
SOME FACTS ABOUT RIEMANN SURFACES

ALEX MASSARENTI

Exercise 0.1. Suppose that a Riemann surface Γ is given in CP2 by the equation∑
i+j≤4

aijx
iyjzi+j−4,

and this curve in nonsingular in CP2.
To compute its genus we can proceed in several ways.

(1) Consider the morphism

φ : Γ→ P2∗, p 7→ TpΓ,

where TpΓ is the tangent of Γ in p. The curve Γ∗ = φ(Γ) is a plane curve,
called the dual curve of Γ. If Γ = Z(F ) with F ∈ C[x, y, z]d the the tangent
line in p = [xp : yp : zp] ∈ Γ is given by

TpΓ = Z(x
∂F

∂x
(p) + y

∂F

∂y
(p) + z

∂F

∂z
(p)),

so the morphism φ is given explicitly by

φ(p) = [
∂F

∂x
(p) :

∂F

∂y
(p) :

∂F

∂z
(p)].

Let R = Z(α0ξ0 +α1ξ1 +α2ξ2) ⊆ P2∗ be a line and consider the intersection
R · Γ∗ i.e. the points p ∈ P2 such that F (p) = 0 and α0

∂F
∂x (p) + α1

∂F
∂y (p) +

α2
∂F
∂z (p) = 0. Since these points are the complete intersection of a curve

of degree d and a curve of degree (d − 1), we deduce that the intersection
consists of d(d − 1) points counted with multiplicity. Then the dual curve
has degree deg(Γ∗) = d(d− 1).
Let O ∈ P2 be a point that does not lie on Γ and let L be a line such that
O /∈ L. Consider the projection

φ : Γ→ L, p 7→< O, p > ∩L.
Since deg(Γ) = d the inverse image π−1(q), q ∈ L consists of d distinct
points. The branch points are those that lie on a tangent line of Γ that
passes through O i.e. the points in the intersection O∗·Γ∗, and we know that
these points are d(d− 1) and of rami�cation index 2. Then the morphism
π : Γ → L ∼= P1 has degree deg(π) = d and the degree of its rami�cation
divisor is deg(Rπ) = d(d− 1). By Riemann-Hurwitz formula we have

2gΓ − 2 = deg(π)(2gP1 − 2) + deg(R).

Substituting we have 2gΓ = −2d+d(d−1)+2 = d2−3d+2 = (d−1)(d−2),
so

gΓ =
1
2

(d− 1)(d− 2).
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(2) From another viewpoint we know that if X ⊆ Pn is a smooth hypersurface
of degree d, then its canonical sheaf is given by ωX = OX(d − n − 1). In
partical for a curve Γ ⊆ P2 we �nd

ωΓ = OΓ(d− 3).

Then the degree of the canonical divisor is deg(KΓ) = deg(Γ)(d − 3) =
d(d − 3). By Riemann-Roch theorem we know that deg(KΓ) = 2gΓ − 2,
equaling the two expression we �nd again

gΓ =
1
2

(d− 1)(d− 2).

(3) The projection π : Γ → CP1, (x, y) 7→ x, realizes Γ as a 4-sheet covering
of the Riemann sphere rami�ed at 4 points with index of rami�cation 3,
so the rami�cation divisor has degree deg(Rπ) = 12. By Riemann-Hurwitz
formula

2gΓ − 2 = deg(π)(2gCP1 − 2) + deg(Rπ),
we have gΓ = 3.

In our case the curve has degree deg(Γ) = 4 and it is smooth, consider as instance
the degree 4 Fermat curve x4 + y4 + z4 = 0. By the genus formula we have gΓ = 3.
Intuitively the map π gives rise to a 4-sheet covering of P1, rami�ed on 6 double
points. Then we have 4 copies of the Riemann sphere, and we have to cut the
spheres on three segments connecting the rami�cations points. Gluing the sphere
together we obtain a torus with 3 handles.

