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Introduction

These notes collect a series of solved exercises for the course of Algebraic Geometry I, 1
gave at IMPA from August 4 to November 26, 2014. Most of them from the book Algebraic
Geometry by R. Hartshorne [Har]. Many others from the notes by Ph. Ellia [PhE].



CHAPTER 1

Affine varieties

Exercise 1. [Har, Exercise 1.1]

(a) The coordinate ring of the curve C = {y — x> = 0} C A? is given by
A(C) = klx,yl/(y — x*) = k[x, x*] = k[x].

(b) A(Z) = k[x,y]/(xy — 1) is isomorphic to the localization of k[x] at x. Let f :
A(Z) — k[x] be a morphism of k-algebras. Since x € A(Z) is invertible f(x) € k.
Therefore, f can not be an isomorphism.

(c) Let f(x,y) be an irreducible quadratic polynomial, and let F(X,Y, Z) be the de-
gree two homogeneous polynomial induced by f. Consider Fj;z_o; = F(X,Y,0).
This is a degree two homogeneous polynomial on IP1. Therefore, it has two roots
counted with multiplicity. If it has a double root this means that the line {z = 0}
is tangent to the conic C = {F = 0} in a point p € C. The conic C is isomorphic to
P!. Therefore C \ {p} = A!, and we recover (a).

If F(X,Y,0) has two distinct roots p,q, then C\ {p,q} = P\ {p,q} = A"\ {q}
and we are in case (b).

Exercise 2. [Har, Exercise 1.3] Consider Y = {x?> —yz = xz — x = 0} C A3. Then
Y={-y=z-1=0}U{x=y=0}U{x=2z=0},

and Y is the union of two lines and a plane irreducible curve of degree two. In particular,
the coordinate ring of each irreducible component is isomorphic to k(t].

Exercise 3. [Har, Exercise 1.5] Let B be a finitely generated k-algebra. Then we may

write B = k[xq, ..., x,]/I for some ideal I = (fi, ..., fr) in k[x1,..., x,]. Let X = {fi = ... =
fr =0} C A" Let f € I(X) then, by the Nullstellensatz we have f* € I for some k > 0.
Now, B does not have nilpotents, so f € I. Clearly I C I(X). This yields I = I(X) and
B = A(X).
Conversely, assume to have B = A(X) for some algebraic set X C A". Let I(X) be the
ideal of X. Then B = k[xi, ..., x,]/I1(X) is a finitely generated k-algebra. Let f € B be a
nilpotent element. Then f* = 0 for some k, that is f* € I. Since I is radical we get f € I,
thatis f = 0in B.

Exercise 4. [Har, Exercise 1.8] Let Y C A" be an affine variety of dimension r. Let
H C A" be an hypersurface such that Y is not contained in H and Y N H # @. Since Y
is not contained in H we have I(H) ¢ I(Y). Let f be the polynomial defining H. Then,
the irreducible components of Y N H corresponds to the minimal prime ideals of A(Y)
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6 1. AFFINE VARIETIES

containing f. Note that Y ¢ H implies that f is not a zero-divisor in A(Y). By the Haup-
tidealsatz any minimal prime ideal containing f has height one. Finally, by [Har, Theorem
1.8A] we get that the any irreducible component of Y N H has dimension dim(Y) — 1.

Exercise 5. [Har, Exercise 1.9] Let a C k[xy, ..., x,] be an ideal that can be generated by
r elements fi, ..., fr. Note that {f; = 0} defines an hypersurface for any i = 1,...,7. We
apply r times Exercise 1.8 and we distinguish two cases:
- at any step the variety Hy = {f1 = ...fx = 0} is not contained in the hypersurface
{fk+1 = 0}. Then at each step the dimension of the intersection drops by one. We
get that the dimension of each irreducible component of Yis n —r,
- if Hy is contained in {f;,1 = 0} for some k, then the intersection with { fy,; = 0}
will not drop the dimension. Then each irreducible component of Y has dimen-
sion greater than n —r.
In any case we have that the dimension of each irreducible component of Y is greater or
equal thann —r.

Exercise 6. [Har| Exercise 1.11] The curve Y is the image of the morphism

¢: A — A3
t o (8,14 1)

Note that since A! is irreducible Y is irreducible as well. Therefore I = I(Y) is prime. Fur-
thermore dim(Y) = dim(A(Y)) = 1 and by [Har, Theorem 1.8A] we get height(I(Y)) = 2.
Note that the three polynomials z> — x?y, xz — y? and yz — x> are in I(Y) and they are in-
dependent.

Let | = (22 — x%y,xz — y*,yz — x°) C I(Y). By [Kul, Page 138] we have that I(Y) = ] and
that we need three elements to generate I(Y).

Exercise 7. [Har| Exercise 1.12] Consider the polynomial
f=?—1+iy)(¥*—1—iy) =x* -2 +y* + 1.
Since R[x, y] C C[x, y] are unique factorization domains and f splits in C[x, y] as a product
of two irreducible polynomials of degree two, we conclude that f is irreducible in R]x, y|.

On the other hand, Z(f) = {(1,0),(—1,0)} is the union of two points. Therefore f €
R[x,v] is irreducible but Z(f) C A? is reducible.

Exercise 8. [PhE] Let M, (k) be the set of n X n matrices with coefficients in k. Prove
that
R,_1 = {A € M,(k) | rank(A) < n}

is an algebraic subset of M, (k) = A",
Prove thatif A, B € M,,(k) then AB and BA have the same characteristic polynomial.

The subset R,,_1 C A" is defined by the vanishing of finitely many polynomials. There-
fore it is an algebraic subset.
Let us assume that B is invertible. Then AB = B~!(BA)B, and

pag(A) = det(AI — B Y(BA)B) = det(AB~'IB— B~1(BA)B)
= det(B~!)det(Al — BA)det(B) = det(Al — BA) = pga(A).
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Now, A € Al, and for any matrix A the polynomials psp(A) and ppa(A) coincides on
an open subset of A™ x Al. Let Z be the closed subset defined in A" by det(B) = 0,
and let W = Z x A'. Then psp(A) and ppa(A) coincides on U = A" x A\ W. Since
pap(A) and pga(A) are regular function on A" x Al we conclude that they coincide, that
is pap = ppa for any pair of square matrices A, B.

Exercise 9. [PhE|] Let us consider the morphism
¢: Al = A3t (412, 1)
and let C = ¢(A?Y).
- Prove that C = Z(I), where I = (y — x2,z — x°).
- Prove that A(C) = k[x].
- Prove that C is smooth using the Jacobian criterion.
- Prove that C is not contained in any plane of A%, and that a general plane inter-
sects C in three distinct points.

- Prove that any line of A3 intersects C in at most two distinct points.
- Prove that C is a complete intersection.

3

Both y — x2,z — x® vanish on the points of the form (¢, #?,3). Any polynomial f = f(x,y,z)

can be written as

floy,z) = fily = 2%) + falz = %) +7(x).
If f(t,2,t3) = r(t) = 0forany t € Al thenr = 0, and f € I. This proves that I(C) =
(y — x2,z — x%). In particular, C = Z(I). Note that this proves the last point as well.
The morphism ¢ is an isomorphism onto its image C. Therefore C = A! and A(C) = k[x].
The Jacobian matrix of C is given by

€)= (5% 0 1)

Therefore, rank(Jac(C)) = 2 for any p € C, and C is smooth.

A plane I is given by a linear equation of the form ax 4 By + yz 4+ 6 = 0. Therefore, its
intersection with C is given by the solutions of at + t* + 4>+ = 0. Now, C C I1is and
only if at + > + yt3 + 5 = 0, thatisa = B = v = § = 0. We see also that for a general
I1 the equation at + Bt? + 1> + 6 = 0 has three distinct solutions, that is IT intersects C in
three distinct points.

Finally, assume that there is a plane IT intersecting C in four points. Then at + Bt + > +
0 = 0and C C IL This contradicts the fourth point.

Exercise 10. [PhE] Let C C A3 be a smooth, irreducible curve such that 1(C) = (£, g).
Prove that T,C = T,F N TG for any x € C, where F, G are the surfaces defined by f, g
respectively. In particular F and G are smooth and transverse along C.

Without loss of generality we can assume that x € C is the origin. The Jacobian matrix

e 0) Loy Lo
- _ [ %0 50 50
O <3§<O> 3%(0) 2 )
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Therefore, the tangent line TyC is given by the intersection of the two planes

ToF — {af(O)x+ I 0y + %L (0)z = 0},

ox ay 0z
_ [ 98 9 (1. _
oG = {ax(O)x+ Sow+E0:= o}.

Exercise 11. [PhE] Let X C A" be a reducible hypersurface and let X = X; U...U X, be
its decomposition in irreducible components. Prove that if x € X; N X; then x is a singular
point for X.

We may assume X = X; U Xp. If X = Z(f), X5 = Z(g) and X» = Z(h) we have f = gh.
Therefore
of th oh

o ox Sox
If x € X1 N X, then g(x) = h(x) = 0. Then %(x) =0foranyi=1,..,n,and x € X; UX>
is singular.



CHAPTER 2

Projective varieties

Exercise 1. [Har, Exercise 2.1] Consider a homogeneous ideal a C k[xo, ..., x,], and
f € k[xo, ..., x4] a polynomial such that deg(f) > 0 and f(p) = 0 for any p € Z(a). We
may interpret p = [ag : ... : a,] € IP" as the point (ay, ..., a,) € A", and the polynomials
f as a polynomial on A"*!. By the Nullstellensatz we have ¥ € a for some k > 0.

Exercise 2. [Har| Exercise 2.2] Let C,(Z(a)) be the affine cone over Z(a). Then I(C,(Z(a))) =
I(Z(a)).
(ovsl >% (a) = @ if and only if C;(Z(a)) C {(0,...,0)}. By the Nullstellensatz we have
1(Ca(2Z (a))) r(a). Now, we have two possibilities:
Co(Z(a)) = @ifand only if I(C,(Z(a))) = r(a) = k[xo, ..., Xn],
Ca(Z(a)) = {(0,.,0)} if and only if I(C,(Z(a))) = r(a) = B0 klx0, ., Xl
This proves (i) < (if). Now, let us prove (ii) = (iii). If r(a) = k[xo, ..., x»], then 1 € r(a).
So1l € aand a = k[xo,...,x,|. In particular S; C a for any d > 0. Now, assume r(a) =
@Di~0S4- Then x; € r(a) for any i = 0,...,,n. Therefore, for any i there exists k; such that
xff € a. Let m = max{k;}. Then x/" € aforany i = 0,...,n. Now any monomial of degree
d = m(n + 1) is divisible by x!" for some i. We conclude that S; C a, where d = m(n +1).
Finally we prove (iii) = (i). If S; C a for some d > 0, in particular x¢ € a for any
i =0,...,n. Now, it is enough to observe that Z(a) C Z((xo, LX) =@.

Exercise 3. [Har, Exercise 2.9] Let Y C A" be an affine variety. Consider the homeo-
morphism
¢o : =1pP" \ {xo =0} —> A"
X1 Xn

[xo . Xy — (2 )

Finally, let Y be the projective closure of Y.

Let F € I(Y), then f(y1,...,vn) = F(1,x0, ..., x) where y; = ;‘—(’) vanishes on Y = Y N Up.
We get that f € I(Y) and x}B(f) = F for some s. Therefore, F € (B(I(Y))), where f is the
homogeneization with respect to xo.

