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Chapter II - Schemes

1 - Sheaves

Exercise 1.8. For any open subset U ⊆ X, show that the functor Γ(U,−) from sheaves on X to abelian
groups is a left exact functor, i.e. if

0 7→ F ′ φ→ F ψ→ F ′′

is an exact sequence of sheaves, then

0 7→ Γ(U,F ′) φ(U)→ Γ(U,F ) ψ(U)→ Γ(U,F ′′)
is an exact sequence of groups.

PROOF. Since φ is an injective morphism of sheaves, φ(U) is injective for any open subset
U ⊆ X. So it is enough to prove that

Im(φ(U)) = ker(ψ(U))

for any U ⊆ X. Since

0 7→ F ′ φ→ F ψ→ F ′′

is exact, the induced sequence on stalks

0 7→ F ′p
φp→ Fp

ψp→ F ′′p

is exact for any p ∈ X. Let s ∈ Γ(U,F ′) be a section of F ′ on U, then ψp((φp)(sp)) = 0 for any
p ∈ U, that is ψ(φ(s))p = 0 for any p ∈ U. So for any p ∈ U there is an open neighborhood Up of
p in U such that ψ(φ(s))|Up = 0. So ψ(U)(φ(U)(s)) = 0 and Im(φ(U)) ⊆ ker(ψ(U)).

Now take v ∈ ker(ψ(U)), then for any p ∈ U there exits sp ∈ F
′
p such that φp(sp) = vp. Thus the

are an open covering {Ui} of U and sections si ∈ F
′
(Ui) such that φ(si) = v|Ui

. Now

φ(si|Ui∩Uj
) = v|Ui∩Uj

= φ(sj|Ui∩Uj
),

for any i, j, and since φ in injective we get

si|Ui∩Uj
= sj|Ui∩Uj

for any i, j. Since F ′ is a sheaf there is a section s ∈ F ′(U) such that s|Ui
= si for any i. Now, from

φ(s|Ui
) = v|Ui

for any i we get φ(U)(s) = v and ker(ψ(U)) ⊆ Im(φ(U)). ♠

Remark. The functor Γ(U,−) need not to be exact, if ψ : F → F ′′ is surjective the maps on
sections ψ(U) : F (U) → F ′′(U) need not to be surjective. So it make sense to consider its right
derived functors and to define the cohomology of a sheaf. If X is a topological space the category of
sheaves of abelian groups on X has enough injectives, that is any sheaf F on X admits an injective
resolution

0 7→ F → I0 → I1 → ...
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1 - SHEAVES 5

of injective sheaves I j. The cohomology groups of F are defined as Hi(X,F ) := hi(Γ(X, I•)).
Since any two resolution are homotopy equivalent the definition does not depend on the one we
choose.

Exercise 1.17. Skyscraper Sheaves. Let X be a topological space, let p be a point, and let A be an abelian
group. Define a sheaf ip(A) as follows: ip(A)(U) = A if p ∈ U, 0 otherwise. Verify that the stalk of ip(A)

is A at every point q ∈ {p}, and 0 elsewhere. Show that this sheaf could also be described as i∗(A), where
A denotes the constant sheaf A on the closed subspace {p}, and i : {p} → X is the inclusion.

PROOF. If U ⊆ X is an open subset and q ∈ U ∩ {p} then p ∈ U. In fact if p ∈ Uc then
{p} ⊆ Uc and {p} ∩U = ∅.
Take a point q ∈ {p}, then any open subset U ⊆ X containing q has to contain p. So ip(U) = A for
any open subset U containing q. The stalk ip(A)q is the direct limit

ip(A)q = lim−→
q∈U

ip(U) = lim−→
q∈U

A = A.

