THE RIEMANN-HURWITZ FORMULA

ALEX MASSARENTI

Let X, Y be smooth projective curves over the complex numbers, and $f: X \rightarrow Y$ a surjective morphism. Fix a meromorphic 1-form ω on Y give by the data $\left.\left\{\left(V_{i}, g_{i}\left(v_{i}\right) d v_{i}\right)\right)\right\}$, where $\left\{V_{i}\right\}$ is a finite collection of open subsets, in the Euclidean topology, of Y, and v_{i} is a local coordinate on V_{i}. Let $\left\{\left(U_{i}, u_{i}\right)\right\}$ be local coordinates on X such that $f\left(U_{i}\right) \subseteq V_{i}$. In these local coordinates f can be written as $v_{i}=f_{i}\left(u_{i}\right)$ where $f_{i}=f_{\mid U_{i}}$ and the collection

$$
\left\{\left(U_{i}, g_{i}\left(f_{i}\left(u_{i}\right)\right) \frac{\partial f_{i}\left(u_{i}\right)}{\partial u_{i}} d u_{i}\right)\right\}
$$

yields a meromorphic 1-form on X that well be denoted by $f^{*} \omega$ and called the pull-back via f of the 1-form ω.
Now, fix a point $x \in X$, set $y=f(x)$, and chose local coordinates u on X and v on Y such that $u(x)=0$ and $v(y)=0$. Locally, in these coordinates, f may be written as

$$
v=u^{\nu_{f}(x)} \text { with } u \in B_{X}, v \in B_{Y}, \nu_{f}(x) \geq 1,
$$

where $B_{X}, B_{Y} \subset \mathbb{C}$ are neighborhoods of the origin.
Since Y is connected the sum $\sum_{x \mid f(x)=y} \nu_{f}(x)$ does not depend on the choice of $y \in Y$. We define

$$
f^{-1}(y)=\sum_{x \mid f(x)=y} \nu_{f}(x) x \in \operatorname{Div}(X) \text { and } \operatorname{deg}(f)=\sum_{x \mid f(x)=y} \nu_{f}(x) .
$$

Remark 0.1. Note that $Z_{f}=\left\{x \mid \nu_{f}(x)>1\right\} \subset X$ is a proper Zariski closed subset and hence a finite set. For all $x \notin Z_{f}$ the fiber $f^{-1}(f(x))$ consists of $\operatorname{deg}(f)$ distinct points. If $x \in Z_{f}$ then $\nu_{f}(x)>1$ is the number of leaves of the branched covering $f: X \rightarrow Y$ coming together at x.

The divisor

$$
\begin{equation*}
R_{f}=\sum_{x \in X}\left(\nu_{f}(x)-1\right) x \in \operatorname{Div}(X) \tag{0.2}
\end{equation*}
$$

is the ramification divisor of the morphism $f: X \rightarrow Y$ and

$$
B_{f}=\sum_{y \mid f^{-1}(y) \in R_{f}} y \in \operatorname{Div}(Y)
$$

is its branch divisor.
Definition 0.3. Let X be a smooth projective curve and $g \in \mathbb{C}(X)$ a meromorphic function on X. We define $\nu_{x}(g)$ as the order of vanishing of g at x if g has a zero in x, and as the order of vanishing of $1 / g$ at x if g has a pole in x.

Now, let ω be a meromorphic 1-form on C. In a neighborhood U of $x \in X$ we may write $\omega_{\mid U}=g(u) d u$ where u is a local coordinate on U. We define $\nu_{x}(\omega)=\nu_{x}(g)$. Note that the number $\nu_{x}(\omega)$ does not depend on the choice of the local coordinate.