Suppose that the curve is of the form

Γ = Z(x4 + y4 + z4).

On its a�ne part Γ0 = Z(x4 +y4 +1), ω1 = dx
y3 is a holomorphic di�erential. In fact

since y4 = −(x4 + 1) the function y has zeros on the points Pj = (ξj , 0), j = 1, ..., 4
such that ξ4

j + 1 = 0, and since it is a holomorphic function it has a pole of order

4 in the points at in�nity. Then its divisor is div(y) =
∑4
j=1 Pj − P∞1 − ...− P∞4 .

Now consider dx, in a neighborhood of Pk we can choose τ = (x − ξk)
1
4 as local

parameter, and we have dx = 4τ3dτ , so dx has zero of order 3 in any Pj . In a
neighborhood of the points at in�nity we choose the local parameter u = x−1, then
dx = −u−2du and dx has a pole of order 2 in any point at in�nity. We conclude

that div(dx) = 3
∑4
j=1 Pj − 2P∞1 − ...− 2P∞4 , and div(dxy3 ) = 3

∑4
j=1 Pj − 2(P∞1 +

... + P∞4 ) − 3(
∑4
j=1 Pj − P∞1 − ... − P∞4 ) = P∞1 + ... + P∞4 . The divisor of dx

y3

is positive, so the di�erential is holomorphic. Similarly dx
y2 ,

xdx
y3 are holomorphic

di�erentials, and since g = 3, {dxy3 ,
dx
y2 ,

xdx
y3 } is a basis of the canonical linear system.

The canonical map has the form

φK : Γ→ P2, (x, y) 7→ [
1
y

: 1 :
x

y
] = [1 : y : x],

and in homogeneous coordinates φK(x, y, z) = [z : y : x]. Clearly the canonical
map is the identity modulo an automorphism of P2.

Now we want to prove that Γ is a non hyperelliptic surface. Suppose that there ex-
ists a morphism f : Γ→ P1 of degree 2. This morphism correspond to an e�ective
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divisor D on Γ with deg(D) = 2 and h0(D) = 2. By Riemann-Roch theorem on D
we have

h0(D)− h0(K −D) = deg(D)− g + 1 = 0.
Then h0(D) = h0(K −D) i.e. D is in the base locus of the canonical linear system
|K|. A contradiction since for g ≥ 2 the linear system |K| has no base points. In
fact dim|K| = g− 1 and since Γ is not rational we have dim|P | = 0 for any P ∈ Γ,
and by Riemann-Roch we �nd dim|K − P | = 2g − 3− g + 1 = g − 2. This means
exactly that |K| has no base points.

Now let Γ be any non hyperelliptic surface of genus g = 3. The canonical divi-
sor K of Γ has degree deg(K) = 2g−2 = 4 and dimension h0(K) = 3. Furthermore
since Γ is non hyperelliptic of genus g = 3 > 2, then |K| is very ample. We conclude
that |K| induces an embedding (the canonical embedding)

φK : Γ→ P(H0(K)∗) ∼= P2,

and so any non hyperelliptic Riemann surface of genus g = 3 can be realized as a
smooth quartic curve in P2.

Exercise 0.2. Let B = (Bjk) be a symmetric g × g matrix with negative-de�nite
real part. A Riemann theta function is de�ned by

θ(z) = θ(z|B) =
∑

N∈Zg
exp(

1
2
< BN,N > + < N, z >),

where
< BN,N >=

∑g

j,k=1
BjkNjNk, < N, z >=

∑g

j=1
Njzj .

