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Chapter II - Schemes

1 - Sheaves

Exercise 1.8. For any open subset U C X, show that the functor I (U, —) from sheaves on X to abelian
groups is a left exact functor, i.e. if

0—F SHrh F
is an exact sequence of sheaves, then
0t 7)Y rw, 5 Y rw, 7
is an exact sequence of groups.

PROOF. Since ¢ is an injective morphism of sheaves, ¢(U) is injective for any open subset
U C X. So it is enough to prove that

Im(p(U)) = ker(yp(U))
for any U C X. Since
0-F L rhr
is exact, the induced sequence on stalks
/ ¢p L/Jp "
0= F, = Fp = Fp

is exact for any p € X. Lets € T(U, F ) be a section of F on U, then ¥p((¢p)(sp)) = O for any
p € U, thatis »(¢(s))p, = 0 for any p € U. So for any p € U there is an open neighborhood U, of
p in U such that 1p(q>(s))|up =0.So¢p(U)(¢(U)(s)) =0and Im(p(U)) C ker(yp(U)).

Now take v € ker(y(U)), then for any p € U there exits s, € .7-";, such that ¢, (sp) = vp. Thus the
are an open covering {U;} of U and sections s; € F (U;) such that ¢(s;) = 0|y,- Now

¢(51|U,QLI]) = v|u,'ﬁu]' = 47(sj|ll,ﬂuj)r
for any i, j, and since ¢ in injective we get
Siju;nu; = Sjjunu;

for any i,j. Since F "is a sheaf there is a section s € F’ (U) such that s;, = s; for any i. Now, from
¢(s)y,) = o)y, for any i we get p(U)(s) = v and ker(p(U)) C Im(p(U)). [

Remark. The functor T'(U, —) need not to be exact, if ¢ : F — F is surjective the maps on
sections (U) : F(U) — F (U) need not to be surjective. So it make sense to consider its right
derived functors and to define the cohomology of a sheaf. If X is a topological space the category of
sheaves of abelian groups on X has enough injectives, that is any sheaf 7 on X admits an injective
resolution

0= F—=I0 51! — .
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1 - SHEAVES 5

of injective sheaves Z/. The cohomology groups of F are defined as H'(X, F) := hi(T'(X,Z*)).
Since any two resolution are homotopy equivalent the definition does not depend on the one we
choose.

Exercise 1.17. Skyscraper Sheaves. Let X be a topological space, let p be a point, and let A be an abelian
group. Define a sheaf i,(A) as follows: i,(A)(U) = Aif p € U, 0 otherwise. Verify that the stalk of i,(A)
is A at every point q € {p}, and 0 elsewhere. Show that this sheaf could also be described as i, (A), where
A denotes the constant sheaf A on the closed subspace {p}, and i : {p} — X is the inclusion.

PROOF. If U C X is an open subset and ¢ € U N {p} then p € U. In fact if p € U then

{p} CUand {p} NU = @.
Take a point g € {p}, then any open subset U C X containing ¢ has to contain p. So ip(U) = A for
any open subset U containing q. The stalk i, (A), is the direct limit

ip(A)g = liAu'p(U) =limA=A.

geu geu

Now take g ¢ {p}, then there is a closed subset C containing p such that g ¢ C, so V = C® is an
open subset containing g such that p ¢ U.
Since i,(V) = 0 any section s of i,(A) on V is zero and considering the stalk on g we have s; = 0
forany s; € iy(A),.
The direct image sheaf is defined as i.(A)(U) := A(i"'(U)). If p € U then i }(U) = {p} and
i.(A)(U) = A. If p ¢ U theni 1 (U) = @ and ip(A) (D) = 0. '
Remark. Let C be a smooth projective curve over a field k, and p € C be a point. The ideal sheaf
T, is the sheaf of regular function on X vanishing at p, it is the invertible sheaf Oc(—p). We have
an exact sequence

0= Oc(—=p) = Oc — Op = 0.

The structure sheaf O, of the point p is a skyscraper sheaf. Its stalk is isomorphic to the base field
k on p and zero elsewhere.

Exercise 1.21. Some Examples of Sheaves on Varieties. Let X be a variety over an algebraically closed
field k. Let Ox be the sheaf of regular functions on X.