Now let F € B(I(Y)), then F = ¢1B8(f1) + ... + ¢&+B(fy) for some fi, ..., fr € I(Y), that is
F=gixg fi(3, o 32) + o + &g fr(3L, s §)- Hence F € I(Y).

Let Y C A3 be the affine twisted cubic. Then I(Y) = (x® — z, x> — y) while I(Y) = (xz —
y?, yw — z%, xw — yz). Note that I(Y) can not be generated by two elements because Y C IP3

is not a scheme-theoretic complete intersection.

Exercise 4. [Har| Exercise 2.10] Let Y C IP" be a non-empty algebraic set, and let C(Y)
be the affine cone over Y. Let p = (ap,...,a,) € C(Y) be a point. Then p represents the
point [ag, ..., a,] € Y. In particular f(p) = 0 forany f € I(Y). On the other hand if f € I(Y)

9



10 2. PROJECTIVE VARIETIES

is homogeneous then f vanished on any line joining the origin of A"*! and a point of Y,
because f is homogeneous. Then C(Y) = Z(I) is an algebraic set.

If f € I(C(Y)) and p € Y then f vanishes on the line in A"*! joining (0, ...,0) and p. Then
f € I(Y). Conversely, if ¢ € I(Y) we may write ¢ = g; + ... +- g; where g, is homogeneous
of degree r. Since I(Y) is homogeneous we have g, € I(Y) for any r. Furthermore, Y non-
empty implies that I(Y) does not contain constants, that us deg(g,) > 1 for any r. This
yields g(0, ...,0) = 0. So g € I(C(X)).

Now, C(Y) is irreducible if and only if I(C(Y)) is prime, if and only if I(Y) = I(C(Y)) is
prime, if and only if Y is irreducible.

Finally, we have

dim(C(Y)) = dim(A(C(Y))) = n+1 — height(I(C(Y))),
and
dim(Y) = dim(S(Y)) — 1 = n — height(I(Y)).
Therefore, height(I(C(Y))) = height(I(Y)) = n — dim(Y), and
dim(C(Y)) =n+1— (n —dim(Y)) = dim(Y) + 1.

Exercise 5. [Har, Exercise 2.11] If I(Y) = (L4, ..., Ly) where L; is linear for any i, then
H; = Z(L;) are hyperplanes and Y = N*_, H;. Conversely, if Y = N*_, H; up to an auto-
morphism of P"” we may assume H; = Z(x;). Then I(Y) = I(N_, H)) = (x1, ..., x¢).
Let Y be a linear subspace of dimension r. Then Y is an intersection of hyperplanes. Inter-
secting with an hyperplane drops the dimension at most by one. Since dim(Y) = r then
Y is the intersection of at least n — r hyperplanes. We may assume that n — r of them are
Z(x;) fori=1,..,n —r. Then Y is the intersection of at least n — r hyperplanes and I(Y) is
generated by n — r linear polynomials.
Let Y, Z be linear varieties in IP" of dimension r,s. Then Y is intersection of n — r hyper-
planes and Z is intersection of n — s hyperplanes. Therefore I(Y N Z) is generated by at
most 2n — r — s linear polynomials. Then Y N Z is linear and dim(YNZ) >n— (2n —r —
s)=r+s—n.

Exercise 6. [Har, Exercise 2.13] Let Y be the image of the Veronese embedding

v : P? — P>
[x0:x1:x2] — [x% D X0X1 : X0X2 ¢ x% D XX x%]

Let Z C Y be curve. Then f~1(Z) = C C IP? is a plane curve. Therefore, C = Z(f) where
f € k[xo, x1, x2]4 is a homogeneous polynomial. Then f? is a homogeneous polynomial of
degree 2d on P2. Let Xy, ..., X5 be homogeneous coordinates on P°. Then f (x%, .y x%) =
F(Xo, ..., X5) is a homogeneous polynomial of degree d on P°>, and Y N Z(F) = Z.

For instance let Z be the image of the line C = {xp = 0}. Then F = x = Xy, and Z =
Y NZ(Xp). Note that Z is a conic and since deg(Y) = 4 we have deg(Y N Z(Xy)) = 4. Then
Z = YN Z(Xp) set-theoretically. Indeed, scheme-theoretically the intersection Y N Z(Xy)
is twice Z.
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Exercise 7. [Har, Exercise 2.16] On the affine chart w = 1 we have the equations x> —

y,xy = z, thatis y = x%,z = x3. The points in the intersection Q; N Q. N {w # 0} are of
the form (x, x2, %3, 1), and we get the twisted cubic. If w = 0 then x = 0, and we get the
line {x = w = 0}.

Let C be the conic {x?> — yz = 0} and L the line {y = 0}. Then C and L intersects in the
point p = [0: 0 : 1]. Now, I({p}) = (x,y) but x & I(C) + I(L). Therefore I(C) + I(L) #
I({p}). Note that L is tangent to C in p. Indeed I(CN L) = (x2,y).

Exercise 8. [Har, Exercise 2.17]

(@) Let Y = Z(a) C P" be a variety. Assume a = (fi,..., f3). If § = 1 the Y is an hy-
persurface, and dim(Y) = n — 1. Assume that the statement is true for 4 — 1, and
consider a = (fi,..., fa—1,f3) with fo & (fi,..., fa—1). Let X = Z((f1, ..., fa-1))-
By induction dim(X) > n — g + 1. Furthermore, since f, & (fi,..., fs—1) in-
tersecting X with the hypersurface Z(f;) drops the dimension by one. Then,
dim(Y) = dim(X N Z(f;)) > n —q.

(b) Let Y be a strict complete intersection. Then I(Y) = (fi,..., fu—r) Where r =
dim(Y). Let X; = Z(f;) be the hypersurface defined by f;. Then Y = (- X;
is a set-theoretic complete intersection.

(c) Let Y be the twisted cubic in P?. Assume I(Y) = (f,g). Then Y = Z(f) N Z(g)
scheme-theoretically. By Bézout’s theorem we have deg(Z(f)) - deg(Z(g)) =
deg(Y) = 3. Therefore, either deg(Z(f)) = 1 or deg(Z(g)) = 1. In any case
Y is contained in a plane. A contradiction.

Another way to see this fact is the following. In I(Y) there are not linear poly-
nomials because Y us not plane. On the other hand in I(Y) there are the three
independent quadratic polynomials xz — y2, yw — z%, xw — yz. Therefore I(Y) can
not be generated by two polynomials.

Now, consider the quadric surface Q given by

det(x y>:0
y z

and the cubic surface S given by

X Yy z
det|ly z w] =0
zZ W X

On a general point p = [u3 : u?v : uv? : v%] € Y we have Jac(Q)(p) = (uv?, —2u?v,u?,0)
and Jac(S)(p) = (v*(u* — v*), —2uv(u* — v*), u?(u* — v*),0). Therefore, T,Q =

T,S for a general point p € Y. This means that Q N S = Y set-theoretically. How-
ever, scheme-theoretically Q and S cut Y twice.

Exercise 9. [PhE] Let R, L C IP? be two skew lines. Let p < IP3 be a points such that
p & RN L. Prove that there exists a unique line L, such that p € L,, L, R # @ and
L,NL #@.
Now, let Ly, Ly, Ly C P2 be three, pairwise skew, lines. Then for any point p € L; there
exists a unique line L, such that p € L, L, N Ly # @ and L, N L3 # @. Prove thatif p # g



12 2. PROJECTIVE VARIETIES
then L,NL; = @. Let
Q= U L.

pely

Compute the dimension and the degree of Q.

Consider the plane H = (p,R). Since RN L = @ we have that L is not contained in
H. Therefore, HN L = {q}. The line L, = (p,q) intersects R as well because L, and R are
both contained in H. Assume there is another line R, with this property and consider the
plane IT = (L,,R,). Then L,R C IT,and LN R # @. A contradiction.

The dimension of Q is two because for any point p € L; we have a line L, in Q. Now,
quadric surfaces in IP® are parametrized by IP? = IP(k[xo, x1, X2, x3]2). A line L; is contained
in Q if and only if L; intersects Q in at least three points. Therefore, to force L1, Ly, L3 to be
contained in a quadric surface we get nine linear equations in the homogeneous coordi-
nates of IP?. We conclude that there is a quadric QcPp containing Ly, Ly, L3. Note that Q
can not be neither a double plane not the union of two planes because we have three skew
lines in Q. For the same reason Q can not be a quadric cone. Indeed all the lines contained
in a quadric cone pass through the vertex. Therefore Q is a smooth quadric. Assume there
is another quadric Q, containing L1, Ly, L3. Then any line T in Q intersecting L1, L, L3
intersects Q, in at least three points. Therefore T C Q,. This means that Q N Q, contains
a surface. However, Q and Q, are irreducible. Then Q = Q,. We conclude that given
three skew lines L1, Ly, L3 C IP? there exists a unique quadric surface QcP containing
L1, Ly, L3. Furthermore, Q is smooth, and in particular irreducible.

Now, any line L, intersects Q in at least three points. Then L, C Q for any p € L;. This
means that the surface Q is contained in Q. Since Q is irreducible we conclude that Q = Q.

Finally, deg(Q) = deg(Q) = 2.

Exercise 10. [PhE] Letx = [1:0:...: 0] € P" and H = {x¢ = 0}. The projection from
x on the hyperplane H is defined as

e P* ——s H=Prl
y — (x,y)NH

Prove that, if n > 2, it is not possible to extend 7t, on the whole of IP". Now, consider the
case n = 2 and the conic C = {x3 — xpx1 }. Prove that the restriction

7'(x|c :C--» ]Pl
can be extended on the whole of C.

We may try to extend 7, defining 71,(x) = z € H for some z € H. However, if n > 2
the extend map can not be continuous in x.

Since x = [1: 0: 0] € C is a smooth point there is a natural way to extend 7,(c : C --» P!,
that is considering T,C = {x; = 0}. We may define

me(x) = ThCN{xo =0} ={[0:0:1]}.
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Exercise 11. [PhE] Let S; = k[x, ..., xx]4 the k-vector space of degree d homogeneous
polynomials in 7 + 1 variables. Prove that

dim(S,) = <d + ”) .

n

Let us look at the case d = 1. Then dim(S;) = n + 1. On the other hand, if n = 0 we have
dim(S;) = 1 for any d. Therefore we may proceed by double induction on n and d. Note
that we have

k[xo, ey xn]d = k[xo, ey xn,l]d ) k[JC(), ey xn]d,l.

d4+n—1
n—1

= (177717 (1)

Exercise 12. [PhE] Let C C IP? be a smooth curve of degree d > 2. We define a mor-
phism

(d—rll—i-n)‘

By induction hypothesis dim (k[xo, ..., X,—1]4) = ( ) and dim(k[xo, ..., X4]4-1) =

Finally,

f:C — P*
p +— T,C
Prove that the image C* = f(C) C IP** is a curve. The curve C* is called the dual curve of

C.
Let C C IP? be the conic given by x3 — xpx2 = 0. Prove that C is smooth and determine C*.

Since d > 2 and we are in characteristic zero the morphism f is not constant. There-
fore its image has dimension one. Since f is projective f(C) is closed.

