SOME FACTS ABOUT RIEMANN SURFACES

ALEX MASSARENTI

EXERCISE 0.1. Suppose that a Riemann surface I is given in CP? by the equation
et J it —4
Zz‘+]‘§4 GgTYE ’

and this curve in nonsingular in CP2,
To compute its genus we can proceed in several ways.

(1) Consider the morphism
¢:T —P* p—T,T,

where T,T" is the tangent of I" in p. The curve I'* = ¢(I) is a plane curve,
called the dual curve of T'. If I' = Z(F) with F € C[z,y, z]4 the the tangent
line in p = [z, : yp : 2] € T is given by

oF OF oF

I = Z(x%(p) + y%(p) + Zg(p)%

so the morphism ¢ is given explicitly by
oF OF oF
o(p) = [87(17) : afy(P) : E(p)]-

Let R = Z(apéo+ 1€ +aaés) C P2 be a line and consider the intersection
R-T* ie. the points p € P? such that F(p) = 0 and aog—i(p) + alg—g(p) +
ag%—f(p) = 0. Since these points are the complete intersection of a curve
of degree d and a curve of degree (d — 1), we deduce that the intersection
consists of d(d — 1) points counted with multiplicity. Then the dual curve
has degree deg(T™*) = d(d — 1).

Let O € P? be a point that does not lie on I' and let L be a line such that
O ¢ L. Consider the projection

¢:I'—= L, p—<O,p>nNL.

Since deg(T') = d the inverse image 7~ 1(q), ¢ € L consists of d distinct
points. The branch points are those that lie on a tangent line of I" that
passes through O i.e. the points in the intersection O*-I'*, and we know that
these points are d(d — 1) and of ramification index 2. Then the morphism
7 : T — L = P! has degree deg(n) = d and the degree of its ramification
divisor is deg(R,) = d(d — 1). By Riemann-Hurwitz formula we have

2gr — 2 = deg(m)(2gpr — 2) + deg(R).

Substituting we have 2gr = —2d+d(d—1)+2 = d*—3d+2 = (d—1)(d—2),
S0

gr = 5(d-1)(d - 2).
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(2) From another viewpoint we know that if X C P™ is a smooth hypersurface
of degree d, then its canonical sheaf is given by wx = Ox(d —n —1). In
partical for a curve I' C P? we find

wr = Or(d - 3)

Then the degree of the canonical divisor is deg(Kr) = deg(T')(d — 3) =
d(d — 3). By Riemann-Roch theorem we know that deg(Kr) = 2gr — 2,
equaling the two expression we find again

or = 3(d=1(d-2).

(3) The projection m : I' — CP!, (x,y) — x, realizes I' as a 4-sheet covering
of the Riemann sphere ramified at 4 points with index of ramification 3,
so the ramification divisor has degree deg(R,) = 12. By Riemann-Hurwitz
formula

2gr — 2 = deg(m)(2gcp — 2) + deg(Rx),
we have gr = 3.

In our case the curve has degree deg(I") = 4 and it is smooth, consider as instance
the degree 4 Fermat curve z* + y* + z* = 0. By the genus formula we have gr = 3.
Intuitively the map 7 gives rise to a 4-sheet covering of P!, ramified on 6 double
points. Then we have 4 copies of the Riemann sphere, and we have to cut the
spheres on three segments connecting the ramifications points. Gluing the sphere
together we obtain a torus with 3 handles.

Suppose that the curve is of the form
= Z(x* +y* + 2.
On its affine part Ty = Z(2* +y* +1), w; = Z—? is a holomorphic differential. In fact

since y* = — (2% + 1) the function y has zeros on the points P; = (§;,0), j = 1,...,4
such that f;l 4+ 1 =0, and since it is a holomorphic function it has a pole of order
4 in the points at infinity. Then its divisor is div(y) = Zj.:l P; — Pp® — ... — Pp°.
Now consider dz, in a neighborhood of P, we can choose 7 = (x — &)7 as local

parameter, and we have dx = 473dr, so dx has zero of order 3 in any Pj. In a
neighborhood of the points at infinity we choose the local parameter u = £~ ', then

dx = —u"2du and dz has a pole of order 2 in any point at infinity. We conclude

that div(dz) = 3Y;_, P; — 2P — ... — 2P, and div(%) = 337, P; — 2(P° +

e PR) = 3(5, Py — P — .. = P{°) = P® + ...+ P;°. The divisor of %
dz zdx

is positive, so the differential is holomorphic. Similarly LT are holomorphic

U2
Y2y
differentials, and since g = 3, {‘;—?, Z—i, %} is a basis of the canonical linear system.