In particular for g = 1 we obtain

θ(z) =
∑∞

n=−∞
exp(

bn2

2
+ nz),

where b is a complex number such that RE(b) < 0.
Let Γ be a compact Riemann surface of genus g and let v = (v1, ..., vg) be the
normalized basis of holomorphic di�erentials with respect to a canonical homology
basis. Let B the corresponding period matrix. Suppose θ(e,B) = 0, where e ∈ Cg,
and consider the function

f(P ) = θ(
∫ P

P1

v − e,B)θ(
∫ P

P2

v + e,B), P1 6= P2,

where we assume that θ(
∫ P
P1
v − e,B) and θ(

∫ P
P2
v + e,B) are not identically zero.

For P = P1 we have f(P1) = θ(−e) = θ(e) = 0 since θ is a even function, and for
P = P2, f(P2) = θ(e) = 0.
We know that the function θ(

∫ P
P1
v − e,B) has g zeros on Γ, so f(P ) has 2g zeros

on Γ.
We have that

div(θ(
∫ P

P1

v − e)) = P1 +D, div(θ(
∫ P

P2

v + e)) = P2 +D
′
,

where D, D
′
are positive divisor of degree g−1. Now e = D−∆ and −e = D

′−∆,

where D +D
′

= 2∆ = K. So

div(θ(
∫ P

P1

v − e,B)θ(
∫ P

P2

v + e,B)) = P1 + P2 +H(P ),
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for some holomorphic di�erential H(P ) independent from P1 and P2.
Consider now the case P1 = P2, we can write

θ(
∫ P

P1

v − e)θ(
∫ P

P1

v + e) = (P − P1)2H(P )2

we denote F (P ) = θ(
∫ P
P1
v − e)θ(

∫ P
P1
v + e) and then

H(P )2 =
F (P )

(P − P1)2
.

The Taylor expansion of F in a neighborhood of P1 is in the form

F (P ) = F (P1)+
∂F

∂P
(P1)(P −P1)+

1
2
∂2F

∂P 2
(P1)(P −P1)2 +

1
6
∂3F

∂P 3
(P1)(P −P1)3 + ...,

but P1 is a double zero of F , so F (P ) = 1
2
∂2F
∂P 2 (P1)(P−P1)2+ 1

6
∂3F
∂P 3 (P1)(P−P1)3+...,

and

H(P1)2 =
1
2
∂2F

∂P 2
(P1).

We have that ∂2F
∂P 2 (P1) = 2(

∑g
k=1

∂θ
∂zk

(e)vk(P1))2. We conclude that

H(P1)2 = (
∑g

k=1

∂θ

∂zk
(e)vk(P1))2, ∀ P1 ∈ Γ,

and

H(P ) =
∑g

k=1

∂θ

∂zk
(e)vk(P1).

Consider now the Riemann Surface Γ given by the equation

y2 = (x− u1)(x− u2)(x− u3)(x− u4)(x− u5)(x− u6),

and set Qi = (ui, 0). The Qi are the branch points of the surfaces, clearly Γ is a
hyperelliptic surfaces of genus g = 2.
Let ∆ = 2K be the Riemann divisor. The vector of Riemann constant kQ6 with
base point Q6 takes the form

kQ6 = (
1
2
, 0) + (

1
2
,

1
2

)B,

where B is the period matrix. Consider the Abel map with base point Q6,

A : Γ→ J(Γ), P 7→ (
∫ P

Q6

ω1,

∫ P

Q6

ω2),

where {ω1 = dx
y , ω2 = xdx

y } is a basis of the holomorphic di�erentials.

Consider the divisor D = Q1 +Q3 +Q5 − P∞+ − P∞− . If b3 is a loop through Q5

and Q6, in the homology basis {a1, a2, b1, b2} we have b3 = −b2. Then∫ Q1

Q6

ω1 =
1
2

(
∫
b3

ω1 +
∫
a2

ω1 +
∫
b2

ω1) =
1
2

∫
a2

ω1,

similarly we have
∫ Q3

Q6
ω1 = 1

2 + 1
2

∫
b1
ω1 and

∫ Q5

Q6
ω1 = 1

2

∫
b2
ω1. Computing the

same integrals on ω2 we �nd

A(D) = kQ6 ,
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so D is a representative for the Riemann divisor ∆.
We can see the previous fact from another viewpoint. Let π : Γ→ CP1, (x, y) 7→ x,
be the projection. We know that