The tangent line at C = Z(g) in a point p € C corresponds to point of P> whose homoge-
neous coordinates are the partial derivatives of g evaluated in p. That is

fiC=2(g) — P
p — B0 B B

Let d be the degree of C, and let L be a line in IP?*. The pulling-back the equation of L via f
we get a polynomial of degree d — 1 on IP2. By Bézout theorem we have deg(C*) = d(d — 1)
In our case d = 2, s0 C* is a conic. Indeed the morphism is

f:C=2Z(g) — P2
[X0:x1:x2] +—— [—x2:2x1: —X0]
If zo,z1,z2 are the homogeneous coordinates on P?* note that z% = 4x% = 4dxgx1 = 4z¢2>.

Therefore C* C IP?* is the smooth conic defined by {z3 — 4zpz, = 0}. Note that the matrix
of C* is the inverse of the matrix of C.

Exercise 13. Let X C IP" be an irreducible hypersurface of degree d having a singular
point x € X of multiplicity d — 1. Prove that X is rational.

Consider the projection
Te: X --» H==Pr1
y — (xyyNH
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where H is a general hyperplane. Note that for y € X general the line (x,y) is not con-
tained in X. Otherwise, X would be a cone with vertex x, and x would be of multiplicity d
for X.

Since deg(X) = d and x has multiplicity d — 1, by Bézout’s theorem the general line (x,y)
intersects X only in x with multiplicity d — 1 and in y with multiplicity one. This means
that 7t is birational. So X is rational.

Exercise 14. Let x,y,z be homogeneous coordinates on P2. Consider the conic C =
{y* — xz = 0}, and the point p = [0 : 1 : 0] ¢ C. Let a, B,y the dual coordinates on P?*.
Compute the dual conic C* C P?* of C, and the line L, C P?* dual to the point p. Prove
that the tangents lines to C through p corresponds to points in L, N C*. Finally, compute
explicitly the tangent lines to C through p.

Now, let x,y, z, w be homogeneous coordinates on IP3. Compute the equations of the line
Lthroughp =[1:0:0:0landg = [1:1:1:1]. Write down the equation of a smooth
quadric surface Q C IP3 such that L C Q.

Let F = y? — xz, and consider the morphism

f:c — P2
x:y:z] — [g—i(x,y,z):g—g(x,y,z):g—i(x,y,z)}:[—z:Zy:—x]

The C* = f(C). If a, B, v are homogeneous coordinates on IP>* note that 8% = 4y = 4xz =
4ay. Therefore C* C P?* is the smooth conic defined by {8% — 4ay = 0}.

The dual of p = [0 : 1 : 0] is the space of linear forms {L = ax + By + vz} vanishing at p.
This forces B = 0. Therefore, L, = { = 0} C IP>*. The map f associates to a point g € C
the tangent line T,C. Hence, by duality the tangent lines of C through p corresponds to
the points of intersection between C* and L,.

We have C*NL, = {[0:0:1],[1:0:0]}. Therefore, the two tangent lines are the dual
lines of these two points, thatis Ry = {z = 0} and R, = {x = 0}.

Let us consider the matrix
Xy z w
M=|1 00 0
1 11 1

The line L is the locus of IP> where M has rank two. Note that there are two 3 x 3 minors
of M giving {y —z = 0}, and {w —z = 0}. Then L = {y — z = w — z = 0}. Consider the
quadric Q given by

Q={F=x(y—z)+y(w—z) =xy —xz+yw—yz =0}.
Clearly L C Q. Furthermore,

ax Y "oy "9z Y ow =Y

OF _ oF _ oF _ J0F _ ) — o — 7y — ;
Now,g—@—E—%—Oforcesx—y—Z—w—O.Theanssmooth.
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Exercise 15. Let v : P> — IP° be the degree two Veronese embedding, and let V C IP°
be its image. Compute the degree of V C IP°.
Let C C IP? be a curve of degree d. Compute the degree of v(C) C V C IP°. Prove that V
does not contain a line.
Now, interpret IP° as the projective space parametrizing conics in IP2.
Explain why V C P° is the locus parametrizing rank one conics, that is double lines.
Consider the matrix representation of a general conic in P2. Let X be the locus in P°
parametrizing rank two conics, that is union of two lines. Prove that X C IP° is an hyper-
surface of degree three.
Deduce that there exists a Zariski open subset i/ C IP° parametrizing rank three conics,
that is smooth conics, and that the general conic can not be written as a sum of powers of
two squares of linear forms.

The Veronese embedding is defined as
v:P2  — P>
la:b:c] — [a®:ab:ac:b?:bc:c?
Since dim(V') = 2 to compute deg(V) we have to intersect with a general linear subspace

of dimension three H. Let us write H = H; U H, where the H;’s are hyperplanes. Then
v~Y(V N H;) = C; are two conics in IP2. Since, v is an isomorphism we get
deg(V)=#HNV)=#(C1NC) = 4.
Let C C IP? be a curve of degree d. Since v is an isomorphism the image I' = v(C) is a
curve isomorphic to C. Let H C IP° be a general hyperplane. Then v (VN H) = Cyisa
conic, and
deg(I') =#(HNT)=#HNVNT)=#(C;NC) = 2d.

The lowest degree of a curve in IP? is one. Then, the lowest degree of a curve in V is two.
In particular V does not contain any line.
Let L = ax + by + cz be a linear form on P2. Then

L? = a®x® + 2abxy + 2acxz + b*y* + 2bcyz + c*2°.

Note that modulo re-scaling the coefficients of the mixed terms these are exactly the co-
ordinates of v. Therefore, V parametrizes double lines. Let Zy, ..., Z5 be homogeneous
coordinates on IP°. The we may write a plane conic as

C= {Zox2 +2Z1xy + 2Z>xz + Zgy‘2 +27Z4yz + Z5z2 =0}.

The matrix of C is

Zo Z1 Zp
M=\ Z1 Z3 Z4
Zy Zis Zs

Hence, the locus X parametrizing rank two conics in defined by X = {det(M) = 0}. So, X
is an hypersurface of degree three. Any point in the open subset i/ = IP° \ X represents a
smooth conics. Assume that the general conic can be written as sum of two square of linear
forms F = L? 4+ L. Then C = Z(F) would be singular in {L; = L, = 0}. A contradiction,
because we know that the general conic is smooth.
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Exercise 16. Let X C IP” be an irreducible, reduced and non-degenerate variety. Prove
that

deg(X) > codim(X) + 1.

Provide an example where the equality is achieved. We say that an irreducible, reduced
and non-degenerate variety X C IP" is a variety of minimal degree if deg(X) = codim(X) + 1.
Provide an example of a variety of minimal degree which is not an hypersurface. Prove
that a cone over a variety of minimal degree is of minimal degree.

If codim(X) = 1, being X non-degenerate, we have deg(X) > 2 = codim(X) + 1. We
proceed by induction on codim(X). Let x € X be a general point, and

e P" - P71

be the projection from x. The variety Y = 7,(X) C IP"~! has degree deg(Y) = deg(X) — 1,
and codimension codim(Y) = codim(X) — 1. By induction hypothesis we have deg(Y) >
codim(Y) + 1, which implies deg(X) > codim(X) + 1. The simplest example of a variety
of minimal degree is a quadric hypersurface in P". Let V2 C IP° be the Veronese surface.
Then codim(VZ) = 3, and deg(V}) = 4. Therefore, the Veronese surface is of minimal
degree.

Now, let X C IP" be a variety of minimal degree, and let CP(X) C IP"*! be the cone with
vertex p € P"*! over X. Then, deg(C,(X)) = deg(X), and dim(C»(X)) = dim(X) + 1,
that is codim(C,(X)) = n + 1 — dim(C,(X)) = codim(X). Finally,

deg(Cy(X)) = deg(X) = codim(X) 4 1 = codim(C,(X)) + 1,

and C,(X) is of minimal degree.

Exercise 17. Let a1 < ap < ... < ai be natural numbers, and let n = Z{le a;+k—1.
Fix H; = [P% C P" complementary linear subspaces, and C; C H; a rational normal curve
of degree a; for any i. Finally, we choose isomorphisms ¢; : C; — C; fori = 2,...,k and
consider the rational normal scroll of dimension k

Saroa, = U (P, 2(p), . 1(p)) -

peCy

Compute the degree of S;,, .4

ke

We proceed by induction on k. If k = 1 then S, is just a rational normal curve of de-
gree a1. We want to prove that in general

/////

Let us consider a general hyperplane H containing Hj,...,.H,, ,, and let S;, 4 , the corre-
sponding rational normal scroll of dimension k — 1. Note that H intersects C,, is a4 points

.....

Sal,...,ak NH= 5111,- UALU..U Aak'

k-1

We conclude that deg(S,,,..4,) = deg(Sa,,...a, ;) +deg(A1) + ... + deg(A,,) = Zﬁ-‘zl a;.
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Exercise 17. Let X C IP" be a variety set-theoretically defined by polynomials Fi, ..., F;,
of degree d; = deg(F;). Prove that if d; + ... + d,;, < n —1 then through any point x € X
there is a line contained in X.

We may assume x = [1:0: ... : 0]. The lines through x are parametrized by the hyperplane
{xo = 0}. The line spanned by x and [0 : x1, ..., X,,] is the set of the points [u : vx1 : ... : VXy]
for [u : v] € PL.

Now, F;(u : vx; : ... : vx,) is a polynomial of degree d; on P! whose coefficients depend
on xi, ..., X;. Note that these coefficient are d; and not d; + 1 because x € X forces the co-
efficient of u% to be zero. Therefore, F;(u : vx; : ... : vx,;) = 0 on P! yields di + ... +dp
equations on Pr1. Finally, if d1 + ... +d,; < n —1 these system of equations has a solution,
that is there is a line through x contained in X.



CHAPTER 3

Morphisms

Exercise 1. [Har, Exercise 3.1]

(a) Let C be a conic in A2. By [Har, Exercise 1.1] the conic C is isomorphic either to
the curve {y — x> = 0} or to the curve {xy = 1}. The first curve is isomorphic to
A while the second is isomorphic to A!\ {0}.

(b) A proper open subsets of A is of the form U = A'\ Z where Z is a finite set of
points Z = {x1, ..., x¢}. Note that, since Z C Al is an hypersurface U is affine.
In particular, by [Har, Lemma 4.2] U is isomorphic to an hypersurface in A2. In
the coordinate ring A(Y) of U the polynomial x — x7 is a unit. Therefore, any
morphism A(U) — k[x] has to send x — x1 in an element of k. Note that also x;
has to be mapped to an element of k. Therefore x is mapped to k as well, and the
morphism can not be surjective.

(c) Let C C IP? an irreducible conic. Then, modulo a change of variables the equation
of C can be written as {xz — y*> = 0}. Then C is the image of the embedding

v:P! — P2

[x0:x1] —— [x3:x0x1:x3]

and C = PL.

(d) Assume there is an homeomorphism f : A? — P2, Let L, R be two lines in A?
such that LN R = @. Then f(L), f(R) are two curves in IP2. So f(L) N f(R) # @
and f can not be injective. A contradiction.

(e) Let X,Y be an affine and a projective variety respectively. Assume X = Y. Then
the ring of regular functions of X is isomorphic to the ring of regular functions on
Y. Now, since Y is projective the regular functions on Y are constant. So the the
regular functions on X are constant as well. Since X is affine it has to be a point.

