the k-algebra k{X, Y}. Using the universal property of the tensor algebra we
define the following two algebras morphisms

AK{X)Y}) — X YIQKX, Y}, A(X) = XX, A(Y) = Y®1 + XY
ek{X,) Y} =k, e(X) =1,¢(Y) = 0.

By the fundamental theorem of the tensor algebra we get that (k{X,Y},Ae) is a bialge-
bra. Let ¢ be an element in k such that ¢ # 0 and let I be the two-sided ideal of k{X,Y}
generated by XY - ¢YX. We compute

AXY - qYX) = AX)A(Y) - ¢A(Y)A(X) = (XoX)(Y®1 + XQY) - ¢(Y®1 +
X@V)(X0X) = XY®X + XX0XY - ¢(YX0X + YX®X) = XY®X + XX0XY - YX®¢X
- XX®qYX = (XY - qYX)2X + XX®(XY - qVX) € Ik{X,Y} + k{X,Y}®L.



e(XY - qYX) =e(X)e(Y) - ¢¢(Y)e(X) = 0.

Then I is a biideal of k{X,Y} and k{X,Y}/I is a bialgebra. This bialgebra is denoted by
O, (k) or by ky[z,y] and is called the Quantum Plane. Let v = X + I and y = Y + [
then the comultiplication and the counit of O, (k*) are defined by

Ao,y (x) =2 ® 1, DAo,g2)(y) =y @ 1 +2® y,
co,(k2) () = 1, 0,412 (y) = 0.

3 The bialgebra M,(2)

We construct a deformation of the algebra M(2). Let q € k, ¢ # 0 and ¢* # -1. By using
the universal property of the tensor algebra we define on R = k{A,B,C,D} two algebras

morphisms
A:R — R®R and e:R — k
uniquely determined by

A(A) = A®A + BoC, A(B) = A®B + B®D,
A(C) = C®A + DC, A(D) = C&B + DD,
e(A) =e¢(D) =1,¢(B) =¢(C) = 0.

In this way the algebra R becomes a bialgebra. Let us consider the two-sided ideal I of

R generated by the following elements

BA - 4AB, DB - ¢BD,
CA - qAC, DC - qCD, BC - CB, AD - DA - (¢ - ¢)BC,

where ¢ € k, ¢ # 0 and ¢ # -1. We want to prove that I is a biideal of R.
Let p:R — R/I be the projection, we denote by

a = p(A), b= p(B), ¢ = p(O)) d= p(D)
the classes of A,B,C,D.

THEOREM 3.1. The ideal I generated by relations 1 is a biideal of R and R/I is a bialgebra.
The comultiplication A:R/I — R/IxR/I and the counit e:R/I — k are defined by

Afa) = a®a + b@c, A(b) = a®b + bR d,
Alc) = c@a + doc, A(d) = @b + dod,
g(a) =¢e(d) = 1,¢(b) =¢(c) = 0.

In matriz form we have

s(ea)=(ra)e(es) (na)-000)



Proof: We compute

A(BA - ¢AB) = AA®BA + ABRBC + BARDA + BBDC - qAARAB - gABRAD -
qBA® CB - ¢BB® CD. Then

((p®p)oA)(BA - ¢AB) = qaa®ab + ab@bc + gab®da + ¢bb®cd - qaa®ab - qabRad -
gba®ch - gbb®cd = ab®(qda - qad) + (ab - ¢ba)Rbc.

Now qad - qda = (1 - ¢*)bc, so ((p@p)oA)(BA - ¢AB) = ab®(q* - 1)bc + (ab - gba)Rbc
= ab®¢*be - abRbc + abRbe - gha®be = q(qab - ba)Rbd = 02bc = 0.

We compute

A(BC-CB) = (AQ B+B®D)(C2A+D&C)-(C®A+D®C)(A®B+B®D). Then
((p@p)oA)(BC-CB) = ac®ba+(ad-da)bc+be® (da-ad)+bc®dc-ca®@ab-db@cd =
ac®ba+(q 1 -q)be@be-be® (71 -q)be+bd@ de-ca® ab-db®ced = (qac-ca)@ab+ (qbd-db)@cd =
0.