Finally, we define the divisor of the 1-form ω as $\operatorname{div}(\omega)=\sum_{x \in X} \nu_{x}(\omega) x$.
Lemma 0.4. Let X be a smooth projective curve. There exists a non trivial meromorphic 1 -form on X.
Proof. Let g_{X} be the genus of X, fix a point $x \in X$ and consider the divisor $D=k x$. The Riemann-Roch theorem yields that

$$
h^{0}(X, D)-h^{1}(X, D)=\operatorname{deg}(D)-g+1=k-g+1 .
$$

Hence, $h^{0}(X, D)>0$ for $k \gg 0$. Note that a non trivial element of $h^{0}(X, D)$ is a non constant function on X having a pole of order at least k at x and holomorphic elsewhere. In particular, there exists a non constant meromorphic function η on X. Therefore, $d \eta$ is non trivial meromorphic 1-form on X.

Theorem 0.5. (Riemann-Hurwitz) Let X, Y be smooth complex projective curves and $f: X \rightarrow Y$ a surjective morphism. Denote by g_{X} the genus of X and by g_{Y} the genus of Y. Then

$$
2 g_{X}-2=\left(2 g_{Y}-2\right) \operatorname{deg}(f)+\operatorname{deg}\left(R_{f}\right)
$$

where R_{f} is the ramification divisor of f in (0.2).
Proof. By Lemma 0.4 there is a meromorphic 1-form ω on Y. Locally we may represent the morphism f ad $v=u^{\nu}$ and the 1-form ω as $\omega=g(v) d v$. Hence

$$
f^{*} \omega=\nu g\left(u^{\nu}\right) u^{\nu-1} d u
$$

and so

$$
\nu_{f^{*} \omega}(x)=\nu_{f}(x) \nu_{\omega}(f(x))+\nu_{f}(x)-1
$$

where $x \in X$ is a fixed point. Therefore,

$$
\operatorname{div}\left(f^{*} \omega\right)=\sum_{x \in X} \nu_{f}(x) \nu_{\omega}(f(x)) x+R_{f}=\sum_{y \in Y} \nu_{\omega}(y) \sum_{x \mid f(x)=y} \nu_{f}(x) x+R_{f} .
$$

Finally, to conclude it is enough to note that $\operatorname{deg}\left(\operatorname{div}\left(f^{*} \omega\right)\right)=2 g_{X}-2$ and $\sum_{y \in Y} \nu_{\omega}(y) \sum_{x \mid f(x)=y} \nu_{f}(x) x$ has degree $\operatorname{deg}(\operatorname{div}(\omega)) \operatorname{deg}(f)=\left(2 g_{Y}-2\right) \operatorname{deg}(f)$.

Corollary 0.6. Let $f: X \rightarrow Y$ be a surjective morphism of smooth projective complex curves. Then $g_{X} \geq g_{Y}$.
Proof. If $g_{Y}=0$ then clearly $g_{X} \geq g_{Y}$. If $g_{Y} \geq 1$ then Theorem 0.5 yields that

$$
g_{X}=g_{Y}+(\operatorname{deg}(f)-1)\left(g_{Y}-1\right)+\frac{1}{2} \operatorname{deg}\left(R_{f}\right)
$$

Since $\operatorname{deg}(f) \geq 1$ and $\operatorname{deg}\left(R_{f}\right) \geq 0$ we get that $g_{X} \geq g_{Y}$, and $g_{X}=g_{Y}$ if and only if either $\operatorname{deg}(f)=1$ or $g_{Y}=1$ and $\operatorname{deg}\left(R_{f}\right)=0$.

Corollary 0.7. Let X be a smooth complex projective curve. Then X is unirational if and only if it rational.
Proof. If X is rational then it is in particular unirational. Assume that X is unirational. Then the is a dominant rational map $\mathbb{P}^{1} \rightarrow X$ and since \mathbb{P}^{1} is a smooth curve such rational map extends to a surjective morphism $\mathbb{P}^{1} \rightarrow X$. So, Corollary 0.6 yields that $g_{X} \leq g_{\mathbb{P}^{1}}=0$. Therefore, $g_{X}=0$ and hence X is rational.

