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Abstract

We explain Fermat’s classical criterion: an odd prime p is a sum of two squares if and only if
p ≡ 1(mod 4). After a quick modular warm-up accessible to high-school students, we present the
parity-of-fixed-points principle for involutions, state Zagier’s one-sentence proof, and give its
geometric “windmill” interpretation.

1 The question
A few examples:

5 = 12 + 22, 13 = 22 + 32, 17 = 12 + 42, 29 = 22 + 52.

But 3, 7, 11, 19 stubbornly refuse to be written as a2 + b2. What is the hidden pattern?

2 Squares mod 4
Lemma 1 (Squares mod 4). For any integer n, one has n2 ≡ 0 or 1(mod 4).

Proof. If n is even, n = 2k so n2 = 4k2 ≡ 0(mod 4). If n is odd, n = 2k + 1 so n2 = 4k(k + 1) + 1 ≡ 1
(mod 4).

Proposition 1 (A quick necessary condition). If an odd prime p can be written as p = a2 + b2,
then p ≡ 1(mod 4).

Proof. By the lemma, each square is 0 or 1(mod 4), hence a2 + b2 ≡ 0, 1, or 2(mod 4). So a2 + b2

can never be 3(mod 4). An odd prime is not 0 or 2(mod 4), so only 1(mod 4) remains.

3 The theorem
Theorem 1 (Fermat’s Two-Squares Theorem for primes). Let p be an odd prime. Then

p = a2 + b2 for some integers a, b ⇐⇒ p ≡ 1 (mod 4).

We already proved the “only if” direction (the easy half). The surprise is the converse: every
prime p ≡ 1(mod 4) is a sum of two squares.
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4 A combinatorial principle: involutions and parity
Definition 1. An involution on a set S is a function f : S → S such that f(f(s)) = s for all s ∈ S.
A fixed point is an element s with f(s) = s.

Proposition 2 (Counting in pairs). If S is finite and f : S → S is an involution, then

|S| ≡ #Fix(f) (mod 2).

In particular, if |S| is odd, then f has at least one fixed point.

Proof. Every element of S is either a fixed point or belongs to a 2-cycle {s, f(s)} with s ≠ f(s). So
S is partitioned into disjoint pairs plus fixed points, and the parity statement follows.

5 Zagier’s one-sentence proof
Fix a prime p ≡ 1(mod 4). Write p = 4k + 1.

5.1 The key finite set

Consider
S =

{
(x, y, z) ∈ N3 : x2 + 4yz = p

}
.

This set is finite: x2 ≤ p so x ≤ ⌊√
p⌋, and then yz ≤ p/4 gives only finitely many possibilities.

5.2 Two involutions on the same set

There are two involutions on S:

(1) The obvious swap involution

τ(x, y, z) = (x, z, y).

Its fixed points are exactly the triples with y = z, i.e. (x, y, y).

(2) Zagier’s involution σ : S → S defined by

σ(x, y, z) =


(x + 2z, z, y − x − z) if x < y − z,

(2y − x, y, x − y + z) if y − z < x < 2y,

(x − 2y, x − y + z, y) if x > 2y.

One checks (a fun algebra exercise) that σ is well-defined on S and that σ(σ(x, y, z)) = (x, y, z).
Zagier proved that σ has exactly one fixed point, namely (1, 1, k). Therefore #Fix(σ) = 1 is

odd, hence |S| is odd by the parity principle. But then the other involution τ must also have an
odd number of fixed points, in particular at least one. So there exists (x, y, y) ∈ S, i.e.

p = x2 + 4y2 = x2 + (2y)2,

which is a representation of p as a sum of two squares.

2



6 Windmills: a picture for triples p = x2 + 4yz

Given a triple (x, y, z) ∈ S, think of p = x2 + 4yz as an area decomposition:
• a central square of area x2;

• four congruent rectangles, each of area yz, arranged like a “windmill” around the square.

6.1 A windmill diagram

The exact geometry is not unique; what matters is that the total area is x2 + 4yz and that rotating
the picture cyclically corresponds to permuting the arms.

x × x

y

z

x

Total area = x2 + 4yz
(four rectangles of area yz)

Figure 1: A “windmill” for a triple (x, y, z) with p = x2 + 4yz.

Swapping y and z corresponds (morally) to turning each rectangle y × z into a z × y rectangle.
A fixed point of τ is a configuration with y = z, i.e. each arm is a square.

x2

If y = z, then p = x2 + 4y2 = x2 + (2y)2.

Figure 2: A symmetric windmill (y = z) directly yields a sum of two squares.
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6.2 What Zagier’s involution does (conceptually)

Zagier’s map σ is an algebraic rule that (geometrically) “slides” and “re-centers” the largest possible
square you can recognize inside the windmill, then reinterprets the leftover area as a new windmill.
Doing this twice brings you back where you started, so it is an involution. Its unique fixed point is
the most rigid windmill of all: the one coming from (1, 1, k).

7 A worked example
Take p = 29 = 4 · 7 + 1. Start from the special triple (1, 1, 7) ∈ S since 12 + 4 · 1 · 7 = 29. Zagier’s
proof guarantees that some triple in S has y = z, hence must be of the form (x, y, y) with

29 = x2 + 4y2 = x2 + (2y)2.

A quick check finds 29 = 52 + 22 (so x = 5, 2y = 2).

8 Turning the proof into an algorithm
A beautiful enhancement (not needed for existence) is that alternating the two involutions,

(x, y, z) 7−→ σ(x, y, z) 7−→ τ(σ(x, y, z)) 7−→ σ(τ(σ(x, y, z))) 7−→ · · ·

starting from (1, 1, k), eventually lands on a τ -fixed point (x, y, y), producing p = x2 + (2y)2.
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