(a) Let Y be a closed subset of X. For each open set U C X, let Iy (U) be the ideal in the ring Ox (U)
consisting of those reqular functions which vanish at all points of Y N U. Show that the presheaf
U — Zy(U) is a sheaf. It is called the sheaf of ideals Ty of Y, and it is a subsheaf of the sheaf of
rings Ox.

PROOF. Let U C X be an open subset, and let {U;} be an open cover of U. Consider
a collection of regular functions f; € Zy(U;) such that fi|LI,-ﬁU]- = fj\u,-muj for any i,j. In

particular f; € Ox(U;), and since Oy is a sheaf there exists a regular function f € Ox(U)
such that f;, = fi forany i. Lety € Y N U be a point, then y € Y N U; for some i. Since on
U; by construction f = f;, we have f(y) = fi(y) = 0. Thatis f € Zy(U). [

(b) If Y is a subvariety, then the quotient Ox /Ly is isomorphic to i,(Oy), wherei : Y — X is the
inclusion, and Oy is the sheaf of regular functions on Y.

PROOF. Restriction of regular functions
Ox(U) = ix(Oy)(U) = Oy(Y N U), f = fiynu,
gives a morphism of sheaves Ox — i,Oy. By definition of Zy the sequence

OHIy—)Ox—)i*Oy



(c)

(d)

(e)
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is exact. Let x € X be a point. We distinguish two cases.
- If x ¢ Y then there is an open neighborhood Uy of x such that U, NY = @, and the
stalk i, Oy , is zero. So the morphism on the stalks
()] X,x — i* Oy,x
is trivially surjective.
- Ifx € Yand f, € i.Oy  there exists an open neighborhood Uy of x in X and a section
f € i+Oy(Uy) representing f,. We can assume U, to be affine, then the inclusion U, N
Y — Uy corresponds to a surjection between the coordinate rings A(Uy) — A(Ux N
Y). So there exists a section s € Ox(Uy) restricting to f and again the morphism on
the stalks Ox , — 1. Oy, is surjective.
We conclude that the sequence

0—Zy - O0x = i,0y —0
is exact, and i, Oy = Ox/Zy. ')

Now let X = P, and let Y be the union of two distinct points p,q € X. Then there is an exact
sequence of sheaves

0—Zy — Ox = ix0p ® 1,04 — 0.

Show however that the induced map on global sections in not surjective. This show that the global
section functor I' (X, —) is not right exact.

PROOF. In this case X = P! is a complete variety over an algebraically closed field
k, then regular functions on X are constant, that is T’ (]Pl, Op1) = k. On the other hand
i+Op © 1. Oy is a skyscraper sheaf supported on Y = {p,q},soI'(Y,i.0, ®i.0y) = k® k.
Clearly a surjection k — k @ k does not exist.

Again let X = P!, and let O be the sheaf of regular functions. Let K the constant sheaf on X
associated to the function field K of X. Show that there is a natural injection O — K. Show that
the quotient sheaf O/ K is isomorphic to the direct sum of sheaves Y, x ip(Ip) where Ip is the
group K/ Oy, and iy(I,) denotes the skyscraper sheaf given by I, at the point p.

PROOF. A regular function on an open subset U C X is a rational function f : U — k
such that on an open covering {U;} of U the restricted functions f;; are regular on U;.
Then f defines a section in IC(U). In this way we get an injective morphism O — K.

For any rational function f : U — k we can consider its image in the quotient K/ O,, for
any p € U. So we have a morphism K — Y,cx ip(Ip) whose kernel clearly contains O.
To conclude we have to prove that the sequence

O—=K— ) i)
peX
is exact. Thus K/O 2 ¥ ,cxip(Ip). On the stalk at 4 € X the sequence is Oy — K; —
(Lpexip(Ip))g- Now it is enough to observe that K; = K, (Z,exip(Ip))q = K/Oy, and
the sequence
0— 0O - K—K/Oy—0.