KΓ = Rπ + π∗KCP1 ,

where Rπ is the branch point divisor, in our case Rπ = Q1+Q2+Q3+Q4+Q5+Q6.
Since the canonical divisor of CP1 is KCP1 = −2P∞ we have

KΓ = Q1 +Q2 +Q3 +Q4 +Q5 +Q6 − 2P∞+ − 2P∞− ,

and since Q1
∼= Q2, Q3

∼= Q4, Q5
∼= Q6 on Γ we �nd

KΓ = 2Q1 + 2Q3 + 2Q5 − 2P∞+ − 2P∞− .

Finally since ∆ = 2K we see that

∆ = Q1 +Q3 +Q5 − P∞+ − P∞− .

Let e = A(Qk) + kQ6 , k = 1, 3, 5, 6. Consider e = q + pB. For k = 6 clearly
e = kQ6 is a half integer odd characteristic. For k = 5 we have

A(Q5) +KQ6 = (
1
2

+
1
2

∫
b1

ω1,
1
2

∫
b1

ω2) = (
1
2
, 0) + (

1
2
, 0)B.

Note that < q, p >=< ( 1
2 , 0), ( 1

2 , 0) >= 1
4 = ξ satis�es 4ξ ≡ 1 mod(2), then (q, p)

is an half integer odd characteristic. Similarly one has that (q, p) is an half integer
odd characteristic for any k = 1, 3, 5, 6.

Now consider the function f(P ) with P1 = Q6, P2 = Q5,

f(P ) = θ(
∫ P

Q6

v − e,B)θ(
∫ P

Q5

v + e,B).

We know that f vanishes in Q5, Q6 and in other 2g − 2 = 2 points that are the
zeros of a holomorphic di�erentials.
Recall that For a non special divisor D = P1 + ... + Pg of degree g the function
F (P ) = θ(AP0(P )−AP0(D)−KP0) has on Γ exactly g zeros P = P1, ..., P = Pg.

In our case e = A(Qk)+kQ6 and θ(
∫ P
Q6
v−e) = θ(

∫ P
Q6
v−A(Qk)−kQ6) has two zeros

Qk, Q6, and θ(
∫ P
Q5
v− e) = θ(

∫ P
Q5
v−A(Qk)−kQ5) has two zeros Qk, Q5. Then the

di�erential H(P ) =
∑g
k=1

∂θ
∂zk

(e)vk(P ), is a holomorphic di�erentials with a double

zero in Qk, so of the form∑2

k=1

∂θ

∂zk
(e)vk(P ) = (x− uk)2 dx

y
.

Then ν2 =
∑2
k=1

∂θ
∂zk

(e)vk(P ) is a holomorphic di�erential form on Γ, hence it is

a holomorphic section of the canonical line bundle ωΓ = OΓ(KΓ). Since ∆ = 2KΓ

we conclude that ν is a holomorphic section of the Riemann line bundle OΓ(∆)
associated to the Riemann divisor.

Exercise 0.3. Consider the curve

Γ = {(z, w) ∈ C2 | w5 =
∏5

k=1
(z − zk)},

and let Qk = (zk, 0) be its branch points.
The map π : Γ → P1 is a 5-sheet covering of the Riemann Sphere, the covering is
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rami�ed on each Qk and the index of rami�cation is 4. So the rami�cation divisor
has degree deg(R) = 4× 5 = 20. By Riemann-Hurwitz formula we have

gΓ =
deg(R)

2
− deg(π) + 1,

and in our case gΓ = 10− 5 + 1 = 6.

