Exercises of Algebraic Geometry I

Alex Massarenti

Alex Massarenti, IMPA, Estrada Dona Castorina 110, 22460-320 Rio De JANEIRO, BRAZIL

E-mail address: massaren@impa.br

Contents

Introduction 4
Chapter 1. Affine varieties 5
Chapter 2. Projective varieties 9
Chapter 3. Morphisms 18
Chapter 4. Rational Maps 21
Chapter 5. Non-singular Varieties 25
Chapter 6. Non-singular Curves 28
Chapter 7. Intersections in Projective Space 29
Chapter 8. Blow-ups 31
Chapter 9. Grassmannians 32
Chapter 10. Secant Varieties 36
Chapter 11. Riemann-Roch Theorem 42
Bibliography 44

Introduction

These notes collect a series of solved exercises for the course of Algebraic Geometry I, I gave at IMPA from August 4 to November 26, 2014. Most of them from the book Algebraic Geometry by R. Hartshorne [Har]. Many others from the notes by Ph. Ellia [PhE].

CHAPTER 1

Affine varieties

Exercise 1. [Har, Exercise 1.1]

(a) The coordinate ring of the curve $C=\left\{y-x^{2}=0\right\} \subset \mathbb{A}^{2}$ is given by

$$
A(C)=k[x, y] /\left(y-x^{2}\right) \cong k\left[x, x^{2}\right] \cong k[x] .
$$

(b) $A(Z)=k[x, y] /(x y-1)$ is isomorphic to the localization of $k[x]$ at x. Let f : $A(Z) \rightarrow k[x]$ be a morphism of k-algebras. Since $x \in A(Z)$ is invertible $f(x) \in k$. Therefore, f can not be an isomorphism.
(c) Let $f(x, y)$ be an irreducible quadratic polynomial, and let $F(X, Y, Z)$ be the degree two homogeneous polynomial induced by f. Consider $F_{\mid\{Z=0\}}=F(X, Y, 0)$. This is a degree two homogeneous polynomial on \mathbb{P}^{1}. Therefore, it has two roots counted with multiplicity. If it has a double root this means that the line $\{z=0\}$ is tangent to the conic $C=\{F=0\}$ in a point $p \in C$. The conic C is isomorphic to \mathbb{P}^{1}. Therefore $C \backslash\{p\} \cong \mathbb{A}^{1}$, and we recover (a).
If $F(X, Y, 0)$ has two distinct roots p, q, then $C \backslash\{p, q\} \cong \mathbb{P}^{1} \backslash\{p, q\} \cong \mathbb{A}^{1} \backslash\{q\}$ and we are in case (b).

Exercise 2. Har, Exercise 1.3] Consider $Y=\left\{x^{2}-y z=x z-x=0\right\} \subset \mathbb{A}^{3}$. Then

$$
Y=\left\{x^{2}-y=z-1=0\right\} \cup\{x=y=0\} \cup\{x=z=0\},
$$

and Y is the union of two lines and a plane irreducible curve of degree two. In particular, the coordinate ring of each irreducible component is isomorphic to $k[t]$.

Exercise 3. [Har, Exercise 1.5] Let B be a finitely generated k-algebra. Then we may write $B=k\left[x_{1}, \ldots, x_{n}\right] / I$ for some ideal $I=\left(f_{1}, \ldots, f_{r}\right)$ in $k\left[x_{1}, \ldots, x_{n}\right]$. Let $X=\left\{f_{1}=\ldots=\right.$ $\left.f_{r}=0\right\} \subseteq \mathbb{A}^{n}$. Let $f \in I(X)$ then, by the Nullstellensatz we have $f^{k} \in I$ for some $k>0$. Now, B does not have nilpotents, so $f \in I$. Clearly $I \subseteq I(X)$. This yields $I=I(X)$ and $B \cong A(X)$.
Conversely, assume to have $B=A(X)$ for some algebraic set $X \subset \mathbb{A}^{n}$. Let $I(X)$ be the ideal of X. Then $B \cong k\left[x_{1}, \ldots, x_{n}\right] / I(X)$ is a finitely generated k-algebra. Let $f \in B$ be a nilpotent element. Then $f^{k}=0$ for some k, that is $f^{k} \in I$. Since I is radical we get $f \in I$, that is $f=0$ in B.

Exercise 4. [Har, Exercise 1.8] Let $Y \subset \mathbb{A}^{n}$ be an affine variety of dimension r. Let $H \subset \mathbb{A}^{n}$ be an hypersurface such that Y is not contained in H and $Y \cap H \neq \varnothing$. Since Y is not contained in H we have $I(H) \nsubseteq I(Y)$. Let f be the polynomial defining H. Then, the irreducible components of $Y \cap H$ corresponds to the minimal prime ideals of $A(Y)$
containing f. Note that $Y \nsubseteq H$ implies that f is not a zero-divisor in $A(Y)$. By the Hauptidealsatz any minimal prime ideal containing f has height one. Finally, by Har, Theorem 1.8A] we get that the any irreducible component of $Y \cap H$ has dimension $\operatorname{dim}(Y)-1$.

Exercise 5. [Har, Exercise 1.9] Let $\mathfrak{a} \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal that can be generated by r elements f_{1}, \ldots, f_{r}. Note that $\left\{f_{i}=0\right\}$ defines an hypersurface for any $i=1, \ldots, r$. We apply r times Exercise 1.8 and we distinguish two cases:

- at any step the variety $H_{k}=\left\{f_{1}=\ldots f_{k}=0\right\}$ is not contained in the hypersurface $\left\{f_{k+1}=0\right\}$. Then at each step the dimension of the intersection drops by one. We get that the dimension of each irreducible component of Y is $n-r$,
- if H_{k} is contained in $\left\{f_{k+1}=0\right\}$ for some k, then the intersection with $\left\{f_{k+1}=0\right\}$ will not drop the dimension. Then each irreducible component of Y has dimension greater than $n-r$.
In any case we have that the dimension of each irreducible component of Y is greater or equal than $n-r$.

Exercise 6. Har, Exercise 1.11] The curve Y is the image of the morphism

$$
\begin{array}{rlc}
\phi: \mathbb{A}^{1} & \longrightarrow & \mathbb{A}^{3} \\
t & \longmapsto\left(t^{3}, t^{4}, t^{5}\right)
\end{array}
$$

Note that since \mathbb{A}^{1} is irreducible Y is irreducible as well. Therefore $I=I(Y)$ is prime. Furthermore $\operatorname{dim}(Y)=\operatorname{dim}(A(Y))=1$ and by [Har, Theorem 1.8A] we get height $(I(Y))=2$. Note that the three polynomials $z^{2}-x^{2} y, x z-y^{2}$ and $y z-x^{3}$ are in $I(Y)$ and they are independent.
Let $J=\left(z^{2}-x^{2} y, x z-y^{2}, y z-x^{3}\right) \subseteq I(Y)$. By [Ku, Page 138] we have that $I(Y)=J$ and that we need three elements to generate $I(Y)$.

Exercise 7. [Har, Exercise 1.12] Consider the polynomial

$$
f=\left(x^{2}-1+i y\right)\left(x^{2}-1-i y\right)=x^{4}-2 x^{2}+y^{2}+1 .
$$

Since $\mathbb{R}[x, y] \subset \mathbb{C}[x, y]$ are unique factorization domains and f splits in $\mathbb{C}[x, y]$ as a product of two irreducible polynomials of degree two, we conclude that f is irreducible in $\mathbb{R}[x, y]$. On the other hand, $Z(f)=\{(1,0),(-1,0)\}$ is the union of two points. Therefore $f \in$ $\mathbb{R}[x, y]$ is irreducible but $Z(f) \subset \mathbb{A}^{2}$ is reducible.

Exercise 8. [PhE] Let $M_{n}(k)$ be the set of $n \times n$ matrices with coefficients in k. Prove that

$$
R_{n-1}=\left\{A \in M_{n}(k) \mid \operatorname{rank}(A)<n\right\}
$$

is an algebraic subset of $M_{n}(k) \cong \mathbb{A}^{n^{2}}$.
Prove that if $A, B \in M_{n}(k)$ then $A B$ and $B A$ have the same characteristic polynomial.
The subset $R_{n-1} \subset \mathbb{A}^{n^{2}}$ is defined by the vanishing of finitely many polynomials. Therefore it is an algebraic subset.
Let us assume that B is invertible. Then $A B=B^{-1}(B A) B$, and

$$
\begin{aligned}
p_{A B}(\lambda)= & \operatorname{det}\left(\lambda I-B^{-1}(B A) B\right)=\operatorname{det}\left(\lambda B^{-1} I B-B^{-1}(B A) B\right) \\
& =\operatorname{det}\left(B^{-1}\right) \operatorname{det}(\lambda I-B A) \operatorname{det}(B)=\operatorname{det}(\lambda I-B A)=p_{B A}(\lambda) .
\end{aligned}
$$

Now, $\lambda \in \mathbb{A}^{1}$, and for any matrix A the polynomials $p_{A B}(\lambda)$ and $p_{B A}(\lambda)$ coincides on an open subset of $\mathbb{A}^{n^{2}} \times \mathbb{A}^{1}$. Let Z be the closed subset defined in $\mathbb{A}^{n^{2}}$ by $\operatorname{det}(B)=0$, and let $W=Z \times \mathbb{A}^{1}$. Then $p_{A B}(\lambda)$ and $p_{B A}(\lambda)$ coincides on $\mathcal{U}=\mathbb{A}^{n^{2}} \times \mathbb{A}^{1} \backslash W$. Since $p_{A B}(\lambda)$ and $p_{B A}(\lambda)$ are regular function on $\mathbb{A}^{n^{2}} \times \mathbb{A}^{1}$ we conclude that they coincide, that is $p_{A B}=p_{B A}$ for any pair of square matrices A, B.

Exercise 9. [PhE] Let us consider the morphism

$$
\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}, t \mapsto\left(t, t^{2}, t^{3}\right)
$$

and let $C=\phi\left(\mathbb{A}^{1}\right)$.

- Prove that $C=Z(I)$, where $I=\left(y-x^{2}, z-x^{3}\right)$.
- Prove that $A(C) \cong k[x]$.
- Prove that C is smooth using the Jacobian criterion.
- Prove that C is not contained in any plane of \mathbb{A}^{3}, and that a general plane intersects C in three distinct points.
- Prove that any line of \mathbb{A}^{3} intersects C in at most two distinct points.
- Prove that C is a complete intersection.

Both $y-x^{2}, z-x^{3}$ vanish on the points of the form $\left(t, t^{2}, t^{3}\right)$. Any polynomial $f=f(x, y, z)$ can be written as

$$
f(x, y, z)=f_{1}\left(y-x^{2}\right)+f_{2}\left(z-x^{3}\right)+r(x) .
$$

If $f\left(t, t^{2}, t^{3}\right)=r(t)=0$ for any $t \in \mathbb{A}^{1}$ then $r \equiv 0$, and $f \in I$. This proves that $I(C)=$ $\left(y-x^{2}, z-x^{3}\right)$. In particular, $C=Z(I)$. Note that this proves the last point as well.
The morphism ϕ is an isomorphism onto its image C. Therefore $C \cong \mathbb{A}^{1}$ and $A(C) \cong k[x]$. The Jacobian matrix of C is given by

$$
\operatorname{Jac}(C)=\left(\begin{array}{ccc}
-2 x & 1 & 0 \\
-3 x^{2} & 0 & 1
\end{array}\right)
$$

Therefore, $\operatorname{rank}(\operatorname{Jac}(C))=2$ for any $p \in C$, and C is smooth.
A plane Π is given by a linear equation of the form $\alpha x+\beta y+\gamma z+\delta=0$. Therefore, its intersection with C is given by the solutions of $\alpha t+\beta t^{2}+\gamma t^{3}+\delta=0$. Now, $C \subset \Pi$ is and only if $\alpha t+\beta t^{2}+\gamma t^{3}+\delta \equiv 0$, that is $\alpha=\beta=\gamma=\delta=0$. We see also that for a general Π the equation $\alpha t+\beta t^{2}+\gamma t^{3}+\delta \equiv 0$ has three distinct solutions, that is Π intersects C in three distinct points.
Finally, assume that there is a plane Π intersecting C in four points. Then $\alpha t+\beta t^{2}+\gamma t^{3}+$ $\delta \equiv 0$ and $C \subset \Pi$. This contradicts the fourth point.

Exercise 10. PhE Let $C \subset \mathbb{A}^{3}$ be a smooth, irreducible curve such that $\mathbb{I}(C)=(f, g)$. Prove that $T_{x} C=T_{x} F \cap T_{x} G$ for any $x \in C$, where F, G are the surfaces defined by f, g respectively. In particular F and G are smooth and transverse along C.

Without loss of generality we can assume that $x \in C$ is the origin. The Jacobian matrix of C is

$$
\operatorname{Jac}(C)(0)=\left(\begin{array}{lll}
\frac{\partial f}{\partial x}(0) & \frac{\partial f}{\partial y}(0) & \frac{\partial f}{\partial z}(0) \\
\frac{\partial g}{\partial x}(0) & \frac{\partial g}{\partial y}(0) & \frac{\partial g}{\partial z}(0)
\end{array}\right)
$$

Therefore, the tangent line $T_{0} C$ is given by the intersection of the two planes

$$
\begin{aligned}
& T_{0} F=\left\{\frac{\partial f}{\partial x}(0) x+\frac{\partial f}{\partial y}(0) y+\frac{\partial f}{\partial z}(0) z=0\right\}, \\
& T_{0} G=\left\{\frac{\partial g}{\partial x}(0) x+\frac{\partial g}{\partial y}(0) y+\frac{\partial g}{\partial z}(0) z=0\right\}
\end{aligned}
$$

Exercise 11. [PhE] Let $X \subset \mathbb{A}^{n}$ be a reducible hypersurface and let $X=X_{1} \cup \ldots \cup X_{r}$ be its decomposition in irreducible components. Prove that if $x \in X_{i} \cap X_{j}$ then x is a singular point for X.

We may assume $X=X_{1} \cup X_{2}$. If $X=Z(f), X_{1}=Z(g)$ and $X_{2}=Z(h)$ we have $f=g h$. Therefore

$$
\frac{\partial f}{\partial x_{i}}=\frac{\partial g}{\partial x_{i}} h+g \frac{\partial h}{\partial x_{i}} .
$$

If $x \in X_{1} \cap X_{2}$ then $g(x)=h(x)=0$. Then $\frac{\partial f}{\partial x_{i}}(x)=0$ for any $i=1, \ldots, n$, and $x \in X_{1} \cup X_{2}$ is singular.

CHAPTER 2

Projective varieties

Exercise 1. Har, Exercise 2.1] Consider a homogeneous ideal $\mathfrak{a} \subseteq k\left[x_{0}, \ldots, x_{n}\right]$, and $f \in k\left[x_{0}, \ldots, x_{n}\right]$ a polynomial such that $\operatorname{deg}(f)>0$ and $f(p)=0$ for any $p \in Z(\mathfrak{a})$. We may interpret $p=\left[a_{0}: \ldots: a_{n}\right] \in \mathbb{P}^{n}$ as the point $\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{A}^{n+1}$, and the polynomials f as a polynomial on \mathbb{A}^{n+1}. By the Nullstellensatz we have $f^{k} \in \mathfrak{a}$ for some $k>0$.

Exercise 2. Har, Exercise 2.2] Let $C_{a}(Z(\mathfrak{a}))$ be the affine cone over $Z(\mathfrak{a})$. Then $I\left(C_{a}(Z(\mathfrak{a}))\right)=$ $I(Z(\mathfrak{a}))$.
Now, $Z(\mathfrak{a})=\varnothing$ if and only if $C_{a}(Z(\mathfrak{a})) \subseteq\{(0, \ldots, 0)\}$. By the Nullstellensatz we have $I\left(C_{a}(Z(\mathfrak{a}))\right)=r(\mathfrak{a})$. Now, we have two possibilities:
$-C_{a}(Z(\mathfrak{a}))=\varnothing$ if and only if $I\left(C_{a}(Z(\mathfrak{a}))\right)=r(\mathfrak{a})=k\left[x_{0}, \ldots, x_{n}\right]$,
$-C_{a}(Z(\mathfrak{a}))=\{(0, \ldots, 0)\}$ if and only if $I\left(C_{a}(Z(\mathfrak{a}))\right)=r(\mathfrak{a})=\bigoplus_{d>0} k\left[x_{0}, \ldots, x_{n}\right]_{d}$.
This proves $(i) \Leftrightarrow(i i)$. Now, let us prove (ii) $\Rightarrow(i i i)$. If $r(\mathfrak{a})=k\left[x_{0}, \ldots, x_{n}\right]$, then $1 \in r(\mathfrak{a})$. So $1 \in \mathfrak{a}$ and $\mathfrak{a}=k\left[x_{0}, \ldots, x_{n}\right]$. In particular $S_{d} \subseteq \mathfrak{a}$ for any $d>0$. Now, assume $r(\mathfrak{a})=$ $\oplus_{d>0} S_{d}$. Then $x_{i} \in r(\mathfrak{a})$ for any $i=0, \ldots, n$. Therefore, for any i there exists k_{i} such that $x_{i}^{k_{i}} \in \mathfrak{a}$. Let $m=\max \left\{k_{i}\right\}$. Then $x_{i}^{m} \in \mathfrak{a}$ for any $i=0, \ldots, n$. Now any monomial of degree $d=m(n+1)$ is divisible by x_{i}^{m} for some i. We conclude that $S_{d} \subseteq \mathfrak{a}$, where $d=m(n+1)$. Finally we prove $(i i i) \Rightarrow(i)$. If $S_{d} \subseteq \mathfrak{a}$ for some $d>0$, in particular $x_{i}^{d} \in \mathfrak{a}$ for any $i=0, \ldots, n$. Now, it is enough to observe that $Z(\mathfrak{a}) \subseteq Z\left(\left(x_{0}^{d}, \ldots, x_{n}^{d}\right)\right)=\varnothing$.