is exact. Py

Finally show that in the case of (d) the sequence
0—TI(X,0x)—=T(X,K)=T(X,K£/O0x)—0

is exact.
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PROOF. The functor I'is left exact, so it is enough to prove that I'(X, K) — I'(X, £/ Ox)
is surjective.
Since K/Ox = Y pex ip(Ip) we have to prove that given a rational function f € K and
a point p there exists a rational function ¢ € K such that ¢ € O, for any g # p and
§—feOp
We can write f as a ratio of polynomials
fo P(z) _M(z—a) _ pll(z—a)
Q(z) TI(z—1b)) [1(z—¢))’
and assume p =0 € A! C P!, If h < 0 then f is regular in p, and g = constant will work.
Ifh > 0write [1(z — a;) = Y22, T1(z — ¢j) = ¥; Biz' and choose

_ Z?:o Yi
2
i—1
: ; i _ong o MThoGPi ;
where the 7; are defined recursively as yg = By Vi = B for i > 0. With these
choices g € Oy forany g # pand g — f € O). [ )

Remark. With a bit more technology (e) can be solved easily as follows.
The exact sequence of sheaves

0—O0Ox—>K—=>K/Ox—0
yields the following exact sequence in cohomology
0 I(X,0x) = T(X,K) = T(X,K/Ox) = H(X,Ox) — ..
Now, it is enough to observe that, by Serre duality, on P! we have
HY(X,0x) = H(X,wx) = H(X,0x(-2)) =0,

being wy = Op1(—2) the canonical sheaf of P!.

2 - Schemes

Exercise 2.5. Describe Spec(Z), and show that it is a final object for the category of schemes, i.e. each
scheme X admits a unique morphism to Spec(Z).

PROOF. The ideals of Z are of the form I = (n), and prime ideals are of the form P = (p) such
that p € Z is a prime integer. Furthermore there is a generic point corresponding to the ideal (0).
The closed subsets of Spec(Z) are of the form

D(n) = {(p) | pln}.
The functors Spec and I' are adjoint. If X is a scheme and A is a ring, there is a bijective correspon-
dence between morphisms X — Spec(A) and morphisms of rings A — I'(X, Ox). Recall that we
consider morphisms of rings with identity, so there is an unique morphism Z — I'(X, Ox). [ )

Exercise 2.7. Let X be a scheme. For any x € X, let Oy be the local ring at x, and my its maximal
ideal. We define the residue field of x on X to be the field k(x) = Ox/my. Now let K be any field. Show
that to give a morphism of Spec(K) to X it is equivalent to giving a point x € X and an inclusion map
k(x) — K.

PROOF. Assume to have a morphism (f, f#) : Spec(K) — X. Immediately we get a point
x = f(Spec(K)) € X. Let Spec(A) be an open affine subset of X containing x, then x € Spec(A)
corresponds to a prime ideal p. The morphism Spec(K) — Spec(A) induces a morphism of rings
a : A — K whose kernel is p, finally « induces an inclusion A, /pAy, = k(x) — K.
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Fix a point x € X and assume to have a morphism k(x) — K. The topological space Spec(K) has a
unique point, given a point x € X we get a continuous map

fx : Spec(K) — X, Spec(K) +— x.

The sheaf fr.(Ogpec(k)) is a skyscraper sheaf whose stalk in x € X is isomorphic to K. So to give a
morphism of sheaves

fﬁ:c1 :0x = fx*(OSpec(K))

is equivalent to giving for any open subset U C X containing x a natural morphism Ox(U) — K.
We take this morphism to be the composition

Ox(U) = Oxx — k(x) = K.
)

Exercise 2.8. Let X be a scheme. For any point x € X, we define the Zariski tangent space Ty to X at x
to be the dual of the k(x)-vector space my /m2. Now assume that X is a scheme over a field k, and let k[e] / €
be the ring of dual numbers over k. Show that to give a k-morphism of Speckl[e]/€? to X is equivalent to
giving a point x € X, rational over k (i.e. such that k(x) = k), and an element of Ty.

PROOF. Let D = Speck[e]/€?. Suppose to have a morphism

(f,f5:D— X

We take x € X to be the image via f of the unique point in D. The morphism induces an inclusion
k(x) — k. On the other hand, since f is a k-morphism, the inclusion has to be compatible with the
structure morphisms over k. So we have a chain of inclusions k C k(x) C k, and k(x) = k. The

induced morphism on the stalks fﬁ : Ox x — k[e]/€?, maps the maximal ideal my to the maximal
ideal (€), so fﬁ(mi) C (€?). Then we get a k-morphism

my/m2 — kle]/e? — k.