Finally we compute

A(AD - DA - (¢! - ¢BC) = (A®A + BxC)(C®B + DD) - (C®B
+ D®D)(A®A + BxC) - (¢! - ¢)(A®B + B®D)(C®A + DxC) =
AC®RAB+AD®AD+BC%CB+BD® CD-CA® BA-CB BC-DA® DA-DBDC-(q*-
q)(AC®BA + AD® BC+BO®DA + BD®DC). Then ((p@p)oA)(AD - DA - (¢
- ¢)BC) = ¢ ltac®batadRad+bebetq 1 db®cd-gac®ba-cb@be-da® da-gbd@ dc-
¢ tac®ba-¢ 1 ad@bc-gbe@dag ™ bdR de+qac®@ba+qadR be+qbc® da+qbdRdec = adRad-
da®da+(ad®bc)(q-¢ 1 )-(bewda)(q-¢7') = ad®ad-da®da+ad® (ad-da)-(ad-da)2da = 0.
The other relations are similar. Furthermore we have ¢(BA - ¢AB) = ¢(BC-CB) = 0
and e(AD - DA - (¢! - ¢)BC) = 1-1 = 0.

We have seen that A(I) C RRI+IQR and e(I) = 0. Then I is a biideal of R and R/T is
a bialgebra.

The k-algebra R/I is denoted by M, (2). When ¢ = I the algebra M, (2) is isomorphic
to M(2).

DEFINITION 3.2. Let R be a k-algebra. An R-point of My (2) is a quadruple (A,B,C,D) €
R* such that

AB = qBA, BD = ¢DB,
AC = qCA, CD = ¢DC,
BC = CB, AD - DA = (¢! - ¢)BC.

We consider the element det; = DA — ¢BC of R. Then det, = da — qbc is well defined
on My(2)- 1f a = p(A) = p(A),b = p(B) = p(B'),c = p(C) = p(C"),d = p(D) = p(D") we
have

p(D)p(A) — gp(B)p(C) = p(D')p(A") — gp(B")p(C”) and
p(DA — ¢BC) = p(D'A" — ¢B'C").

In other words if [x] denote the class of the element z € R we have

[dety] = [D][A] — ¢[B][C].



LEMMA 3.3. We have A(det,) = det, @ det, and ¢(det,) = 1.

Proof: We compute A(det,) = A(da-qbc) = ca®ba+cb@bc+da®da+db®de-qac®ba-
qad®bc-gbc®da-qgbd®dc =  gac®ba+be®be+da® da+qbd® dc-qac®ba-qadRbe-qbe® da-
gbd®dc = (bc-qad)2be+(da-gbc)@da. In view of the relation ad = da+ (g~ *-q)bc we have
qad = qda+(1-¢*)bc so

A(det,) = (be-qda-be+q? be)Rbe+(da-gbc)@da = (da-qbe)® (da-gbe) = det,@det,.
Finally e(det,) = e(da-gbc) = e(d)e(a) = 1. O

LEMMA 3.4. There exists a bijective correspondence between the algebra morphisms of

M, (2) in R and the R-points of My (2).

3.1 The Hopf Algebra SL,(2)

The special linear group SL(2) consists of all matrices in M(2) whose determinant is
equal to one. We consider the ideal I of M, (2) generated by det, - 1 = da - gbc - 1. We
will prove that M, (2)/I has a structure of Hopf algebra and we will denote it by SL,4(2).

THEOREM 3.5. The ideal I = (dety - 1) is a biideal in M, (2). The quotient algebra SLq(2)
is a Hopf algebra with antipode defined by

S(a b):det;1< ‘ _qb>
c d —q ¢ a

Proof: We have A(det,-1) = det,®det,-191 = det,Qdety-det,Q1+det,@1-191 =
det,® (dety-1)+dety-1+ € My (2)Q1+I M, (2).

e(dety-1) = 1-1 = 0.

Then A and € are well defined on SL,(2) and SL,(2) is a bialgebra.

We check that S is an antipode

(Sx1d)(a) = S(a)a+S(b)c = det;* (da-gbc) = 1 = ¢(a),
(Sx1d)(b) = S(a)b+S(b)d = det;* (db-gbd) = 0 = (b).
In a similar way one prooves that (SxId)(c) = e(c) and (SxId)(d) = (d). O

3.1.1 Coaction of M,(2) and SL,(2) on the quantum plane

We begin this section giving the definition of H-comodule-algebra.

DEFINITION 3.6. Let (H,mpy,up,An,ep) be a bialgebra and let (A,ma,ua) be an algebra.
We say that A is a left H-comodule-algebra if

1. The vector space A has a left H-comodule structure given by a map
paiA — HRA.
2. The maps
maAQA — A and usk — A



are morphisms of H-comodules.

PROPOSITION 3.7. Let H be a bialgebra and let A be an algebra. Then A is a left H-
comodule-algebra if and only if

1. The vector space A has a left H-comodule structure given by a map

2. The map pa:A — HR®A is a morphism of algebras.

Proof: The commutativity of the two following diagrams means that my:AQA — A

and ua:k — A are morphisms of H-comodules.