Exercise 3. [Har, Exercise 2.9] Let $Y \subseteq \mathbb{A}^{n}$ be an affine variety. Consider the homeomorphism

$$
\begin{array}{ccc}
\phi_{0}: U_{0}=\mathbb{P}^{n} \backslash\left\{x_{0}=0\right\} & \longrightarrow & \mathbb{A}^{n} \\
{\left[x_{0}: \ldots: x_{n}\right]} & \longmapsto & \left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)
\end{array}
$$

Finally, let \bar{Y} be the projective closure of Y.
Let $F \in I(\bar{Y})$, then $f\left(y_{1}, \ldots, y_{n}\right)=F\left(1, x_{0}, \ldots, x_{n}\right)$ where $y_{i}=\frac{x_{i}}{x_{0}}$ vanishes on $Y=\bar{Y} \cap U_{0}$. We get that $f \in I(Y)$ and $x_{0}^{s} \beta(f)=F$ for some s. Therefore, $F \in(\beta(I(Y)))$, where β is the homogeneization with respect to x_{0}.
Now let $F \in \beta(I(Y))$, then $F=g_{1} \beta\left(f_{1}\right)+\ldots+g_{r} \beta\left(f_{r}\right)$ for some $f_{1}, \ldots, f_{r} \in I(Y)$, that is $F=g_{1} x_{0}^{s_{1}} f_{1}\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)+\ldots+g_{r} x_{0}^{s_{r}} f_{r}\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)$. Hence $F \in I(\bar{Y})$.
Let $Y \subset \mathbb{A}^{3}$ be the affine twisted cubic. Then $I(Y)=\left(x^{3}-z, x^{2}-y\right)$ while $I(\bar{Y})=(x z-$ $\left.y^{2}, y w-z^{2}, x w-y z\right)$. Note that $I(\bar{Y})$ can not be generated by two elements because $\bar{Y} \subset \mathbb{P}^{3}$ is not a scheme-theoretic complete intersection.

Exercise 4. [Har, Exercise 2.10] Let $Y \subset \mathbb{P}^{n}$ be a non-empty algebraic set, and let $C(Y)$ be the affine cone over Y. Let $p=\left(a_{0}, \ldots, a_{n}\right) \in C(Y)$ be a point. Then p represents the point $\left[a_{0}, \ldots, a_{n}\right] \in Y$. In particular $f(p)=0$ for any $f \in I(Y)$. On the other hand if $f \in I(Y)$
is homogeneous then f vanished on any line joining the origin of \mathbb{A}^{n+1} and a point of Y, because f is homogeneous. Then $C(Y)=Z(I)$ is an algebraic set.
If $f \in I(C(Y))$ and $p \in Y$ then f vanishes on the line in \mathbb{A}^{n+1} joining $(0, \ldots, 0)$ and p. Then $f \in I(Y)$. Conversely, if $g \in I(Y)$ we may write $g=g_{i}+\ldots+g_{j}$ where g_{r} is homogeneous of degree r. Since $I(Y)$ is homogeneous we have $g_{r} \in I(Y)$ for any r. Furthermore, Y nonempty implies that $I(Y)$ does not contain constants, that us $\operatorname{deg}\left(g_{r}\right) \geq 1$ for any r. This yields $g(0, \ldots, 0)=0$. So $g \in I(C(X))$.
Now, $C(Y)$ is irreducible if and only if $I(C(Y))$ is prime, if and only if $I(Y)=I(C(Y))$ is prime, if and only if Y is irreducible.
Finally, we have

$$
\operatorname{dim}(C(Y))=\operatorname{dim}(A(C(Y)))=n+1-\operatorname{height}(I(C(Y)))
$$

and

$$
\operatorname{dim}(Y)=\operatorname{dim}(S(Y))-1=n-\operatorname{height}(I(Y))
$$

Therefore, $\operatorname{height}(I(C(Y)))=\operatorname{height}(I(Y))=n-\operatorname{dim}(Y)$, and

$$
\operatorname{dim}(C(Y))=n+1-(n-\operatorname{dim}(Y))=\operatorname{dim}(Y)+1
$$

Exercise 5. [Har, Exercise 2.11] If $I(Y)=\left(L_{1}, \ldots, L_{k}\right)$ where L_{i} is linear for any i, then $H_{i}=Z\left(L_{i}\right)$ are hyperplanes and $Y=\bigcap_{i=1}^{k} H_{i}$. Conversely, if $Y=\bigcap_{i=1}^{k} H_{i}$ up to an automorphism of \mathbb{P}^{n} we may assume $H_{i}=Z\left(x_{i}\right)$. Then $I(Y)=I\left(\bigcap_{i=1}^{k} H_{i}\right)=\left(x_{1}, \ldots, x_{k}\right)$.
Let Y be a linear subspace of dimension r. Then Y is an intersection of hyperplanes. Intersecting with an hyperplane drops the dimension at most by one. Since $\operatorname{dim}(Y)=r$ then Y is the intersection of at least $n-r$ hyperplanes. We may assume that $n-r$ of them are $Z\left(x_{i}\right)$ for $i=1, \ldots, n-r$. Then Y is the intersection of at least $n-r$ hyperplanes and $I(Y)$ is generated by $n-r$ linear polynomials.
Let Y, Z be linear varieties in \mathbb{P}^{n} of dimension r, s. Then Y is intersection of $n-r$ hyperplanes and Z is intersection of $n-s$ hyperplanes. Therefore $I(Y \cap Z)$ is generated by at most $2 n-r-s$ linear polynomials. Then $Y \cap Z$ is linear and $\operatorname{dim}(Y \cap Z) \geq n-(2 n-r-$ $s)=r+s-n$.

Exercise 6. Har, Exercise 2.13] Let Y be the image of the Veronese embedding

$$
\begin{array}{ccc}
v: \mathbb{P}^{2} & \longrightarrow & \mathbb{P}^{5} \\
{\left[x_{0}: x_{1}: x_{2}\right]} & \longmapsto & {\left[x_{0}^{2}: x_{0} x_{1}: x_{0} x_{2}: x_{1}^{2}: x_{1} x_{2}: x_{2}^{2}\right]}
\end{array}
$$

Let $Z \subset Y$ be curve. Then $f^{-1}(Z)=C \subset \mathbb{P}^{2}$ is a plane curve. Therefore, $C=Z(f)$ where $f \in k\left[x_{0}, x_{1}, x_{2}\right]_{d}$ is a homogeneous polynomial. Then f^{2} is a homogeneous polynomial of degree $2 d$ on \mathbb{P}^{2}. Let X_{0}, \ldots, X_{5} be homogeneous coordinates on \mathbb{P}^{5}. Then $f\left(x_{0}^{2}, \ldots, x_{2}^{2}\right)=$ $F\left(X_{0}, \ldots, X_{5}\right)$ is a homogeneous polynomial of degree d on \mathbb{P}^{5}, and $Y \cap Z(F)=Z$.
For instance let Z be the image of the line $C=\left\{x_{0}=0\right\}$. Then $F=x_{0}^{2}=X_{0}$, and $Z=$ $Y \cap Z\left(X_{0}\right)$. Note that Z is a conic and since $\operatorname{deg}(Y)=4$ we have $\operatorname{deg}\left(Y \cap Z\left(X_{0}\right)\right)=4$. Then $Z=Y \cap Z\left(X_{0}\right)$ set-theoretically. Indeed, scheme-theoretically the intersection $Y \cap Z\left(X_{0}\right)$ is twice Z.

Exercise 7. [Har, Exercise 2.16] On the affine chart $w=1$ we have the equations $x^{2}-$ $y, x y=z$, that is $y=x^{2}, z=x^{3}$. The points in the intersection $Q_{1} \cap Q_{2} \cap\{w \neq 0\}$ are of the form $\left(x, x^{2}, x^{3}, 1\right)$, and we get the twisted cubic. If $w=0$ then $x=0$, and we get the line $\{x=w=0\}$.
Let C be the conic $\left\{x^{2}-y z=0\right\}$ and L the line $\{y=0\}$. Then C and L intersects in the point $p=[0: 0: 1]$. Now, $I(\{p\})=(x, y)$ but $x \notin I(C)+I(L)$. Therefore $I(C)+I(L) \neq$ $I(\{p\})$. Note that L is tangent to C in p. Indeed $I(C \cap L)=\left(x^{2}, y\right)$.

Exercise 8. [Har, Exercise 2.17]

(a) Let $Y=Z(\mathfrak{a}) \subseteq \mathbb{P}^{n}$ be a variety. Assume $\mathfrak{a}=\left(f_{1}, \ldots, f_{q}\right)$. If $q=1$ the Y is an hypersurface, and $\operatorname{dim}(Y)=n-1$. Assume that the statement is true for $q-1$, and consider $\mathfrak{a}=\left(f_{1}, \ldots, f_{d-1}, f_{q}\right)$ with $f_{q} \notin\left(f_{1}, \ldots, f_{d-1}\right)$. Let $X=Z\left(\left(f_{1}, \ldots, f_{d-1}\right)\right)$. By induction $\operatorname{dim}(X) \geq n-q+1$. Furthermore, since $f_{q} \notin\left(f_{1}, \ldots, f_{d-1}\right)$ intersecting X with the hypersurface $Z\left(f_{q}\right)$ drops the dimension by one. Then, $\operatorname{dim}(Y)=\operatorname{dim}\left(X \cap Z\left(f_{q}\right)\right) \geq n-q$.
(b) Let Y be a strict complete intersection. Then $I(Y)=\left(f_{1}, \ldots, f_{n-r}\right)$ where $r=$ $\operatorname{dim}(Y)$. Let $X_{i}=Z\left(f_{i}\right)$ be the hypersurface defined by f_{i}. Then $Y=\bigcap_{i=1}^{n-r} X_{i}$ is a set-theoretic complete intersection.
(c) Let Y be the twisted cubic in \mathbb{P}^{3}. Assume $I(Y)=(f, g)$. Then $Y=Z(f) \cap Z(g)$ scheme-theoretically. By Bézout's theorem we have $\operatorname{deg}(Z(f)) \cdot \operatorname{deg}(Z(g))=$ $\operatorname{deg}(Y)=3$. Therefore, either $\operatorname{deg}(Z(f))=1$ or $\operatorname{deg}(Z(g))=1$. In any case Y is contained in a plane. A contradiction.
Another way to see this fact is the following. In $I(Y)$ there are not linear polynomials because Y us not plane. On the other hand in $I(Y)$ there are the three independent quadratic polynomials $x z-y^{2}, y w-z^{2}, x w-y z$. Therefore $I(Y)$ can not be generated by two polynomials.
Now, consider the quadric surface Q given by

$$
\operatorname{det}\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right)=0
$$

and the cubic surface S given by

$$
\operatorname{det}\left(\begin{array}{ccc}
x & y & z \\
y & z & w \\
z & w & x
\end{array}\right)=0
$$

On a general point $p=\left[u^{3}: u^{2} v: u v^{2}: v^{3}\right] \in Y$ we have $\operatorname{Jac}(Q)(p)=\left(u v^{2},-2 u^{2} v, u^{3}, 0\right)$ and $\operatorname{Jac}(S)(p)=\left(v^{2}\left(u^{4}-v^{4}\right),-2 u v\left(u^{4}-v^{4}\right), u^{2}\left(u^{4}-v^{4}\right), 0\right)$. Therefore, $\mathbb{T}_{p} Q=$ $\mathbb{T}_{p} S$ for a general point $p \in Y$. This means that $Q \cap S=Y$ set-theoretically. However, scheme-theoretically Q and S cut Y twice.

Exercise 9. PhE Let $R, L \subset \mathbb{P}^{3}$ be two skew lines. Let $p \in \mathbb{P}^{3}$ be a points such that $p \notin R \cap L$. Prove that there exists a unique line L_{p} such that $p \in L_{p}, L_{p} \cap R \neq \varnothing$ and $L_{p} \cap L \neq \varnothing$.
Now, let $L_{1}, L_{2}, L_{3} \subset \mathbb{P}^{3}$ be three, pairwise skew, lines. Then for any point $p \in L_{1}$ there exists a unique line L_{p} such that $p \in L_{p}, L_{p} \cap L_{2} \neq \varnothing$ and $L_{p} \cap L_{3} \neq \varnothing$. Prove that if $p \neq q$
then $L_{p} \cap L_{q}=\varnothing$. Let

$$
Q=\bigcup_{p \in L_{1}} L_{p}
$$

Compute the dimension and the degree of Q.
Consider the plane $H=\langle p, R\rangle$. Since $R \cap L=\varnothing$ we have that L is not contained in H. Therefore, $H \cap L=\{q\}$. The line $L_{p}=\langle p, q\rangle$ intersects R as well because L_{p} and R are both contained in H. Assume there is another line R_{p} with this property and consider the plane $\Pi=\left\langle L_{p}, R_{p}\right\rangle$. Then $L, R \subset \Pi$, and $L \cap R \neq \varnothing$. A contradiction.
The dimension of Q is two because for any point $p \in L_{1}$ we have a line L_{p} in Q. Now, quadric surfaces in \mathbb{P}^{3} are parametrized by $\mathbb{P}^{9}=\mathbb{P}\left(k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]_{2}\right)$. A line L_{i} is contained in Q if and only if L_{i} intersects Q in at least three points. Therefore, to force L_{1}, L_{2}, L_{3} to be contained in a quadric surface we get nine linear equations in the homogeneous coordinates of \mathbb{P}^{9}. We conclude that there is a quadric $\bar{Q} \subset \mathbb{P}^{3}$ containing L_{1}, L_{2}, L_{3}. Note that Q can not be neither a double plane not the union of two planes because we have three skew lines in Q. For the same reason \bar{Q} can not be a quadric cone. Indeed all the lines contained in a quadric cone pass through the vertex. Therefore \bar{Q} is a smooth quadric. Assume there is another quadric \bar{Q}_{2} containing L_{1}, L_{2}, L_{3}. Then any line T in \bar{Q} intersecting L_{1}, L_{2}, L_{3} intersects \bar{Q}_{2} in at least three points. Therefore $T \subset \bar{Q}_{2}$. This means that $\bar{Q} \cap \bar{Q}_{2}$ contains a surface. However, \bar{Q} and \bar{Q}_{2} are irreducible. Then $\bar{Q}=\bar{Q}_{2}$. We conclude that given three skew lines $L_{1}, L_{2}, L_{3} \subset \mathbb{P}^{3}$ there exists a unique quadric surface $\bar{Q} \subset \mathbb{P}^{3}$ containing L_{1}, L_{2}, L_{3}. Furthermore, \bar{Q} is smooth, and in particular irreducible.
Now, any line L_{p} intersects \bar{Q} in at least three points. Then $L_{p} \subset \bar{Q}$ for any $p \in L_{1}$. This means that the surface Q is contained in \bar{Q}. Since \bar{Q} is irreducible we conclude that $Q=\bar{Q}$. Finally, $\operatorname{deg}(Q)=\operatorname{deg}(\bar{Q})=2$.

Exercise 10. [PhE] Let $x=[1: 0: \ldots: 0] \in \mathbb{P}^{n}$ and $H=\left\{x_{0}=0\right\}$. The projection from x on the hyperplane H is defined as

$$
\begin{array}{ccc}
\pi_{x}: \mathbb{P}^{n} & -\cdots \quad H \cong \mathbb{P}^{n-1} \\
y & \longmapsto\langle x, y\rangle \cap H
\end{array}
$$

Prove that, if $n \geq 2$, it is not possible to extend π_{x} on the whole of \mathbb{P}^{n}. Now, consider the case $n=2$ and the conic $C=\left\{x_{2}^{2}-x_{0} x_{1}\right\}$. Prove that the restriction

$$
\pi_{x \mid C}: C \rightarrow \mathbb{P}^{1}
$$

can be extended on the whole of C.
We may try to extend π_{x} defining $\pi_{x}(x)=z \in H$ for some $z \in H$. However, if $n \geq 2$ the extend map can not be continuous in x.
Since $x=[1: 0: 0] \in C$ is a smooth point there is a natural way to extend $\pi_{x \mid C}: C \rightarrow \mathbb{P}^{1}$, that is considering $T_{x} C=\left\{x_{1}=0\right\}$. We may define

$$
\pi_{x}(x)=T_{x} \subset \cap\left\{x_{0}=0\right\}=\{[0: 0: 1]\} .
$$

Exercise 11. PhE Let $S_{d}=k\left[x_{0}, \ldots, x_{n}\right]_{d}$ the k-vector space of degree d homogeneous polynomials in $n+1$ variables. Prove that

$$
\operatorname{dim}\left(S_{d}\right)=\binom{d+n}{n}
$$

Let us look at the case $d=1$. Then $\operatorname{dim}\left(S_{1}\right)=n+1$. On the other hand, if $n=0$ we have $\operatorname{dim}\left(S_{d}\right)=1$ for any d. Therefore we may proceed by double induction on n and d. Note that we have

$$
k\left[x_{0}, \ldots, x_{n}\right]_{d}=k\left[x_{0}, \ldots, x_{n-1}\right]_{d} \oplus k\left[x_{0}, \ldots, x_{n}\right]_{d-1}
$$

By induction hypothesis $\operatorname{dim}\left(k\left[x_{0}, \ldots, x_{n-1}\right]_{d}\right)=\binom{d+n-1}{n-1}$ and $\operatorname{dim}\left(k\left[x_{0}, \ldots, x_{n}\right]_{d-1}\right)=\binom{d-1+n}{n}$. Finally,

$$
\operatorname{dim}\left(S_{d}\right)=\binom{d+n-1}{n-1}+\binom{d-1+n}{n}=\binom{d+n}{n}
$$

Exercise 12. PhE Let $C \subset \mathbb{P}^{2}$ be a smooth curve of degree $d \geq 2$. We define a morphism

$$
\begin{array}{rll}
f: C & \longrightarrow & \mathbb{P}^{2 *} \\
p & \longmapsto & T_{p} C
\end{array}
$$

Prove that the image $C^{*}=f(C) \subset \mathbb{P}^{2 *}$ is a curve. The curve C^{*} is called the dual curve of C.