Now, suppose to have a point x € X with k(x) = k and a k-linear morphism L : m,/m2 — k.
We consider the continuous map f : D — X mapping D to x € X. Consider now the morphisms
ev: Oxy — k(x) =k, and

¢:Oxx — k[e]/ez, g ev(g)+L(g—ev(g))e.

Note that g — ev(g) € my, and that ¢ is a k-linear ring homomorphism. Now for any open subset
U C X containing x we consider the composition

Ox(U) — Ox, — kle]/€>.
This gives a morphism of sheaves f* : Ox — f.Op. [

Remark. The meaning of the previous exercise is that to give a morphism of schemes Spec(kle] /€2) —
X is equivalent to giving a k-rational point x € X and a tangent direction to X at x. Suppose it is
given a moduli problem for a certain class of schemes, and let 77 : X — D by a family of these
scheme parametrized by D. Let Xj be the central fiber of this family. Suppose the moduli problem

is represented by a scheme M and let xg € M be the point corresponding to Xy. Then to give mor-
phism from D to M sending D to xy is equivalent to give a tangent direction of M at xy. Naively
speaking that’s why the scheme D is closely related to the concept of infinitesimal deformation and
tangent space to a moduli space.
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Exercise 2.16. Let X be a scheme, let f € T'(X, Ox), and define Xy to be the subset of points x € X
such that the stalk fy of f at x is not contained in the maximal ideal wy of the local ring Oy.

(a) If U = Spec(B) is an open affine subscheme of X, and if f € B = I'(U, Oxu) is the

restriction of f, show that U N X¢ = D(f). Conclude that X; is an open subset of X.

PROOF. Let x € U = Spec(B) be the point associated to the prime ideal p C B. The
maximal ideal of O, is pB,. We have

xeUNXs <= f¢&p<=xeD(f)

Since for any affine open subset U C X the intersection U N X is open we conclude that
X is open. [ )

Exercise 2.18. In this exercise, we compare some properties of a ring homomorphism to the induced
morphism of the spectra of the rings.

(a) Let A bearing X = Spec(A), and f € A. Show that f is nilpotent if and only if D(f) is empty.

PROOF. We have, f" = 0 for some non negative integer n <= f € N' = ,c4 b <=
f € p for any prime ideal p C A <= p ¢ D(f) for any prime ideal p C A.

(b) Let ¢ : A — B be a homomorphism of rings, and let f : Y = Spec(B) — X = Spec(A) be
the induced morphism of affine schemes. Show that ¢ is injective if and only if the map of sheaves
ff: Ox — f.Oy is injective. Show furthermore in that case f is dominant, i.e. f(Y) is dense in
X.

PROOF. Take a point p € Spec(A), the stalk (f«Ogpec(p))p is B ®a Ap. If ¢ is in-
jective clearly the induced morphism (Ogpec(a))p = (f+Ospec(p))p i injective for any
p € Spec(A), thatis f* : Ox — f.Oy is injective.

Conversely if f* : Ox — f.Oy is injective, then the induced morphism on the global sec-
tions I'(X, Ox) — I'(Y, f.Oy) is injective, but this morphism is exactly ¢ : A — B.

Let U be the complement of f(Y) in X. The open subset U is covered by subsets of the
form D(f), with f € ¢~ !(p) for any p € Spec(B). Then ¢(f) € p for any p € Spec(B), so
¢(f) is nilpotent. Since ¢ is injective f is nilpotent and D(f) = @. [ )

(c) With the same notation, show that if ¢ is surjective, then f is a homeomorphism of Y onto a closed
subset of X, and f* : Ox — f. Oy is surjective.