Now take q /∈ {p}, then there is a closed subset C containing p such that q /∈ C, so V = Cc is an
open subset containing q such that p /∈ U.
Since ip(V) = 0 any section s of ip(A) on V is zero and considering the stalk on q we have sq = 0
for any sq ∈ ip(A)q.
The direct image sheaf is defined as i∗(A)(U) := A(i−1(U)). If p ∈ U then i−1(U) = {p} and
i∗(A)(U) = A. If p /∈ U then i−1(U) = ∅ and ip(A)(∅) = 0. ♠

Remark. Let C be a smooth projective curve over a field k, and p ∈ C be a point. The ideal sheaf
Ip is the sheaf of regular function on X vanishing at p, it is the invertible sheaf OC(−p). We have
an exact sequence

0 7→ OC(−p)→ OC → Op 7→ 0.
The structure sheaf Op of the point p is a skyscraper sheaf. Its stalk is isomorphic to the base field
k on p and zero elsewhere.

Exercise 1.21. Some Examples of Sheaves on Varieties. Let X be a variety over an algebraically closed
field k. Let OX be the sheaf of regular functions on X.

(a) Let Y be a closed subset of X. For each open set U ⊆ X, let IY(U) be the ideal in the ring OX(U)
consisting of those regular functions which vanish at all points of Y ∩U. Show that the presheaf
U 7→ IY(U) is a sheaf. It is called the sheaf of ideals IY of Y, and it is a subsheaf of the sheaf of
rings OX .

PROOF. Let U ⊆ X be an open subset, and let {Ui} be an open cover of U. Consider
a collection of regular functions fi ∈ IY(Ui) such that fi|Ui∩Uj

= f j|Ui∩Uj
for any i, j. In

particular fi ∈ OX(Ui), and since OX is a sheaf there exists a regular function f ∈ OX(U)
such that f|Ui

= fi for any i. Let y ∈ Y ∩U be a point, then y ∈ Y ∩Ui for some i. Since on
Ui by construction f = fi, we have f (y) = fi(y) = 0. That is f ∈ IY(U). ♠

(b) If Y is a subvariety, then the quotient OX/IY is isomorphic to i∗(OY), where i : Y → X is the
inclusion, and OY is the sheaf of regular functions on Y.

PROOF. Restriction of regular functions

OX(U)→ i∗(OY)(U) = OY(Y ∩U), f 7→ f|Y∩U ,

gives a morphism of sheaves OX → i∗OY. By definition of IY the sequence

0 7→ IY → OX → i∗OY
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is exact. Let x ∈ X be a point. We distinguish two cases.
- If x /∈ Y then there is an open neighborhood Ux of x such that Ux ∩ Y = ∅, and the

stalk i∗OY,x is zero. So the morphism on the stalks

OX,x → i∗OY,x

is trivially surjective.
- If x ∈ Y and fy ∈ i∗OY,x there exists an open neighborhood Ux of x in X and a section

f ∈ i∗OY(Ux) representing fy. We can assume Ux to be affine, then the inclusion Ux ∩
Y → Ux corresponds to a surjection between the coordinate rings A(Ux) → A(Ux ∩
Y). So there exists a section s ∈ OX(Ux) restricting to f and again the morphism on
the stalks OX,x → i∗OY,x is surjective.

We conclude that the sequence

0 7→ IY → OX → i∗OY 7→ 0

is exact, and i∗OY ∼= OX/IY. ♠

(c) Now let X = P1, and let Y be the union of two distinct points p, q ∈ X. Then there is an exact
sequence of sheaves

0 7→ IY → OX → i∗Op ⊕ i∗Oq 7→ 0.

Show however that the induced map on global sections in not surjective. This show that the global
section functor Γ(X,−) is not right exact.

PROOF. In this case X = P1 is a complete variety over an algebraically closed field
k, then regular functions on X are constant, that is Γ(P1,OP1) = k. On the other hand
i∗Op ⊕ i∗Oq is a skyscraper sheaf supported on Y = {p, q}, so Γ(Y, i∗Op ⊕ i∗Oq) = k⊕ k.
Clearly a surjection k→ k⊕ k does not exist. ♠

(d) Again let X = P1, and let O be the sheaf of regular functions. Let K the constant sheaf on X
associated to the function field K of X. Show that there is a natural injection O → K. Show that
the quotient sheaf O/K is isomorphic to the direct sum of sheaves ∑p∈X ip(Ip) where Ip is the
group K/Op, and ip(Ip) denotes the skyscraper sheaf given by Ip at the point p.