Let $C \subset \mathbb{P}^{2}$ be the conic given by $x_{1}^{2}-x_{0} x_{2}=0$. Prove that C is smooth and determine C^{*}.
Since $d \geq 2$ and we are in characteristic zero the morphism f is not constant. Therefore its image has dimension one. Since f is projective $f(C)$ is closed.
The tangent line at $C=Z(g)$ in a point $p \in C$ corresponds to point of \mathbb{P}^{2} whose homogeneous coordinates are the partial derivatives of g evaluated in p. That is

$$
\begin{array}{ccc}
f: C=Z(g) & \longrightarrow & \mathbb{P}^{2 *} \\
p & \longmapsto & {\left[\frac{\partial g}{\partial x}(p): \frac{\partial g}{\partial y}(p): \frac{\partial g}{\partial z}(p)\right]}
\end{array}
$$

Let d be the degree of C, and let L be a line in $\mathbb{P}^{2 *}$. The pulling-back the equation of L via f we get a polynomial of degree $d-1$ on \mathbb{P}^{2}. By Bézout theorem we have $\operatorname{deg}\left(C^{*}\right)=d(d-1)$ In our case $d=2$, so C^{*} is a conic. Indeed the morphism is

$$
\begin{array}{rlc}
f: C=Z(g) & \longrightarrow & \mathbb{P}^{2 *} \\
{\left[x_{0}: x_{1}: x_{2}\right]} & \longmapsto & {\left[-x_{2}: 2 x_{1}:-x_{0}\right]}
\end{array}
$$

If z_{0}, z_{1}, z_{2} are the homogeneous coordinates on $\mathbb{P}^{2 *}$ note that $z_{1}^{2}=4 x_{1}^{2}=4 x_{0} x_{1}=4 z_{0} z_{2}$. Therefore $C^{*} \subset \mathbb{P}^{2 *}$ is the smooth conic defined by $\left\{z_{1}^{2}-4 z_{0} z_{2}=0\right\}$. Note that the matrix of C^{*} is the inverse of the matrix of C.

Exercise 13. Let $X \subset \mathbb{P}^{n}$ be an irreducible hypersurface of degree d having a singular point $x \in X$ of multiplicity $d-1$. Prove that X is rational.

Consider the projection

$$
\begin{array}{ccc}
\pi_{x}: X & -- & H \cong \mathbb{P}^{n-1} \\
y & \longmapsto\langle x, y\rangle \cap H
\end{array}
$$

where H is a general hyperplane. Note that for $y \in X$ general the line $\langle x, y\rangle$ is not contained in X. Otherwise, X would be a cone with vertex x, and x would be of multiplicity d for X.
Since $\operatorname{deg}(X)=d$ and x has multiplicity $d-1$, by Bézout's theorem the general line $\langle x, y\rangle$ intersects X only in x with multiplicity $d-1$ and in y with multiplicity one. This means that π_{x} is birational. So X is rational.

Exercise 14. Let x, y, z be homogeneous coordinates on \mathbb{P}^{2}. Consider the conic $C=$ $\left\{y^{2}-x z=0\right\}$, and the point $p=[0: 1: 0] \notin C$. Let α, β, γ the dual coordinates on $\mathbb{P}^{2 *}$. Compute the dual conic $C^{*} \subset \mathbb{P}^{2 *}$ of C, and the line $L_{p} \subset \mathbb{P}^{2 *}$ dual to the point p. Prove that the tangents lines to C through p corresponds to points in $L_{p} \cap C^{*}$. Finally, compute explicitly the tangent lines to C through p.
Now, let x, y, z, w be homogeneous coordinates on \mathbb{P}^{3}. Compute the equations of the line L through $p=[1: 0: 0: 0]$ and $q=[1: 1: 1: 1]$. Write down the equation of a smooth quadric surface $Q \subset \mathbb{P}^{3}$ such that $L \subset Q$.

Let $F=y^{2}-x z$, and consider the morphism

$$
\begin{array}{ccc}
f: C & \longrightarrow & \mathbb{P}^{2 *} \\
{[x: y: z]} & \longmapsto & {\left[\frac{\partial F}{\partial x}(x, y, z): \frac{\partial F}{\partial y}(x, y, z): \frac{\partial F}{\partial z}(x, y, z)\right]=[-z: 2 y:-x]}
\end{array}
$$

The $C^{*}=f(C)$. If α, β, γ are homogeneous coordinates on $\mathbb{P}^{2 *}$ note that $\beta^{2}=4 y^{2}=4 x z=$ $4 \alpha \gamma$. Therefore $C^{*} \subset \mathbb{P}^{2 *}$ is the smooth conic defined by $\left\{\beta^{2}-4 \alpha \gamma=0\right\}$.
The dual of $p=[0: 1: 0]$ is the space of linear forms $\{L=\alpha x+\beta y+\gamma z\}$ vanishing at p. This forces $\beta=0$. Therefore, $L_{p}=\{\beta=0\} \subset \mathbb{P}^{2 *}$. The map f associates to a point $q \in C$ the tangent line $\mathbb{T}_{q} C$. Hence, by duality the tangent lines of C through p corresponds to the points of intersection between C^{*} and L_{p}.
We have $C^{*} \cap L_{p}=\{[0: 0: 1],[1: 0: 0]\}$. Therefore, the two tangent lines are the dual lines of these two points, that is $R_{1}=\{z=0\}$ and $R_{2}=\{x=0\}$.
Let us consider the matrix

$$
M=\left(\begin{array}{cccc}
x & y & z & w \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

The line L is the locus of \mathbb{P}^{3} where M has rank two. Note that there are two 3×3 minors of M giving $\{y-z=0\}$, and $\{w-z=0\}$. Then $L=\{y-z=w-z=0\}$. Consider the quadric Q given by

$$
Q=\{F=x(y-z)+y(w-z)=x y-x z+y w-y z=0\} .
$$

Clearly $L \subset Q$. Furthermore,

$$
\frac{\partial F}{\partial x}=y-z, \frac{\partial F}{\partial y}=x+w, \frac{\partial F}{\partial z}=-x-y, \frac{\partial F}{\partial w}=y
$$

Now, $\frac{\partial F}{\partial x}=\frac{\partial F}{\partial y}=\frac{\partial F}{\partial z}=\frac{\partial F}{\partial w}=0$ forces $x=y=z=w=0$. Then Q is smooth.

Exercise 15. Let $v: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ be the degree two Veronese embedding, and let $V \subset \mathbb{P}^{5}$ be its image. Compute the degree of $V \subset \mathbb{P}^{5}$.
Let $C \subset \mathbb{P}^{2}$ be a curve of degree d. Compute the degree of $v(C) \subset V \subset \mathbb{P}^{5}$. Prove that V does not contain a line.
Now, interpret \mathbb{P}^{5} as the projective space parametrizing conics in \mathbb{P}^{2}.
Explain why $V \subset \mathbb{P}^{5}$ is the locus parametrizing rank one conics, that is double lines.
Consider the matrix representation of a general conic in \mathbb{P}^{2}. Let X be the locus in \mathbb{P}^{5} parametrizing rank two conics, that is union of two lines. Prove that $X \subset \mathbb{P}^{5}$ is an hypersurface of degree three.
Deduce that there exists a Zariski open subset $\mathcal{U} \subset \mathbb{P}^{5}$ parametrizing rank three conics, that is smooth conics, and that the general conic can not be written as a sum of powers of two squares of linear forms.

The Veronese embedding is defined as

$$
\begin{array}{clc}
v: \mathbb{P}^{2} & \longrightarrow & \mathbb{P}^{5} \\
{[a: b: c]} & \longmapsto & {\left[a^{2}: a b: a c: b^{2}: b c: c^{2}\right]}
\end{array}
$$

Since $\operatorname{dim}(V)=2$ to compute $\operatorname{deg}(V)$ we have to intersect with a general linear subspace of dimension three H. Let us write $H=H_{1} \cup H_{2}$ where the H_{i} 's are hyperplanes. Then $v^{-1}\left(V \cap H_{i}\right)=C_{i}$ are two conics in \mathbb{P}^{2}. Since, v is an isomorphism we get

$$
\operatorname{deg}(V)=\#(H \cap V)=\#\left(C_{1} \cap C_{2}\right)=4
$$

Let $C \subset \mathbb{P}^{2}$ be a curve of degree d. Since v is an isomorphism the image $\Gamma=v(C)$ is a curve isomorphic to C. Let $H \subset \mathbb{P}^{5}$ be a general hyperplane. Then $v^{-1}(V \cap H)=C_{1}$ is a conic, and

$$
\operatorname{deg}(\Gamma)=\#(H \cap \Gamma)=\#(H \cap V \cap \Gamma)=\#\left(C_{1} \cap C\right)=2 d
$$

The lowest degree of a curve in \mathbb{P}^{2} is one. Then, the lowest degree of a curve in V is two. In particular V does not contain any line.
Let $L=a x+b y+c z$ be a linear form on \mathbb{P}^{2}. Then

$$
L^{2}=a^{2} x^{2}+2 a b x y+2 a c x z+b^{2} y^{2}+2 b c y z+c^{2} z^{2}
$$

Note that modulo re-scaling the coefficients of the mixed terms these are exactly the coordinates of v. Therefore, V parametrizes double lines. Let Z_{0}, \ldots, Z_{5} be homogeneous coordinates on \mathbb{P}^{5}. The we may write a plane conic as

$$
C=\left\{Z_{0} x^{2}+2 Z_{1} x y+2 Z_{2} x z+Z_{3} y^{2}+2 Z_{4} y z+Z_{5} z^{2}=0\right\}
$$

The matrix of C is

$$
M=\left(\begin{array}{lll}
Z_{0} & Z_{1} & Z_{2} \\
Z_{1} & Z_{3} & Z_{4} \\
Z_{2} & Z_{4} & Z_{5}
\end{array}\right)
$$

Hence, the locus X parametrizing rank two conics in defined by $X=\{\operatorname{det}(M)=0\}$. So, X is an hypersurface of degree three. Any point in the open subset $\mathcal{U}=\mathbb{P}^{5} \backslash X$ represents a smooth conics. Assume that the general conic can be written as sum of two square of linear forms $F=L_{1}^{2}+L_{2}^{2}$. Then $C=Z(F)$ would be singular in $\left\{L_{1}=L_{2}=0\right\}$. A contradiction, because we know that the general conic is smooth.

Exercise 16. Let $X \subset \mathbb{P}^{n}$ be an irreducible, reduced and non-degenerate variety. Prove that

$$
\operatorname{deg}(X) \geq \operatorname{codim}(X)+1
$$

Provide an example where the equality is achieved. We say that an irreducible, reduced and non-degenerate variety $X \subset \mathbb{P}^{n}$ is a variety of minimal degree if $\operatorname{deg}(X)=\operatorname{codim}(X)+1$. Provide an example of a variety of minimal degree which is not an hypersurface. Prove that a cone over a variety of minimal degree is of minimal degree.

If $\operatorname{codim}(X)=1$, being X non-degenerate, we have $\operatorname{deg}(X) \geq 2=\operatorname{codim}(X)+1$. We proceed by induction on $\operatorname{codim}(X)$. Let $x \in X$ be a general point, and

$$
\pi_{x}: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{n-1}
$$

be the projection from x. The variety $Y=\overline{\pi_{x}(X)} \subset \mathbb{P}^{n-1}$ has degree $\operatorname{deg}(Y)=\operatorname{deg}(X)-1$, and codimension $\operatorname{codim}(Y)=\operatorname{codim}(X)-1$. By induction hypothesis we have $\operatorname{deg}(Y) \geq$ $\operatorname{codim}(Y)+1$, which implies $\operatorname{deg}(X) \geq \operatorname{codim}(X)+1$. The simplest example of a variety of minimal degree is a quadric hypersurface in \mathbb{P}^{n}. Let $V_{2}^{2} \subset \mathbb{P}^{5}$ be the Veronese surface. Then $\operatorname{codim}\left(V_{2}^{2}\right)=3$, and $\operatorname{deg}\left(V_{2}^{2}\right)=4$. Therefore, the Veronese surface is of minimal degree.
Now, let $X \subset \mathbb{P}^{n}$ be a variety of minimal degree, and let $C_{p}(X) \subset \mathbb{P}^{n+1}$ be the cone with vertex $p \in \mathbb{P}^{n+1}$ over X. Then, $\operatorname{deg}\left(C_{p}(X)\right)=\operatorname{deg}(X)$, and $\operatorname{dim}\left(C_{p}(X)\right)=\operatorname{dim}(X)+1$, that is $\operatorname{codim}\left(C_{p}(X)\right)=n+1-\operatorname{dim}\left(C_{p}(X)\right)=\operatorname{codim}(X)$. Finally,

$$
\operatorname{deg}\left(C_{p}(X)\right)=\operatorname{deg}(X)=\operatorname{codim}(X)+1=\operatorname{codim}\left(C_{p}(X)\right)+1,
$$

and $C_{p}(X)$ is of minimal degree.
Exercise 17. Let $a_{1} \leq a_{2} \leq \ldots \leq a_{k}$ be natural numbers, and let $n=\sum_{i=1}^{k} a_{i}+k-1$. Fix $H_{i} \cong \mathbb{P}^{a_{i}} \subset \mathbb{P}^{n}$ complementary linear subspaces, and $C_{i} \subset H_{i}$ a rational normal curve of degree a_{i} for any i. Finally, we choose isomorphisms $\phi_{i}: C_{1} \rightarrow C_{i}$ for $i=2, \ldots, k$ and consider the rational normal scroll of dimension k

$$
S_{a_{1}, \ldots, a_{k}}=\bigcup_{p \in C_{1}}\left\langle p, \phi_{2}(p), \ldots, \phi_{k}(p)\right\rangle .
$$

Compute the degree of $S_{a_{1}, \ldots, a_{k}}$.
We proceed by induction on k. If $k=1$ then $S_{a_{1}}$ is just a rational normal curve of degree a_{1}. We want to prove that in general

$$
\operatorname{deg}\left(S_{a_{1}, \ldots, a_{k}}\right)=a_{1}+\ldots+a_{k}
$$

Let us consider a general hyperplane H containing $H_{1}, \ldots, H_{a_{k-1}}$, and let $S_{a_{1}, \ldots, a_{k-1}}$ the corresponding rational normal scroll of dimension $k-1$. Note that H intersects $C_{a_{k}}$ is a_{k} points $p_{1}, \ldots, p_{a_{k}}$. These points determines $a_{k} k$-planes $\Lambda_{1}, \ldots, \Lambda_{a_{k}}$ of the scroll $S_{a_{1}, \ldots, a_{k}}$, and we have

$$
S_{a_{1}, \ldots, a_{k}} \cap H=S_{a_{1}, \ldots, a_{k-1}} \cup \Lambda_{1} \cup \ldots \cup \Lambda_{a_{k}} .
$$

We conclude that $\operatorname{deg}\left(S_{a_{1}, \ldots, a_{k}}\right)=\operatorname{deg}\left(S_{a_{1}, \ldots, a_{k-1}}\right)+\operatorname{deg}\left(\Lambda_{1}\right)+\ldots+\operatorname{deg}\left(\Lambda_{a_{k}}\right)=\sum_{i=1}^{k} a_{i}$.

Exercise 17. Let $X \subset \mathbb{P}^{n}$ be a variety set-theoretically defined by polynomials F_{1}, \ldots, F_{m} of degree $d_{i}=\operatorname{deg}\left(F_{i}\right)$. Prove that if $d_{1}+\ldots+d_{m} \leq n-1$ then through any point $x \in X$ there is a line contained in X.

We may assume $x=[1: 0: \ldots: 0]$. The lines through x are parametrized by the hyperplane $\left\{x_{0}=0\right\}$. The line spanned by x and $\left[0: x_{1}, \ldots, x_{n}\right]$ is the set of the points $\left[u: v x_{1}: \ldots: v x_{n}\right]$ for $[u: v] \in \mathbb{P}^{1}$.
Now, $F_{i}\left(u: v x_{1}: \ldots: v x_{n}\right)$ is a polynomial of degree d_{i} on \mathbb{P}^{1} whose coefficients depend on x_{1}, \ldots, x_{n}. Note that these coefficient are d_{i} and not $d_{i}+1$ because $x \in X$ forces the coefficient of $u^{d_{i}}$ to be zero. Therefore, $F_{i}\left(u: v x_{1}: \ldots: v x_{n}\right) \equiv 0$ on \mathbb{P}^{1} yields $d_{1}+\ldots+d_{m}$ equations on \mathbb{P}^{n-1}. Finally, if $d_{1}+\ldots+d_{m} \leq n-1$ these system of equations has a solution, that is there is a line through x contained in X.