PROOF. The morphism ¢ induces a bijection between the prime ideals of B = A/Ker(¢)
and the prime ideals of A containing Ker(¢). The preimage of the open subset D(f) C
Spec(A)is D(f + Ker(¢)) C Spec(A/Ker(¢)), so principal open subsets of Spec(A/Ker(¢))
are open in the image with respect the induced topology. So f : Y — X is continuous and
open, therefore it is an homeomorphism onto its image. Finally if ¢ is surjective, then the
induce morphism on the stalks A, — B ®4 A, is surjective. [ )

3 - First Properties of Schemes
Exercise 3.10.

(a) If f + X — Y is a morphism, and y € Y a point, show that sp(Xy) is homeomorphic to f~*(y)
with the induced topology.
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PROOF. Lety € Y beapoint, and let k(y) be the residue field of y. We have an induced
morphism Speck(y) — Y. The fibre of the morphism f over y € Y is the scheme

Xy = X xy Speck(y).

The continuous map induce by the morphism of scheme Speck(y) — Y simply maps
g : Spec(k(y)) + y. The underlying topological space of Xy, is

sp(Xy) ={(x, &) | f(x) =8(&) =y} =f ()

clearly the projection sp(X,) — f~1(y), (x,&) — x is an homeomorphism. [ )

(b) Let X = Speckl[s,t]/(s —t?), let Y = Speck|s], and let f : X — Y be the morphism defined
by sending s v s. If y € Y is a point a € k with a # 0, show that the fiber X, consists of two
points, with residue field k. If y € Y corresponds to 0 € k show that the fiber Xy is a nonreduced
one-point scheme. If 7 is the generic point of Y, show that X, is a one-point scheme, whose residue
field is an extension of degree two of the residue field of . (Assume k algebraically closed).

PROOF. The fibre is the spectrum of the tensor product
k[s,t]/ (s — t?) @5 k[s]/ (s —a) = k[s, t]/ (s — 2,5 —a).

The fibre is the zero dimensional subscheme cut out on the parabola s = #? by the line
s = a. If a # 0 this intersection consists of two distinct points with residue field k. On the
other hand, if a 2 = 0, the line s = 0 is tangent to the parabola at the origin. So the ring
of the fibre is k[t]/ (#?), that is X is a nonreduced double point whose residue field is an
extension of degree 2 of the residue field of the generic point7y € Y. ']

Exercise 3.11.
(a) Closed immersions are stable under base extension: if f : Y — X is a closed immersion, and if
X — Xis any morphism, then f/ .Y xx X — X is also a closed immersion.

PROOF. Since both X and X can be covered by open affine subsets, we can assume

X = Spec(A) and X' = Spec(B) to be affine. Since f is a closed immersion Y is an affine
subscheme of X, and we can write Y = Spec(A/I). Let¢ : A — A/I be the morphism

induced by f. Consider f : Spec(B® (A/1)) — Spec(B). Now B®4 (A/I) = B/ (¢(I)),
so f'is a closed immersion. 'y

4 - Separated and Proper Morphisms

Exercise 4.2. Let S be a scheme, let X be a reduced scheme over S, and let Y be a separated scheme over
S. Let f and g be two S-morphisms of X to Y which agree on an open dense subset of X. Show that f = g.
Give examples to show that this result fails if either (a) X is nonreduced, or (b) Y is nonseparated.

PROOE. Leta: X — Y xgY, x — (f(x),g(x)) be the diagonal morphism of f,g. Let U C X be
the open subset on which f|;; = g;. Consider the fiber product W = X Xy y Y and the following
diagram
—U
2 x

4

Re——ZI—C

><

A
—

><5Y
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Note that since f and g agree on U we have a(U) C A(Y), so U C W is an open subset also in the
fiber product.

The morphism A : Y — Y Xg Y is a closed immersion, since Y is separated over S, furthermore
closed immersion are stable under base change, so A : W — X is a closed immersion as well. The
injection U — X factors through W which is a closed subset of X, and since U is dense we get
sp(W) = sp(X). Let V = Spec(A) C X be an open affine subset. The morphism K‘V WNV >V
is a closed immersion. So W NV is a closed subscheme homeomorphic to V and determined by
an ideal I of A. The morphism Spec(A/I) — Spec(A) is injective, so I C N. On the other hand
I =N = 0since A is reduced. So WNV = V for any V C X open affine, and this implies W = X
as schemes.