PROOF. A regular function on an open subset U ⊆ X is a rational function f : U → k
such that on an open covering {Ui} of U the restricted functions f|Ui

are regular on Ui.
Then f defines a section in K(U). In this way we get an injective morphism O ↪→ K.
For any rational function f : U → k we can consider its image in the quotient K/Op for
any p ∈ U. So we have a morphism K → ∑p∈X ip(Ip) whose kernel clearly contains O.
To conclude we have to prove that the sequence

O → K → ∑
p∈X

ip(Ip)

is exact. Thus K/O ∼= ∑p∈X ip(Ip). On the stalk at q ∈ X the sequence is Oq → Kq →
(∑p∈X ip(Ip))q. Now it is enough to observe that Kq ∼= K, (∑p∈X ip(Ip))q ∼= K/Oq, and
the sequence

0 7→ Oq → K → K/Oq 7→ 0.
is exact. ♠

(e) Finally show that in the case of (d) the sequence

0 7→ Γ(X,OX)→ Γ(X,K)→ Γ(X,K/OX) 7→ 0

is exact.
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PROOF. The functor Γ is left exact, so it is enough to prove that Γ(X,K)→ Γ(X,K/OX)
is surjective.
Since K/OX ∼= ∑p∈X ip(Ip) we have to prove that given a rational function f ∈ K and
a point p there exists a rational function g ∈ K such that g ∈ Oq for any q 6= p and
g− f ∈ Op.
We can write f as a ratio of polynomials

f =
P(z)
Q(z)

=
∏(z− ai)

∏(z− bj)
= z−h ∏(z− ai)

∏(z− cj)
,

and assume p = 0 ∈ A1 ⊂ P1. If h ≤ 0 then f is regular in p, and g = constant will work.
If h > 0 write ∏(z− ai) = ∑i αizi, ∏(z− cj) = ∑i βizi and choose

g =
∑h

i=0 γi

zh ,

where the γi are defined recursively as γ0 = α0
β0

, γi =
αi−∑i−1

j=0 cj βi−j

β0
for i > 0. With these

choices g ∈ Oq for any q 6= p and g− f ∈ Op. ♠

Remark. With a bit more technology (e) can be solved easily as follows.
The exact sequence of sheaves

0 7→ OX → K → K/OX 7→ 0

yields the following exact sequence in cohomology

0 7→ Γ(X,OX)→ Γ(X,K)→ Γ(X,K/OX)→ H1(X,OX)→ ...

Now, it is enough to observe that, by Serre duality, on P1 we have

H1(X,OX) ∼= H0(X, ωX) = H0(X,OX(−2)) = 0,

being ωX ∼= OP1(−2) the canonical sheaf of P1.

2 - Schemes

Exercise 2.5. Describe Spec(Z), and show that it is a final object for the category of schemes, i.e. each
scheme X admits a unique morphism to Spec(Z).

PROOF. The ideals of Z are of the form I = (n), and prime ideals are of the form P = (p) such
that p ∈ Z is a prime integer. Furthermore there is a generic point corresponding to the ideal (0).
The closed subsets of Spec(Z) are of the form

D(n) = {(p) | p|n}.
The functors Spec and Γ are adjoint. If X is a scheme and A is a ring, there is a bijective correspon-
dence between morphisms X → Spec(A) and morphisms of rings A → Γ(X,OX). Recall that we
consider morphisms of rings with identity, so there is an unique morphism Z→ Γ(X,OX). ♠

Exercise 2.7. Let X be a scheme. For any x ∈ X, let Ox be the local ring at x, and mx its maximal
ideal. We define the residue field of x on X to be the field k(x) = Ox/mx. Now let K be any field. Show
that to give a morphism of Spec(K) to X it is equivalent to giving a point x ∈ X and an inclusion map
k(x)→ K.