Exercise 2. [Har, Exercise 3.3] Let ¢ : X — Y be a morphism, and p € X be point. We
define a morphism of local rings

Pp: Ovppy — Oxp
) — (@), fo9)
If ¢ is an isomorphism, let ¢ be its inverse. For any point p € X the morphism
Yo 1 Oxp = Oxypy)
V.g) = (@H(V),goy)
is the inverse of ¢j,.
Now, assume that ¢, is an isomorphism for any p, and that ¢ is an homeomorphism. Then
¢ = ¢! is an homeomorphism as well. Now, let V C Y be an open subset. Let ¢(p) € V

18
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be a point. Since ¢, is an isomorphism we have that for any regular function f on V' the

pull-back f o ¢ is regular on ¢! (V). Therefore, ¢ is a morphism. In the same way  us a
morphism. Then ¢ is an isomorphism.

Assume that for some p € X the morphism ¢ is not injective. This means that there
for some (U, f) € Oy, g, with f # 0 we have (¢7'(U), fo¢) € Ox, with fop = 0.
Now, since f # 0 we may consider the subvariety Z(f) C Y. Finally f o ¢ = 0 yields
$(X) C Z(f). Therefore ¢(X) is not dense in Y.

Exercise 3. [Har, Exercise 3.5] Let H C IP" be an hypersurface of degree d. Consider
the Veronese embedding of degree d

v: P — PN
(X0t i xn) — [x:.:x]

and let V C PN be its image. Note that v(H) corresponds to an hyperplane section V N 11
of V. Since PN \ IT = AN. The variety V \ (V NTI) is affine. Therefore P" \ H = v~ 1(V \
(V NII)) is affine as well.

Exercise 4. [Har| Exercise 3.9] The image of
v: Pl — P
[x0:x1] +— [x% : XX : x%]
is the conic C = {xz—y* = 0} C P2, and C & P!. On the other hand in S(C) =
k[x,y,z]/(xz — y*) we have three elements of degree one while in S(P!) = k[xo, x1] we

have just two elements of degree one.

Exercise 5. [Har, Exercise 3.13] Consider the ideal

m = {(U, f) | fluny = 0}
The quotient Ox y/m consists of invertible rational functions on Y, that is K(Y). Further-
more, any element in Ox y \ m is invertible. Therefore, m is the unique maximal ideal of

Oxy.

Note that m is the ideal of functions vanishing on Y. Therefore height(m) = codimx(Y) =
dim(X) — dim(Y). Furthermore, K(Y') has dimension zero being a field. We conclude that
dim(Ox y) = height(m) = dim(X) — dim(Y).

Exercise 6. [Har, Exercise 3.14] We may assume p = [1 : 0... : 0] and H to be the
hyperplane {xy = 0}. Therefore the projection ¢ is given by
p:P\{p} — H=P
[X0: o 2n] = [x1:.n Xy
So, it is a morphism.
The projection of IP? from the point p = [0: 0 : 1 : 0] to the plane {z = 0} is given by
P\ {p}) — H=P?
x:y:z:w] — [x:y:w]
Therefore ¢(3, t2u, tu?, u®) = (£3, >u,u3). Hence, the image I' = ¢(C) of the twisted cubic
C is the cuspidal cubic T = {y®> — x*>w = 0}. Let ¢ € H be the singular point of I'. Note
that the line (p,q) is tangent to C.
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Exercise 7. [Har, Exercise 3.19] Let
$p: A" — A"
(X1, Xn) > (f1, s f)
be an automorphism. Since ¢ is surjective any polynomials f; = f;(x1,...,x,) is a linear
non-constant polynomials. Therefore J(fi, ..., fx) is a non-zero constant.

The converse is still a hard open problem in algebraic geometry known as Jacobian conjec-
ture. It was posed in 1939 by Eduard Ott-Heinrich Keller.

Exercise 8. [Har| Exercise 3.21]

(a) Note that (Al, +) is a group. The inverse is just x — —x. Therefore, G, is a group
variety.

(b) (A'\{0},)isagroup, and the inverseis x — 1. Therefore, G, is a group variety.

(c) If X is a variety, and G is a group variety, we define a group structure on Hom(X, G)
by a(f,8)(x) = f(x) - g(x).

(d) We may identify G, = A! = k. Therefore, O(X) = Hom(X, G,).

(e) Anelement of Hom(X, G,,) is a regular function on X which is never zero. There-

fore, it is invertible and its inverse is a regular never vanishing function on X.
This means that Hom(X, G,,) = O(X)*.



CHAPTER 4
Rational Maps

Exercise 1. [Har, Exercise 4.6] The standard Cremona transformation of IP? is the ra-
tional map

¢: P2 - P2
[x0,x1,x2] +— [X1x2, X0X2, xoxl]
(a) Note that

4)2(x0, X1,X2) = [x(z)aqxz : xox%xz : xoxlxg] = xpx1X2[X0 : X1 : X2] = [x0 : X1 : xp].

Therefore ¢! = ¢, and ¢ is birational.

(b) ¢ is an isomorphism on the open subset i = P2\ {xox;x, = 0}, that is on the
complement of the three lines spanned by the fundamental points [1 : 0 : 0], [0 :
1:0],[0:0:1].

(c) ¢ and ¢! are defined on P>\ {p; = [1:0:0,p2 =[0:1:0],p3 =[0:0:1]}.
The map ¢ is an isomorphism on ¢ and contracts the line L;; = (p;, pj) to the
point py with k # i, j, forany i,j = 1,2,3.

Exercise 2. [Har Exercise 4.9] Let H be a linear subspace of dimension n —r — 1 such
that X N H = @. The projection from H

Ty s X — P
is surjective. Therefore we get an inclusion K(IP") — K(X). Now,

trdeg, K(IP") = trdeg, K(X) = dim(X) =r.

Then K(X) is a finite algebraic extension of K(IP"). Assume H = {xp = ... = x, = 0}.
Then K(X) is generated over K(IP") by 9%1’ e %' and by the theorem of the primitive

element K(X) is generated over K(IP") is generated by an element of the form Y’ , . ; A;3E.

Consider the linear subspace E = HN {¥, Ai% = 0}. Then, the map 7ty factorizes as
the projection 71 from L composed with the projection 77, where p = 7g(H). Note that
Y = mg(X) is an hypersurface. This gives
K(P") — K(Y) — K(X)

where K(X) = K(Il”)(x;gl, o t),and K(Y) = K(IP") (Xil, 44 /\i%)- We conclude that the
degree of the extension K(Y) < K(X). Therefore 7tr is generically injective. Since ¢ is
dominant, it follows that it is birational.

Geometrically, we can argue as follows. Fix a general linear subspace H of dimension
n —r — 2. In particular, X N H = @. For any x € X consider the linear space H, = (H, x).

21
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Note that dim(Hy) = n —r — 1. Now, consider a general linear subspace IT of dimension
r + 1, and define the projection from H as:

g X — II=Pprtl
X —  H,NII

Since dim(H,) + dim(X) —n < 0 we have Hy N X = {x} for a general x € X. There-
fore 7ty is generically injective, and X is birational to its image Y = 7ty (X) which is an
hypersurface in P" 1.

Exercise 3. Let p € IP", with n > 3, be a point, and let
P - P!

be the projection from p. Consider a linear subspace H C IP"~! of dimension k. Prove that

I=r, 1(H) is a linear subspace of P" of dimension k + 1 and passing through p.

Now, Let C C IP" be an irreducible, smooth, non-degenerate curve of degree d. Compute
the degree of T' = 71,(C) in the two cases p € C, p ¢ C.

Now, consider the twisted cubic C = v(P!) C P3, where v : P! — P? is the degree
three Veronese embedding. Let x,y,z, w be homogeneous coordinates on P3. Consider

p=1[1:0:0:0] € C. Describe the curve I = 71,(C) C P2

(a) Now, let p = [1:0:0: 1] € IP>. Write down explicitly the projection 7, : P> —
IP? = {x = 0}. Prove that 71,(C) = T is the curve given by {y* — 2> + yzw = 0}.
Prove that Sing(T') = {g = [0: 0 : 1]}, mult,I' = 2, and that T has two distinct
principal tangents in g. Consider the line L = {y = z = 0}. Note that p € L.
Compute the intersection L N C.

(b) Letp = [1:1:0:0] € IP>. Write down explicitly the projection 7, : P® — P? =
{x = 0}. Prove that 71,(C) =T is the curve given by {z* — z%w + yw? = 0}. Prove
that Sing(I') = {g = [1: 0 : 0]}, mult; I’ = 2, and that I has a double principal
tangent in q. Consider the line L = {z = w = 0}. Note that p € L. Compute the
intersection L N C.

Finally, Give a geometric interpretation of both (a) and (b).

Let H C IP"~! be a linear subspace of dimension k. Then, IT = 77, ' (H) is the cone over H
with vertex p. Hence I1is a linear subspace of P of dimension k + 1 and passing through

Let C C IP" be an irreducible, smooth, non-degenerate curve of degree d, and consider
I'=7,(C).
Let H C P"~! be a general hyperplane. Then IT = 7, (H) is a general hyperplane in P"
passing though p. We have #(ITNC) = #{q1,...,q4} = d.
-If p ¢ Cthendeg(T) = #(HNT) = #{my(q1), ..., p(q4)} = d.
- If p € C then p = g, for some i. Without loss of generality we may assume p = ¢;.
In this case we have deg(I') = #(HNT) = #{my(q2), ..., mp(qa)} =d — 1.
The degree three Veronese embedding is defined as
v: P! — P3
la:b] — [a®:a%b:ab?: b
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The projection from p = [1:0: 0 : 0] is the rational map given by

Ty P8 — P?2={x=0}
[x:y:z:w] — [V:z:w]

Let C = v(IP!) be the twisted cubic. Then, 7, (C) = 7, o v(IP!), and

m,([a® 2 a?b : ab? : b°]) = [a®b : ab® : b°] = [a%,ab, b?).

We conclude that 71, (C) is the conic {z? — yw = 0}. Note that p € C.

(a)

The general line in P? through p = [1: 0: 0 : 1] is of the form
L, = {yc —zb = yd — wb + xb — ya = 0}

T
ES]

with [a: b : ¢ : d] € IP?. The intersection L, N {x = 0} is the point [y : £y :
Therefore, the projection 77, is the map
PP — P2={x=0}
[a:b:c:d] — [b:c:d—a]

°
=,

In this case
m([87 1%t st 1 P]) = [Pt ist? 2 — S,

Now, in the homogeneous coordinates y,z, w on P> we see that y> — z3 + yzw =
013 — $3t° + 33(+3 — %) = 0. Therefore, T = {F = 3> — 2% + yzw = 0}. The
partial derivatives of F are

oF oF oF

i 3y* + zw, 5 = —32% + yw, ==z
and we see that Sing(T') = {g = [0: 0 : 1]}. Furthermore, %—fy = w, and gj—al;(q) #
0. So mult, I' = 2.
Let us consider the de-homogenization of F with respect to w, thatis f = y° —
z® + yz. We see that the affine curve I', = {y® — 2> + yz = 0} as two distinct
tangent direction, namely {y = 0}, {z = 0} at the origin. Then I has two distinct
tangent direction given by {y = 0} and {z =0} ing.
Finally the intersection L N C consists of the two points p1 = [1 : 0 : 0 : 0],
p2=1[0:0:0:1].
In this case the general line in IP? through p = [1:1: 0 : 0] is of the form

L, = {xc —za —yc + zb = zd — wc = 0}

with [a: b : ¢ : d] € P3. The intersection L, N {x = 0} is the point [Z’C;“z 1z %z].
Therefore, the projection 77, is the map
n,: PP — P2={x=0}
[a:b:c:d] — [b—a:c:d]
and
m([87 187t st 1 P]) = [7t — 8% 1 st 1 P,



24

4. RATIONAL MAPS

Now, in the homogeneous coordinates y, z, w on IP? we see that z° — z?w + yw? =
$3t0 — 27 + (st — s®)t® = 0. Therefore, I = {F = z® — 22w + yw? = 0}. The
partial derivatives of F are
31; = wz, glz: = 372 —2zw, gi; =7 + 2yw,
and Sing(I') = {q = [1 : 0 : 0]}. Furthermore, g:—j; = 2y, and g:—;(q) # 0. So
mult, I' = 2.
The de-homogenization of F with respect to y, thatis f = z® — z%w + w?. The affine
curve Ty, = {z% — 22w + w? = 0} as one double principal tangent at the origin,
namely {w = 0}. Then I has one double principal tangent given by {w = 0} in
g. Finally, the intersection L N C consists of the point p; = [1 : 0 : 0 : 0] with
multiplicity two.