CHAPTER 3

Morphisms

Exercise 1. [Har, Exercise 3.1]

(a) Let C be a conic in \mathbb{A}^{2}. By [Har, Exercise 1.1] the conic C is isomorphic either to the curve $\left\{y-x^{2}=0\right\}$ or to the curve $\{x y=1\}$. The first curve is isomorphic to \mathbb{A}^{1} while the second is isomorphic to $\mathbb{A}^{1} \backslash\{0\}$.
(b) A proper open subsets of \mathbb{A}^{1} is of the form $U=\mathbb{A}^{1} \backslash Z$ where Z is a finite set of points $Z=\left\{x_{1}, \ldots, x_{k}\right\}$. Note that, since $Z \subset \mathbb{A}^{1}$ is an hypersurface U is affine. In particular, by Har, Lemma 4.2] U is isomorphic to an hypersurface in \mathbb{A}^{2}. In the coordinate ring $A(Y)$ of U the polynomial $x-x_{1}$ is a unit. Therefore, any morphism $A(U) \rightarrow k[x]$ has to send $x-x_{1}$ in an element of k. Note that also x_{1} has to be mapped to an element of k. Therefore x is mapped to k as well, and the morphism can not be surjective.
(c) Let $C \subset \mathbb{P}^{2}$ an irreducible conic. Then, modulo a change of variables the equation of C can be written as $\left\{x z-y^{2}=0\right\}$. Then C is the image of the embedding

$$
\begin{array}{ccc}
v: \mathbb{P}^{1} & \longrightarrow & \mathbb{P}^{2} \\
{\left[x_{0}: x_{1}\right]} & \longmapsto & {\left[x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}\right]}
\end{array}
$$

and $C \cong \mathbb{P}^{1}$.
(d) Assume there is an homeomorphism $f: \mathbb{A}^{2} \rightarrow \mathbb{P}^{2}$. Let L, R be two lines in \mathbb{A}^{2} such that $L \cap R=\varnothing$. Then $f(L), f(R)$ are two curves in \mathbb{P}^{2}. So $f(L) \cap f(R) \neq \varnothing$ and f can not be injective. A contradiction.
(e) Let X, Y be an affine and a projective variety respectively. Assume $X \cong Y$. Then the ring of regular functions of X is isomorphic to the ring of regular functions on Y. Now, since Y is projective the regular functions on Y are constant. So the the regular functions on X are constant as well. Since X is affine it has to be a point.
Exercise 2. Har, Exercise 3.3] Let $\phi: X \rightarrow Y$ be a morphism, and $p \in X$ be point. We define a morphism of local rings

$$
\begin{array}{rlc}
\phi_{p}^{*}: \mathcal{O}_{Y, \phi(p)} & \longrightarrow & \mathcal{O}_{X, p} \\
(U, f) & \longmapsto & \left(\phi^{-1}(U), f \circ \phi\right)
\end{array}
$$

If ϕ is an isomorphism, let ψ be its inverse. For any point $p \in X$ the morphism

$$
\begin{array}{rlc}
\psi_{\phi(p)}^{*}: \mathcal{O}_{X, p} & \longrightarrow & \mathcal{O}_{Y, \phi(p)} \\
(V, g) & \longmapsto & \left(\psi^{-1}(V), g \circ \psi\right)
\end{array}
$$

is the inverse of ϕ_{p}^{*}.
Now, assume that ϕ_{p}^{*} is an isomorphism for any p, and that ϕ is an homeomorphism. Then $\psi=\phi^{-1}$ is an homeomorphism as well. Now, let $V \subseteq Y$ be an open subset. Let $\phi(p) \in V$
be a point. Since ϕ_{p}^{*} is an isomorphism we have that for any regular function f on V the pull-back $f \circ \phi$ is regular on $\phi^{-1}(V)$. Therefore, ϕ is a morphism. In the same way ψ us a morphism. Then ϕ is an isomorphism.
Assume that for some $p \in X$ the morphism ϕ_{p}^{*} is not injective. This means that there for some $(U, f) \in \mathcal{O}_{Y, \phi(p)}$ with $f \neq 0$ we have $\left(\phi^{-1}(U), f \circ \phi\right) \in \mathcal{O}_{X, p}$ with $f \circ \phi=0$. Now, since $f \neq 0$ we may consider the subvariety $Z(f) \subset Y$. Finally $f \circ \phi=0$ yields $\phi(X) \subseteq Z(f)$. Therefore $\phi(X)$ is not dense in Y.

Exercise 3. [Har, Exercise 3.5] Let $H \subset \mathbb{P}^{n}$ be an hypersurface of degree d. Consider the Veronese embedding of degree d

$$
\begin{array}{ccc}
v: \mathbb{P}^{n} & \longrightarrow & \mathbb{P}^{N} \\
{\left[x_{0}: \ldots: x_{n}\right]} & \longmapsto & {\left[x_{0}^{d}: \ldots: x_{n}^{d}\right]}
\end{array}
$$

and let $V \subset \mathbb{P}^{N}$ be its image. Note that $v(H)$ corresponds to an hyperplane section $V \cap \Pi$ of V. Since $\mathbb{P}^{N} \backslash \Pi \cong A^{N}$. The variety $V \backslash(V \cap \Pi)$ is affine. Therefore $\mathbb{P}^{n} \backslash H=v^{-1}(V \backslash$ $(V \cap \Pi))$ is affine as well.

Exercise 4. [Har, Exercise 3.9] The image of

$$
\begin{array}{ccc}
v: \mathbb{P}^{1} & \longrightarrow & \mathbb{P}^{2} \\
{\left[x_{0}: x_{1}\right]} & \longmapsto & {\left[x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}\right]}
\end{array}
$$

is the conic $C=\left\{x z-y^{2}=0\right\} \subset \mathbb{P}^{2}$, and $C \cong \mathbb{P}^{1}$. On the other hand in $S(C)=$ $k[x, y, z] /\left(x z-y^{2}\right)$ we have three elements of degree one while in $S\left(\mathbb{P}^{1}\right)=k\left[x_{0}, x_{1}\right]$ we have just two elements of degree one.

Exercise 5. Har, Exercise 3.13] Consider the ideal

$$
\mathfrak{m}=\left\{(U, f) \mid f_{\mid U \cap Y}=0\right\} .
$$

The quotient $\mathcal{O}_{X, Y} / \mathfrak{m}$ consists of invertible rational functions on Y, that is $K(Y)$. Furthermore, any element in $\mathcal{O}_{X, Y} \backslash \mathfrak{m}$ is invertible. Therefore, \mathfrak{m} is the unique maximal ideal of $\mathcal{O}_{X, \gamma}$.
Note that \mathfrak{m} is the ideal of functions vanishing on Y. Therefore height $(\mathfrak{m})=\operatorname{codim}_{X}(Y)=$ $\operatorname{dim}(X)-\operatorname{dim}(Y)$. Furthermore, $K(Y)$ has dimension zero being a field. We conclude that

$$
\operatorname{dim}\left(\mathcal{O}_{X, Y}\right)=\operatorname{height}(\mathfrak{m})=\operatorname{dim}(X)-\operatorname{dim}(Y)
$$

Exercise 6. [Har, Exercise 3.14] We may assume $p=[1: 0 . . .: 0]$ and H to be the hyperplane $\left\{x_{0}=0\right\}$. Therefore the projection ϕ is given by

$$
\begin{array}{llc}
\phi: \mathbb{P}^{n} \backslash\{p\} & \longrightarrow & H \cong \mathbb{P}^{n-1} \\
{\left[x_{0}: \ldots: x_{n}\right]} & \longmapsto & {\left[x_{1}: \ldots: x_{n}\right]}
\end{array}
$$

So, it is a morphism.
The projection of \mathbb{P}^{3} from the point $p=[0: 0: 1: 0]$ to the plane $\{z=0\}$ is given by

$$
\begin{array}{ccc}
\phi: \mathbb{P}^{3} \backslash\{p\} & \longrightarrow & H \cong \mathbb{P}^{2} \\
{[x: y: z: w]} & \longmapsto & {[x: y: w]}
\end{array}
$$

Therefore $\phi\left(t^{3}, t^{2} u, t u^{2}, u^{3}\right)=\left(t^{3}, t^{2} u, u^{3}\right)$. Hence, the image $\Gamma=\phi(C)$ of the twisted cubic C is the cuspidal cubic $\Gamma=\left\{y^{3}-x^{2} w=0\right\}$. Let $q \in H$ be the singular point of Γ. Note that the line $\langle p, q\rangle$ is tangent to C.

Exercise 7. [Har, Exercise 3.19] Let

$$
\begin{array}{ccc}
\phi: \mathbb{A}^{n} & \longrightarrow & \mathbb{A}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \longmapsto & \left(f_{1}, \ldots, f_{n}\right)
\end{array}
$$

be an automorphism. Since ϕ is surjective any polynomials $f_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)$ is a linear non-constant polynomials. Therefore $J\left(f_{1}, \ldots, f_{n}\right)$ is a non-zero constant.
The converse is still a hard open problem in algebraic geometry known as Jacobian conjecture. It was posed in 1939 by Eduard Ott-Heinrich Keller.

Exercise 8. [Har, Exercise 3.21]
(a) Note that $\left(\mathbb{A}^{1},+\right)$ is a group. The inverse is just $x \mapsto-x$. Therefore, \mathbb{G}_{a} is a group variety.
(b) $\left(\mathbb{A}^{1} \backslash\{0\}, \cdot\right)$ is a group, and the inverse is $x \mapsto \frac{1}{x}$. Therefore, G_{m} is a group variety.
(c) If X is a variety, and G is a group variety, we define a group structure on $\operatorname{Hom}(X, G)$ by $\alpha(f, g)(x)=f(x) \cdot g(x)$.
(d) We may identify $\mathbb{G}_{a} \cong \mathbb{A}^{1} \cong k$. Therefore, $\mathcal{O}(X) \cong \operatorname{Hom}\left(X, \mathbb{G}_{a}\right)$.
(e) An element of $\operatorname{Hom}\left(X, G_{m}\right)$ is a regular function on X which is never zero. Therefore, it is invertible and its inverse is a regular never vanishing function on X. This means that $\operatorname{Hom}\left(X, \mathbb{G}_{m}\right) \cong \mathcal{O}(X)^{*}$.

CHAPTER 4

Rational Maps

Exercise 1. [Har, Exercise 4.6] The standard Cremona transformation of \mathbb{P}^{2} is the rational map

$$
\begin{array}{ccc}
\phi: \mathbb{P}^{2} & -\cdots & \mathbb{P}^{2} \\
{\left[x_{0}, x_{1}, x_{2}\right]} & \longmapsto & {\left[x_{1} x_{2}, x_{0} x_{2}, x_{0} x_{1}\right]}
\end{array}
$$

(a) Note that

$$
\phi^{2}\left(x_{0}, x_{1}, x_{2}\right)=\left[x_{0}^{2} x_{1} x_{2}: x_{0} x_{1}^{2} x_{2}: x_{0} x_{1} x_{2}^{2}\right]=x_{0} x_{1} x_{2}\left[x_{0}: x_{1}: x_{2}\right]=\left[x_{0}: x_{1}: x_{2}\right] .
$$

Therefore $\phi^{-1}=\phi$, and ϕ is birational.
(b) ϕ is an isomorphism on the open subset $\mathcal{U}=\mathbb{P}^{2} \backslash\left\{x_{0} x_{1} x_{2}=0\right\}$, that is on the complement of the three lines spanned by the fundamental points $[1: 0: 0],[0:$ $1: 0],[0: 0: 1]$.
(c) ϕ and ϕ^{-1} are defined on $\mathbb{P}^{2} \backslash\left\{p_{1}=[1: 0: 0], p_{2}=[0: 1: 0], p_{3}=[0: 0: 1]\right\}$. The map ϕ is an isomorphism on \mathcal{U} and contracts the line $L_{i, j}=\left\langle p_{i}, p_{j}\right\rangle$ to the point p_{k} with $k \neq i, j$, for any $i, j=1,2,3$.

Exercise 2. [Har, Exercise 4.9] Let H be a linear subspace of dimension $n-r-1$ such that $X \cap H=\varnothing$. The projection from H

$$
\pi_{H}: X \rightarrow \mathbb{P}^{r}
$$

is surjective. Therefore we get an inclusion $K\left(\mathbb{P}^{r}\right) \hookrightarrow K(X)$. Now,

$$
\operatorname{trdeg}_{k} K\left(\mathbb{P}^{r}\right)=\operatorname{trdeg}_{k} K(X)=\operatorname{dim}(X)=r
$$

Then $K(X)$ is a finite algebraic extension of $K\left(\mathbb{P}^{r}\right)$. Assume $H=\left\{x_{0}=\ldots=x_{r}=0\right\}$. Then $K(X)$ is generated over $K\left(\mathbb{P}^{r}\right)$ by $\frac{x_{r+1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}$, and by the theorem of the primitive element $K(X)$ is generated over $K\left(\mathbb{P}^{r}\right)$ is generated by an element of the form $\sum_{i=r+1}^{n} \lambda_{i} \frac{x_{i}}{x_{0}}$. Consider the linear subspace $E=H \cap\left\{\sum_{i=r+1}^{n} \lambda_{i} \frac{x_{i}}{x_{0}}=0\right\}$. Then, the map π_{H} factorizes as the projection π_{E} from L composed with the projection π_{p} where $p=\pi_{E}(H)$. Note that $Y=\pi_{E}(X)$ is an hypersurface. This gives

$$
K\left(\mathbb{P}^{r}\right) \hookrightarrow K(Y) \hookrightarrow K(X)
$$

where $K(X)=K\left(\mathbb{P}^{r}\right)\left(\frac{x_{r+1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)$, and $K(Y)=K\left(\mathbb{P}^{r}\right)\left(\sum_{i=r+1}^{n} \lambda_{i} \frac{x_{i}}{x_{0}}\right)$. We conclude that the degree of the extension $K(Y) \hookrightarrow K(X)$. Therefore π_{E} is generically injective. Since π_{E} is dominant, it follows that it is birational.
Geometrically, we can argue as follows. Fix a general linear subspace H of dimension $n-r-2$. In particular, $X \cap H=\varnothing$. For any $x \in X$ consider the linear space $H_{x}=\langle H, x\rangle$.

Note that $\operatorname{dim}\left(H_{x}\right)=n-r-1$. Now, consider a general linear subspace Π of dimension $r+1$, and define the projection from H as:

$$
\begin{array}{clc}
\pi_{H}: X & \longrightarrow & \Pi \cong \mathbb{P}^{r+1} \\
x & \longmapsto & H_{x} \cap \Pi
\end{array}
$$

Since $\operatorname{dim}\left(H_{x}\right)+\operatorname{dim}(X)-n<0$ we have $H_{x} \cap X=\{x\}$ for a general $x \in X$. Therefore π_{H} is generically injective, and X is birational to its image $Y=\pi_{H}(X)$ which is an hypersurface in \mathbb{P}^{r+1}.

Exercise 3. Let $p \in \mathbb{P}^{n}$, with $n \geq 3$, be a point, and let

$$
\pi_{p}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n-1}
$$

be the projection from p. Consider a linear subspace $H \subset \mathbb{P}^{n-1}$ of dimension k. Prove that $\Pi=\overline{\pi_{p}^{-1}(H)}$ is a linear subspace of \mathbb{P}^{n} of dimension $k+1$ and passing through p.
Now, Let $C \subset \mathbb{P}^{n}$ be an irreducible, smooth, non-degenerate curve of degree d. Compute the degree of $\Gamma=\overline{\pi_{p}(C)}$ in the two cases $p \in C, p \notin C$.
Now, consider the twisted cubic $C=v\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{3}$, where $v: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ is the degree three Veronese embedding. Let x, y, z, w be homogeneous coordinates on \mathbb{P}^{3}. Consider $p=[1: 0: 0: 0] \in C$. Describe the curve $\Gamma=\overline{\pi_{p}(C)} \subset \mathbb{P}^{2}$.
(a) Now, let $p=[1: 0: 0: 1] \in \mathbb{P}^{3}$. Write down explicitly the projection $\pi_{p}: \mathbb{P}^{3} \rightarrow$ $\mathbb{P}^{2} \cong\{x=0\}$. Prove that $\overline{\pi_{p}(C)}=\Gamma$ is the curve given by $\left\{y^{3}-z^{3}+y z w=0\right\}$. Prove that $\operatorname{Sing}(\Gamma)=\{q=[0: 0: 1]\}, \operatorname{mult}_{q} \Gamma=2$, and that Γ has two distinct principal tangents in q. Consider the line $L=\{y=z=0\}$. Note that $p \in L$. Compute the intersection $L \cap C$.
(b) Let $p=[1: 1: 0: 0] \in \mathbb{P}^{3}$. Write down explicitly the projection $\pi_{p}: \mathbb{P}^{3} \rightarrow \mathbb{P}^{2} \cong$ $\{x=0\}$. Prove that $\overline{\pi_{p}(C)}=\Gamma$ is the curve given by $\left\{z^{3}-z^{2} w+y w^{2}=0\right\}$. Prove that $\operatorname{Sing}(\Gamma)=\{q=[1: 0: 0]\}, \operatorname{mult}_{q} \Gamma=2$, and that Γ has a double principal tangent in q. Consider the line $L=\{z=w=0\}$. Note that $p \in L$. Compute the intersection $L \cap C$.
Finally, Give a geometric interpretation of both (a) and (b).
Let $H \subset \mathbb{P}^{n-1}$ be a linear subspace of dimension k. Then, $\Pi=\overline{\pi_{p}^{-1}(H)}$ is the cone over H with vertex p. Hence Π is a linear subspace of \mathbb{P}^{n} of dimension $k+1$ and passing through p.
Let $C \subset \mathbb{P}^{n}$ be an irreducible, smooth, non-degenerate curve of degree d, and consider $\Gamma=\bar{\pi}_{p}(C)$.
Let $H \subset \mathbb{P}^{n-1}$ be a general hyperplane. Then $\Pi=\overline{\pi_{p}^{-1}(H)}$ is a general hyperplane in \mathbb{P}^{n} passing though p. We have $\#(\Pi \cap C)=\#\left\{q_{1}, \ldots, q_{d}\right\}=d$.

