THE RIEMANN-HURWITZ FORMULA

ALEX MASSARENTI

Let X,Y be smooth projective curves over the complex numbers, and f : X — Y a surjective morphism.
Fix a meromorphic 1-form w on Y give by the data {(V;, g;(vi)dv;))}, where {V;} is a finite collection of open
subsets, in the Euclidean topology, of Y, and v; is a local coordinate on V;. Let {(U;,u;)} be local coordinates
on X such that f(U;) C V;. In these local coordinates f can be written as v; = fi(u;) where f; = fjy, and the

collection 5
{(vatrtun 5 ) |

yields a meromorphic 1-form on X that well be denoted by f*w and called the pull-back via f of the 1-form w.
Now, fix a point € X, set y = f(z), and chose local coordinates v on X and v on Y such that u(z) = 0
and v(y) = 0. Locally, in these coordinates, f may be written as

v=u""® withu e By, v e By,vs(x) > 1,

where By, By C C are neighborhoods of the origin.
Since Y is connected the sum | f(a)=y VS () does not depend on the choice of y € Y. We define

Hy) = Z vi(x)z € Div(X) and deg(f) = Z ve(x).
z | f(z)=y z | f(z)=y

Remark 0.1. Note that Z; = {z|v(x) > 1} C X is a proper Zariski closed subset and hence a finite set. For
all x ¢ Z; the fiber f~'(f(x)) consists of deg(f) distinct points. If x € Z; then v¢(z) > 1 is the number of
leaves of the branched covering f : X — Y coming together at x.

The divisor

(0.2) Ry =Y (vs(z) — 1)a € Div(X)
reX
is the ramification divisor of the morphism f: X — Y and
By= ) yeDiv(Y)
y| f-1(y)ERy

is its branch divisor.

Definition 0.3. Let X be a smooth projective curve and g € C(X) a meromorphic function on X. We define
v, (g) as the order of vanishing of g at = if g has a zero in z, and as the order of vanishing of 1/g at x if g has a
pole in x.

Now, let w be a meromorphic 1-form on C'. In a neighborhood U of 2 € X we may write w|y = g(u)du where
u is a local coordinate on U. We define v, (w) = v,(g). Note that the number v, (w) does not depend on the
choice of the local coordinate.

Finally, we define the divisor of the 1-form w as div(w) = > x vz (w)z.

Lemma 0.4. Let X be a smooth projective curve. There exists a non trivial meromorphic 1-form on X.

Proof. Let gx be the genus of X, fix a point x € X and consider the divisor D = kx. The Riemann-Roch
theorem yields that

h(X,D) — h'(X,D) =deg(D) —g+1=k —g+1.
Hence, h°(X, D) > 0 for k > 0. Note that a non trivial element of h°(X, D) is a non constant function on X
having a pole of order at least k at = and holomorphic elsewhere. In particular, there exists a non constant
meromorphic function 7 on X. Therefore, dn is non trivial meromorphic 1-form on X. O

Theorem 0.5. (Riemann-Hurwitz) Let X,Y be smooth complex projective curves and f : X —'Y a surjective
morphism. Denote by gx the genus of X and by gy the genus of Y. Then

2g9x — 2 = (2g9y — 2) deg(f) + deg(Ry)
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where Ry is the ramification divisor of f in .

Proof. By Lemma there is a meromorphic 1-form w on Y. Locally we may represent the morphism f ad
v =u” and the 1-form w as w = g(v)dv. Hence

ffw=vg(u”)u’"tdu
and so
veew(x) = vi(w)v(f(z) + ve(z) —1
where x € X is a fixed point. Therefore,
div(f*w) = > vi@w(f@)e+ Ry =Y wly) >, wvil@)z+ Ry
zeX yey z | f(z)=y

Finally, to conclude it is enough to note that deg(div(f*w)) =2gx — 2 and }_, oy v (Y) 2o, | p(a)=y Vs (@) has
degree deg(div(w)) deg(f) = (29y — 2) deg(f). O

Corollary 0.6. Let f: X — Y be a surjective morphism of smooth projective complex curves. Then gx > gy.

Proof. 1f gy = 0 then clearly gx > gy. If gy > 1 then Theorem [0.5] yields that

gx = gy + (deg(f) — 1)(gy — 1) + 3 des(Ry).

Since deg(f) > 1 and deg(Ry) > 0 we get that gx > gy, and gx = gy if and only if either deg(f) =1 or gy =1
and deg(Ry) = 0. O

Corollary 0.7. Let X be a smooth complex projective curve. Then X is unirational if and only if it is rational.

Proof. If X is rational then it is in particular unirational. Assume that X is unirational. Then the is a dominant
rational map P! --» X and since P! is a smooth curve such rational map extends to a surjective morphism
P! — X. So, Corollaryyields that gx < gp1 = 0. Therefore, gx = 0 and hence X is rational. O

Dual curves, inflection points and multiple tangents. Let X C P? be a smooth curve of degree d. For
p € X the tangent line 7, X determines a point of P2*. The image of the morphism

b X —s P
p = (TL,X)*

is the dual curve X* of X. Note that ¢(p) := [fz(p) : fy(p) : f-(p)], where x,y, z are homogeneous coordinates
onP? X ={f=0}and f, = g%, fy = %, f-= %. Consider the dual coordinates 7, s, on P?* and a general
line R = {ar + Bs +~t = 0} C P**. Then X* N R = {¢(p) | afs(p) + Bfy(p) + vf-(p) = f(p) = 0} and so

deg(X™*) =d(d—1).
Let L C P? be a line not tangent to X, and consider the morphism

p: X — L
p — T,XNL.