The canonical map has the form
1 x
b : T — P? (x,y)H[Zzl:g]:[lzy:x],

and in homogeneous coordinates ¢x(z,y,2) = [z : y : z]. Clearly the canonical
map is the identity modulo an automorphism of P2.

Now we want to prove that I" is a non hyperelliptic surface. Suppose that there ex-
ists a morphism f : I' — P! of degree 2. This morphism correspond to an effective
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divisor D on I" with deg(D) = 2 and h°(D) = 2. By Riemann-Roch theorem on D
we have
h’(D) — k(K — D) = deg(D) — g+ 1 =0.

Then h°(D) = h°(K — D) i.e. D is in the base locus of the canonical linear system
|K|. A contradiction since for g > 2 the linear system |K| has no base points. In
fact dim|K| = g — 1 and since I is not rational we have dim|P| =0 for any P € T,
and by Riemann-Roch we find dim|K — P| =29 — 3 — g+ 1 = g — 2. This means
exactly that |K| has no base points.

Now let I' be any non hyperelliptic surface of genus ¢ = 3. The canonical divi-
sor K of I' has degree deg(K) = 29 —2 = 4 and dimension h'(K) = 3. Furthermore
since T is non hyperelliptic of genus g = 3 > 2, then | K| is very ample. We conclude
that | K| induces an embedding (the canonical embedding)

b : T — P(HY(K)*) = P?,

and so any non hyperelliptic Riemann surface of genus g = 3 can be realized as a
smooth quartic curve in P2.

EXERCISE 0.2. Let B = (Bjj) be a symmetric g x g matrix with negative-definite
real part. A Riemann theta function is defined by

1
0(z) = 0(z|B) = _ exp(5; <BN,N >+ <N,z >),

NeZ9

where g
<BN,N>=) "

s

BjiN;Ni, < N,z >= ijl Nz,

k=1
In particular for g = 1 we obtain

oo bn?
0(z) = an?m exp(T +nz),

where b is a complex number such that RE(b) < 0.

Let T be a compact Riemann surface of genus g and let v = (v1,...,v,4) be the
normalized basis of holomorphic differentials with respect to a canonical homology
basis. Let B the corresponding period matrix. Suppose 6(e, B) = 0, where e € C9,
and consider the function

P P

Py =6([ v-eB)([ vieB) PP
Py P

where we assume that H(f;; v —e, B) and O(fpi v + e, B) are not identically zero.

For P = P, we have f(P;) = 0(—e) = 0(e) = 0 since 0 is a even function, and for

P =P, f(P)=10(e) =0.

We know that the function H(flfl v — e, B) has g zeros on T, so f(P) has 2g zeros

on I

We have that
P

P
dw(e(/ v—¢)) =P+ D, dw(e(/ vie) =P+ D,

P1 P2

where D, D" are positive divisor of degree g—1. Nowe =D — A and —e = D —A,
where D+ D" =2A = K. So

P P
div(@(/P v—e,B)@(/P v+e,B)) =P+ P, + H(P),
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for some holomorphic differential H(P) independent from P; and Ps.
Consider now the case P, = P, we can write

9(/Pu —e)e(/Pv+e) = (P - P)?H(P)?