- If $p \notin C$ then $\operatorname{deg}(\Gamma)=\#(H \cap \Gamma)=\#\left\{\pi_{p}\left(q_{1}\right), \ldots, \pi_{p}\left(q_{d}\right)\right\}=d$.
- If $p \in C$ then $p=q_{i}$ for some i. Without loss of generality we may assume $p=q_{1}$. In this case we have $\operatorname{deg}(\Gamma)=\#(H \cap \Gamma)=\#\left\{\pi_{p}\left(q_{2}\right), \ldots, \pi_{p}\left(q_{d}\right)\right\}=d-1$.
The degree three Veronese embedding is defined as

$$
\begin{array}{ccc}
v: \mathbb{P}^{1} & \longrightarrow & \mathbb{P}^{3} \\
{[a: b]} & \longmapsto & {\left[a^{3}: a^{2} b: a b^{2}: b^{3}\right]}
\end{array}
$$

The projection from $p=[1: 0: 0: 0]$ is the rational map given by

$$
\begin{array}{ccc}
\pi_{p}: \mathbb{P}^{3} & \longrightarrow & \mathbb{P}^{2}=\{x=0\} \\
{[x: y: z: w]} & \longmapsto & {[y: z: w]}
\end{array}
$$

Let $C=v\left(\mathbb{P}^{1}\right)$ be the twisted cubic. Then, $\pi_{p}(C)=\pi_{p} \circ \nu\left(\mathbb{P}^{1}\right)$, and

$$
\pi_{p}\left(\left[a^{3}: a^{2} b: a b^{2}: b^{3}\right]\right)=\left[a^{2} b: a b^{2}: b^{3}\right]=\left[a^{2}, a b, b^{2}\right]
$$

We conclude that $\pi_{p}(C)$ is the conic $\left\{z^{2}-y w=0\right\}$. Note that $p \in C$.
(a) The general line in \mathbb{P}^{3} through $p=[1: 0: 0: 1]$ is of the form

$$
L_{p}=\{y c-z b=y d-w b+x b-y a=0\}
$$

with $[a: b: c: d] \in \mathbb{P}^{3}$. The intersection $L_{p} \cap\{x=0\}$ is the point $\left[y: \frac{c}{b} y: \frac{d-a}{b} y\right]$. Therefore, the projection π_{p} is the map

$$
\begin{array}{ccc}
\pi_{p}: \mathbb{P}^{3} & \longrightarrow & \mathbb{P}^{2}=\{x=0\} \\
{[a: b: c: d]} & \longmapsto & {[b: c: d-a]}
\end{array}
$$

In this case

$$
\pi_{p}\left(\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right]\right)=\left[s^{2} t: s t^{2}: t^{3}-s^{3}\right] .
$$

Now, in the homogeneous coordinates y, z, w on \mathbb{P}^{2} we see that $y^{3}-z^{3}+y z w=$ $s^{6} t^{3}-s^{3} t^{6}+s^{3} t^{3}\left(t^{3}-s^{3}\right)=0$. Therefore, $\Gamma=\left\{F=y^{3}-z^{3}+y z w=0\right\}$. The partial derivatives of F are

$$
\frac{\partial F}{\partial y}=3 y^{2}+z w, \frac{\partial F}{\partial z}=-3 z^{2}+y w, \frac{\partial F}{\partial w}=y z
$$

and we see that $\operatorname{Sing}(\Gamma)=\{q=[0: 0: 1]\}$. Furthermore, $\frac{\partial^{2} F}{\partial z \partial y}=w$, and $\frac{\partial^{2} F}{\partial z \partial y}(q) \neq$ 0 . So $\mathrm{mult}_{q} \Gamma=2$.
Let us consider the de-homogenization of F with respect to w, that is $f=y^{3}-$ $z^{3}+y z$. We see that the affine curve $\Gamma_{w}=\left\{y^{3}-z^{3}+y z=0\right\}$ as two distinct tangent direction, namely $\{y=0\},\{z=0\}$ at the origin. Then Γ has two distinct tangent direction given by $\{y=0\}$ and $\{z=0\}$ in q.
Finally the intersection $L \cap C$ consists of the two points $p_{1}=[1: 0: 0: 0]$, $p_{2}=[0: 0: 0: 1]$.
(b) In this case the general line in \mathbb{P}^{3} through $p=[1: 1: 0: 0]$ is of the form

$$
L_{p}=\{x c-z a-y c+z b=z d-w c=0\}
$$

with $[a: b: c: d] \in \mathbb{P}^{3}$. The intersection $L_{p} \cap\{x=0\}$ is the point $\left[\frac{b-a}{c} z: z: \frac{d}{c} z\right]$. Therefore, the projection π_{p} is the map

$$
\begin{array}{ccc}
\pi_{p}: \mathbb{P}^{3} & \longrightarrow & \mathbb{P}^{2}=\{x=0\} \\
{[a: b: c: d]} & \longmapsto & {[b-a: c: d]}
\end{array}
$$

and

$$
\pi_{p}\left(\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right]\right)=\left[s^{2} t-s^{3}: s t^{2}: t^{3}\right] .
$$

Now, in the homogeneous coordinates y, z, w on \mathbb{P}^{2} we see that $z^{3}-z^{2} w+y w^{2}=$ $s^{3} t^{6}-s^{2} t^{7}+\left(s^{2} t-s^{3}\right) t^{6}=0$. Therefore, $\Gamma=\left\{F=z^{3}-z^{2} w+y w^{2}=0\right\}$. The partial derivatives of F are

$$
\frac{\partial F}{\partial y}=w^{2}, \frac{\partial F}{\partial z}=3 z^{2}-2 z w, \frac{\partial F}{\partial w}=-z^{2}+2 y w
$$

and $\operatorname{Sing}(\Gamma)=\{q=[1: 0: 0]\}$. Furthermore, $\frac{\partial^{2} F}{\partial w^{2}}=2 y$, and $\frac{\partial^{2} F}{\partial w^{2}}(q) \neq 0$. So $\operatorname{mult}_{q} \Gamma=2$.
The de-homogenization of F with respect to y, that is $f=z^{3}-z^{2} w+w^{2}$. The affine curve $\Gamma_{w}=\left\{z^{3}-z^{2} w+w^{2}=0\right\}$ as one double principal tangent at the origin, namely $\{w=0\}$. Then Γ has one double principal tangent given by $\{w=0\}$ in q. Finally, the intersection $L \cap C$ consists of the point $p_{1}=[1: 0: 0: 0]$ with multiplicity two.
In (a) the line L is secant to C. Indeed $L \cap C$ consists of the two points $p_{1}=[1: 0: 0: 0]$, $p_{2}=[0: 0: 0: 1]$. Since we are projecting from a point $p \in L$ this secant line gets contracted by the projection. The tangent lines $\mathbb{T}_{p_{1}} C, \mathbb{T}_{p_{2}} C$ are mapped by the projection in the two principal tangents of Γ in its singular point q. Note that the singularity in q is a node coming from the identification of p_{1}, and p_{2} after the projection.
In (b) the line L is the tangent line $\mathbb{T}_{p_{1}} C$. Since, $p \in L$ we are contracting the tangent direction (you may think at this as a degeneration of (a) for $p_{1} \mapsto p_{2}$). We see that contracting the tangent line we produce a curve with a cusp.

CHAPTER 5

Non-singular Varieties

Exercise 1. [Har, Exercise 5.3] We have $\mu_{p}(Y)=1$ if and only if in the decomposition

$$
f=f_{1}+\ldots+f_{d}
$$

there is a term of degree one. Therefore, $f_{1}=a x+b y$ with $(a, b) \neq(0,0)$, and $\frac{\partial f}{\partial x}(0,0)=a$, $\frac{\partial f}{\partial y}(0,0)=b$. Therefore $\mu_{p}(Y)=1$ if and only if $p \in Y$ is smooth.
Consider the nodal cubic $Y=\left\{x^{3}+x^{2}-y^{2}\right\}$. We have $f_{3}=x^{3}$ and $f_{2}=x^{2}-y^{2}$. Therefore $\mu_{p}(Y)=2$ and tangent directions of Y in p are the lines $\{x-y=0\}$ and $\{x+y=0\}$.

Exercise 2. Har, Exercise 5.6]
(a) Consider the cusp $Y=\left\{x^{3}-y^{2}-x^{4}-y^{4}=0\right\} \subset \mathbb{A}^{2}$. Substituting $y=u x$ we get

$$
x^{2}\left(x-u^{2}-x^{2}-u^{4} x^{2}\right)=0 .
$$

The curve $E=\{x=0, y=0\}$ is the exceptional divisor, while $\widetilde{Y}=\left\{x-u^{2}-\right.$ $\left.x^{2}-u^{4} x^{2}=y-u x=0\right\}$ is the strict transform of Y. Taking the Jacobian matrix of \widetilde{Y} we see that \widetilde{Y} is smooth. Note that $E \cap \widetilde{Y}=(0,0,0)$ and the intersection multiplicity is two.
Now, consider the nodal curve $Y=\left\{x y-x^{6}-y^{6}=0\right\} \subset \mathbb{A}^{2}$. Taking $y=u x$ we get

$$
x^{2}\left(u-x^{4}-u^{6} x^{4}\right)=0 .
$$

Therefore $E=\{x=0, y=0\}$, and $\widetilde{Y}=\left\{y-u x=u-x^{4}-u^{6} x^{4}=0\right\}$ is smooth.
(b) We may write the equation of the curve Y as $\{f(x, y)+x y=0\}$, where f has terms of degree greater or equal that two. So that Y has s node in the origin. Let $X=\{x u-y v\} \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$ be the blow-up of \mathbb{A}^{2} in the origin. Consider the chart $\{v \neq 0\}$. Then we get

$$
f(x, u x)+x^{2} u=x^{2}(g(x, u x)+u)=0 .
$$

The curve $E=\{x=0, y=0\}$ is the exceptional divisor, while the curve $\tilde{Y}=$ $\left\{y-u x=x^{2}(g(x, u x)+u)=0\right\}$ is the strict transform of Y. Using the Jacobian criterion is is easy to see that \widetilde{Y} is smooth. Furthermore $E \cap \widetilde{Y}=(0,0,0)$. The same argument works on the chart $\{u \neq 0\}$. Then $\widetilde{Y} \subset X$ is smooth and intersects E in two distinct points. This reflects the fact that Y has two distinct tangent direction at the origin.
(c) Consider the tacnode $Y=\left\{x^{2}-x^{4}-y^{4}=0\right\}$. In the affine chart $\{v \neq 0\}$ we have that the strict transform \widetilde{Y} is defined by $\left\{y-u x=x^{2}+x^{2} u^{4}-1=0\right\}$. Therefore $E \cap \widetilde{Y}=\varnothing$. In the chart $\{u \neq 0\}$ we have $\widetilde{Y}=\left\{x-v y=y^{2} v^{4}+y^{2}-v^{2}=0\right\}$, and $E \cap \widetilde{Y}=(0,0,0)$ with intersection multiplicity two. Note that the term of lowest
degree in $y^{2} v^{4}+y^{2}-v^{2}$ is $y^{2}-v^{2}=(y-v)(y+v)$. Therefore, the origin is a node of \widetilde{Y}. By (b) we can resolve the singularity by blowing-up another time.
(d) Consider the higher cusp $Y=\left\{y^{3}-x^{5}=0\right\}$. Note that the origin is a triple point with a unique triple tangent direction. Substituting $y=u x$ we get $x^{3}\left(u^{3}-x^{2}\right)=$ 0 . Therefore, the strict transform $\widetilde{Y}=\left\{y-u x=u^{3}-x^{2}=0\right\}$ intersects the exceptional divisor with multiplicity three in the origin. Note that $\widetilde{Y}=\{y-u x=$ $\left.u^{3}-x^{2}=0\right\}$ is a cusp. By (a) we resolve the singularity by blowing-up the cusp.

Exercise 3. [Har, Exercise 5.8] A change of coordinates is an automorphism of \mathbb{P}^{n}. Therefore is sends smooth points of Y to smooth points. Therefore, we may assume that p lies in the affine chart $\left\{x_{0} \neq 0\right\}$. The affine Jacobian is the $t \times n$ matrix obtained by deleting the first column of the projective Jacobian. Note that this column is

$$
\left(\frac{\partial f_{1}}{\partial x_{0}}, \ldots, \frac{\partial f_{t}}{\partial x_{0}}\right) .
$$

By Euler's lemma

$$
x_{0} \frac{\partial f_{j}}{\partial x_{0}}=d f_{j}-\sum_{i=1}^{n} \frac{\partial f_{j}}{\partial x_{i}}
$$

for any $j=1, \ldots, t$. If $p=\left(a_{0}: \ldots: a_{n}\right)$, since $p \in Y$ we get $f_{j}(p)=0$ and

$$
a_{0} \frac{\partial f_{j}}{\partial x_{0}}=-\sum_{i=1}^{n} \frac{\partial f_{j}}{\partial x_{i}}(p)
$$

We see that the first column is a linear combination of the others n columns. Therefore, the rank of the projective Jacobian is equal to the rank of the affine Jacobian. By the affine Jacobian criterion we conclude that $p \in Y$ is smooth if and only if $\operatorname{rank}\left(\operatorname{Jac}\left(f_{1}, \ldots, f_{t}\right)\right)=$ $n-r$.

Exercise 4. [Har, Exercise 5.11] The projection from $p=[0: 0: 0: 1]$ to $\{w=0\}$ is the map

$$
\begin{array}{ccc}
\phi: Y & \longrightarrow & \mathbb{P}^{2} \\
{[x: y: z: w]} & \longmapsto & {[x: y: z]}
\end{array}
$$

Note that

$$
y^{2} z-x^{3}+x z^{2}=(x+z)\left(x^{2}-x z-y w\right)+y(y z-x w-z w)
$$

Therefore $\phi(Y) \subset \bar{Y}=\left\{y^{2} z-x^{3}+x z^{2}=0\right\}$. Now, since ϕ is not constant $\phi(Y)$ is a curve, and since \bar{Y} is irreducible we get $\phi(Y)=\bar{Y}$. The inverse of ϕ is given by

$$
\begin{array}{ccc}
\psi: \mathbb{P}^{2} & \longrightarrow & Y \subset \mathbb{P}^{3} \\
{[x: y: z]} & \longmapsto & {\left[x: y: z: \frac{y z}{x+z}\right]=\left[x: y: z: \frac{x(x-z)}{y}\right]}
\end{array}
$$

Note that ψ is defined on $\bar{Y} \backslash\{[1: 0:-1]\}$. This reflects the fact that the line spanned by $[1: 0:-1: 0]$ and $[0: 0: 0: 1]$ intersects Y in three points.

Exercise 4. [Har, Exercise 5.12]
(a) Over an algebraically closed field of characteristic different from two quadratics forms are classified by the rank. Then, we can write any homogeneous polynomial of degree two as

$$
f=x_{0}^{2}+\ldots+x_{r}^{2}
$$

with $0 \leq r \leq n$.
(b) If $r \leq 1$ then, either $f=x_{0}^{2}$ and the quadric is a double hyperplane of $f=x_{0}^{2}+x_{1}^{2}$ and the quadric is the union of two plane. In the first case the quadric is nonreduced, in the second it is reducible.
Assume f reducible. Then either $f=l^{2}$ or $f=l m$ where l, m are linear forms. Up to a change of coordinates we may write $f=x_{0}^{2}$ and $f=x_{0} x_{1}$. In the first case $r=0$. In the second case $f=\frac{1}{4}\left(\left(x_{0}+x_{1}\right)^{2}-\left(x_{0}-x_{1}\right)^{2}\right)$ and $r=1$.
(c) The singular locus of $Q=Z\left(x_{0}^{2}+\ldots+x_{r}^{2}\right)$ is given by $\left\{x_{0}=\ldots=x_{r}=0\right\}$. Then, Sing (Q) is a linear subspace of dimension $n-r$.
(d) If $r<n$ and $Q=Z\left(x_{0}^{2}+\ldots+x_{r}^{2}\right)$, then the polynomial $f=x_{0}^{2}+\ldots+x_{r}^{2}$ defines a smooth quadric $Q^{\prime} \subset \mathbb{P}^{r}$. Any line generated by a point in Q^{\prime} and a point in $\operatorname{Sing}(Q)$ intersects Q in at least three points counted with multiplicity because any point of $\operatorname{Sing}(Q)$ is a double point of Q. Then any such line is contained in Q, and Q is the cone over Q^{\prime} with vertex $\operatorname{Sing}(Q)$.