Let ¢ € L be a general point. The fibers ¢~1(q) consists of the points p € X such that T,X passes through
g. Dually these corresponds to the points in the intersection ¢* N X*. Hence deg(¢) = d(d — 1). Note that
g € LN X if and only if ¢* is tangent to X*. Furthermore, ¢ is a branch point of ¢ if and only if ¢* intersects
X* with multiplicity at least two at some point b € p* N X*. This can happen if and only if either ¢* is tangent
to X* at b or b is a singular point of X*. The first case occurs if and only if ¢ € L N X. Let us analyze the
second situation.

If T, X is a k-tangent of X that is 7}, X is tangent to X at k distinct points then X™* has an ordinary singularity
of multiplicity k at (7,X)*. To see this consider the curve

X ={y2? ' —(x —a12)*... (a — agz)? = 0} C P2

Note that y = 0 is tangent to X at [a : 0: 1],...,[ax : 0 : 1]. The tangent cone of X* at [0 : 1 : 0] is given
by {(air +1t)...(axr +t) = 0}, and hence X* has an ordinary singularity of multiplicity k¥ at [0 : 1 : 0]. In
particular, since X* has finitely many singular points X has finitely many k-tangents.

Hence, when ¢* passes through an ordinary singularity of X* the fiber ¢~1(q) consists of d(d — 1) distinct
points.
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Now, assume that X has an inflection point of order k at p. We may assume that p = [1 : 0 : 0] and that
locally X is given by yz*~! — 2% = 0. Then X* is given by

X* = {(=k)ksth=! — (k — D) 1rF = 0} c P**.

Note that X has a cusp of order k — 1 at [0:1:0]. Hence, when ¢* passes though a cusp of order k — 1 of X*
there is an inflection tangent of order k of X through ¢ and so ¢ is a branch point of ¢.

We conclude that p € X is a ramification point of ¢ if and only if either p € X N L or p is an inflection point
of X.

The inflection points of X can be computed by mean of the Hessian matrix

fox fm,y fa,z
Hf = fx,y fy,y fy,z
fﬂ?’z fy,z fz,z

of the second partial derivatives of f. Indeed the inflection points are given by the intersection XN{det(H) = 0}.
Therefore, X has 3d(d — 2) inflection points. Summing-up ¢ is ramified at the 3d(d — 2) inflection points of X
plus the d intersection points in X N L.

Let p € P? be a point not lying on X nor on an inflection tangent or on a k-tangent of X, and L a line not
passing through p. Such a point exists since X has finitely many inflection tangents and k-tangents.

Consider the linear projection 7 : X — L from p. Let ¢ € L be a point. The line (g, p) intersects X in d
points counted with multiplicity which are exactly d distinct points if and only if (g, p) is not tangent to X.
Furthermore, since p does not lie on an inflection tangent nor on a k-tangent of X if (g, p) is tangent to X at
at point pp € X then (g, p) intersects X at py with multiplicity exactly two. Therefore, the ramification index
of 7 at pg is two. Therefore, the degree of the ramification divisor R, of 7 is equal to the number of tangents
of X through p. By Theorem [0.5] we have

29x —2 = —2d + deg(Rx)

and since gx = 3(d—1)(d—2) we get that deg(R.) = d(d—1). Hence, there are d(d —1) tangents of X through
p. This proves again that deg(X*) = d(d — 1).

Now, assume that p € X but again p does not lie on an inflection tangent nor on a k-tangent of X. Since
X is smooth the projection from p extends to a morphism 7 : X — L. In this case deg(mw) = d — 1 since we
are projecting from a point of X. Again by Theorem and the genus formula for plane curves we get that
deg(R,) = (d+1)(d — 2). So, not counting the tangent at p, there are (d + 1)(d — 2) tangents of X through p.

Assume that d > 2 and X™* has only ordinary singularities of multiplicity two or cusps of multiplicity two.
Since ¢ : X — X* is birational we have that gx = gx+. On the other hand, since X* has only ordinary nodes
and ordinary cusps as singularities we have that

gx- = ldld —1) = 2)(d(d ~ 1) ~2) ~ nx- —ex-
where nx+ and ¢y« are respectively the number of nodes and cusps of X*. Now, cx~ is equal to the number of
inflection points of X which we know to be 3d(d — 2). Finally, from

50— 1)(d~2) = gx = gx- = 3 (d(d — 1) ~ 2(d(d ~ 1) ~ 2) ~ nx- — 3d(d ~2)

we get that nx- = 2d(d — 2)(d — 3)(d + 3) which is also the number of bitangents of X.
For instance, for d = 3 we get that a general plane cubic curve has 9 inflection points on does not have
bitangents. For d = 4 we get that a general plane quartic curve has 24 inflection points and 28 bitangents.
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