Dual curves, inflection points and multiple tangents. Let $X \subset \mathbb{P}^{2}$ be a smooth curve of degree d. For $p \in X$ the tangent line $T_{p} X$ determines a point of $\mathbb{P}^{2 *}$. The image of the morphism

$$
\begin{array}{cccc}
\psi: & X & \longrightarrow & \mathbb{P}^{2 *} \\
& p & \mapsto & \left(T_{p} X\right)^{*}
\end{array}
$$

is the dual curve X^{*} of X. Note that $\psi(p):=\left[f_{x}(p): f_{y}(p): f_{z}(p)\right]$, where x, y, z are homogeneous coordinates on $\mathbb{P}^{2}, X=\{f=0\}$ and $f_{x}=\frac{\partial f}{\partial x}, f_{y}=\frac{\partial f}{\partial y}, f_{z}=\frac{\partial f}{\partial z}$. Consider the dual coordinates r, s, t on $\mathbb{P}^{2 *}$ and a general line $R=\{\alpha r+\beta s+\gamma t=0\} \subset \mathbb{P}^{2 *}$. Then $X^{*} \cap R=\left\{\psi(p) \mid \alpha f_{x}(p)+\beta f_{y}(p)+\gamma f_{z}(p)=f(p)=0\right\}$ and so

$$
\operatorname{deg}\left(X^{*}\right)=d(d-1)
$$

Let $L \subset \mathbb{P}^{2}$ be a line not tangent to X, and consider the morphism

$$
\begin{array}{cccc}
\phi: & X & \longrightarrow & L \\
& p & \mapsto & T_{p} X \cap L .
\end{array}
$$

Let $q \in L$ be a general point. The fibers $\phi^{-1}(q)$ consists of the points $p \in X$ such that $T_{p} X$ passes through q. Dually these corresponds to the points in the intersection $q^{*} \cap X^{*}$. Hence $\operatorname{deg}(\phi)=d(d-1)$. Note that $q \in L \cap X$ if and only if q^{*} is tangent to X^{*}. Furthermore, q is a branch point of ϕ if and only if q^{*} intersects X^{*} with multiplicity at least two at some point $b \in p^{*} \cap X^{*}$. This can happen if and only if either q^{*} is tangent to X^{*} at b or b is a singular point of X^{*}. The first case occurs if and only if $q \in L \cap X$. Let us analyze the second situation.

If $T_{p} X$ is a k-tangent of X that is $T_{p} X$ is tangent to X at k distinct points then X^{*} has an ordinary singularity of multiplicity k at $\left(T_{p} X\right)^{*}$. To see this consider the curve

$$
X=\left\{y z^{2 k-1}-\left(x-a_{1} z\right)^{2} \ldots\left(a-a_{k} z\right)^{2}=0\right\} \subset \mathbb{P}^{2} .
$$

Note that $y=0$ is tangent to X at $\left[a_{1}: 0: 1\right], \ldots,\left[a_{k}: 0: 1\right]$. The tangent cone of X^{*} at $[0: 1: 0]$ is given by $\left\{\left(a_{1} r+t\right) \ldots\left(a_{k} r+t\right)=0\right\}$, and hence X^{*} has an ordinary singularity of multiplicity k at $[0: 1: 0]$. In particular, since X^{*} has finitely many singular points X has finitely many k-tangents.

Hence, when q^{*} passes through an ordinary singularity of X^{*} the fiber $\phi^{-1}(q)$ consists of $d(d-1)$ distinct points.

Now, assume that X has an inflection point of order k at p. We may assume that $p=[1: 0: 0]$ and that locally X is given by $y z^{k-1}-x^{k}=0$. Then X^{*} is given by

$$
X^{*}=\left\{(-k)^{k} s t^{k-1}-(k-1)^{k-1} r^{k}=0\right\} \subset \mathbb{P}^{2 *}
$$

Note that X has a cusp of order $k-1$ at $[0: 1: 0]$. Hence, when q^{*} passes though a cusp of order $k-1$ of X^{*} there is an inflection tangent of order k of X through q and so q is a branch point of ϕ.

We conclude that $p \in X$ is a ramification point of ϕ if and only if either $p \in X \cap L$ or p is an inflection point of X.