CHAPTER 6

Non-singular Curves

Exercise 1. Har, Exercise 6.4] Let f be a non-constant rational function on Y. Then, f yields a non-constant rational map $\phi: Y \rightarrow \mathbb{P}^{1}$, defined by $\phi(y)=f(y)$. Furthermore, since Y is a smooth projective curve the rational map ϕ extend to a morphism $\phi: Y \rightarrow \mathbb{P}^{1}$. Now, ϕ is non-constant we have that ϕ is surjective, and it induces an inclusion of fields $k\left(\mathbb{P}^{1}\right) \rightarrow k(Y)$. Both $k\left(\mathbb{P}^{1}\right)$ and $k(Y)$ are finite algebraic extensions of transcendence degree one of k we conclude that $k(Y)$ is a finite algebraic extension of $k\left(\mathbb{P}^{1}\right)$. Therefore, ϕ is finite. Another way to see this last fact is the following. Let $p \in \mathbb{P}^{1}$ be a point. Then $\phi^{-1}(p) \subseteq Y$ is closed. Since ϕ is not constant $\phi^{-1}(p) \neq Y$. Then, $\phi^{-1}(p)$ is a proper closed subset of a curve, therefore it is a finite set of points counted with multiplicity.

Exercise 2. Har, Exercise 6.6] Let us consider the fractional linear transformation:

$$
\begin{aligned}
\phi: \mathbb{P}^{1}=\mathbb{A}^{1} \cup\{\infty\} & \longrightarrow \mathbb{P}^{1}=\underset{\frac{a x+b}{c x+d}}{\mathbb{A}^{1} \cup\{\infty\}} \\
x & \longmapsto
\end{aligned}
$$

with $a, b, c, d \in k, a d-b c \neq 0$. The inverse of ϕ is given by

$$
\begin{array}{clc}
\phi^{-1}: \mathbb{P}^{1}=\mathbb{A}^{1} \cup\{\infty\} & \longrightarrow \mathbb{P}^{1}=\mathbb{A}^{1} \cup\{\infty\} \\
x & \longmapsto & \frac{1}{a d-b c} \frac{d x-b}{a-c x}
\end{array}
$$

Therefore, ϕ is an automorphism of \mathbb{P}^{1}.
Any automorphism ϕ of \mathbb{P}^{1} induces an automorphism ϕ^{*} of $k(x) \cong k\left(\mathbb{P}^{1}\right)$ given by

$$
\begin{aligned}
\phi^{*}: k(x) & \longrightarrow k(x) \\
f & \longmapsto f \circ \phi
\end{aligned}
$$

On the other hand, an automorphism of $k(x)$ induces a birational automorphism of \mathbb{P}^{1}. Since \mathbb{P}^{1} is a smooth curve such a birational automorphism is indeed an automorphism. Now, let ψ be an automorphism of $k(x)$. Then $\psi(x)=\frac{p(x)}{q(x)}$ where p and q do not have common factors. If either $\operatorname{deg}(p) \geq 2$ or $\operatorname{deg}(q) \geq 2$ then ψ can not be linear. Therefore, $p(x)=a x+b$ and $g(x)=c x+d$. Finally, since p and q do not have common factors their resultant is not zero, that is $a d-b c \neq 0$. We conclude that:

$$
\operatorname{Aut}\left(\mathbb{P}^{1}\right) \cong \operatorname{Aut}(k(x)) \cong P G L(1)
$$

CHAPTER 7

Intersections in Projective Space

Exercise 1. [Har, Exercise 7.1] Let $v_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ be the Veronese embedding of degree d, and let V_{d}^{n} be the Veronese variety. Since the embedding v_{d} is defined by taking all the possible monomials of degree d in the homogeneous coordinates of \mathbb{P}^{n} we see that degree l homogeneous polynomials on V_{d}^{n} correspond to degree $l d$ homogeneous polynomials on \mathbb{P}^{n}. Then

$$
h_{V_{d}^{n}}(l)=\operatorname{dim}\left(S\left(V_{d}^{n}\right)_{l}\right)=\binom{l d+n}{n}=\frac{d^{n}}{n!} l^{n}+\ldots
$$

In particular, $\operatorname{dim}\left(V_{d}^{n}\right)=n$ and $\operatorname{deg}\left(V_{d}^{n}\right)=d^{n}$.
Now, let $\sigma_{n, m}: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{N}$ be the Segre embedding. In this case polynomials of degree l on the Segre variety $\Sigma_{n, m}$ corresponds to polynomials of bi-degree (l, l) on $\mathbb{P}^{n} \times \mathbb{P}^{m}$. Therefore,

$$
h_{\Sigma_{n, m}}(l)=\operatorname{dim}\left(S\left(\Sigma_{n, m}\right)_{l}\right)=\binom{l+n}{n} \cdot\binom{l+m}{m}=\frac{1}{(n+m)!}\binom{n+m}{m} l^{n+m}+\ldots
$$

Hence, $\operatorname{dim}\left(\Sigma_{n, m}\right)=n+m$, and $\operatorname{deg}\left(\Sigma_{n, m}\right)=\binom{n+m}{m}$.
Exercise 1. [Har, Exercise 7.2]
(a) The Hilbert polynomial of \mathbb{P}^{n} is given by $h_{\mathbb{P}^{n}}(l)=\operatorname{dim}\left(S_{l}\right)=\binom{n+l}{n}$. Then $p_{a}\left(\mathbb{P}^{n}\right)=$ $(-1)^{n}\left(h_{\mathbb{P}^{n}}(l)(0)-1\right)=(-1)^{n}\left(\binom{n}{n}-1\right)=0$.
(b) Let $Y=Z(f)$ be a plane curve of degree d. From the exact sequence

$$
0 \mapsto S(-d) \rightarrow S \rightarrow S /(f) \mapsto 0
$$

we get

$$
h_{Y}(l)=\binom{l+2}{2}-\binom{l-d+2}{2} .
$$

Therefore $h_{Y}(0)=1-\binom{2-d}{2}=1-\frac{1}{2}(d-1)(d-2)$. Then

$$
p_{a}(Y)=\frac{1}{2}(d-1)(d-2) .
$$

(c) If $Y=Z(f)$ is an hypersurface of degree d we still have the exact sequence

$$
0 \mapsto S(-d) \rightarrow S \rightarrow S /(f) \mapsto 0
$$

and

$$
h_{Y}(l)=\binom{l+n}{n}-\binom{l-d+n}{n} .
$$

Then

$$
p_{a}(Y)=(-1)^{n}\binom{n-d}{n}=(-1)^{n} \frac{(n-d) \ldots(1-d)}{n!}=\frac{(d-1) \ldots(d-n)}{n!}=\binom{d-1}{n} .
$$

(c) If $Y=S_{1} \cap S_{2}$ with $S_{i}=Z\left(f_{i}\right)$ from the exact sequence

$$
0 \mapsto S /\left(f_{1} f_{2}\right) \rightarrow S /\left(f_{1}\right) \oplus S /\left(f_{2}\right) \rightarrow S /\left(f_{1}, f_{2}\right) \mapsto 0
$$

we get $h_{Y}=h_{S_{1}}+h_{S_{2}}-h_{S_{1} \cup S_{2}}$. If $\operatorname{deg}\left(S_{1}\right)=a$ and $\operatorname{deg}\left(S_{2}\right)=b$ we get

$$
p_{a}(Y)=\binom{3-a}{3}+\binom{3-b}{3}-\binom{3-a-b}{3}=\frac{1}{2} a b(a+b-4)+1 .
$$

(d) We have $S(Y \times Z)=S(Y) \otimes S(Z)$. Therefore $h_{Y \times Z}=h_{Y} h_{Z}$, and $p_{a}(X \times Y)=$ $(-1)^{r+s}\left(h_{Y}(0) h_{Z}(0)-1\right)$ because $\operatorname{dim}(X \times Y)=r+s$. Then

$$
\begin{aligned}
p_{a}(X \times Y) & =(-1)^{r+s}\left(\left(h_{Y}(0)-1\right)\left(h_{Z}(0)-1\right)+\left(h_{Y}(0)-1\right)+\left(h_{Z}(0)-1\right)\right) \\
& =p_{a}(Y) p_{a}(Z)+(-1)^{s} p_{a}(Y)+(-1)^{r} p_{a}(Z)
\end{aligned}
$$

Exercise 2. [Har, Exercise 7.4] Since $\operatorname{Sing}(Y)$ is a closed proper subset of Y the lines passing through singular points of Y defines a closed subset $Z_{1} \subset\left(\mathbb{P}^{2}\right)^{*}$. The tangent lines two Y are a closed subset $Y^{*} \subset\left(\mathbb{P}^{2}\right)^{*}$. The closed subset Y^{*} is the dual curve of Y. By Bézout's theorem any line which is either tangent to Y or passing through a singular point of Y intersects Y is exactly $\operatorname{deg}(Y)$ distinct points. Therefore any line in the open subset $\mathcal{U}=\left(\mathbb{P}^{2}\right)^{*} \backslash\left(Z_{1} \cup Y^{*}\right)$ has the required property.

Exercise 3. [Har, Exercise 7.5]

(a) Assume that there is point $p \in Y$ of multiplicity greater or equal that $d=\operatorname{deg}(Y)>$ 1. Let $q \in Y$ be another point. Then the line $L=\langle p, q\rangle$ intersects Y in at least $d+1$ points counted with multiplicity. Since $\operatorname{deg}(Y)=d$, by Bézout's theorem we have $L \subset Y$. A contradiction, because Y is irreducible and $\operatorname{deg}(Y) \geq 2$.
(b) Since Y is irreducible of degree d, by Bézout's theorem any line passing through the point p of multiplicity d and another point $q \in Y$ is not contained in Y and does not intersect Y in any other point. Therefore, the projection $\pi_{p}: Y \rightarrow \mathbb{P}^{1}$ from p is birational.
Exercise 4. [Har, Exercise 7.6] If $Y=Y_{1} \cup Y_{2}$ has two components then $\operatorname{deg}(Y)=$ $\operatorname{deg}\left(Y_{1}\right)+\operatorname{deg}\left(Y_{2}\right)=1$. Therefore Y is irreducible.
Assume $\operatorname{dim}(Y)=1$. Consider two points $p, q \in Y$. By Bézout's theorem any hyperplane passing through p, q contain Y. Therefore Y is the intersection of these hyperplanes, that is Y is the line spanned by p and q.
If $\operatorname{dim}(Y)=r$ consider a general hyperplane section $Y_{H}=Y \cap H$. Then $\operatorname{dim}\left(Y_{H}\right)=r-1$ and $\operatorname{deg}\left(Y_{H}\right)=1$. By induction hypothesis we have that Y_{H} is linear. Now, take a point $p \in Y \backslash Y_{H}$. Any line spanned by p and a point in Y_{H} intersects Y in at least two points. Since $\operatorname{deg}(Y)=1$ by Bézout's theorem any such line is contained in Y. Therefore Y is a cone over the linear subspace Y_{H}. Then Y itself is a linear subspace of dimension r.

CHAPTER 8

Blow-ups

Exercise 1. [PhE Let $X \subset \mathbb{P}^{2} \times \mathbb{P}^{1}$ be the surface $\left\{x_{0} y_{1}-x_{1} y_{0}=0\right\}$. Prove that X is not isomorphic to \mathbb{P}^{2}.

The surface $X \subset \mathbb{P}^{2} \times \mathbb{P}^{1}$ is the blow-up of \mathbb{P}^{2} in $p=[0: 0: 1]$. Consider two lines $L, R \subset \mathbb{P}^{2}$ through p. Then, their strict transforms $\widetilde{L}, \widetilde{R}$ via the blow-up map $\pi_{X} \rightarrow \mathbb{P}^{2}$ do not intersect. On the other hand any two curves in \mathbb{P}^{2} intersect. So X can not be isomorphic to \mathbb{P}^{2}.

Exercise 2. Let $Q \subset \mathbb{P}^{3}$ be a smooth quadric and let $p \in Q$ be a point. Prove that $B l_{p} Q$ is isomorphic to $B_{q_{1}, q_{2}} \mathbb{P}^{2}$ where $q_{1}, q_{2} \in \mathbb{P}^{2}$ are two distinct points.

We may assume $Q=\left\{x_{0} x_{3}-x_{1} x_{2}=0\right\} \subset \mathbb{P}^{3}$, and $p=[0: 0: 0: 1]$. Let $\pi: Q \rightarrow H \cong \mathbb{P}^{2}$ be the projection from p. Note that π is birational. If y_{0}, y_{1}, y_{2} are homogeneous coordinates on \mathbb{P}^{2} then the graph Γ_{π} of π is given by

$$
\left\{x_{0} y_{1}-x_{1} y_{0}=x_{1} y_{2}-x_{2} y_{1}=x_{0} x_{3}-x_{1} x_{2}=0\right\} \subset \mathbb{P}^{3} \times \mathbb{P}^{2}
$$

Let $\pi_{1}: \Gamma_{\pi} \rightarrow Q$ be the projection. From these equations we see that $\pi_{1}: \Gamma_{\pi} \rightarrow Q$ is the blow-up of Q in p.
Now, let $\pi_{2}: \Gamma_{\pi} \rightarrow \mathbb{P}^{2}$ be the second projection. The exceptional divisor $E=\left\{x_{1}=y_{0}=\right.$ $0\}$ is mapped via π_{2} to the line $\left\{y_{0}=0\right\}$. The intersection $\mathbb{T}_{p} Q \cap Q$ is the union of the two lines $L=\left\{x_{0}=x_{1}=0\right\}$ and $R=\left\{x_{0}=x_{2}=0\right\}$. Let \widetilde{L} and \widetilde{R} be the strict transforms of L and R via π_{1}. Then $\pi_{2}(\widetilde{L})=[0: 0: 1]=q_{1}$ and $\pi_{2}(\widetilde{R})=[0: 1: 0]=q_{2}$.
Now let $f: B L_{q_{1}, q_{2}} \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be the blow-up of \mathbb{P}^{2} in q_{1}, q_{2}. Consider the rational map

$$
\begin{array}{ccc}
g: \mathbb{P}^{2} & -\rightarrow & \mathbb{P}^{3} \times \mathbb{P}^{2} \\
{\left[y_{0}: y_{1}: y_{2}\right]} & \longmapsto & \left(\left[y_{0}^{2}: y_{0} y_{1}: y_{0} y_{2}: y_{1} y_{2}\right],\left[y_{0}: y_{1}: y_{2}\right]\right) .
\end{array}
$$

Since $I\left(\left\{q_{1}, q_{2}\right\}\right)=\left(y_{0}^{2}: y_{0} y_{1}: y_{0} y_{2}: y_{1} y_{2}\right)$ the map g is the inverse of f. On the other hand g is the inverse of π_{2} as well. Therefore π_{2} and f are two morphisms coinciding on an open subset. We conclude that $\pi_{2}=f$ and $\Gamma_{\pi} \cong B l_{q_{1}, q_{2}} \mathbb{P}^{2}$. Finally $\Gamma_{\pi} \cong B l_{q_{1}, q_{2}} \mathbb{P}^{2} \cong B l_{p} Q$.

CHAPTER 9

Grassmannians

Exercise 1. Consider the Grassmannian $\mathbb{G}(1,4) \subset \mathbb{P}^{9}$ parametrizing lines in \mathbb{P}^{4}. Find five polynomials in the homogeneous coordinates of \mathbb{P}^{9} vanishing on $\mathbb{G}(1,4)$.

Let L be a line in \mathbb{P}^{4} generated be the two points $\left[u_{0}: u_{1}: u_{2}: u_{3}: u_{4}\right]$ and $\left[v_{0}: v_{1}:\right.$ $\left.v_{2}: v_{3}: v_{4}\right]$. Then the Plücker embedding

$$
p: \mathbb{G}(1,4) \rightarrow \mathbb{P}^{9}
$$

is given by mapping L to

$$
\begin{aligned}
& {\left[u_{0} v_{1}-u_{1} v_{0}: u_{0} v_{2}-u_{2} v_{0}: u_{0} v_{3}-u_{3} v_{0}: u_{0} v_{4}-u_{4} v_{0}: u_{1} v_{2}-u_{2} v_{1}:\right.} \\
& \left.u_{1} v_{3}-u_{3} v_{1}: u_{1} v_{4}-u_{4} v_{1}: u_{2} v_{3}-u_{3} v_{2}: u_{2} v_{4}-u_{4} v_{2}: u_{3} v_{4}-u_{4} v_{3}\right] .
\end{aligned}
$$

Let $X_{0,1}, \ldots, X_{3,4}$ be the homogeneous coordinates on \mathbb{P}^{9}. Then, among the coordinates of the Plücker embedding there are the following relations:

$$
\begin{aligned}
& X_{0,1} X_{2,3}-X_{0,2} X_{1,3}+X_{0,3} X_{1,2}=0, \\
& X_{0,1} X_{2,4}-X_{0,2} X_{1,4}+X_{0,4} X_{1,2}=0, \\
& X_{0,1} X_{3,4}-X_{0,3} X_{1,4}+X_{0,4} X_{1,3}=0, \\
& X_{0,2} X_{3,4}-X_{0,3} X_{2,4}+X_{0,4} X_{2,3}=0, \\
& X_{1,2} X_{3,4}-X_{1,3} X_{2,4}+X_{1,4} X_{2,3}=0 .
\end{aligned}
$$

Exercise 2. Let L, R be two lines in \mathbb{P}^{3}, and let $l, r \in \mathbb{G}(1,3)$ be the corresponding points. Prove that $L \cap R \neq \varnothing$ if and only if the line joining l and r is contained in $\mathbb{G}(1,3)$.