PROOF. Assume to have a morphism ( f , f ]) : Spec(K) → X. Immediately we get a point
x = f (Spec(K)) ∈ X. Let Spec(A) be an open affine subset of X containing x, then x ∈ Spec(A)
corresponds to a prime ideal p. The morphism Spec(K) → Spec(A) induces a morphism of rings
α : A→ K whose kernel is p, finally α induces an inclusion Ap/pAp = k(x) ↪→ K.
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Fix a point x ∈ X and assume to have a morphism k(x)→ K. The topological space Spec(K) has a
unique point, given a point x ∈ X we get a continuous map

fx : Spec(K)→ X, Spec(K) 7→ x.

The sheaf fx∗(OSpec(K)) is a skyscraper sheaf whose stalk in x ∈ X is isomorphic to K. So to give a
morphism of sheaves

f ]x : OX → fx∗(OSpec(K))

is equivalent to giving for any open subset U ⊆ X containing x a natural morphism OX(U) → K.
We take this morphism to be the composition

Ox(U)→ OX,x → k(x)→ K.

♠

Exercise 2.8. Let X be a scheme. For any point x ∈ X, we define the Zariski tangent space Tx to X at x
to be the dual of the k(x)-vector space mx/m2

x. Now assume that X is a scheme over a field k, and let k[ε]/ε2

be the ring of dual numbers over k. Show that to give a k-morphism of Spec k[ε]/ε2 to X is equivalent to
giving a point x ∈ X, rational over k (i.e. such that k(x) = k), and an element of Tx.

PROOF. Let D = Spec k[ε]/ε2. Suppose to have a morphism

( f , f ]) : D → X.

We take x ∈ X to be the image via f of the unique point in D. The morphism induces an inclusion
k(x) → k. On the other hand, since f is a k-morphism, the inclusion has to be compatible with the
structure morphisms over k. So we have a chain of inclusions k ⊆ k(x) ⊆ k, and k(x) = k. The
induced morphism on the stalks f ]x : OX,x → k[ε]/ε2, maps the maximal ideal mx to the maximal
ideal (ε), so f ]x(m2

x) ⊆ (ε2). Then we get a k-morphism

mx/m2
x → k[ε]/ε2 → k.

Now, suppose to have a point x ∈ X with k(x) = k and a k-linear morphism L : mx/m2
x → k.

We consider the continuous map f : D → X mapping D to x ∈ X. Consider now the morphisms
ev : OX,x → k(x) = k, and

φ : OX,x → k[ε]/ε2, g 7→ ev(g) + L(g− ev(g))ε.

Note that g− ev(g) ∈ mx, and that φ is a k-linear ring homomorphism. Now for any open subset
U ⊆ X containing x we consider the composition

OX(U)→ OX,x → k[ε]/ε2.

This gives a morphism of sheaves f ] : OX → f∗OD. ♠

Remark. The meaning of the previous exercise is that to give a morphism of schemes Spec(k[ε]/ε2)→
X is equivalent to giving a k-rational point x ∈ X and a tangent direction to X at x. Suppose it is
given a moduli problem for a certain class of schemes, and let π : X → D by a family of these
scheme parametrized by D. Let X0 be the central fiber of this family. Suppose the moduli problem
is represented by a scheme M and let x0 ∈ M be the point corresponding to X0. Then to give mor-
phism from D to M sending D to x0 is equivalent to give a tangent direction of M at x0. Naively
speaking that’s why the scheme D is closely related to the concept of infinitesimal deformation and
tangent space to a moduli space.
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Exercise 2.16. Let X be a scheme, let f ∈ Γ(X,OX), and define X f to be the subset of points x ∈ X
such that the stalk fx of f at x is not contained in the maximal ideal mx of the local ring Ox.

(a) If U = Spec(B) is an open affine subscheme of X, and if f ∈ B = Γ(U,OX|U) is the
restriction of f , show that U ∩ X f = D( f ). Conclude that X f is an open subset of X.