PARPA mA

HRIAQHRA<~—A®A A

lH@)TA,H@A pA@Ai \LpA

—_—
HRHRARQA i OADA HRARQA Homa

uA

k®k Pk pA

u%

Hek g~ Ho4

The fact that pa is a morphism of algebras is equivalent to the commutativity of the
following squares

HRAQRHRA<~—ARA

pAR®PA

HoHRARA MH®A ma

M

H®A A

-1
lk

k<—>k®Ek
UHRA
uAl \ luH@)UA
A

H®A

PA

Cleary the first two diagrams and the last two diagrams are equivalent.

THEOREM 3.8. There exists a unique M, (2)-comodule-algebra structure and a unique
SL, (2)-comodule-algebra structure on the quantum plane A = k,[x,y] such that



pa(r) = a®x + bRy and pa(y) = c®x + dRy

We rewrite these formulas in the matriz form

pA(x,y)=<CCL Z>®<z>

Proof: We first check that p4 defines an algebra morphism from 4 to M, (2)QA. In view
of 2.3 we have to verify that

pa(y)pa(r) = gpa(x)pa(y)-

We have

pa(y)pa(r) = (c@1+dRy)(a@r+bRY) = ca®r® +cb@zy+da@yr+dbey® =

qac®? +be@zy+qda@ry+qbdR1? = qaca? + (be+qda)Rzy+qbdR1y?.

On the other hand we have

apa(x)paly) = q(a@z+bRy)+(c@z+dRY) = q(ac®2?® +ad@ry+bc@yr+bdRy*) =
qacR 1 +qad@zy+qbcRyz+qbdRy? .

We note that gad®zy+gbedyr = qadzy+@bedry = (qad+¢*bc)@zy and ad =
da+(q1-q)bc implies qad = qda+(1-¢*)bc so (qad+q*bc)@xy = (qda+be-¢?be+q be)Rxy
= qda®zy+bcRxy.

Since the projection map of M, (2) onto SL,(2) is a morphism of algebras the resulting
map A—SLy(2)®A is an algebra morphism. It remains to check that ps defines a
comodule structure on the quantum plane. We compute

(Id®pa)opa(z) = (Id®pa)(aRz+bRy) = aRpa (1) +bRpa(y) =
a® (aRx+bRY)+bR (cRx+dRY) = a®aR@T+a@IRY+dR cRr+bdRARY.

On the other hand

(AeMopa(z) -  (AeH)(asaiboy) — —  Al)esAb)py -
(a®a+bRc)Rr+(aRb+bRd)Ry = aQ a®@r+bR cRT+aRbRY+bRDdRy.

Finally we have

(e®@Id)opa(x) = (e®1d)(aRx+bRy) = €(a)Rx+€(b)RY = IR1. O

LEmMMA 3.9. For any i,j > 0 we have

oA (xzy]) _ Zi:ozg:o q(i—r)s (:‘) o (i) 2 arbiT e’ dj—s®$r+s yi—&-j—r—s.

Proof: Since p4 is a morphism of algebras we have pa (2'y’) = pa (7 )pa(y’). Next we
have (b®y)(a®z) = ba®yr and ¢ (a®z)(bRYy) = q(ab)Rq(ry) = baRyz so

(b@y)(a2z) = ¢ (a®z)(bQy).
Similarly (d®y)(c®a) = de®ya and ¢ (c®a)(dRy) = q(cd)2q(ay) = dcRya so

(d2y)(c®a) = ¢ (c@a)(d2y).

Then we have
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(b2y)(a2z) = ¢ (a21z)(b®y) and (dRy)(c®a) = ¢ (ca)(dRy).

in the algebra M, (2)QA.
We can apply the formula

(x+y)" = Zogkgn(Z)quynfk
to both the expressions
pa(x) = (aRz+b®y)" and pa(y) = (c@atddy).

In this way we complete the proof. O

We note that for the term 27754t/ =7=5 we have r+s+i+j-r-s = i+j. We see that the set
kq [z, y[n of homogeneous degree n elements of the quantum plane is a SL, (2)-subcomodule
of the quantum plane k, /z,y/.

3.2 The algebra U, (5((2))

First we define the enveloping algebra of a Lie algebra

DEFINITION 3.10. Let (L,[,]) be a Lie algebra. The enveloping algebra U(L) of L is the
quotient of the tensor algebra T(L) modulo the ideal I generated by the elements of the

form
i ([x,y]) - 2 (2®y - y®z), where z,y € L.

One can prove that the tensor algebra T(L) induces a Hopf algebra structure on U (L).
We have seen that sl(2) is a Lie algebra with the bracket defined by [z,y/ = zy - yz. The

matrices
1
o 0 fe 0 0 = 1 0
0 0 1 0 0 -1

are linearly independent and since dim(s[(2)) = 3 form a basis of s[(2). We note that

[e.f] = b, [he] = 2e, [h,f] = -2f.