Let H_{L}, H_{R} be the planes in V^{4} corresponding to L and R. If $L \cap R \neq \varnothing$ then H_{L} and H_{R} share a non-zero vector $u \in H_{L} \cap H_{R}$. Let $\left\{u_{1}, u\right\}$ and $\left\{u_{2}, u\right\}$ be basis of H_{L} and H_{R} respectively. Therefore the corresponding points in $G(1,3)$ are $u_{1} \wedge u$ and $u_{2} \wedge u$. So the line spanned by $u_{1} \wedge u$ and $u_{2} \wedge u$ is $\mathbb{P}(W)$ where $W=\left\langle u_{1} \wedge u, u_{2} \wedge u\right\rangle \subset \wedge^{2} V$. Now, note that any vector in W is of the form

$$
\alpha\left(u_{1} \wedge u\right)+\beta\left(u_{2} \wedge u\right)=u \wedge\left(\alpha u_{1}+\beta u_{2}\right) .
$$

Therefore, any point in $\mathbb{P}(W)$ corresponds to a decomposable 2-vector, that is $\mathbb{P}(W) \subset$ G $(1,3)$.
Now, assume $L \cap R \neq \varnothing$. Then $H_{L} \cap H_{R}=\{0\}$. Let $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{1}, v_{2}\right\}$ be basis of H_{L} and H_{R} respectively. So $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ is a basis of V, and $u_{1} \wedge u_{2} \wedge v_{1} \wedge v_{2} \neq 0$. In this case the line $\mathbb{P}(W)$ is generated by $u_{1} \wedge u_{2}$ and $v_{1} \wedge v_{2}$, that is a point on $\mathbb{P}(W)$ is of the form

$$
\alpha\left(u_{1} \wedge u_{2}\right)+\beta\left(v_{1} \wedge v_{2}\right)
$$

Now,

$$
\left(\alpha\left(u_{1} \wedge u_{2}\right)+\beta\left(v_{1} \wedge v_{2}\right)\right) \wedge\left(\alpha\left(u_{1} \wedge u_{2}\right)+\beta\left(v_{1} \wedge v_{2}\right)\right)=2 \alpha \beta\left(u_{1} \wedge u_{2} \wedge v_{1} \wedge v_{2}\right)
$$

Note that, if $v=\left(\alpha\left(u_{1} \wedge u_{2}\right)+\beta\left(v_{1} \wedge v_{2}\right)\right) \in \mathbb{G}(1,3)$ then v is decomposable. So $v=$ $w_{1} \wedge w_{2}$ yields $v \wedge v=0$.
On the other hand

$$
\left(\alpha\left(u_{1} \wedge u_{2}\right)+\beta\left(v_{1} \wedge v_{2}\right)\right) \wedge\left(\alpha\left(u_{1} \wedge u_{2}\right)+\beta\left(v_{1} \wedge v_{2}\right)\right)=2 \alpha \beta\left(u_{1} \wedge u_{2} \wedge v_{1} \wedge v_{2}\right)=0
$$

if and only if either $\alpha=0$ or $\beta=0$. Then, the line $\mathbb{P}(W)$ is not contained in $\mathbb{G}(1,3)$.
Exercise 3. Let $p \in \mathbb{P}^{3}$ be a point, and $H \subset \mathbb{P}^{3}$ a plane containing p. Let $\Sigma_{p, H} \subset \mathbb{G}(1,3)$ be the locus parametrizing lines in H passing through p. Prove that the image of $\Sigma_{p, H}$ via the Plücker embedding is a line in \mathbb{P}^{5}. Conversely, prove that any line contained in $\mathrm{G}(1,3) \subset \mathbb{P}^{5}$ is of the form $\Sigma_{p, H}$.

Let $u \in V$ be a representative for p, and let $\{u, v, w\}$ be a basis of W, where $\mathbb{P}(W)=H$. Then the lines in H through p corresponds to the subspaces of W spanned by u and a vector of the form $\alpha u+\beta v+\gamma w$. Now

$$
w \wedge(\alpha u+\beta v+\gamma w)=\beta(u \wedge v)+\gamma(u \wedge w) .
$$

Therefore, lines in H passing through p corresponds to the line in $G(1,3)$ spanned by $u \wedge v$ and $u \wedge w$.
Now, let T be a line in $G(1,3)$, and let $r, s \in T$ be two points. Then the lines $L, R \subset \mathbb{P}^{3}$ corresponding to r, s intersects by Exercise 2. Let Π be the plane spanned by L, R. Since L, R generate Π and l, r generate T, a line in Π through $L \cap R$ corresponds to a point of T.

Exercise 4. For any point $p \in \mathbb{P}^{3}$ be $\Sigma_{p} \subset \mathbb{G}(1,3) \subset \mathbb{P}^{5}$ be the locus parametrizing lines in \mathbb{P}^{3} through p. Similarly, for any plane $H \subset \mathbb{P}^{3}$ be $\Sigma_{H} \subset \mathbb{G}(1,3) \subset \mathbb{P}^{5}$ be the locus parametrizing lines in \mathbb{P}^{3} contained in H. Prove that both Σ_{p} and Σ_{H} are mapped to planes of \mathbb{P}^{5} via the Plücker embedding. Conversely, prove that any plane in $\mathbb{G}(1,4) \subset \mathbb{P}^{5}$ is of the form Σ_{p} of Σ_{H}.

Let $u \in V$ be a vector representing $p \in \mathbb{P}^{3}$. Then the lines through p are represented by 2 -vectors of the form $u \wedge v$. Let $\left\{u, u_{1}, u_{2}, u_{3}\right\}$ be a basis of V. Then we may write $v=\alpha u+\beta_{1} u_{1}+\beta_{2} u_{2}+\beta_{3} u_{3}$, and

$$
u \wedge v=\alpha_{1}\left(u \wedge u_{1}\right)+\alpha_{2}\left(u \wedge u_{2}\right)+\alpha_{3}\left(u \wedge u_{3}\right) .
$$

Therefore, lines through p are represented by the points of the plane spanned by $u \wedge u_{1}$, $u \wedge u_{2}$ and $u \wedge u_{3}$.
Now, the lines contained in the plane $H \subset \mathbb{P}^{3}$, by duality corresponds to the lines in $\mathbb{P}^{3^{*}}$ through the point H^{*}. Therefore they are parametrized by a plane in $G(1,3)$ by the first part of the exercise.
Now, take a plane Π in $G(1,3)$ and three points l, r, s in this plane that do not lie on the same line. Let $L, R, S \subset \mathbb{P}^{3}$ be the corresponding lines. Since the three lines joining l, r and s are on the same plane contained in $G(1,3)$ they intersect and they are contained in $G(1,3)$. By Exercise 2 the lines L, R, S intersect. We have two cases.

- $L \cap R \cap S=\{p\}$. In this case Π parametrizes lines in \mathbb{P}^{3} through p.
- L, R and S intersect in three distinct points. Let u, v, w be three representative vectors for these three points. Then L, R, S are represented by $v \wedge w, u \wedge w$ and $u \wedge v$. Then a point on the plane Π is of the form

$$
\alpha(v \wedge w)+\beta(u \wedge w)+\gamma(u \wedge v) .
$$

Therefore L, R, S lie in the plane $\mathbb{P}(H)$, where $H=\langle u, v, w\rangle$.
Exercise 5. Let $Q \subset \mathbb{P}^{3}$ be a smooth quadric. Prove that the two families of lines in Q are mapped via the Plücker embedding to two plane conics in $\mathbb{G}(1,3) \subset \mathbb{P}^{5}$ lying in two complementary planes.

We can assume that $Q=\{x w-y z=0\} \subset \mathbb{P}^{3}$ is the image of the Segre embedding

$$
\begin{array}{ccc}
s: \mathbb{P}^{1} \times \mathbb{P}^{1} & \longrightarrow & \mathbb{P}^{3} \\
([u, v],[s, t]) & \longmapsto & {[u s: u t: v s: v t]}
\end{array}
$$

In order to parametrize the first family of lines we can consider for each $[u: v] \in \mathbb{P}^{1}$ the line $L_{u, v}$ spanned by the two points $s([u, v],[1,0])=[u: 0: v: 0]$ and $s([u, v],[0,1])=[0$: $u: 0: v]$. Under the Plücker embedding $L_{u, v}$ is mapped to the point

$$
\left[u^{2}: 0: u v:-u v: 0: v^{2}\right] .
$$

If X_{0}, \ldots, X_{5} are the homogeneous coordinates on \mathbb{P}^{5} we see that the set of points of the form $\left[u^{2}: 0: u v:-u v: 0: v^{2}\right]$ is defined by $\left\{X_{1}=X_{4}=X_{2}+X_{3}=X_{5} X_{0}-X_{2}^{2}=0\right\} \subset \mathbb{G}(1,3)$. Therefore the lines of the first family are parametrized by a smooth conic in the plane $H_{1}=\left\{X_{1}=X_{4}=X_{2}+X_{3}=0\right\}$.
In the same way the lines of the second family correspond to points of the form

$$
\left[0: s^{2}: s t: s t: t^{2}: 0\right] .
$$

Therefore, the lines of the second family are parametrized by the smooth conic given by $\left\{X_{0}=X_{5}=X_{2}-X_{3}=X_{2}^{2}-X_{1} X_{4}=0\right\}$ in the plane $H_{2}=\left\{X_{0}=X_{5}=X_{2}-X_{3}=0\right\}$. Finally, $H_{1} \cap H_{2}=\varnothing$.

Exercise 6. Let $\mathbb{G}(1, n)$ be the Grassmannian of lines in \mathbb{P}^{n}. Prove that through two general points of $G(1, n)$ there is a smooth variety of dimension four and degree two.

Let $l, r \in \mathbb{G}(1, n)$ be two general points. These points corresponds to to two general lines $L, R \subset \mathbb{P}^{n}$. Since L and R are general they span a linear space $H \subset \mathbb{P}^{n}$ of dimension three, $H \cong \mathbb{P}^{3}$. The image of the Plücker embedding of $\mathbb{G}(1, n)$ restricted to the lines in H gives a $\mathbb{G}(1,3) \subseteq \mathbb{G}(1, n)$ and $l, r \in \mathbb{G}(1,3)$. Now, it is enough to observe that under the the Plücker embedding $\mathbb{G}(1,3)$ is a smooth quadric hypersurface in \mathbb{P}^{5}.

Exercise 7. Let $L_{1}, L_{2}, L_{3}, L_{4}$ be four general lines in \mathbb{P}^{3}. Consider

$$
X=\left\{L \mid L \cap L_{i} \neq \varnothing \forall i=1,2,3,4\right\} \subset \mathbb{G}(1,3) \subset \mathbb{P}^{5}
$$

Compute the dimension and the degree of X.
Consider the lines L_{1}, L_{2}, L_{3}. Since they are general these three lines are pairwise skew. By Exercise 9 of Section 2 there exists a unique smooth quadric surface $Q \subset \mathbb{P}^{3}$ containing L_{1}, L_{2}, L_{3}.

Since L_{4} is general we have that $L_{4} \cap Q=\{p, q\}$. Now, any line L intersecting L_{1}, L_{2}, L_{3} is contained in Q. Therefore, in order to intersect L_{4} this line L has to pass either through p or q. We conclude that there are two lines intersecting $L_{1}, L_{2}, L_{3}, L_{4}$. Therefore, $\operatorname{dim}(X)=0$ and $\operatorname{deg}(X)=2$.

CHAPTER 10

Secant Varieties

Exercise 1. Let $v: \mathbb{P}^{2} \rightarrow \mathbb{P}^{14}$ be the degree four Veronese embedding. Let $V \subset \mathbb{P}^{14}$ be the corresponding Veronese variety, and $\operatorname{Sec}_{5}(V) \subseteq \mathbb{P}^{14}$ the 5-secant variety of V.

- Compute the expected dimension of $\operatorname{Sec}_{5}(V)$,
- Prove that there exists a non-zero homogeneous polynomial P of degree six in the homogeneous coordinates of \mathbb{P}^{14} such that any polynomial $F \in \operatorname{Sec}_{5}(V) \subseteq \mathbb{P}^{14}$ is a zero of P. Conclude that V is 5 -secant defective with secant defect $\delta_{5}(V)=1$, and therefore that $\operatorname{Sec}_{5}(V)$ is an hypersurface in \mathbb{P}^{14}.
Finally, prove that $X:=\{P=0\} \subset \mathbb{P}^{14}$ is irreducible. Conclude that $\operatorname{Sec}_{5}(V) \subset \mathbb{P}^{14}$ is an irreducible hypersurface of degree six.

The expected dimension is

$$
\operatorname{expdim}\left(\operatorname{Sec}_{5}(V)\right):=\min \{5 \operatorname{dim}(V)+4,14\}=14
$$

Now, consider a general polynomial $F \in k[x, y, z]_{4}$:

$$
\begin{aligned}
F= & a_{0} x^{4}+a_{1} x^{3} y+a_{2} x^{3} z+a_{3} x^{2} y^{2}+a_{4} x^{2} y z+a_{5} x^{2} z^{2}+a_{6} x y^{3}+a_{7} x y^{2} z+a_{8} x y z^{2} \\
& +a_{9} x z^{3}+a_{10} y^{4}+a_{11} y^{3} z+a_{12} y^{2} z^{2}+a_{13} y z^{3}+a_{14} z^{4} .
\end{aligned}
$$

If $F \in \operatorname{Sec}_{5}(V)$ is general then $F=L_{1}^{4}+\ldots+L_{5}^{4}$ for some linear forms L_{1}, \ldots, L_{5}. Therefore, the second partial derivatives of F are six points in $\mathbb{P}^{5}=\mathbb{P}\left(k[x, y, z]_{2}\right)$ lying on the hyperplane spanned by $L_{1}^{2}, \ldots, L_{5}^{2}$. Let M be the 6×6 matrix whose lines are the second partial derivative of F. Take $P=\operatorname{det}(M)$. Then P is a homogeneous polynomial of degree six in a_{0}, \ldots, a_{14}. Let $X:=\{P=0\}$. Then $\operatorname{Sec}_{5}(V) \subseteq X$. In particular $\delta_{5}(V)>0$. On the other hand $\delta_{5}(V)<\operatorname{dim}(V)=2$. Therefore, $\delta_{5}(V)=1$. Therefore: It is easy to see that there are three partial derivatives of P that are independent. Therefore, the codimension of $\operatorname{Sing}(X)$ in \mathbb{P}^{14} is strictly greater that two, and X can not be reducible.
Finally, $\operatorname{Sec}_{5}(V) \subseteq X$ is an hypersurface in \mathbb{P}^{14} as well, since X is irreducible we conclude that $\operatorname{Sec}_{5}(V)=X$ is an irreducible hypersurface of degree six.

Exercise 2. Prove that $n \times n$ symmetric matrices over a field k modulo scalar multiplication are parametrized by a projective space of dimension $N=\frac{n(n+1)}{2}-1$.
For any $0<k \leq n$ prove that the set

$$
M_{k}=\left\{A \in \mathbb{P}^{N} \mid \operatorname{rank}(A) \leq k\right\}
$$

is an algebraic subvariety of \mathbb{P}^{N}.
Consider the incidence variety

$$
\mathcal{I}:=\{(A, H) \mid H \subseteq \operatorname{ker}(A)\} \subseteq \mathbb{P}^{N} \times G(n-k, n)
$$

with projections $f: \mathcal{I} \rightarrow \mathbb{P}^{N}$, and $g: \mathcal{I} \rightarrow G(n-k, n)$. Using the theorem on the dimension of the fibers prove that

$$
\operatorname{dim}\left(M_{k}\right)=\binom{k-1+2}{2}-1+k(n-k)
$$

Let $v: \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{N}$ be the degree two Veronese embedding, and let V_{2}^{n-1} be the corresponding Veronese variety. Note that $N=\binom{n-1+2}{2}-1=\frac{n(n+1)}{2}-1$.
Prove that $\operatorname{Sec}_{k}\left(V_{2}^{n-1}\right)=M_{k}$. Conclude that the $(n-1)$-secant defect of V_{2}^{n-1} is $\delta_{n-1}\left(V_{2}^{n-1}\right)=$ 1 for any $n \geq 3$.