In (a) the line L is secant to C. Indeed L N C consists of the two points p; = [1:0:0: 0],
p2 = [0:0:0:1]. Since we are projecting from a point p € L this secant line gets con-
tracted by the projection. The tangent lines T, C, T,,C are mapped by the projection in
the two principal tangents of I in its singular point g. Note that the singularity in g is a
node coming from the identification of p;, and p, after the projection.

In (b) the line L is the tangent line T, C. Since, p € L we are contracting the tangent direc-
tion (you may think at this as a degeneration of (a) for p; — p»). We see that contracting
the tangent line we produce a curve with a cusp.
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Non-singular Varieties

Exercise 1. [Har, Exercise 5.3] We have i, (Y) = 1if and only if in the decomposition

f=h++fi
there is a term of degree one. Therefore, f1 = ax + by with (a,b) # (0,0), and %(O, 0) =a,
%(0,0) = b. Therefore y,(Y) = 1if and only if p € Y is smooth.

Consider the nodal cubic Y = {x® + x> — y?}. We have f3 = x®> and f, = x> — y2. Therefore
1p(Y) = 2 and tangent directions of Y in p are the lines {x —y = 0} and {x +y = 0}.

Exercise 2. [Har, Exercise 5.6]
(a) Consider the cusp Y = {x®> —y?> — x* — y* = 0} C A2 Substituting y = ux we get
(x —u? — x* —utx?) = 0.

The curve E = {x = 0,y = 0} is the exceptional divisor, while Y = {x — u? —
x? — u*x? = y — ux = 0} is the strict transform of Y. Taking the Jacobian matrix
of Y we see that Y is smooth. Note that ENY = (0,0,0) and the intersection
multiplicity is two.
Now, consider the nodal curve Y = {xy — x® — y® = 0} C A2 Taking y = ux we
get
(u—x* —ubx*) =0.
Therefore E = {x =0,y = 0},and Y = {y — ux = u — x* — uSx* = 0} is smooth.
(b) We may write the equation of the curve Y as {f(x,y) + xy = 0}, where f has
terms of degree greater or equal that two. So that Y has s node in the origin. Let
X = {xu —yv} C A% x P! be the blow-up of A? in the origin. Consider the chart
{v # 0}. Then we get

Fx, ux) 4+ x*u = x*(g(x,ux) +u) = 0.

4

The curve E = {x = 0,y = 0} is the exceptional divisor, while the curve ¥ =
{y —ux = x?(g(x,ux) + u) = 0} is the strict transform of Y. Using the Jacobian
criterion is is easy to see that Y is smooth. Furthermore ENY = (0,0,0). The same
argument works on the chart {u # 0}. Then Y C X is smooth and intersects E in
two distinct points. This reflects the fact that Y has two distinct tangent direction
at the origin.

(c) Consider the tacnode Y = {x? — x* — y* = 0}. In the affine chart {v # 0} we have
that the strict transform Y is defined by {y — ux = x2 + x?u* — 1 = 0}. Therefore
ENY = @. In the chart {u # 0} wehave Y = {x — vy = y?0* + 2 — 0> = 0}, and
ENY = (0,0,0) with intersection multiplicity two. Note that the term of lowest
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degree in y?v* + y? — v?is y> — v® = (y — v) (y + v). Therefore, the origin is a node
of Y. By (b) we can resolve the singularity by blowing-up another time.

(d) Consider the higher cusp Y = {y> — x° = 0}. Note that the origin is a triple point
with a unique triple tangent direction. Substituting y = ux we get x>(u®> — x?) =
0. Therefore, the strict transform Y = {y —ux = u® — x> = 0} intersects the
exceptional divisor with multiplicity three in the origin. Note that Y = {y — ux =
u® — x* = 0} is a cusp. By (a) we resolve the singularity by blowing-up the cusp.

Exercise 3. [Har, Exercise 5.8] A change of coordinates is an automorphism of IP".
Therefore is sends smooth points of Y to smooth points. Therefore, we may assume that p
lies in the affine chart {xo # 0}. The affine Jacobian is the t x n matrix obtained by deleting
the first column of the projective Jacobian. Note that this column is

2h %,
axo’ i axo '
By Euler’s lemma
d f] n %

XOTXO = df] — 1:21 ox;
foranyj=1,..,t.If p=(ag: ... :ay),since p € Y we get f;(p) = 0 and

afi & 9f;
”0370 = —i:1 BTc,(p)

We see that the first column is a linear combination of the others n columns. Therefore,
the rank of the projective Jacobian is equal to the rank of the affine Jacobian. By the affine
Jacobian criterion we conclude that p € Y is smooth if and only if rank(Jac(f1,..., ft)) =
n—r.

Exercise 4. [Har, Exercise 5.11] The projection from p = [0:0:0: 1] to {w = 0} is the
map

¢:Y — P?
[x:y:z:w] — [x:y:Z]
Note that
vz — 34 xz% = (x +2)(x* — xz — yw) + y(yz — xw — zw).
Therefore ¢(Y) C Y ={y*z—x3+xz2 = _0}. Now, since ¢ is not constant ¢(Y) is a curve,
and since Y is irreducible we get ¢(Y) = Y. The inverse of ¢ is given by
p: P2 — Y cIP?

x:y:z] — [x:y:z: 5] =[x:y:z:

x(x—2z)
7]

Note that 1 is defined on Y \ {[1 : 0 : —1]}. This reflects the fact that the line spanned by
[1:0: —1:0]and [0:0:0: 1] intersects Y in three points.
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Exercise 4. [Har, Exercise 5.12]

(a)

()
(d)

Over an algebraically closed field of characteristic different from two quadratics
forms are classified by the rank. Then, we can write any homogeneous polyno-
mial of degree two as

f=x3+..+x2
with 0 <r <.
If r < 1 then, either f = x3 and the quadric is a double hyperplane of f = x3 + x%
and the quadric is the union of two plane. In the first case the quadric is non-
reduced, in the second it is reducible.
Assume f reducible. Then either f = I? or f = Im where I, m are linear forms. Up
to a change of coordinates we may write f = x3 and f = xox;. In the first case
r = 0. In the second case f = 7 ((xo +x1)> — (xo — x1)?) and r = 1.
The singular locus of Q = Z(x3 + ... + x2) is given by {xo = ... = x, = 0} Then,
Sing(Q) is a linear subspace of dimension n — r.
Ifr <nand Q = Z(x3 + ... + x2), then the polynomial f = x3 + ... + x2 defines
a smooth quadric Q' C P’. Any line generated by a point in Q" and a point in
Sing(Q) intersects Q in at least three points counted with multiplicity because
any point of Sing(Q) is a double point of Q. Then any such line is contained in Q,
and Q is the cone over Q' with vertex Sing(Q).



CHAPTER 6

Non-singular Curves

Exercise 1. [Har, Exercise 6.4] Let f be a non-constant rational function on Y. Then, f
yields a non-constant rational map ¢ : Y --» P!, defined by ¢(y) = f(y). Furthermore,
since Y is a smooth projective curve the rational map ¢ extend to a morphism ¢ : Y — P.
Now, ¢ is non-constant we have that ¢ is surjective, and it induces an inclusion of fields
k(P') — k(Y). Both k(IP') and k(Y') are finite algebraic extensions of transcendence degree
one of k we conclude that k(Y) is a finite algebraic extension of k(IP!). Therefore, ¢ is finite.
Another way to see this last fact is the following. Let p € P! be a point. Then ¢~!(p) C Y
is closed. Since ¢ is not constant ¢~ !(p) # Y. Then, ¢~ !(p) is a proper closed subset of a
curve, therefore it is a finite set of points counted with multiplicity.

Exercise 2. [Har, Exercise 6.6] Let us consider the fractional linear transformation:
¢:Pl=A'U{0} — P'=A'U{cw}
x — o
with a,b,c,d € k, ad — bc # 0. The inverse of ¢ is given by
¢ 1:Pl=A'U{c} — P!=AlU{co}

1 dx—b
X ad—bc a—cx

Therefore, ¢ is an automorphism of PL.
Any automorphism ¢ of IP! induces an automorphism ¢* of k(x) = k(IP!) given by
¢* 1 k(x) — k(x)
foo= fo¢
On the other hand, an automorphism of k(x) induces a birational automorphism of P.
Since IP! is a smooth curve such a birational automorphism is indeed an automorphism.
Now, let ¢ be an automorphism of k(x). Then (x) = % where p and 4 do not have

common factors. If either deg(p) > 2 or deg(gq) > 2 then ¢ can not be linear. Therefore,
p(x) = ax + b and g(x) = cx + d. Finally, since p and q do not have common factors their
resultant is not zero, that is ad — bc # 0. We conclude that:

Aut(PP!) = Aut(k(x)) = PGL(1).
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Intersections in Projective Space

Exercise 1. [Har Exercise 7.1] Let v; : IP" — IP" be the Veronese embedding of degree
d, and let V} be the Veronese variety. Since the embedding v, is defined by taking all the
possible monomials of degree d in the homogeneous coordinates of IP” we see that degree
[ homogeneous polynomials on V' correspond to degree /d homogeneous polynomials on

P". Then
Zd+ﬂ) :dlln_i_
n n!

]’lv; (l) = dlIﬂ(S(V;)l) = (
In particular, dim(V}') = n and deg(V}) = d".
Now, let 0y, : P" x P™ — PN be the Segre embedding. In this case polynomials of degree
I on the Segre variety %, ,, corresponds to polynomials of bi-degree (I,I) on P" x P™.

Therefore,
s _[l+n [+m\ 1 n+m\ .im
th,m(l) _dlm(s(zn,m)l) - ( n > ( m > = (7’1‘|’"’1)'< " >l —+ ...
Hence, dim(Z,,,,) = n + m, and deg(Zu,m) = ("1").

Exercise 1. [Har, Exercise 7.2]
(a) The Hilbert polynomial of IP" is given by hpx (I) = dim(S;) = (”:l). Then p,(P") =
(=1)"(he: ()(0) = 1) = (=1)"((;) = 1) = 0.
(b) Let Y = Z(f) be a plane curve of degree d. From the exact sequence
0—S(—d) =+S—=5S/(f)—0

[+2 [ —d+2
wi=(57)-(727)
Therefore hy(0) =1 — (zgd) =1—3(d—1)(d—2). Then
1

palY) = 3(d —1)(d ~2).