PROOF. Let x ∈ U = Spec(B) be the point associated to the prime ideal p ⊂ B. The
maximal ideal of Ox is pBp. We have

x ∈ U ∩ X f ⇐⇒ f /∈ p⇐⇒ x ∈ D( f ).

Since for any affine open subset U ⊆ X the intersection U ∩ X f is open we conclude that
X f is open. ♠

Exercise 2.18. In this exercise, we compare some properties of a ring homomorphism to the induced
morphism of the spectra of the rings.

(a) Let A be a ring X = Spec(A), and f ∈ A. Show that f is nilpotent if and only if D( f ) is empty.

PROOF. We have, f n = 0 for some non negative integer n⇐⇒ f ∈ N =
⋂

p⊂A p⇐⇒
f ∈ p for any prime ideal p ⊂ A⇐⇒ p /∈ D( f ) for any prime ideal p ⊂ A. ♠

(b) Let φ : A → B be a homomorphism of rings, and let f : Y = Spec(B) → X = Spec(A) be
the induced morphism of affine schemes. Show that φ is injective if and only if the map of sheaves
f ] : OX → f∗OY is injective. Show furthermore in that case f is dominant, i.e. f (Y) is dense in
X.

PROOF. Take a point p ∈ Spec(A), the stalk ( f∗OSpec(B))p is B ⊗A Ap. If φ is in-
jective clearly the induced morphism (OSpec(A))p → ( f∗OSpec(B))p is injective for any
p ∈ Spec(A), that is f ] : OX → f∗OY is injective.
Conversely if f ] : OX → f∗OY is injective, then the induced morphism on the global sec-
tions Γ(X,OX)→ Γ(Y, f∗OY) is injective, but this morphism is exactly φ : A→ B.
Let U be the complement of f (Y) in X. The open subset U is covered by subsets of the
form D( f ), with f ∈ φ−1(p) for any p ∈ Spec(B). Then φ( f ) ∈ p for any p ∈ Spec(B), so
φ( f ) is nilpotent. Since φ is injective f is nilpotent and D( f ) = ∅. ♠

(c) With the same notation, show that if φ is surjective, then f is a homeomorphism of Y onto a closed
subset of X, and f ] : OX → f∗OY is surjective.

PROOF. The morphism φ induces a bijection between the prime ideals of B ∼= A/Ker(φ)
and the prime ideals of A containing Ker(φ). The preimage of the open subset D( f ) ⊆
Spec(A) is D( f +Ker(φ)) ⊆ Spec(A/Ker(φ)), so principal open subsets of Spec(A/Ker(φ))
are open in the image with respect the induced topology. So f : Y → X is continuous and
open, therefore it is an homeomorphism onto its image. Finally if φ is surjective, then the
induce morphism on the stalks Ap → B⊗A Ap is surjective. ♠

3 - First Properties of Schemes

Exercise 3.10.

(a) If f : X → Y is a morphism, and y ∈ Y a point, show that sp(Xy) is homeomorphic to f−1(y)
with the induced topology.
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PROOF. Let y ∈ Y be a point, and let k(y) be the residue field of y. We have an induced
morphism Spec k(y)→ Y. The fibre of the morphism f over y ∈ Y is the scheme

Xy = X×Y Spec k(y).

The continuous map induce by the morphism of scheme Spec k(y) → Y simply maps
g : Spec(k(y)) 7→ y. The underlying topological space of Xy is

sp(Xy) = {(x, ξ) | f (x) = g(ξ) = y} = f−1(y)

clearly the projection sp(Xy)→ f−1(y), (x, ξ) 7→ x is an homeomorphism. ♠

(b) Let X = Spec k[s, t]/(s− t2), let Y = Spec k[s], and let f : X → Y be the morphism defined
by sending s 7→ s. If y ∈ Y is a point a ∈ k with a 6= 0, show that the fiber Xy consists of two
points, with residue field k. If y ∈ Y corresponds to 0 ∈ k show that the fiber Xy is a nonreduced
one-point scheme. If η is the generic point of Y, show that Xη is a one-point scheme, whose residue
field is an extension of degree two of the residue field of η. (Assume k algebraically closed).