The inflection points of X can be computed by mean of the Hessian matrix

$$
H_{f}=\left(\begin{array}{ccc}
f_{x, x} & f_{x, y} & f_{x, z} \\
f_{x, y} & f_{y, y} & f_{y, z} \\
f_{x, z} & f_{y, z} & f_{z, z}
\end{array}\right)
$$

of the second partial derivatives of f. Indeed the inflection points are given by the intersection $X \cap\left\{\operatorname{det}\left(H_{f}\right)=0\right\}$. Therefore, X has $3 d(d-2)$ inflection points. Summing-up ϕ is ramified at the $3 d(d-2)$ inflection points of X plus the d intersection points in $X \cap L$.

Let $p \in \mathbb{P}^{2}$ be a point not lying on X nor on an inflection tangent or on a k-tangent of X, and L a line not passing through p. Such a point exists since X has finitely many inflection tangents and k-tangents.

Consider the linear projection $\pi: X \rightarrow L$ from p. Let $q \in L$ be a point. The line $\langle q, p\rangle$ intersects X in d points counted with multiplicity which are exactly d distinct points if and only if $\langle q, p\rangle$ is not tangent to X. Furthermore, since p does not lie on an inflection tangent nor on a k-tangent of X if $\langle q, p\rangle$ is tangent to X at at point $p_{0} \in X$ then $\langle q, p\rangle$ intersects X at p_{0} with multiplicity exactly two. Therefore, the ramification index of π at p_{0} is two. Therefore, the degree of the ramification divisor R_{π} of π is equal to the number of tangents of X through p. By Theorem 0.5 we have

$$
2 g_{X}-2=-2 d+\operatorname{deg}\left(R_{\pi}\right)
$$

and since $g_{X}=\frac{1}{2}(d-1)(d-2)$ we get that $\operatorname{deg}\left(R_{\pi}\right)=d(d-1)$. Hence, there are $d(d-1)$ tangents of X through p. This proves again that $\operatorname{deg}\left(X^{*}\right)=d(d-1)$.

Now, assume that $p \in X$ but again p does not lie on an inflection tangent nor on a k-tangent of X. Since X is smooth the projection from p extends to a morphism $\pi: X \rightarrow L$. In this case $\operatorname{deg}(\pi)=d-1$ since we are projecting from a point of X. Again by Theorem 0.5 and the genus formula for plane curves we get that $\operatorname{deg}\left(R_{\pi}\right)=(d+1)(d-2)$. So, not counting the tangent at p, there are $(d+1)(d-2)$ tangents of X through p.

Assume that $d \geq 2$ and X^{*} has only ordinary singularities of multiplicity two or cusps of multiplicity two. Since $\psi: X \rightarrow X^{*}$ is birational we have that $g_{X}=g_{X^{*}}$. On the other hand, since X^{*} has only ordinary nodes and ordinary cusps as singularities we have that

$$
g_{X^{*}}=\frac{1}{2}(d(d-1)-2)(d(d-1)-2)-n_{X^{*}}-c_{X^{*}}
$$

where $n_{X^{*}}$ and $c_{X^{*}}$ are respectively the number of nodes and cusps of X^{*}. Now, $c_{X^{*}}$ is equal to the number of inflection points of X which we know to be $3 d(d-2)$. Finally, from

$$
\frac{1}{2}(d-1)(d-2)=g_{X}=g_{X^{*}}=\frac{1}{2}(d(d-1)-2)(d(d-1)-2)-n_{X^{*}}-3 d(d-2)
$$

we get that $n_{X^{*}}=\frac{1}{2} d(d-2)(d-3)(d+3)$ which is also the number of bitangents of X.
For instance, for $d=3$ we get that a general plane cubic curve has 9 inflection points on does not have bitangents. For $d=4$ we get that a general plane quartic curve has 24 inflection points and 28 bitangents.

Alex Massarenti, Dipartimento di Matematica e Informatica, Università di Ferrara, Via Machiavelli 30,44121 Ferrara, Italy

Email address: alex.massarenti@unife.it