So the enveloping algebra U (s[(2)) is the quotient of the algebra k{E,F,H} in non com-
mutative variables modulo the ideal generated by

EF - FE - H, HE - EH - 2E, HF - FH + 2F.
We consider the algebra k{A,B,C,C'} and define a comultiplication and a counit setting

A(A) = 1A + A®C, A(B) = C'®B + B®1,
A(C) = OxC, A(C') = C'aC,
e(A) =e(B) =0,¢(C) =¢(C’) = 1.

In this way k{A,B,C,C"} becomes a bialgebra. Let now q € k, ¢ # 0, ¢* # 1 and let [
be the two-sided ideal of k{A,B,C,C"} generated by
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CC' - 1,C0'C -1, AB- BA - €= CA - #AC, CB - ¢BC.

a—q-
One can prove that I is a biideal of k{A,B,C,C’ } and that the map
S:k{A,B,C,C"} — k{A,B,C,C'}, S(A) = -AC’, S(B) = -CB, S(C) =C’, S(C') = C,

is such that S(I) C I and passing to the quotient defines an antipode on k{A,B,C,C"}/I.
In this way k{A,B,C,C"}/I becomes an Hopf algebra denoted by U, (s((2)). We denote
by E,F, K, K’ the classes of A, B,C,C" in the quotient algebra U, (s((2)).

3.2.1 Action of U, (s[(2)) on the Quantum Plane

We start with some generalities on skew-derivation of an algebra A. If a € A is a element

we denote by
ap:A — A, x— ax and ap:A — A, T — za,

the left and right multiplications.
If 0:A — A is an automorphism we have

oaq = o(a)o and oa, = o(a)0.
In fact

ca(t) = o(az) = o(a)o () = ((a)io)(z)
car(t) = o(va) = o(x)o(a) = (o(a)0)(x)

DEFINITION 3.11. Let o,7:A — A be two automorphisms of the algebra A. A linear

endomorphism 0:A — A is called a (o,7)-derivation if

d(zd) = o(x)5(d) + §(x)r(2) for all x,a’ € A.

LEMMA 3.12. Let § be a (o,7)-derivation of A and a be an element of A. If there exist

two algebra automorphisms o', ' such that
apo’ = ao and T’ = apT

then the linear endomorphism @ is a (o’,7)-derivation and ard is a (0,7’ )-derivation.

Proof: We compute o (z)(wd)(x) + (wd)(x)r(d) = o'(x)ad () + ad(zx)r(2)
qo(x)d(¥) + ad(x)r () = a(c(x)d(d) + d(x)r(x)) = ad(x2).

o(x)(a.0")() + (a.6)(@)r(d) = o(x)d(d )atad (x)r(¥) = ao(x)d(d) + ad(x)r(2)
(0(x)5(@) + 0(d)(anT)(x)) = ar(0(x)d(2) + ()T (') = (ar0)(z2). O

We consider the algebra morphisms o, o, of the quantum plane R = ky/z,y/ defined by

0:(x) = qx, 05(y) = ¥y, 0y(x) = 7, 0y (y) = qV.

12



When ¢ = I we have 0, = 0, = Id. These morphisms are well defined, consider the
morphism ®x : k{X,Y} — {X,Y} defined by X — ¢X,Y — Y then Dx (Y X —¢gXY) =
Yq¢X — ¢?XY = q(YX — qXY) € I. Then the morphism ®y passing to the quotient
defines the morphism o.

For any n > I we define

n

n_ -
] = L=

We define the g-analogues of the partial derivatives

aq(a;;y") — ImJz" "y and Oq(%’;y") = [njzm L.

for all m,n > 0. Now we describe the commutation relation between the endomorphisms

9y 94
xl;yl7xr;yr;aw7ay;%;aiy'

Within the algebra of linear endomorphisms of ky/z,y/, all commutation relations

between the above six endomorphisms are trivial, except the following cases

Yixy = qxiyr, LrYr = QYrZr,
OgxZTlr = 4T rO0yg OyYl,r = qQYi,rOy,
q — 9 q — q
9202 = 40z 5, oy 9y = 40y 3y
L 9 9 — 9
a9 = Y5, ayLr = dTrg,,
&J;: _1x&+a = x@+a_1 Dag — g1 =+ +o, = @—&-U_l
Bz Ul q 19z T ari g, z | dy Yr q “Yr dy Y qyr oy y -

We also have

8y _ gu—o,’ 9 _ Ty—9y
Noe = g=q 1 and Yoy = 4= 1
Furthermore the endomorphism
% s a (07 '0,,0,)-derivation and 2L is a (00,0, ! )-derivation
ox xr Ty’ Dy y:9x0y .