PROOF. The fibre is the spectrum of the tensor product

k[s, t]/(s− t2)⊗k[s] k[s]/(s− a) ∼= k[s, t]/(s− t2, s− a).

The fibre is the zero dimensional subscheme cut out on the parabola s = t2 by the line
s = a. If a 6= 0 this intersection consists of two distinct points with residue field k. On the
other hand, if a a = 0, the line s = 0 is tangent to the parabola at the origin. So the ring
of the fibre is k[t]/(t2), that is X0 is a nonreduced double point whose residue field is an
extension of degree 2 of the residue field of the generic point η ∈ Y. ♠

Exercise 3.11.
(a) Closed immersions are stable under base extension: if f : Y → X is a closed immersion, and if

X
′ → X is any morphism, then f

′
: Y×X X

′ → X
′

is also a closed immersion.

PROOF. Since both X and X
′

can be covered by open affine subsets, we can assume
X = Spec(A) and X

′
= Spec(B) to be affine. Since f is a closed immersion Y is an affine

subscheme of X, and we can write Y = Spec(A/I). Let φ : A → A/I be the morphism
induced by f . Consider f

′
: Spec(B⊗A (A/I))→ Spec(B). Now B⊗A (A/I) ∼= B/〈φ(I)〉,

so f
′

is a closed immersion. ♠

4 - Separated and Proper Morphisms

Exercise 4.2. Let S be a scheme, let X be a reduced scheme over S, and let Y be a separated scheme over
S. Let f and g be two S-morphisms of X to Y which agree on an open dense subset of X. Show that f = g.
Give examples to show that this result fails if either (a) X is nonreduced, or (b) Y is nonseparated.

PROOF. Let α : X → Y×S Y, x 7→ ( f (x), g(x)) be the diagonal morphism of f , g. Let U ⊆ X be
the open subset on which f|U = g|U . Consider the fiber product W = X×Y×SY Y and the following
diagram

U U

W X

Y Y×S Y∆

∆

α
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Note that since f and g agree on U we have α(U) ⊆ ∆(Y), so U ⊆ W is an open subset also in the
fiber product.
The morphism ∆ : Y → Y ×S Y is a closed immersion, since Y is separated over S, furthermore
closed immersion are stable under base change, so ∆ : W → X is a closed immersion as well. The
injection U ↪→ X factors through W which is a closed subset of X, and since U is dense we get
sp(W) = sp(X). Let V = Spec(A) ⊆ X be an open affine subset. The morphism ∆|V : W ∩V → V
is a closed immersion. So W ∩ V is a closed subscheme homeomorphic to V and determined by
an ideal I of A. The morphism Spec(A/I) → Spec(A) is injective, so I ⊆ N . On the other hand
I = N = 0 since A is reduced. So W ∩V = V for any V ⊆ X open affine, and this implies W = X
as schemes.
Now it is enough to recall that

W = {(x, y) | α(x) = ( f (x), g(x)) = ∆(y) = (y, y)} = {x | f (x) = g(y)}.

Since W = X we get f = g.

(a) Consider X = Y = Spec(k[x, y]/(x2, xy)) the affine line with the origin counted twice.
The scheme X is nonreduced, it has nilpotents at the origin. The identity Id : X → Y, x 7→
x, y 7→ y, and the morphism f : X → Y, x 7→ 0, y 7→ y mapping X on the affine line,
agree on a dense open subset of X but they differs at the origin. Indeed f kill the nilpotent
elements.

(b) Take X = A1 and Y = A1
01,02

be the affine line with two origins. Consider f1 : X → Y,
mapping x 7→ x for any x 6= 0 and 0 7→ 01 and f2 : X → Y, mapping x 7→ x for any x 6= 0
and 0 7→ 02. Clearly f1, f2 coincides on X \ {0} but f1 6= f2.

♠

Exercise 4.3. Let X be a separated scheme over an affine scheme S. Let U, V be open affine subsets of
X. Then U ∩V is also affine. Give an example to show that this fails if X is not separated.