(c) f Y = Z(f) is an hypersurface of degree d we still have the exact sequence
0— S(—d) —-S—S/(f)—0

() = <H’—1n> - <l—i+n>‘

we get

and




30 7. INTERSECTIONS IN PROJECTIVE SPACE

(c) fY = 51 NS, with S; = Z(f;) from the exact sequence

0= S/(fif2) = S/(f1) ®S/(f2) = S/(f1,f2) = 0
we get hy = hg, +hs, — hs,us,. If deg(S1) = a and deg(S,) = b we get

pa(Y) = <3;a> + (3;b> — (3—;—&:) :%ab(a+b—4)+1.

(d) We have S(Y x Z) = S(Y) ® S(Z). Therefore hy.z = hyhz, and p,(X xY) =
(=1)"*%(hy(0)hz(0) — 1) because dim(X x Y) = r + s. Then

pa(X xY) = (=1)"((hy(0) = 1)(hz(0) = 1) + (hy(0) — 1) + (hz(0) — 1))
= Pa(Y)pa(Z) + (=1)°pa(Y) + (=1)"pa(2).

Exercise 2. [Har, Exercise 7.4] Since Sing(Y) is a closed proper subset of Y the lines
passing through singular points of Y defines a closed subset Z; C (IP?)*. The tangent lines
two Y are a closed subset Y* C (IP?)*. The closed subset Y* is the dual curve of Y. By
Bézout’s theorem any line which is either tangent to Y or passing through a singular point
of Y intersects Y is exactly deg(Y) distinct points. Therefore any line in the open subset
U = (P?)* \ (Z1 UY*) has the required property.

Exercise 3. [Har, Exercise 7.5]

(a) Assume that thereis point p € Y of multiplicity greater or equal thatd = deg(Y) >
1. Let g € Y be another point. Then the line L = (p, q) intersects Y in at leastd + 1
points counted with multiplicity. Since deg(Y) = d, by Bézout’s theorem we have
L C Y. A contradiction, because Y is irreducible and deg(Y) > 2.

(b) Since Y is irreducible of degree d, by Bézout’s theorem any line passing through
the point p of multiplicity 4 and another point 4 € Y is not contained in Y and
does not intersect Y in any other point. Therefore, the projection 77, : Y --» P!
from p is birational.

Exercise 4. [Har, Exercise 7.6] If Y = Yj U Y, has two components then deg(Y) =
deg (Y1) + deg(Y2) = 1. Therefore Y is irreducible.
Assume dim(Y) = 1. Consider two points p,q € Y. By Bézout’s theorem any hyperplane
passing through p, q contain Y. Therefore Y is the intersection of these hyperplanes, that
is Y is the line spanned by p and 4.
If dim(Y) = r consider a general hyperplane section Yy = Y N H. Then dim(Yy) =7 —1
and deg(Yy) = 1. By induction hypothesis we have that Yy is linear. Now, take a point
p € Y\ Yy. Any line spanned by p and a point in Yy intersects Y in at least two points.
Since deg(Y) = 1 by Bézout’s theorem any such line is contained in Y. Therefore Y is a
cone over the linear subspace Yy. Then Y itself is a linear subspace of dimension r.



CHAPTER 8
Blow-ups

Exercise 1. [PhE] Let X C IP? x P! be the surface {xoy; — x1y0 = 0}. Prove that X is
not isomorphic to IP2.

The surface X C IP? x P! is the blow-up of P2in p = [0 : 0 : 1]. Consider two lines
L, R C P2 through p. Then, their strict transforms L, R via the blow-up map 7rx — P2 do
not intersect. On the other hand any two curves in IP? intersect. So X can not be isomorphic
to IP2.

Exercise 2. Let Q C IP® be a smooth quadric and let p € Q be a point. Prove that Bl,Q
is isomorphic to By, 4,IP* where g1, 4, € IP? are two distinct points.

We may assume Q = {xox3 —x1x0 =0} CP?>,andp=[0:0:0:1]. Let 7w : Q --» H = P2
be the projection from p. Note that 7 is birational. If yg, y1,y> are homogeneous coordi-
nates on IP? then the graph I'; of 7t is given by

{xoy1 — x1y0 = X1Y2 — X2Y1 = XoX3 — X1x2 = 0} C P*> x IP%.
Let 71y : I'y — Q be the projection. From these equations we see that 711 : I'y — Q is the
blow-up of Q in p.
Now, let 7, : Tz — IP? be the second projection. The exceptional divisor E = {x; = yp =
0} is mapped via 7, to the line {yo = 0}. The intersection T,Q N Q is the union of the two

lines L = {xp = x1 = O}~and R = {x¢p = x, = 0}. Let L and R be the strict transforms of L
and R via 7r1. Then 71 (L) = [0:0: 1] = g7 and 712(R) = [0:1: 0] = go.

Now let f : BLy, 4,P? — IP? be the blow-up of IP? in g1, 4,. Consider the rational map

g: P2 - IP? x P2
yoiyiiya] (Y5 : yoya < yoy2 s yayal, lyo s ya : ya))-

Since I({q1,92}) = (¥3 : yoy1 : Yoy2 : y1y2) the map g is the inverse of f. On the other hand
g is the inverse of 71, as well. Therefore 71, and f are two morphisms coinciding on an
open subset. We conclude that 7, = f and I'; = Bl,, ,,P2. Finally I'r = Bl,, ,,IP* = BI,Q.
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CHAPTER 9

Grassmannians

Exercise 1. Consider the Grassmannian G(1,4) C P? parametrizing lines in IP4. Find
five polynomials in the homogeneous coordinates of IP? vanishing on G(1,4).

Let L be a line in P* generated be the two points [ug : u1 : up : u3 : ug] and [vg : vy :
vy : U3 : v4]. Then the Pliicker embedding

p:G(1,4) — P°
is given by mapping L to
[u001 — U100 : UpU2 — U2V : UQU3 — U330 : UQU4 — U40g : U102 — U0

U103 — U301 : U104 — U401 © U203 — U302 1 UpTV4 — U402 : U3V4 — u403].

Let Xg1, ..., X34 be the homogeneous coordinates on P?. Then, among the coordinates of
the Pliicker embedding there are the following relations:

X01X23 — X02X13 + Xo3X12 =0,
X01X24 — X02X14 + XouX12 =0,
X01X34 — X03X14 + X0aX13 =0,
X02X34 — X03X24 + XoaXo3 =0,
X1pX34 — X13X04 + X14X23 = 0.

Exercise 2. Let L, R be two lines in IP?, and let I,r € G(1,3) be the corresponding
points. Prove that L N R # @ if and only if the line joining ! and r is contained in G(1, 3).

Let Hy, Hr be the planes in V4 corresponding to L and R. If LN R # @ then H;, and
Hp share a non-zero vector u € Hy N Hg. Let {uy,u} and {uy, u} be basis of H; and Hy
respectively. Therefore the corresponding points in G(1,3) are u; A u and up A u. So the
line spanned by u; A u and uy A u is P(W) where W = (u3 A u,up Au) C A*V. Now, note
that any vector in W is of the form

a(ug Au) + Bup Au) = u A (auy + Pu).

Therefore, any point in IP(W) corresponds to a decomposable 2-vector, that is P(W) C
G(1,3).

Now, assume LN R # @. Then Hy N Hg = {0}. Let {uy,uz} and {vy,v,} be basis of H
and Hp respectively. So {u1,up,v1,v2} is a basis of V, and uj A up Avy Avy # 0. In this
case the line P(W) is generated by 11 A u and v; A vy, that is a point on IP(W) is of the
form

a(up Aug) + B(v1 A o2).
32
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Now,
(a(ug Aup) + B(v1 Av2)) A (a(uy Aug) 4+ B(vr Avg)) = 2aB(ug Aux Avp Avy).

Note that, if v = (a(u; Auz) + B(v1 Av2)) € G(1,3) then v is decomposable. So v =
w1 A wy yieldsv Ao = 0.
On the other hand

(a(uq ANup) 4+ B(vr Av2)) A (a(ug Auz) + B(vr Avz)) = 2af(ug Aua Aoy Avy) =0
if and only if either « = 0 or B = 0. Then, the line IP(W) is not contained in G(1, 3).

Exercise 3. Letp ¢ P3bea point,and H C P3a plane containing p. Let X, g C G(1,3)
be the locus parametrizing lines in H passing through p. Prove that the image of X, y
via the Pliicker embedding is a line in IP°. Conversely, prove that any line contained in
G(1,3) C IP°is of the form ¥, ;.

Let u € V be a representative for p, and let {u, v, w} be a basis of W, where P(W) = H.
Then the lines in H through p corresponds to the subspaces of W spanned by u and a
vector of the form au + fv 4 yw. Now

wA (au+ Bo+qyw) = B(uAv) +y(uAw).

Therefore, lines in H passing through p corresponds to the line in G(1, 3) spanned by 1 A v
and u A w.

Now, let T be a line in G(1,3), and let r,s € T be two points. Then the lines L,R C P3
corresponding to 7, s intersects by Exercise 2. Let I1 be the plane spanned by L, R. Since
L, R generate IT and /, 7 generate T, a line in IT through L N R corresponds to a point of T.

Exercise 4. For any point p € P? be £, C G(1,3) C P’ be the locus parametrizing
lines in IP? through p. Similarly, for any plane H C P> be £y C G(1,3) C IP° be the locus
parametrizing lines in IP? contained in H. Prove that both &, and £y are mapped to planes
of P° via the Pliicker embedding. Conversely, prove that any plane in G(1,4) C IP° is of
the form ¥, of X.

Let u € V be a vector representing p € P2. Then the lines through p are represented
by 2-vectors of the form u A v. Let {u,uy,up, u3} be a basis of V. Then we may write
v = au + Buq + Pouz + Pauz, and

uNv=uwa1(uAuy)+a(uAuy)+az(uAus).

Therefore, lines through p are represented by the points of the plane spanned by u A uy,
uAupand u A us.

Now, the lines contained in the plane H C IP3, by duality corresponds to the lines in P*
through the point H*. Therefore they are parametrized by a plane in G(1,3) by the first
part of the exercise.

Now, take a plane IT in G(1,3) and three points /,7,s in this plane that do not lie on the
same line. Let L,R,S C IP? be the corresponding lines. Since the three lines joining [,
and s are on the same plane contained in G(1, 3) they intersect and they are contained in
G(1,3). By Exercise 2 the lines L, R, S intersect. We have two cases.

- LNRNS = {p}. In this case I parametrizes lines in IP> through p.
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- L, R and S intersect in three distinct points. Let u, v, w be three representative
vectors for these three points. Then L, R, S are represented by v A w, u A w and
u A v. Then a point on the plane IT is of the form

a(v Aw)+ B(uANw)+y(uAvo).
Therefore L, R, S lie in the plane IP(H), where H = (u, v, w).

Exercise 5. Let Q C IP? be a smooth quadric. Prove that the two families of lines in Q
are mapped via the Pliicker embedding to two plane conics in G(1,3) C P° lying in two
complementary planes.