DEFINITION 3.13. Let (H,mpy ,upy,Ag,eq ) be a bialgebra and let (A,ma,uas) be an algebra.
We say that A is a H-module-algebra if

1. The vector space A has a H-module structure.

2. The maps
maARQA — A and ugk — A

are morphisms of H-modules.
We recall that A® A becomes a H-module defining
h(a®b) = Ag(h)(a®b) = hia®hyb.

Now my (h(a®b)) = ma (h1a®hob) = (h1a)(heb) and hma (a®b) = h(ab). Then the fact
that m4 is a morphism of H-modules is equivalent to the relation

(2) > (h1a)(hab) = h(ab).

The ground field £ becomes a H-module defining
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ht = e (h)t for any h € H, t € F.

We have hua (t1;) = htl14 and ua (h(tly)) = ua (e (h)tly) = e (h)t1a.
Then u4 is a morphism of H-modules is equivalent to the relation

eg(h)tla = h(tly) for any h € H,t € k
that is equivalent to the relation
(3) his =epg(h)la,for any h € H.

THEOREM 3.14. For any P € ky[z,y/, set

EP = 22 3 y,
KP = (040 yl)(P)7 K'P = (Uy . )(P).

Formulas above defines the structure of Uy (s1(2))-module-algebra on ky[x,y/.
Proof: We consider the algebra morphism

®: k{A,B,C,C"} —Endik[x,y], defined by

[2)

0, _ _
AH:UB—Z,B»—» 3—;y,Cr—>Uxay1,C’r—>aycrx1

To say that k,[z,y/ is a Uy (s[(2))-module is equivalent to give a ring morphism
Uy (51(2))— Endyky[z,y]. Then to conclude that k,/[z,y/ is a Uy (s((2))-module we have
only to check that ® (1) = 0.

We compute

Oy Oy _— — 0, — Oy
KEK' = 0,0 1xlayaya e = 0,0, xlqayayawl = 0,0, Ly qoy0; 1aqy =0 1(1233[Uyay =
szl@ = qu
Then we have KK' = (0,0, )(0,0;') = 1 and K'K = (0,0, " )(0,0,") = 1
Finally we compute

0, 0, 0, 0, — 0 0,
EF - FE xza—yya—ya—xza—y = alg lyrd—;wy)a*;-yr(ql

Il@x +O—T)8y =

9q 04 o ox—0, -1 O’y—O'y
q xlyray 890 +xl0yax q yrmlax 6y yrazay = nylax nyray Oy~g—q—T Oz g1

- -1
y T Oy9y _ K- K’

a—q ! q—q "
Now we check relations 2 and 3. For any P,Q € kq/z,y/ we have to check that

OO

E(PQ) = >2(E1P)(E;Q) = PE(Q)+E(P)K(Q)
F(PQ) =3 (F1P)(F>Q) = K'(P)F(Q)+F(P)Q
K(PQ) = > (KiP)(K2Q) = K(P)k(Q)
K'(PQ) = > (K" P)(K2Q) = K'(P)K’(Q)
ul =¢e(u)l for any u € Uy (s1(2)).

The endomorphism xlg—"y is a (Id,0,0, " )-derivation then we have

E(PQ) = 5,252 ~ [d(P)E(Q)+E(P)(0.0,")(Q) = PE(Q)+E(P)K(Q).

The endomorphism yrg—q is a (0, '0,,Id)-derivation then we have

F(PQ) = 3252 ~ (0710, )(P)F(Q)+F(P)II(Q) = K'(P)F(Q)+F(P)Q.

We have K(PQ) = (040, ")(PQ) = 04 (0" (P)oy (Q)) = (0200, )(P)(0200,1)(Q) =
K(P)K(Q).
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A similar computation show that K’ (PQ) = K'(P)K'(Q).
We have E1=0=¢(E)l, F1=0=¢(F)1, K1=1=¢(K)1, K'l =1 =¢(K')1. O

4  Duality between the Hopf Algebras U/, (s((2)) and
SL,(2)

In this section we speak of duality in the sense of the following definition.

DEFINITION 4.1. Let (Umy,uy,Av,cv) and (Hympy,ug,Af,ep) be bialgebras and let
<,> be a bilinear form on Ux H. We say that the bilinear form realizes a duality between
U and H if we have

<uv,x> =y <u,d ><va >;
<u,zy> =y <u,x><u’y>;
<l,x> = ey (z);
<u, 1> = ey (u).

for all wyv € V and x,y € H, where Ay (z) = > 22" and Ay (u) = > u/Qu".
If U and H are Hopf algebras with antipode S then they are said to be in duality if the
underlying bialgebras are in duality and if we have

<Su (w),x> = <u,Sy (x)>
forallwe Uand z e H.