PROOF. Consider the fiber product

W = U ∩V U ×S V

X X×S X

α

∆

Now, X is separated over S so ∆ is a closed immersion. Closed immersions are stable under base
change, then α is a closed immersion as well. Furthermore U ×S V is affine, being U, V, S affine,
and U ∩V is a closed subscheme of the affine scheme U ×S V. Then U ∩W has to be affine.
Take X = A2

01,02
the affine plane with doubled origin, U a copy of the affine plane, and V the other

copy of A2. Then U ∩ V = A2 \ {0}, and this is not affine. Suppose A2 \ {0} to be affine, then
A2 \ {0} ∼= Spec(A). In this case A is the ring of regular functions A ∼= Γ(A2 \ {0},OA2\{0}).
On the other hand the origin has codimension two in A2 and A2 is a normal scheme. So any
regular function on A2 \ {0} extends to a regular function on A2, that is A ∼= Γ(A2,OA2). So
A2 \ {0} = A2, a contradiction. ♠

Exercise 4.4. Let f : X → Y be a morphism of separated schemes of finite type over a noetherian
scheme S. Let Z be a closed subscheme of X which is proper over S. Show that f (Z) is closed in Y, and that
f (Z) with its image subscheme structure is proper over S.
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PROOF. Consider the commutative diagram

Z Y

S

f|Z

βα

Now, Z is proper over S, that is α is a proper morphism. So β ◦ f|Z = α is proper, furthermore β is
separated. We conclude that f|Z is proper by Corollary 4.8. Since any proper morphism is closed
f (Z) is closed in Y.
To prove that f (Z) is closed over S we will show that f (Z) → S is of finite type, separated, and
universally closed.
Since f (Z) is a closed subscheme of Y, and Y is of finite type over S we have that f (Z) is of finite
type over S.
Since f (Z) ↪→ Y is a closed immersion, and closed immersions are stable under base change,
f (Z)×S f (Z)→ Y×S Y is a closed immersion. Then f (Z)→ S is separated.
Let V be a scheme over S. Consider the following situation

V ×S Z Z

V ×S f (Z) f (Z)

V S

γ β

g f

Let R ⊆ V ×S f (Z) be a closed subset. Then g−1(R) is closed in V ×S Z. Furthermore (γ ◦
g)(g−1(R)) is closed in V being Z → S universally closed. Finally, being g surjective, we get
(γ ◦ g ◦ g−1)(R) = γ(R). Then γ(R) is closed in V. ♠

Exercise 4.9. Show that the composition of projective morphisms is projective.

PROOF. Consider the composition of two projective morphisms

X Y Z

Pn
Y Pm

Z

π2

f

π1

g

i j

where i, j are closed immersions, and π1, π2 are projections. Let Seg : Pn ×Pm → Pnm+n+m be the
Segre embedding. Considering the following diagram

X Pn ×Y Pn ×Pm × Z

Y Pm × Z Pnm+n+m × Z

Z

π1

i

π

Seg

j

g

f

Id×j

π2
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it is clear that g ◦ f factors as π ◦ (Seg ◦ (Id × j) ◦ i), and since Seg is a closed immersion, we
conclude that g ◦ f is projective. ♠

Remark. If X → Spec(k) is a scheme over a field k, the structure morphism is projective if it factors
through a closed immersion X → Pn

k . We recover the usual notion of projective scheme. As the
projective of a scheme over a field is related to the existence of an ample line bundle on X, the
projectivity of a morphism f : X → Y is related to the existence of a relatively ample line bundle
on X, that is a line bundle on X whose restriction to the fibers of f is ample.

5 - Sheaves of Modules

Let X be a scheme, and let F be a sheaf of OX-modules. For any open subset U ⊆ X, F (U) is
an OX(U)-module, and we can consider the sheaves associated to the presheaves

U 7→ TrF (U), SrF (U),
r∧
F (U).