We can assume that Q = {xw — yz = 0} C IP? is the image of the Segre embedding
s:P'xP' — P3
([u,0],[s,t])) —— [us:ut:ovs:vt]
In order to parametrize the first family of lines we can consider for each [u : v] € P! the
line L, , spanned by the two points s([u,v],[1,0]) = [u:0:v:0] and s([u,v],[0,1]) = [0 :
u : 0 : v]. Under the Pliicker embedding L, , is mapped to the point

[u?:0:uv: —uv:0:0%.
If X, ..., X5 are the homogeneous coordinates on P> we see that the set of points of the form
[u?:0:uv: —uv:0:v?] isdefined by {X; = X4 = X + X3 = X5Xo — X3 = 0} C G(1,3).
Therefore the lines of the first family are parametrized by a smooth conic in the plane
H; = {Xl :X4:X2+X3=0}.
In the same way the lines of the second family correspond to points of the form
[0:8%:st:st:t?:0].

Therefore, the lines of the second family are parametrized by the smooth conic given by
{XO = X5 = Xz—X3 = X%—X1X4 = O} intheplaneHz = {XO = X5 = Xz—Xg = 0}
Finally, H1 N Hz = Q.

Exercise 6. Let G(1,n) be the Grassmannian of lines in IP”. Prove that through two
general points of G(1, n) there is a smooth variety of dimension four and degree two.

Let I, € G(1,n) be two general points. These points corresponds to to two general lines
L,R C IP". Since L and R are general they span a linear space H C IP" of dimension three,
H = IP3. The image of the Pliicker embedding of G(1,1) restricted to the lines in H gives
aG(1,3) € G(1,n) and I,r € G(1,3). Now, it is enough to observe that under the the
Pliicker embedding G(1,3) is a smooth quadric hypersurface in IP°.

Exercise 7. Let L1, Ly, L3, L4 be four general lines in IP3. Consider
X={L|LNL #@Vi=1,23,4} C G(1,3) C P°.
Compute the dimension and the degree of X.

Consider the lines L1, Ly, L3. Since they are general these three lines are pairwise skew.

By Exercise 9 of Section there exists a unique smooth quadric surface Q C IP° containing
Ll/ LZ/ L3-
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Since L4 is general we have that Ly N Q = {p,q}. Now, any line L intersecting L1, L, L3 is
contained in Q. Therefore, in order to intersect L4 this line L has to pass either through p
or . We conclude that there are two lines intersecting L1, Ly, L3, L. Therefore, dim(X) = 0
and deg(X) = 2.



CHAPTER 10

Secant Varieties

Exercise 1. Let v : P> — P be the degree four Veronese embedding. Let V C P! be
the corresponding Veronese variety, and Secs(V) C P the 5-secant variety of V.
- Compute the expected dimension of Secs(V),
- Prove that there exists a non-zero homogeneous polynomial P of degree six in the
homogeneous coordinates of IP'* such that any polynomial F € Secs5(V) C P is
a zero of P. Conclude that V is 5-secant defective with secant defect 65(V) = 1,
and therefore that Secs (V) is an hypersurface in P14,

Finally, prove that X := {P = 0} C IP™ is irreducible. Conclude that Secs(V) C P!* is an
irreducible hypersurface of degree six.

The expected dimension is
expdim(Secs(V)) := min{5dim(V') + 4,14} = 14.
Now;, consider a general polynomial F € k[x,y, z]4:

F= apx* + a1x%y + apx®z + azx?y? + ayx?yz + asx>z> + agxy® + azxy’z + agxyz?
—|—u9xz3 -+ a10y4 + a11y3z + a12y222 + a13yz3 + a14z4.

If F € Secs5(V) is general then F = L‘f + ..+ L‘51 for some linear forms L1, ..., L. Therefore,
the second partial derivatives of F are six points in P> = P(k[x,y, z]») lying on the hyper-
plane spanned by L3, ..., L2. Let M be the 6 x 6 matrix whose lines are the second partial
derivative of F. Take P = det(M). Then P is a homogeneous polynomial of degree six in
ag, ...,a14. Let X := {P = 0}. Then Sec5(V) C X. In particular é5(V) > 0. On the other
hand d5(V) < dim(V) = 2. Therefore, é5(V) = 1. Therefore: It is easy to see that there are
three partial derivatives of P that are independent. Therefore, the codimension of Sing(X)
in P! is strictly greater that two, and X can not be reducible.

Finally, Secs(V) C X is an hypersurface in IP** as well, since X is irreducible we conclude
that Sec5(V) = X is an irreducible hypersurface of degree six.

Exercise 2. Prove that n x n symmetric matrices over a field k modulo scalar multipli-

cation are parametrized by a projective space of dimension N = @ -1

For any 0 < k < n prove that the set
Mi = {A € PN | rank(A) <k}

is an algebraic subvariety of PN.
Consider the incidence variety

Z:={(A H)|HCker(A)} CPN x G(n—k,n)
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with projections f : Z — PV, and ¢ : Z — G(n — k,n). Using the theorem on the dimen-
sion of the fibers prove that

—-1+2

dim(My) = (k 5

>—1+k(n—k).

Let v : P"~! — PN be the degree two Veronese embedding, and let V;'~! be the corre-
sponding Veronese variety. Note that N = (”_;H) -1= @ -1

Prove that Secy (V1) = M. Conclude that the (1 — 1)-secant defect of V' 1is 8,1 (V) !) =
1foranyn > 3.

A general n x n symmetric matrix is determined by n + (n — 1) + ... +2+1 = (”H) pa-
rameters. Therefore, n X n symmetric matrices moduli scalar multiplication are parametnzed
by a projective space of dimension N = (”; U_1.

The set M is the common zero locus of the (k+ 1) x (k 4+ 1) minors of A. These are
homogeneous polynomials of degree k + 1 on PYN. Therefore, My C PV is an algebraic
subvariety.

Consider the incidence variety

T:={(AH)|HCker(A)} CPN x G(n—k,n)

with projections f : Z — PN, and ¢ : Z — G(n — k,n). Fix H € G(n — k,n). Then, a matrix
A € g"(H) corresponds two a quadratic form on a vector space of dimension k. These
quadratic forms are parametrized by a projective space of dimension (k_?“z) — 1. By the
theorem on the dimension of the fibers we have

dim(Z) = <k_;+2> 14 k(n— k).

Now the second projection f is generically injective. Since My = f(Z) we conclude that

dim(M,) = (k_;”) 14 k(n—K).

A general degree two polynomial F € Secy(Vj) ') can be written as F = L2 + ... + L?
for k linear forms. The same holds for a general polynomial in M. Therefore, M; and
Secy (V1) are both defined by the vanishing of the (k + 1) x (k + 1) minors of a general
n X n symmetric matrix.

In particular

dim(Sec (V3™ 1)) = dim(My) ( —lw 2) —1+4k(n—k).
N —

Fork=n—1andn > 3wehaved, 1(V; ') = M1 -n-1)(n—(n-1)) =

M) ) (n-1)=1.

Exercise 3. Let us fix two integers h > 1, h < d < 2h — 1. Prove that under this
numerical hypothesis a general homogeneous polynomial F € k[x, y]; of degree d admits
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a decomposition of the form F = A{L{ + ... + A, LY.
Now, fix a general F € k[x, y]; and consider the variety

X(F,h) ={{Ly, .. Ly} |F = ML+ ..+ AL8, Li € k[x,yl1} C P (k[x,y]1)" /S

The X(F, h) parametrizes all the decomposition of F as sums of d-powers of linear forms.
Prove that forh > 1, h < d < 2h — 1 the variety X(F, ) is birational to p2h—d-1,

In particular, conclude that a general homogeneous polynomial F € k[x,y]p;,—1 admits
a unique decomposition in & powers of linear form. Finally deduce that if C C IP? is a
twisted cubic and p € P? is a general point, then there exists a unique line secant to C
passing through p.

A general homogeneous polynomial F € k[x,y]; of degree d admits a decomposition of
the form F = AL{ + ... + A, LY if and only if there exists a (h — 1)-plane h-secant to the
rational normal curve C C IP? passing through F € IP?. Now, C C P“ is a non-degenerate
curve. Assume d = 2h — 1 is odd, and fix h = d%l. Now, assume that through a general
point p € Sec;(C) there are two distinct (i — 1)-plane Hj, H, that are h-secant to C, say
HiNC = {p1,...pn},and HbNC = {q4, ...,q, }. Since Hy, Hy are distinct we may have at
most p1 = q1,..., px = qx with k < h. Since Hj, H, intersects in p as well, they span a linear
space H of dimension 1 — 1+ h — 1 — k = 2h — 2 — k. Therefore H C IP? is a linear sub-
space of dimension 2/ — 2 — k intersecting C in 2k — k points. Since deg(C) = d we found
a contradiction. Then, trough a general point of Sec;,(C) there is at most an (h — 1)-plane
h-secant to C, and dim(Sec; (C)) = 2h — 1.

If d = 2h is even then through a general point p € Secj,1(C) there is a family of dimension
exactly one of h-planes (h + 1)-secant to C (just consider the partial derivatives of order
h — 1 of p interpreted as a degree d polynomial). Then dim(Sec,1(C)) =h+1+h—1=
2h. Therefore, in any case d < 2h — 1 implies

d+1 d-+1
dim(Secy(C)) > % + % 14
Then Sec;,(C) = IP¥ and we are done.

Now, consider a decomposition F = A4 L‘f + .+ )\hL;iz . Consider the partial derivatives of
order d — h of F. These are

d—h+1
d—h

):d—h+1§h

homogeneous polynomial of degree h. Furthermore, all these partial derivatives can be
decomposed as a linear combination of L .., LZ. This means that the linear space Hy C
IP" of dimension d — h spanned by the partial derivative is contained in the hyperplane
(L%, ..., L!"). Now, note that the hyperplanes in P" containing H, are parametrized by
P?'~4=1, Therefore we get a rational map

¢: X(Fh) --» Pl
{Ly,.., Ly} — (L. LY
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Now, a general hyperplane H containing Hj intersects the rational normal curve C;, C P"
of degree h in h points l?, ey l,’;. Since Hy C H = <lh, ey lz> these points yields a decompo-
sition of all the partial derivatives of order & of F. This gives a decomposition {1, ..., 17} of
F. Therefore, ¢ is dominant and generically injective, that is ¢ is birational.

Ifd =2h—1then2h —d—1 =0, and X(F,2h — 1) is a point. This means that F admits
a unique decomposition in & powers of linear form (This could be deduced from the first
part of the proof as well).

if C C IP? is a twisted cubic and p € IP? is a general points, we may interpret p as a general
F € k[x,y]3. A line secant to C and passing through p corresponds to a decomposition of
F as a sum of i = 2 cubes of linear forms. In this case d = 3 = 2h — 1. Then there exists a
unique such decomposition. This means that there exists a unique secant line to C passing
through p.

Exercise 4. Let ¥ = o(IP7 x IP3) C IP® be the Segre embedding. Compute the dimen-
sion of Secp(X) and the secant defect d,(X).

The expected dimension of expdim(Secp (X)) = min{2dim(X) 4+ 1,8} = 8. On the other
hand we may interpret IP® as the space of 3 x 3 matrices modulo scalar multiplication.
Then, X parametrizes rank one matrices, and Secp(X) parametrizes rank two matrices.
Therefore, Secy () = {det(M) = 0}, where M is a general 3 x 3 matrix, is an hypersurface
of degree three in IP8. We conclude that dim(Sec(X)) =7 and 6,(X) =9 —7 = 2.