We assume that £ is an algebraically closed field and that ¢ is not a root of unit. We
want to determine all simple ¢/;-module of finite dimension.

For any U;-module V' and any scalar A # 0 we denote by VA the subspace of all vectors
in V such that Kv = A\wv.

VW ={ve V|/Kv=XM}CV.

The scalar A is called a weight of V if V* # {0}

LEMMA 4.2. We have EVA C VI°* and FV» C Ve A,
Proof: Let v € V* we have

K(Ev) = ?E(Kv) = ¢\Ev and K(Fv) = ¢ 2F(Kv) = ¢ 2\Fu.

DEFINITION 4.3. Let V be an U,-module and let X be a scalar. An element v # 0 of V is
a highest weight vector of weight X if Ev = 0 and if Kv = Av. An Uz-module is a highest

weight module of highest weight A if it is generated by a highest weight vector of weight
A
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PROPOSITION 4.4. Any Uy-module V # {0} of finite dimension contains a highest weight

vector.

Proof: The field k is algebraically closed and V is finite-dimensional. The characteristic

polynomial Py of K has its roots in k that are the eigenvalues of K. Then there exists
a non-zero vector w and a scalar a # 0 such that Kw = aw. If Fw = 0 then w is a
highest weight vector. If not, we consider the sequence of vectors E"w, with n € Z n >
0. By lemma 4.2 it is a sequence of eigenvectors with distinct eigenvalues then there ex-
ists an integer n such that E"w # 0 and E"*'w = 0. So E"w is a highest weight vector. O

Now we state the following lemma omitting the proof

LEMMA 4.5. Let v be a highest vector of weight X\. Set vy = v and v, = A FPy for p >

[p]!
0. Then
_ —(p—1)y_ p—1y—1
Kuv, = \q~?*Pv,, Ev, = %vp,l, Fuo,_1 = [p]v,
THEOREM 4.6. Let V be a finite dimensional Uz-module generated by a highest weight
vector v of weight A. Then

i The scalar X is of the form A\ = eq™ with e = +1 and n is such that dim(V) = n+1.

ii Setting v, = I we have v, = 0 for p > n and the set {v = vo,v1,...,0, } is a basis

[Pt
of V.

iii The operator K acting on V is diagonalizable with the n+1 distinct eigenvalues

{ed"eq" 2 eq "PPeq )
iv Any other highest weight vector in V is a scalar multiple of v and of weight .

v The module V is simple.

Furthermore any simple finite-dimensional Uy-module is generated by a highest weight
vector and two simple finite Uy-module generated by highest vectors of the same weight

are tsomorphic.

Proof: By lemma 4.5 the sequence {v, } is a sequence of eigenvectors for K with distinct
eigenvalues. Now V is finite dimensional and then there exists an integer n such that v,
# 0 and vp41 = 0.

i,ii By formulas of lemma 4.5 we have v, = 0 for all h > n and v, # 0 for all h < n.
By lemma 4.5 we also have

Ev,y1 = %% but Fupyq = 0.
Then we have ¢ "\ = ¢"A~! which is equivalent to A = £¢".
We have v, = %}}’ = % = 0 for any p > n. Any element of V, which is
generated by v as a module is a linear combination of the set {v; } so dim(V) = n+1

and {v,...,u, } is a basis of V.

iii We note that

Kvy = eq"vo, Kvy = eq"q v = e¢" 2vy,..., Kvp_y = eq"q 2" 2o, =

Eq—n+2 2n

Un—1, Kvp, = eq"q “"vp = €q " p.
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Then the matrix of K in the basis {v = w,v1,...,0,} is diagonal with

n—2

{eq",eq"2,....eq "2 ,eq7" } in the diagonal.
iv Let ¢/ be another highest weight vector. Then ' is an eigenvector for the action of K

and hence it is a scalar multiple of some vector v;. But E(v;) = 0 if and only if ¢ =
0. So v = awv.

v Let V' be a non-zero U,-submodule of V and let v/ be a highest weight vector of V.
Then ¢ is a highest weight vector of V and by [iv] it has to be a scalar multiple of
vg. Therefore v = ayg and vy = é’t/ isin V/. Then V C V', we conclude that V =
V' and V is simple.