Py P

we denote F(P) = Q(fg v — e)@(flfl v+ e) and then

F(P)
H(P)? = ——_.
The Taylor expansion of F' in a neighborhood of P; is in the form
OF 102F , 1O3F .
F(P)_F(H)*‘ﬁ(Pl)(P—Pl)*'gﬁ(Pl)(P—Pﬁ +6ﬁ(P1)(P—P1) o

but P is a double zero of F, so F(P) = 1 22;; (PQ(P—PQ%—%%(H)(P—P1)3+...,
and

10%F
2 _ =
H(P = 55 (Py).
We have that 2%5 (P)=2(37_, ffazgk (e)v(P1))?. We conclude that
H(P)? = (E - (e)up(P))?, VP €T
k=1 0z ’ ’

and

2P =3 L um).

k=1 Oz,
Consider now the Riemann Surface I' given by the equation

y? = (z—u1)(z — ug)(z — ug)(x — ua)(z — us) (z — ug),

and set Q; = (u;,0). The Q; are the branch points of the surfaces, clearly T is a
hyperelliptic surfaces of genus g = 2.
Let A = 2K be the Riemann divisor. The vector of Riemann constant kg, with
base point Qg takes the form
1 11
kg, = (570) + (57 §)B7

where B is the period matrix. Consider the Abel map with base point Qg,
P P
A:I‘—>J(F),P»—>(/ wl,/ wa),
6 6

where {w; = df,wg = %} is a basis of the holomorphic differentials.
Consider the divisor D = Q1 + Q3 + Q5 — Pso+ — Ps—. If b3 is a loop through Q5
and Qg, in the homology basis {a1, as, b1, ba} we have by = —by. Then

Ql 1 1
/ wlZ*(/wl-i-/wl-f-/wl):*/wh
Qs 2 bs as ba 2 as

similarly we have fQﬁg w, = % + %fbl wy and fQ: wy = %fbg wi. Computing the
same integrals on wy we find
A(D) = kg,
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so D is a representative for the Riemann divisor A.
We can see the previous fact from another viewpoint. Let 7 : ' — CP!, (z,y) — =,
be the projection. We know that

Kr = R + W*KCIF’lv

where R is the branch point divisor, in our case Ry = Q1+ Q2+ Q3+ Q4+Q5+Qs.
Since the canonical divisor of CP' is K¢p1 = —2P,, we have

Kr=Q1+ Q2+ Q3+ Qs+ Q5+ Q6 — 2P+ — 2P,
and since Q1 = Q2, Q3 = Q4, Q5 = Q¢ on I' we find
Kr =201 +2Q3 +2Q5 — 2P+ — 2P, -.
Finally since A = 2K we see that
A=Q1+ Q3+ Qs — P+ — Py
Let e = A(Qk) + kgs, k = 1,3,5,6. Consider e = ¢ + pB. For k = 6 clearly
e = kg, is a half integer odd characteristic. For kK =5 we have

1 1 1 1 1
M@ + Koy = (5+3 [ w3 [ @) =G0+ (G0

Note that < ¢,p >=< (%,0),(%,0) >= 1 = ¢ satisfies 4 = 1 mod(2), then (g, p)
is an half integer odd characteristic. Similarly one has that (g, p) is an half integer
odd characteristic for any £ =1, 3,5, 6.

Now consider the function f(P) with P, = Qg, P2 = @5,

P P
F(P) = e(/ v e,B)e(/ v+e, B).

Qs Qs
We know that f vanishes in @5, Qs and in other 2g — 2 = 2 points that are the
zeros of a holomorphic differentials.
Recall that For a non special divisor D = P; + ... + P, of degree g the function
F(P)=0(Ap,(P) — Ap,(D) — Kp,) has on I exactly g zeros P = Py, ...,P = P,.
In our case e = A(Qg)+kg, and O(fé; v—e) = 9([5; v—A(Qr)—kg,) has two zeros

Qr, Qs, and 9(f§5 v—e)= 9(]55 v—A(Qy) — kg,) has two zeros Q, Q5. Then the
differential H(P) = >"7_, aa—i(e)vk(P), is a holomorphic differentials with a double
zero in @y, so of the form

2 06 di
Zk:l aizk(e)vk(P) = (l‘ — uk)Q?'

Then 12 = 22:1 %(e)vk(P) is a holomorphic differential form on I', hence it is
a holomorphic section of the canonical line bundle wr = Or(Kr). Since A = 2K
we conclude that v is a holomorphic section of the Riemann line bundle Or(A)

associated to the Riemann divisor.