These sheaves are respectively the tensor algebra, the symmetric algebra, and the exterior algebra of
F . If F is locally free of rank n then TrF , SrF ,

∧r F are locally free of rank nr, (n+r−1
n−1 ) and (n

r)
respectively. Consider an exact sequence

0 7→ F ′ → F → F ′′ 7→ 0

of OX-modules. For any r there is a finite filtration

r∧
F = F0 ⊇ F1 ⊇ ... ⊇ Fr ⊇ Fr+1 = 0

with quotients

Fp/Fp+1 ∼=
p∧
F ′ ⊗

r−p∧
F ′′

for each p. In particular

n∧
F ∼=

n
′∧
F ′ ⊗

n
′′∧
F ′′ .

This formula is very useful in a number of contests. As instance we can derive the adjunction
formula.

Exercise - Adjunction Formula. Let Y be a smooth subvariety of a smooth variety X. Consider
the exact sequence

0 7→ TY → TX → NY/X 7→ 0.

Taking exterior powers we get

n∧
TX ∼=

m∧
TY ⊗

n−m∧
NX/Y ⊗OX .

Then, on the canonical sheaves, we have

ωY ∼= ωX ⊗
n−m∧

Nˇ
X/Y ⊗OX ,

where n = dim(X) and m = dim(Y). In particular for a degree d hypersurface Y ⊆ Pn the
canonical sheaf is given by ωY ∼= OX(d− n− 1), being ωPn ∼= OPn(−n− 1).
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Exercise 5.1-(b), and a consequence. Let (X,OX) be a locally ringed space, and let E be a locally
free OX-module of finite rank. For any OX-module F ,

HomOX (E ,F ) ∼= Eˇ⊗OX F .

PROOF. For any U ⊆ X open subset we have to define a morphism

(HomOX (E ,OX)⊗F )(U)→ (HomOX (E ,F ))(U),

that is a morphism
Hom(E|U ,OX|U)⊗OX(U) F (U)→ Hom(E|U ,F|U).

Note that a section s ∈ F (U) yields a morphism

φs : OX|U → F|U , f 7→ s f .

We define our morphism as follows

Hom(E|U ,OX|U)⊗OX(U) F (U)→ Hom(E|U ,F|U), (ψ, s) 7→ φs ◦ ψ.

If E is locally free, then the stalk Ex is locally free, and the above morphism if clearly an isomor-
phism at the level of stalks.
In particular if E = F = L is a line bundle on X, then

Ľ ⊗OX L ∼= HomOX (L,L) ∼= OX .

The line bundle on a locally ringed space (X,OX) form a group called the Picard group of X and
denoted by Pic(X). ♠

Exercise 5.18. Let (X,OX) be a scheme. There is a one-to-one correspondence between isomorphism
classes of locally free sheaves of rank r on X and isomorphism classes of rank r vector bundle on X.

PROOF. Let π : E → X be a vector bundle on X. For any U ⊆ X open subset, consider the
OX(U)-module

Γ(U, E) := {σ : U → E | π ◦ σ = IdU}.
The correspondence U 7→ Γ(U, E) defined a presheaf E on X, and since E is a vector bundle E is
indeed a sheaf.
Let {Ui} be an open cover of X on which E trivializes. Then E|Ui

∼= Ui × kr, on the other hand the
sheaf of sections of Ui × kr is isomorphic to Or

X|Ui
. We conclude that E is locally free of rank r.

Now, let F be a locally free sheaf of rank r. There exists on open covering {Ui} of X, and isomor-
phisms φi : Or

X|Ui
→ F|Ui

. These induces on Ui,j isomorphisms

φi,j : Or
X|Ui,j

→ Or
X|Ui,j

represented by an r × r matrix with entries in OX(Ui,j). Since φi,j is invertible, the matrix Ax is
invertible for any x ∈ Ui,j. Then we get a morphism

gi,j : Ui,j → GL(kr).

The morphisms {gi,j} satisfies cocycle conditions, so we can construct the vector bundle F associ-
ated to the collection {gi,j}.
To conclude it is enough to observe that the assignments E  E and F  F are inverse to each
other. ♠
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