Let v be a highest weight vector of V. Now V is simple and then the submodule generated

by v has to be equal to V and V is generated by a highest weight vector. If V and V'

are generated by highest weight vectors of the same weight then the linear map
V—V,v—uy

is an isomorphism of U,-modules. |

By theorem 4.6 we have that, up to isomorphism, there exists a unique simple ¢,-module
of dimension n+1 and generated by a highest weight vector of weight €¢™. We denote this
module by V., and with p. ,, Uy — End(V; ;) the corresponding morphism of algebras.

On V., we have

_ =2 _ eqt TPt e tgT Rl _
Kv, = eq" *Pu,, Fv, = PR Vp—1, Fop_1 = [p[up.

We want to construct an algebra morphism
VMg (2) — Uy *

and deduce a bilinear form on U, x M, (2) defined by <u,z> = 1 (z)u realizing a duality.
To give the morphism ¢ is equivalent to give four elements A,B,C,D of U, satisfying the
six relations defining M, (2), in other words it is equivalent to give an U;-point of M, (2).
We consider the simple U,-module V73 of highest weight ¢ and basis {v,v1 }. Setting

p1,1 = p we have

Kvy = quo, Kvy = ¢ty

p<K>:<g q?l)

EU() = 0, E’Ul =

pw):(g 3)

F’UO = /1/1]1, F’U1 = /1/112 =0

and in matrix form

and in matrix form
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and in matrix form

p<F>=<f 8)

We extend p on U, by linearity, in this way we obtain

where A,B,C,D are four linear forms on U, hence four elements A,B,C,D of U;.

LEMMA 4.7. The quadruple (A,B,C,D) is an Uy -point of My (2).
We deduce that there exists a unique morphism of algebras 1):M, (2)—U, * such that
b(a) = A, P(b) = B, Y(c) = C,¢(d) = D.

Then for any = € M, (2) we have that ¢ (z) € U, * is a linear form on U, and we can

consider 1 (z)(u) for any u € U,. In this way we get a bilinear map
Ugx My (2)—k, (u,x) — <uxz> = 1(z)(u).
PROPOSITION 4.8. The bilinear map
Ugx My (2)—k, (u,z) — <uz> = (z)(u)
realizes a duality between the bialgebras U, and My (2).
Proof: We have p(1) = 1 then
<<1,a> <1,b> >:<A(1) B(1) >:<1 O>:<6(a) £(b) )
<l,e> <1l,d> c(1) D@1) 0 1 e(e) e(d)
Since <1,zy> = <l,z><1,y> the map <I,z> and ¢ are both algebra morphisms and
they coincide on the generators a,b,c,d. Then they have to be equal and <1,2> = e(z).

We denote by P(z) the following conditions on an element z € M, (2). For any pair (u,v)

of elements in U, we have
<uv,z> =Yy <u,@ ><v,a’ >.

We note that <uv,1> = e(uv) = e(u)e(v) = <u,1><wv,1>. Then P(1) is satisfied. By

definition we have
(u) = A(u) B(u) \ [ <wu,a> <wub>
PR = Clw) Dw) )] \ <we> <ud>
Then by p(uv) = p(u)p(v) we have
<wv,a> <uv,b> '\ [ <w,a> <u,b> <wv,a> <wv,b>
<uv,e> <w,d> | \ <u,ec> <u,d> <v,e> <vd> |

18



We get <uv,a> = <u,a><v,a>+<u,b><v,c> and we recall that A(a) = a®a+bdXc.
Then P(a),P(b),P(c),P(d) are satisfied.

If P(z) and P(y) are satisfied then so is P(Az+y) for any scalar A. We have
CUVATHY> = <uv,AT> + <un,y> = yo<u,(Az) ><v,(Az)' > + S <uy ><vy’ > =
>o<u, (Ax+y) ><v, (Ax+y)' >.

Finally we prove that if P(z) and P(y) are verified then so is P(zy). We have

<uw,TYy> = S<(uwv) x> < (uv)’ y> = So<u'v x> <V iy > =
Sl ><f 7 ><d Y <y >

On the other hand we have

St<u, (zy) ><v,(zy)’ > = Y <udy ><vay' > = S <2 ><u y ><if 7 > <y >
= <uv,xy>.

We conclude that <uv,zy> = > <u,(zy) ><v,(zy)”’ >. O

LEMMA 4.9. For the quantum determinant det, = da - qbc of My (2) we have

p(dety) = 1.
Equivalently <u,det,> = e(u) for any u € U,.

Proof: We know that A(det;) = det;®det,, so the map u— <u,det, > is a morphism of
algebras from U, in k. We show that this morphism coincide with the counit . We have
<EBE,dety> = <E,da> - ¢<E,bc> = ¢(d)<E,a> + <E,d><K,a> - ¢(b)<E,c> -
q<Eb><K,c> =0 =¢(E).