The compacti�cation of Γ in P2 is given by the equation

W 5 =
∏5

k=1
(Z −Xzk),

where w = W
X and z = Z

X . In this way Γ is realized as a smooth curve of degree 5
in P2, and using the genus formula we recover gΓ = 1

2 (5− 1)(5− 2) = 6.

De�nition 0.4. A point P of a Riemann surface Γ of genus g is called a Weierstrass
point if l(kP ) > 1 for some k ≤ g. Where l(kP ) denotes the dimension of the linear
system |kP |.

Suppose that z is a local parameter for a Riemann Surface Γ of genus g in a
neighborhood of a point P0 ∈ Γ, such that z(P0) = 0. Assume that locally the
basis of holomorphic di�erentials has the form ωj = αj(z)dz, j = 1, ..., g. Consider
the determinant

W (z) = det


α1(z) α

′

1(z) . . . α
(g−1)
1 (z)

...
. . .

. . .
...

αg(z) α
′

g(z) . . . α
(g−1)
1 (z)

 .

Then the point P0 is a Weierstrass point if and only if W (z(P0)) = W (0) = 0. Let
us de�ne the weight of a Weierstrass point P0 as the multiplicity of zero of W (z)
at this point. The total weight of all Weierstrass points on a Riemann surface Γ of
genus g is equal to (g − 1)g(g + 1).
In our case a basis of the holomorphic di�erentials is given by

{ dz
w4

,
dz

w3
,
dz

w2
,
zdz

w4
,
zdz

w3
,
z2dz

w4
}.

Computing the zeros of W (z) we found that the Weierstrass points are exactly the
Qk each of weight 42. The total weight is 42× 5 = 210 = (g − 1)g(g + 1).

Consider now the abelian di�erential on Γ, and the basis of H1(Γ) given above.
Let π : Γ → CP1, (z, w) 7→ z, be the projection and {P∞1 , ..., P∞5 } = π−1(∞),
Qk = (zk, 0), k = 1, ..., 5 be the branch points, and Qk = (0, ξk), k = 1, ..., 5 be the
points on Γ with z = 0. Then we have:

• div(z) = Q1 + ...+Q5 − P∞1 − ...− P∞5 ,
• div(w) = Q1 + ...+Q5 − P∞1 − ...− P∞5 ,
• div(dz) = 4Q1 + ...+ 4Q5 − (P∞1 )2 − ...− (P∞5 )2.

The divisors of the holomorphic di�erentials are given by:

• div( dzw4 ) = (P∞1 )2 + ...+ (P∞5 )2,

• div( dzw3 ) = Q1 + ...+Q5 + P∞1 + ...+ P∞5 ,

• div( dzw2 ) = Q2
1 + ...+Q2

5,
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• div( zdzw4 ) = Q1 + ...+Q5 + P∞1 + ...+ P∞5 ,

• div( zdzw3 ) = Q1 + ...+Q5 +Q1 + ...+Q5,

• div( z
2dz
w4 ) = Q1

2
+ ...+Q5

2
.

Recall that a divisor D on Γ is said to be special when l(K −D) = 0 i.e.

Ω(D) = {ω | ω ∈ Ω1
Γ, div(ω) ≥ D} = 0,

in other words when there are not holomorphic di�erentials vanishing on D.
Consider now the divisors supported on the branch points. Clearly there are no
holomorphic di�erentials vanishing on the divisors of the type D = Qi + 2Qj +
3Qk , i 6= j 6= k, since the maximum order ofQk as zero of a holomorphic di�erentials
in 2. On the other hand for any other divisors of degree 6 supported on the branch
points we have only three possibilities:

D = 2Qi + 2Qj + 2Qk, D = 2Qi + 2Qj +Qk +Ql, D = 2Qi +Qj +Qk +Ql +Qm.

Clearly for any divisorD of the previous type we can �nd a holomorphic di�erentials
vanishing on D. We conclude that the divisors of the form D = Qi+2Qj +3Qk are
not special, and that any other divisor of degree 6 supported on the branch points
is special.
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