Now it is enough to recall that

W={(xy) |a(x) = (f(x),8(x)) = Aly) = (v, y)} = {x[ f(x) = &)}
Since W = X we get f = g.

(a) Consider X = Y = Spec(k[x,y]/(x%, xy)) the affine line with the origin counted twice.
The scheme X is nonreduced, it has nilpotents at the origin. The identity Id : X — Y, x —
x, y — Yy, and the morphism f : X — Y, x — 0, y — y mapping X on the affine line,
agree on a dense open subset of X but they differs at the origin. Indeed f kill the nilpotent
elements.

(b) Take X = Aland Y = A(l)l’oz be the affine line with two origins. Consider f; : X — Y,
mapping x — x forany x # 0 and 0 — 0y and f, : X — Y, mapping x — x for any x # 0
and 0 — 0p. Clearly fi, f coincides on X \ {0} but f; # f>.

[ )

Exercise 4.3. Let X be a separated scheme over an affine scheme S. Let U,V be open affine subsets of
X. Then UNV is also affine. Give an example to show that this fails if X is not separated.

PROOF. Consider the fiber product

W=UNV ——UxsV

| |

XLXXSX

Now, X is separated over S so A is a closed immersion. Closed immersions are stable under base
change, then « is a closed immersion as well. Furthermore U xg V is affine, being U, V, S affine,
and U NV is a closed subscheme of the affine scheme U xg V. Then U N W has to be affine.

Take X = A(zh,oz the affine plane with doubled origin, U a copy of the affine plane, and V the other

copy of A2. Then UNV = A?\ {0}, and this is not affine. Suppose A2\ {0} to be affine, then
A%\ {0} = Spec(A). In this case A is the ring of regular functions A = T(A?\ {0}, O a2\ (0})-
On the other hand the origin has codimension two in A? and A? is a normal scheme. So any
regular function on A2\ {0} extends to a regular function on A2, that is A = T(A2,0p2). So
A?\ {0} = A?, a contradiction. (')

Exercise 4.4. Let f : X — Y be a morphism of separated schemes of finite type over a noetherian
scheme S. Let Z be a closed subscheme of X which is proper over S. Show that f(Z) is closed in Y, and that
f(Z) with its image subscheme structure is proper over S.
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PROOF. Consider the commutative diagram
fiz
L ——Y
X %

S
Now, Z is proper over S, that is « is a proper morphism. So f o f|; = a is proper, furthermore f is
separated. We conclude that f, is proper by Corollary 4.8. Since any proper morphism is closed
f(Z)isclosedin Y.
To prove that f(Z) is closed over S we will show that f(Z) — S is of finite type, separated, and
universally closed.
Since f(Z) is a closed subscheme of Y, and Y is of finite type over S we have that f(Z) is of finite
type over S.
Since f(Z) — Y is a closed immersion, and closed immersions are stable under base change,

f(Z) xs f(Z) = Y xgY is a closed immersion. Then f(Z) — S is separated.
Let V be a scheme over S. Consider the following situation

VxsZ —— 7

gl Jf
Vxs f(Z) —— f(Z)

gl |

V—S

Let R C V xs f(Z) be a closed subset. Then ¢~!(R) is closed in V xg Z. Furthermore (7 o
¢)(g71(R)) is closed in V being Z — S universally closed. Finally, being ¢ surjective, we get
(yogog 1) (R) = ¥(R). Then ¥(R) is closed in V. ')

Exercise 4.9. Show that the composition of projective morphisms is projective.

PROOF. Consider the composition of two projective morphisms

f 8

X—Y —Z

il

Py 7

where i, j are closed immersions, and 711, 715 are projections. Let Seg : P" x P — P11 be the
Segre embedding. Considering the following diagram

i Idxj
X P*xY P" x P" x Z
Seg
m
f
Y ! P™ x Z lljnm+n+m x 7

~

Z
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it is clear that g o f factors as 71 o (Seg o (Id x j) o i), and since Seg is a closed immersion, we
conclude that g o f is projective. [

Remark. If X — Spec(k) is a scheme over a field k, the structure morphism is projective if it factors
through a closed immersion X — IP{. We recover the usual notion of projective scheme. As the
projective of a scheme over a field is related to the existence of an ample line bundle on X, the
projectivity of a morphism f : X — Y is related to the existence of a relatively ample line bundle
on X, that is a line bundle on X whose restriction to the fibers of f is ample.