EXERCISE 0.3. Consider the curve

F:{(27w)€C2|w5:H5

k=1

(Z - zk)}7

and let Q = (2, 0) be its branch points.
The map 7 : I' — P! is a 5-sheet covering of the Riemann Sphere, the covering is
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ramified on each @ and the index of ramification is 4. So the ramification divisor
has degree deg(R) = 4 x 5 = 20. By Riemann-Hurwitz formula we have

deg(R
o B0 iy

and in our case gr =10 — 5+ 1 =6.

The compactification of T' in P? is given by the equation
5
5 _ —
W5 = szl(z Xz),

where w = % and z = % In this way I is realized as a smooth curve of degree 5
in P2, and using the genus formula we recover gr = 1(5 —1)(5 — 2) = 6.

Definition 0.4. A point P of a Riemann surface I" of genus ¢ is called a Weierstrass
point if {(kP) > 1 for some k < g. Where [(kP) denotes the dimension of the linear
system |kP|.

Suppose that z is a local parameter for a Riemann Surface I' of genus ¢ in a
neighborhood of a point Py € T', such that z(FPy) = 0. Assume that locally the
basis of holomorphic differentials has the form w; = a;(2)dz, j =1,...,g. Consider
the determinant

/ -1
a1(z) ay(z) ... agg )(z)
W(z) = det _ : : E

/ -1
ag(2) ay(x) .. o’ V(z)
Then the point Py is a Weierstrass point if and only if W(z(Fy)) = W(0) = 0. Let
us define the weight of a Weierstrass point P as the multiplicity of zero of W(z)
at this point. The total weight of all Weierstrass points on a Riemann surface I' of
genus g is equal to (g — 1)g(g + 1).
In our case a basis of the holomorphic differentials is given by

dz dz dz zdz zdz 2%dz
R e

Computing the zeros of W(z) we found that the Weierstrass points are exactly the
Q. each of weight 42. The total weight is 42 x 5 =210 = (g — 1)g(g + 1).

Consider now the abelian differential on I', and the basis of H'(I") given above.
Let 7 : T — CP!, (2,w) — z, be the projection and {Pf°,..., P} = 7 1(c0),
Qr = (21,0), k =1,...,5 be the branch points, and Q; = (0,&), k = 1,...,5 be the
points on I' with z = 0. Then we have:

o div(z) = @+...+@—Pf°—...—Pg°7

OdZU< ) 1—|— +Q5—P1 — —POO,

o div(dz) =4Q1 + ... +4Q5 — (Pl ) — (P)2.
The divisors of the holomorphic differentials are given by:

o div(gx) = (P{°)° + ..+ (P5°)?,

o div(%) = Q1+ 4+ Qs+ PR+ .+ PEe,

o div(L)=Q3+..+ Q%
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o div(2%) = Q1+ ...+ Qs+ P° + ... + P5°,
o div(3%) = Qi+ ..+ Q5+ Q1 + ... + Qs,

. —2 —
. dzv(zfu‘flf) =Q1 +...+Q5 .
Recall that a divisor D on I is said to be special when (K — D) =0 i.e.

QD) ={w]|w e Q, diviw) > D} =0,

in other words when there are not holomorphic differentials vanishing on D.
Consider now the divisors supported on the branch points. Clearly there are no
holomorphic differentials vanishing on the divisors of the type D = Q; + 2Q; +
3Qk, 1 # j # k, since the maximum order of @y as zero of a holomorphic differentials

in 2. On the other hand for any other divisors of degree 6 supported on the branch
points we have only three possibilities:

D =2Q; +2Q; +2Qk, D =2Q; +2Q; + Q.+ Q1, D =2Q; + Q; + Qk + Q1 + Q.
Clearly for any divisor D of the previous type we can find a holomorphic differentials
vanishing on D. We conclude that the divisors of the form D = Q; +2Q; +3Q), are
not special, and that any other divisor of degree 6 supported on the branch points
is special.
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