We may argue also as follows: let p € Secz(X) be a general point, and let x = (x1,x2),
vy = (y1,y2) be points spanning a secant line to ¥ through p, where x1,y; € P, and
x2,y2 € P3. Let Ly C P2 be the line spanned by x1,y1, and L, C P4 be the line spanned
by x2, 2. Then o(L1 x Lp) is a quadric surface Q through x, y. If H is the 3-plane spanned
by Q, then p € H and any line through p in H is a secant line of X. Therefore, J,(X) > 2.
Clearly 6,(X) < 3. We conclude that 6, (X) = 2 and dim(Secy (X)) = 7.

Exercise 5. Let X C IP" be an irreducible curve. Then, dim(Secy(X)) = 2 implies that
X is contained in a plane.

If dim(Secy (X)) = 2 then through a general point p € Secy(X) there is a family of dimen-
sion one of secant lines to X. Since p € Secy(X) is general it is smooth. Let T ,Secy(X) be
the tangent space of Seco(X) at p. Both Secy(X) and TpSeca(X) are of dimension two, and
they intersect in a family of dimension one of lines. This forces Sec, (X) = T,Sec (X) = P?,
and X is contained in a plane.

Exercise 6. Let py, ..., py € IP" be general points, and P(V,, 5,) C P(k[xo, ..., x4]4) = PN
be the projective space parametrizing degree d hypersurfaces in IP" having multiplicity
two in py, ..., pp. Compute the expected dimension of IP(V,, 4):

expdim(IP(V,, 45,)) = max { (n : d) —h(n+1) -1, —1} :

Now, take n = 4,d = 3, and h = 7. Using the previous formula conclude that we expect
that there is no cubic hypersurface in IP* having points of multiplicity two in seven general
points.

Now, consider a polynomial P(xg, x1) = (u1x0 — v1x1) (42X — 02X1)...(Ug41X0 — Vg4+1X1) ON
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P! with d + 1 distinct zeros [vy, u1], ..., [V441, ha1] € P! such that all the u;’s and the v;’s

are not zero. Let Q;(xp, x1) = up}gﬂzl}zl fori=1,..,d+1.

- Prove that the Q;(xo, x1)’s form a basis of k[x, x1]4,
- Conclude that the image of the map

v: P — P4
[x0,x1] +—— [Qi(x0,x1) ¢ ... : Qas1(x0,x1)]

is a rational normal curve of degree d in IP¥ passing through the coordinate points
of P4 and through the points [us...tg, 1 @ ... U1...ly), [02..0441 ¢ . @ 01..7,4] (Note
that these two points are not on the coordinate hyperplanes).

- Deduce that through d + 3 general points in IP? there passes a unique rational
normal curve of degree d (Here general means no d + 1 lying in a hyperplane).

In particular, when d = 4 we get that there exists a degree four rational normal curve
in P* through any seven general points. Use this fact to deduce that there exists an ir-

reducible cubic hypersurface in P* with multiplicity two in seven general points. Hence
d1m(IP (V4,3,7) ) >0, and expdim(IP ( V4/3,7) ) 75 dlm(lP ( V4/3/7) ) .

For a hypersurface X = Z(F) C P" having multiplicity two in & general points imposes at
most h(n + 1) independent conditions, namely the vanishing of the n + 1 partial deriva-

tives of F in py, ..., pj,. Since N = (":d) — 1 we get

expdim(P(V, 43)) = max { (” : d) Ch(n+1) -1, —1} .

In particular, forn = 4,d = 3,and h = 7 we have
expdim(PP(Vy37)) = max{35—-35—-1,—-1} = —1.

Then we expect P(Vy37) to be empty.

Assume there exists a linear relation a1Q1(xo, x1) + ... + a4:1Q441(x0,x1) = 0. Then, for
[x0,x1] = [vi, u;] we get a;Q;(v;, u;) = 0. Since Q;(v;, u;) # 0 we get a; = 0. Therefore,
the Q;’s are linearly independent and since dim(k[xo, x1]4) = d + 1 they form a basis of
k [JCQ , xl] d-

This means that there exists a linear transformation sending the basis formed by the Q;’s to
the standard basis x(”)l, xg_lxl, vy xil of k[xo, x1]4. Such linear transformation induces an au-
tomorphism of P mapping the image of v to the standard degree d rational normal curve
of IP%, then v(IP!) itself is a degree d rational normal curve. Now, note that v([v1, u;1]) =
[1:0:..:0],, v([vg41 : Ug1]) = [0: .20 : 1], v([1:0]) = [ugetdgyq ¢ oot Ug..1ty), and
v([0:1]) = [02..0441 ... : V1...04]. Since all the u;’s and the v;’s are not zero the last two
points are not on any coordinate hyperplane.

Now, for any choice of d + 1 points in IP? in general position there exists an automor-
phism of IP? mapping these points in the coordinate points. Furthermore, the points
[Ugetlgyq @ et Up.lly), [02..0441 ¢ ... © 01...74] may be any points not on the coordinate
hyperplanes. By the above construction the rational normal curve passing through these
d + 3 points is unique. We conclude that through d + 3 general points in IP4 there passes a
unique rational normal curve of degree d.
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Now, we know that through seven general points py, ..., p; € P* there exists an unique
rational normal curve C of degree four. We may assume that C is the image of
Vg : P! — P4
[x0,x1] —— [x§:xdx1 s x5xF ¢ xpx] @ x]]

Secy(C) C IP* is the cubic hypersurface given by the vanishing of the determinant of

Xo X1 X2

M= 1|x1 x2 x3

X2 X3 X4

that is
Secy(C) = {F = xoxpx4 — X0X3 — X3x4 + 2x1%2%3 — x5 = 0}.

The partial derivatives of F are given by

JoF _ .2
oy T X2X4 — X3,
z?TFl = 2(xpx3 — X1Xy),
IE — yoxg — x5 —2(x% — x1x3)
%Xz — 1044 2 2 113 ),
F
aa? = 2(X1XQ — Xng),
_ a2
g X0X2 X1

Note that all the derivatives are linear combination of 2 x 2 minors of the matrix M and
they vanish simultaneously on C. Furthermore the second partial derivatives of F are 15
linear polynomials that are never simultaneously zero. To see this, it is enough to notice
that ’F 0*F 0°F ’F 0*F
oxoxs 3 dxix; A aTcg - OX4Xy xor XX
We conclude that deg(Secz(C)) = 3, Sing(Secy(C)) = C and multc Secy(C) = 2.
In particular, since py, ..., py € C we have mult,, Sec;(C) = 2fori = 1,...,7. Then the secant
variety Secy(C) C P*is an irreducible cubic hypersurface having multiplicity two in seven
general points. This yields dim(IP(Vy37)) > 0, and expdim(P(Vy37)) # dim(IP(Vazy)).




CHAPTER 11

Riemann-Roch Theorem

Exercise 1. [Har Exercise 1.1 - Chapter IV] We have two show that there exists a non-
constant rational function f € K(X) such that div(f) + kP > 0 for some k > 0, that is
h%(X,kP) > 0 for k > 0. By Riemann-Roch for the divisor D = kP we have

W(X,kP) — h°(X,Kx — kP) = deg(kP) —g+1=k—g+1.
Now, deg(Kx — kP) = 2¢ — 2 — k < 0 for k >> 0. Therefore, for k > 0 we have h°(X, Kx —
kP) =0, and
W(X,kP) = deg(kP) —g+1=k—g+1>0.

Exercise 2. [Har, Exercise 1.2 - Chapter IV] By the previous exercise for any P; € X
there exists a rational function f; € K(X) that is regular everywhere except at P;. Finally,
we take f = fi + ...+ f.

Exercise 3. [Har, Exercise 1.5 - Chapter IV] By Riemann-Roch we have 1°(X,D) =
deg(D) — g+ 1+ h°(Kx — D). Since D is effective we have that sections of Kx — D are
differential forms on X vanishing on the effective divisor D. Then

W’ (X,Kx — D) < h°(X,Kx) = g.
This yields
h(X,D) = deg(D) — g+ 1+ h°(Kx — D) < deg(D) + 1.

If D = 0 then h°(X,Kx — D) = h°(X,Kx) = g and the equality holds. If ¢ = 0 then
Kx = —2P and deg(Kx — D) < 0 yields hi°(Kx — D) = 0. Again the equality holds. On
the other hand if ¢ > 0 then h°(X,Kx — D) = h%(X,Kx) = g yield that D is linearly
equivalent to zero. Since D is effective we conclude that D = 0.

Exercise 4. [Har, Exercise 1.6 - Chapter [V] Let us consider g + 1 points Py, ..., P11 € X
and the divisor D = 213:11 P;. By Riemann-Roch we have

h(X,D) = deg(D) — g+ 1+ h’(X,Kx — D) > 2+ h’(X,Kx — D) > 2.

Therefore, there exists a non-constant rational function f € K(X) having poles at most on
some of the P;’s. Then, f induce a morphism f : X — P! such that f_l (00) C{Py,.... Pyi1}.

Hence deg(f) < g+ 1.

42
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Exercise 5. [Har, Exercise 1.7 - Chapter IV] A curve X is hyperelliptic if g(X) > 2 and
there exists a finite morphism f : X — P! of degree two.
(a) Let X be a curve of genus two. Then, deg(Kx) = 2¢ —2 = 2, and h°(X,Kx) =
g = 2. Let P € X be a point. By Riemann-Roch

W(X,Kx —P)=2¢—-2-1-g¢g+1+h(X,P)=g—2+Hh(X,P)=hr(X,P).

Now, since P € X is effective we have h°(X, P) > 1. On the other hand 1°(X, P) <
1 because X is not rational. We conclude that

W(X,Kx —P) =h'(X,P) =1=h"(X,Kx) — 1.
Then |Kx| is base point free and it induces a morphism fx, : X — P! of degree
two.

(b) Let X be a smooth curve of bidegree (¢ + 1,2) on a smooth quadric surface Q =
P! x PL. Then

g(X)=2(g+1)—(g+1)—24+1=294+2—-g9g-1-1=g.
Let L and R be the two generators of Pic(Q). We may write C ~ (¢ + 1)L + 2R.
Then
C-L=(g+1)L2+2R-L=2.
This means that the restriction of the second projection 71, : Q — P! defines a
morphism 755y : X — P! of degree two.

Exercise 6. Let X be a smooth projective curve. Prove that X is rational if and only if
g(X) =0.

Assume that X is rational, that is X is birational to IP!. Since X is smooth and projec-
tive we have that X is isomorphic to IP!. Then ¢(X) = ¢(P!) = 0.

Conversely, assume that g(X) = 0. Let P,Q € X be two points with P # Q, and con-
sider the divisor D = P — Q. We have deg(Kx — D) = 2¢—2 = -2 < 0. Then
W°(X,Kx — D) = 0. By Riemann-Roch we get h’(X,D) = deg(D) —g¢+1 = 1. On
the other hand deg(D) = 0 forces D ~ 0, thatis P ~ Q. Then there exists a non-constant
rational function f € k(X) such that div(f) = P — Q. The rational function f induces a
non-constant rational map ¢ : X --+ P! such that ¢~1(0) = P and ¢ !(c0) = Q. Since
¢ is non-constant it is dominant. Furthermore, since ¢~'(0) = P the map ¢ is generically
injective. This means that ¢ : X --» P! is birational.
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