5 - Sheaves of Modules

Let X be a scheme, and let F be a sheaf of Ox-modules. For any open subset U C X, F(U) is
an Ox(U)-module, and we can consider the sheaves associated to the presheaves

U~ T"F(U), SFU), /\]—"(U).

These sheaves are respectively the tensor algebra, the symmetric algebra, and the exterior algebra of
F. If F is locally free of rank n then T"F, S'F, A" F are locally free of rank n’, ("/"71) and ()
respectively. Consider an exact sequence

0= F - F—=F =0

of Ox-modules. For any r there is a finite filtration

;
NF=F2F 2. .2F2F"=0

with quotients
p / rip /!
FP/FPY2 NF o \F

for each p. In particular

n n/ n//
/ Z
NF=ANFoNF.
This formula is very useful in a number of contests. As instance we can derive the adjunction
formula.

Exercise - Adjunction Formula. Let Y be a smooth subvariety of a smooth variety X. Consider
the exact sequence

0 Ty —+ Tx — Ny,x — 0.

Taking exterior powers we get

n m n—m
/\TXE/\TyQ@ /\ Nx,y ® Ox.

Then, on the canonical sheaves, we have
n—m

wy Zwx® [\ Ny,y©O0x,

where n = dim(X) and m = dim(Y). In particular for a degree d hypersurface Y C P”" the
canonical sheaf is given by wy = Ox(d —n — 1), being wpn = Opn(—n —1).
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Exercise 5.1-(b), and a consequence. Let (X, Ox) be a locally ringed space, and let £ be a locally
free Ox-module of finite rank. For any Ox-module F,

Homo, (€, F) 2 € ®p, F.

PROOF. For any U C X open subset we have to define a morphism
(Homo, (€,0x) ® F)(U) = (Homo, (€, F))(U),
that is a morphism
Hom(f‘u, 0X|U) ®OX(U) ]:(U) — Hom(€|u,]:|u).
Note that a section s € F(U) yields a morphism

(Ps : Ox|u — ./_'.‘u, f — Sf.
We define our morphism as follows
Hom(&y, Ox|u) ®oyuy F(U) = Hom(Ey, Flu), (¥,5) = ¢so .

If € is locally free, then the stalk &, is locally free, and the above morphism if clearly an isomor-
phism at the level of stalks.
In particular if £ = F = L is a line bundle on X, then

£V®OX L= Homox(ﬁ,ﬁ) = Oy.

The line bundle on a locally ringed space (X, Ox) form a group called the Picard group of X and
denoted by Pic(X).

Exercise 5.18. Let (X, Ox) be a scheme. There is a one-to-one correspondence between isomorphism
classes of locally free sheaves of rank r on X and isomorphism classes of rank r vector bundle on X.

PROOF. Let m : E — X be a vector bundle on X. For any U C X open subset, consider the

Ox(U)-module
I'UE):={c:U—E|moo = Idy}.

The correspondence U +— I'(U,E) defined a presheaf £ on X, and since E is a vector bundle & is
indeed a sheaf.
Let {U;} be an open cover of X on which E trivializes. Then E|;;, = U; x k', on the other hand the
sheaf of sections of U; x k" is isomorphic to ng\lli' We conclude that £ is locally free of rank r.
Now, let F be a locally free sheaf of rank r. There exists on open covering {U;} of X, and isomor-
phisms ¢; : O}, . Fu;- These induces on Uj; j isomorphisms

X|u
. r 14
bij: Ox|u,-,j — Ox|ui,j
represented by an r x r matrix with entries in Ox(U;;). Since ¢;; is invertible, the matrix Ay is
invertible for any x € U; ;. Then we get a morphism
gi,j : u,',]‘ — GL(kr).
The morphisms {g;;} satisfies cocycle conditions, so we can construct the vector bundle F associ-
ated to the collection {g;;}.

To conclude it is enough to observe that the assignments E ~» £ and F ~- F are inverse to each
other. N
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