<F,det,> = <F,da> - q<F,bc> = K (d)F(a) + F(d)e(a) - ¢K (b)F(c) - qF(b)e(c) = 0
=¢(F)

<K,det,> = <K,da> - q<Kbc> = <K,d><K,a> - ¢<K,b><K,c> = ¢ 'q = 1 =
e(K).

<K,detq> = <K,da> - q<K,bc> = <K,d><K,a> - q<K,b><K,c> —qq ' =1=
e(K). O

By lemma 4.9 we have that the morphism v form M, (2) to U, factors through SL,(2).
We will denote by ¢ the induced morphism of algebras between SL,(2) and U, * and by
<,> the corresponding bilinear form.

LEMMA 4.10. Let u,v € Uy. If
<Su (u),x> = <u,Sy(x)> and <Sy (v),x> = <v,Sy (x)>

for all x € SLy(2), then <Sy(wv),z> = <uv,Sg (x)>.
Similarly let z,y be elements of SLy(2). If

<Sy (u),x> = <u,Sy(x)> and <Sy(v),y> = <u,Su (y)>

for all U € U, then <Sy (u),xy> = <u,Su (xy)>.

THEOREM 4.11. The bilinear map <u,z> = ¢ (x)(u) realizes a duality between the Hopf
algebras Uy, and SLy(2).
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Proof: We compute

< S, (), ( o ) >= P50 () = —p(E)p(K) = ety ( o )

We note that

“Bdert [ 4 TP ) >= det, !
—q ¢ a
1® E(d) + E(d) ® K(d) 1® E(—gb) + E(—qb) @ K(—qb)
1® E(—q7'e)+ E(—q 'e) @ K(—q ¢ 1® E(a) + E(a) @ K(a)

det;l 0 —a
0 0

Then we have

< Sy, (E), @b >:<E,detq_1 Cil —ab >=<FE, S51,@(@) Ssr,@)(0) > .
¢ d Ssr,2)(¢)  Ssp,)(d)

For F' we have

< Sy, (F), o b >:<F,det;1 (1,1 o >=<F, Ssz,@(@) - Ssz,@(®) > .
c d —q ¢ a SSLQ(Q)(C) SSLq(2)(d)

For K we have

b d  —gb S S b
< Su, (K), ¢ >=< K, detq_l 1 I >=< K, sta@(@) Ssr,)(0) > .
c d —q ¢ a Ssr,@2)(c)  Ssr,@2)(d)

One proceeds with K’ similarly. By lemma 4.10 the proof is complete. a

4.1 Duality between U/,-Modules and SL,(2)-Comodules

The vector space ky/z,y/, of homogeneous degree n elements of the quantum plane has a
structure of SL,(2)-comodule. By duality the dual vector space k,/[z,y/; has a structure of
SL,(2)*-module and we have a morphism of rings £:SL,(2)*—Endgk, [z,y/;. Dualizing the

morphism
©:8Ly(2) — U; we have a morphism ¢ Uy — SLy(2)*
The composition
& o Ug—Endyky [,y

endows k,[z,yf of a structure of U;-module.

THEOREM 4.12. The Uy-module kq[z,yf%; is isomorphic to the simple module V1 ., of highest
weight ¢".
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Proof: We consider the linear form on k, [z,y/, defined by
f@y =) = On,i-

If we show that f is a highest weight vector of weight ¢" of the U ,-module k,/[z,y/, * then

kq[x,yln * contains a submodule isomorphic to the simple module V7 ,. Since
dim(Vi,) = n+1 = dim(kg[z,y/n *),

we have kg, [z,yfn * = V1.

We denote C, s = qii=")s (:) 7 (”;1) 4> and compute

(uf )@y ~") = (uf) (A y"~)) = (uRf)(3_g Sey Crs@ b d T @ar ) =

S o O s <u, @ b T S AT T S far Ty ) =N SO <u,a b T A T T 56,
= oo Cr s <u, @b T AN T T 8 0 = <, T >

We compute

<K,d'dd > = K(a')K(d) = 6,04
Then we have
(Kf)(x'y"~") = <K,a'c"™"> = 6ning = Onid" = ¢"f(@'y" ")

which implies Kf = ¢"f. It remains to prove that Ef = 0.

We have
<E,d'> = <E,aa" !> =¢(a)<E,a" '> + <E,a><K,d" !> = <E, a1 > =..= <E,a> = 0
<E,J> = <E,cdd™'> =¢(c)<E,d7 1> + <E,c><K,J~'> = 0.
Then <E,a'cd > = e(d')<E,d > + <E,a' ><K,d > = 0.
We conclude that (Ef)(2'y"~%) = <E,a'c®"*> = 0 and Ef = 0. O
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