A general $n \times n$ symmetric matrix is determined by $n+(n-1)+\ldots+2+1=\frac{n(n+1)}{2}$ parameters. Therefore, $n \times n$ symmetric matrices moduli scalar multiplication are parametrized by a projective space of dimension $N=\frac{n(n+1)}{2}-1$.
The set M_{k} is the common zero locus of the $(k+1) \times(k+1)$ minors of A. These are homogeneous polynomials of degree $k+1$ on \mathbb{P}^{N}. Therefore, $M_{k} \subseteq \mathbb{P}^{N}$ is an algebraic subvariety.
Consider the incidence variety

$$
\mathcal{I}:=\{(A, H) \mid H \subseteq \operatorname{ker}(A)\} \subseteq \mathbb{P}^{N} \times G(n-k, n)
$$

with projections $f: \mathcal{I} \rightarrow \mathbb{P}^{N}$, and $g: \mathcal{I} \rightarrow G(n-k, n)$. Fix $H \in G(n-k, n)$. Then, a matrix $A \in g^{-1}(H)$ corresponds two a quadratic form on a vector space of dimension k. These quadratic forms are parametrized by a projective space of dimension $\binom{k-1+2}{2}-1$. By the theorem on the dimension of the fibers we have

$$
\operatorname{dim}(\mathcal{I})=\binom{k-1+2}{2}-1+k(n-k)
$$

Now the second projection f is generically injective. Since $M_{k}=f(\mathcal{I})$ we conclude that

$$
\operatorname{dim}\left(M_{k}\right)=\binom{k-1+2}{2}-1+k(n-k) .
$$

A general degree two polynomial $F \in \operatorname{Sec}_{k}\left(V_{2}^{n-1}\right)$ can be written as $F=L_{1}^{2}+\ldots+L_{k}^{2}$ for k linear forms. The same holds for a general polynomial in M_{k}. Therefore, M_{k} and $\operatorname{Sec}_{k}\left(V_{2}^{n-1}\right)$ are both defined by the vanishing of the $(k+1) \times(k+1)$ minors of a general $n \times n$ symmetric matrix.
In particular

$$
\operatorname{dim}\left(\operatorname{Sec}_{k}\left(V_{2}^{n-1}\right)\right)=\operatorname{dim}\left(M_{k}\right)=\binom{k-1+2}{2}-1+k(n-k) .
$$

For $k=n-1$ and $n \geq 3$ we have $\delta_{n-1}\left(V_{2}^{n-1}\right)=N-\left({ }_{2}^{n-1-1+2}\right)+1-(n-1)(n-(n-1))=$ $\frac{n(n+1)}{2}-\binom{n}{2}-(n-1)=1$.

Exercise 3. Let us fix two integers $h>1, h \leq d \leq 2 h-1$. Prove that under this numerical hypothesis a general homogeneous polynomial $F \in k[x, y]_{d}$ of degree d admits
a decomposition of the form $F=\lambda_{1} L_{1}^{d}+\ldots+\lambda_{h} L_{h}^{d}$.
Now, fix a general $F \in k[x, y]_{d}$ and consider the variety

$$
X(F, h)=\overline{\left\{\left\{L_{1}, \ldots, L_{h}\right\} \mid F=\lambda_{1} L_{1}^{d}+\ldots+\lambda_{h} L_{h^{\prime}}^{d} L_{i} \in k[x, y]_{1}\right\}} \subseteq \mathbb{P}\left(k[x, y]_{1}\right)^{h} / S_{h} .
$$

The $X(F, h)$ parametrizes all the decomposition of F as sums of d-powers of linear forms. Prove that for $h>1, h \leq d \leq 2 h-1$ the variety $X(F, h)$ is birational to $\mathbb{P}^{2 h-d-1}$.
In particular, conclude that a general homogeneous polynomial $F \in k[x, y]_{2 h-1}$ admits a unique decomposition in h powers of linear form. Finally deduce that if $C \subset \mathbb{P}^{3}$ is a twisted cubic and $p \in \mathbb{P}^{3}$ is a general point, then there exists a unique line secant to C passing through p.

A general homogeneous polynomial $F \in k[x, y]_{d}$ of degree d admits a decomposition of the form $F=\lambda_{1} L_{1}^{d}+\ldots+\lambda_{h} L_{h}^{d}$ if and only if there exists a $(h-1)$-plane h-secant to the rational normal curve $C \subset \mathbb{P}^{d}$ passing through $F \in \mathbb{P}^{d}$. Now, $C \subset \mathbb{P}^{d}$ is a non-degenerate curve. Assume $d=2 h-1$ is odd, and fix $h=\frac{d+1}{2}$. Now, assume that through a general point $p \in \operatorname{Sec}_{h}(C)$ there are two distinct $(h-1)$-plane H_{1}, H_{2} that are h-secant to C, say $H_{1} \cap C=\left\{p_{1}, \ldots, p_{h}\right\}$, and $H_{2} \cap C=\left\{q_{1}, \ldots, q_{h}\right\}$. Since H_{1}, H_{2} are distinct we may have at most $p_{1}=q_{1}, \ldots, p_{k}=q_{k}$ with $k<h$. Since H_{1}, H_{2} intersects in p as well, they span a linear space H of dimension $h-1+h-1-k=2 h-2-k$. Therefore $H \subset \mathbb{P}^{d}$ is a linear subspace of dimension $2 h-2-k$ intersecting C in $2 h-k$ points. Since $\operatorname{deg}(C)=d$ we found a contradiction. Then, trough a general point of $\operatorname{Sec}_{h}(C)$ there is at most an $(h-1)$-plane h-secant to C, and $\operatorname{dim}\left(\operatorname{Sec}_{h}(C)\right)=2 h-1$.
If $d=2 h$ is even then through a general point $p \in \operatorname{Sec}_{h+1}(C)$ there is a family of dimension exactly one of h-planes $(h+1)$-secant to C (just consider the partial derivatives of order $h-1$ of p interpreted as a degree d polynomial). Then $\operatorname{dim}\left(\operatorname{Sec}_{h+1}(C)\right)=h+1+h-1=$ $2 h$. Therefore, in any case $d \leq 2 h-1$ implies

$$
\operatorname{dim}\left(\operatorname{Sec}_{h}(C)\right) \geq \frac{d+1}{2}+\frac{d+1}{2}-1 \geq d
$$

Then $\operatorname{Sec}_{h}(C)=\mathbb{P}^{d}$ and we are done.
Now, consider a decomposition $F=\lambda_{1} L_{1}^{d}+\ldots+\lambda_{h} L_{h}^{d}$. Consider the partial derivatives of order $d-h$ of F. These are

$$
\binom{d-h+1}{d-h}=d-h+1 \leq h
$$

homogeneous polynomial of degree h. Furthermore, all these partial derivatives can be decomposed as a linear combination of $L_{1}^{h}, \ldots, L_{h}^{h}$. This means that the linear space $H_{\partial} \subset$ \mathbb{P}^{h} of dimension $d-h$ spanned by the partial derivative is contained in the hyperplane $\left\langle L_{1}^{h}, \ldots, L_{h}^{h}\right\rangle$. Now, note that the hyperplanes in \mathbb{P}^{h} containing H_{∂} are parametrized by $\mathbb{P}^{2 h-d-1}$. Therefore we get a rational map

$$
\begin{aligned}
& \phi: \quad X(F, h) \quad \rightarrow \quad \mathbb{P}^{2 h-d-1} \\
& \left\{L_{1}, \ldots, L_{h}\right\} \longmapsto\left\langle L_{1}^{h}, \ldots, L_{h}^{h}\right\rangle
\end{aligned}
$$

Now, a general hyperplane H containing H_{∂} intersects the rational normal curve $C_{h} \subset \mathbb{P}^{h}$ of degree h in h points $l_{1}^{h}, \ldots, l_{h}^{h}$. Since $H_{\partial} \subseteq H=\left\langle l_{1}^{h}, \ldots, l_{h}^{h}\right\rangle$ these points yields a decomposition of all the partial derivatives of order h of F. This gives a decomposition $\left\{l_{1}^{d}, \ldots, l_{h}^{d}\right\}$ of F. Therefore, ϕ is dominant and generically injective, that is ϕ is birational.
If $d=2 h-1$ then $2 h-d-1=0$, and $X(F, 2 h-1)$ is a point. This means that F admits a unique decomposition in h powers of linear form (This could be deduced from the first part of the proof as well).
if $C \subset \mathbb{P}^{3}$ is a twisted cubic and $p \in \mathbb{P}^{3}$ is a general points, we may interpret p as a general $F \in k[x, y]_{3}$. A line secant to C and passing through p corresponds to a decomposition of F as a sum of $h=2$ cubes of linear forms. In this case $d=3=2 h-1$. Then there exists a unique such decomposition. This means that there exists a unique secant line to C passing through p.

Exercise 4. Let $\Sigma=\sigma\left(\mathbb{P}_{1}^{2} \times \mathbb{P}_{2}^{2}\right) \subset \mathbb{P}^{8}$ be the Segre embedding. Compute the dimension of $\operatorname{Sec}_{2}(\Sigma)$ and the secant defect $\delta_{2}(\Sigma)$.

The expected dimension of expdim $\left(\operatorname{Sec}_{2}(\Sigma)\right)=\min \{2 \operatorname{dim}(\Sigma)+1,8\}=8$. On the other hand we may interpret \mathbb{P}^{8} as the space of 3×3 matrices modulo scalar multiplication. Then, Σ parametrizes rank one matrices, and $\operatorname{Sec}_{2}(\Sigma)$ parametrizes rank two matrices. Therefore, $\operatorname{Sec}_{2}(\Sigma)=\{\operatorname{det}(M)=0\}$, where M is a general 3×3 matrix, is an hypersurface of degree three in \mathbb{P}^{8}. We conclude that $\operatorname{dim}\left(\operatorname{Sec}_{2}(\Sigma)\right)=7$ and $\delta_{2}(\Sigma)=9-7=2$.
We may argue also as follows: let $p \in \operatorname{Sec}_{2}(\Sigma)$ be a general point, and let $x=\left(x_{1}, x_{2}\right)$, $y=\left(y_{1}, y_{2}\right)$ be points spanning a secant line to Σ through p, where $x_{1}, y_{1} \in \mathbb{P}_{1}^{2}$, and $x_{2}, y_{2} \in \mathbb{P}_{2}^{2}$. Let $L_{1} \subset \mathbb{P}_{1}^{2}$ be the line spanned by x_{1}, y_{1}, and $L_{2} \subset \mathbb{P}_{2}^{2}$ be the line spanned by x_{2}, y_{2}. Then $\sigma\left(L_{1} \times L_{2}\right)$ is a quadric surface Q through x, y. If H is the 3-plane spanned by Q, then $p \in H$ and any line through p in H is a secant line of Σ. Therefore, $\delta_{2}(\Sigma) \geq 2$. Clearly $\delta_{2}(\Sigma)<3$. We conclude that $\delta_{2}(\Sigma)=2$ and $\operatorname{dim}\left(\operatorname{Sec}_{2}(\Sigma)\right)=7$.

Exercise 5. Let $X \subset \mathbb{P}^{n}$ be an irreducible curve. Then, $\operatorname{dim}\left(\operatorname{Sec}_{2}(X)\right)=2$ implies that X is contained in a plane.

If $\operatorname{dim}\left(\operatorname{Sec}_{2}(X)\right)=2$ then through a general point $p \in \operatorname{Sec}_{2}(X)$ there is a family of dimension one of secant lines to X. Since $p \in \operatorname{Sec}_{2}(X)$ is general it is smooth. Let $\mathbb{T}_{p} \operatorname{Sec}_{2}(X)$ be the tangent space of $\operatorname{Sec}_{2}(X)$ at p. Both $\operatorname{Sec}_{2}(X)$ and $\mathbb{T}_{p} \operatorname{Sec}_{2}(X)$ are of dimension two, and they intersect in a family of dimension one of lines. This forces $\operatorname{Sec}_{2}(X)=\mathbb{T}_{p} \operatorname{Sec}_{2}(X) \cong \mathbb{P}^{2}$, and X is contained in a plane.

Exercise 6. Let $p_{1}, \ldots, p_{h} \in \mathbb{P}^{n}$ be general points, and $\mathbb{P}\left(V_{n, d, h}\right) \subseteq \mathbb{P}\left(k\left[x_{0}, \ldots, x_{n}\right]_{d}\right) \cong \mathbb{P}^{N}$ be the projective space parametrizing degree d hypersurfaces in \mathbb{P}^{n} having multiplicity two in p_{1}, \ldots, p_{h}. Compute the expected dimension of $\mathbb{P}\left(V_{n, d, h}\right)$:

$$
\operatorname{expdim}\left(\mathbb{P}\left(V_{n, d, h}\right)\right)=\max \left\{\binom{n+d}{n}-h(n+1)-1,-1\right\}
$$

Now, take $n=4, d=3$, and $h=7$. Using the previous formula conclude that we expect that there is no cubic hypersurface in \mathbb{P}^{4} having points of multiplicity two in seven general points.
Now, consider a polynomial $P\left(x_{0}, x_{1}\right)=\left(u_{1} x_{0}-v_{1} x_{1}\right)\left(u_{2} x_{0}-v_{2} x_{1}\right) \ldots\left(u_{d+1} x_{0}-v_{d+1} x_{1}\right)$ on
\mathbb{P}^{1} with $d+1$ distinct zeros $\left[v_{1}, u_{1}\right], \ldots,\left[v_{d+1}, u_{d+1}\right] \in \mathbb{P}^{1}$ such that all the $u_{i}{ }^{\prime}$ s and the $v_{i}{ }^{\prime}$ s are not zero. Let $Q_{i}\left(x_{0}, x_{1}\right)=\frac{P\left(x_{0}, x_{1}\right)}{u_{i} x_{0} v_{i} x_{1}}$ for $i=1, \ldots, d+1$.

- Prove that the $Q_{i}\left(x_{0}, x_{1}\right)$'s form a basis of $k\left[x_{0}, x_{1}\right]_{d}$,
- Conclude that the image of the map

$$
v: \begin{array}{cl}
\mathbb{P}^{1} & \longrightarrow \\
{\left[x_{0}, x_{1}\right]} & \longmapsto \\
\left.\longmapsto Q_{1}\left(x_{0}, x_{1}\right): \ldots: Q_{d+1}\left(x_{0}, x_{1}\right)\right]
\end{array}
$$

is a rational normal curve of degree d in \mathbb{P}^{d} passing through the coordinate points of \mathbb{P}^{d} and through the points $\left[u_{2} \ldots u_{d+1}: \ldots: u_{1} \ldots u_{d}\right],\left[v_{2} \ldots v_{d+1}: \ldots: v_{1} \ldots v_{d}\right]$ (Note that these two points are not on the coordinate hyperplanes).

- Deduce that through $d+3$ general points in \mathbb{P}^{d} there passes a unique rational normal curve of degree d (Here general means no $d+1$ lying in a hyperplane).
In particular, when $d=4$ we get that there exists a degree four rational normal curve in \mathbb{P}^{4} through any seven general points. Use this fact to deduce that there exists an irreducible cubic hypersurface in \mathbb{P}^{4} with multiplicity two in seven general points. Hence $\operatorname{dim}\left(\mathbb{P}\left(V_{4,3,7}\right)\right) \geq 0$, and $\operatorname{expdim}\left(\mathbb{P}\left(V_{4,3,7}\right)\right) \neq \operatorname{dim}\left(\mathbb{P}\left(V_{4,3,7}\right)\right)$.

For a hypersurface $X=Z(F) \subset \mathbb{P}^{n}$ having multiplicity two in h general points imposes at most $h(n+1)$ independent conditions, namely the vanishing of the $n+1$ partial derivatives of F in p_{1}, \ldots, p_{h}. Since $N=\binom{n+d}{n}-1$ we get

$$
\operatorname{expdim}\left(\mathbb{P}\left(V_{n, d, h}\right)\right)=\max \left\{\binom{n+d}{n}-h(n+1)-1,-1\right\}
$$

In particular, for $n=4, d=3$, and $h=7$ we have

$$
\operatorname{expdim}\left(\mathbb{P}\left(V_{4,3,7}\right)\right)=\max \{35-35-1,-1\}=-1
$$

Then we expect $\mathbb{P}\left(V_{4,3,7}\right)$ to be empty.
Assume there exists a linear relation $a_{1} Q_{1}\left(x_{0}, x_{1}\right)+\ldots+a_{d+1} Q_{d+1}\left(x_{0}, x_{1}\right) \equiv 0$. Then, for $\left[x_{0}, x_{1}\right]=\left[v_{i}, u_{i}\right]$ we get $a_{i} Q_{i}\left(v_{i}, u_{i}\right)=0$. Since $Q_{i}\left(v_{i}, u_{i}\right) \neq 0$ we get $a_{i}=0$. Therefore, the Q_{i} 's are linearly independent and $\operatorname{since} \operatorname{dim}\left(k\left[x_{0}, x_{1}\right]_{d}\right)=d+1$ they form a basis of $k\left[x_{0}, x_{1}\right]_{d}$.
This means that there exists a linear transformation sending the basis formed by the Q_{i} 's to the standard basis $x_{0}^{d}, x_{0}^{d-1} x_{1}, \ldots, x_{1}^{d}$ of $k\left[x_{0}, x_{1}\right]_{d}$. Such linear transformation induces an automorphism of \mathbb{P}^{d} mapping the image of v to the standard degree d rational normal curve of \mathbb{P}^{d}, then $v\left(\mathbb{P}^{1}\right)$ itself is a degree d rational normal curve. Now, note that $v\left(\left[v_{1}, u_{1}\right]\right)=$ $[1: 0: \ldots: 0], \ldots, v\left(\left[v_{d+1}: u_{d+1}\right]\right)=[0: \ldots: 0: 1], v([1: 0])=\left[u_{2} \ldots u_{d+1}: \ldots: u_{1} \ldots u_{d}\right]$, and $v([0: 1])=\left[v_{2} \ldots v_{d+1}: \ldots: v_{1} \ldots v_{d}\right]$. Since all the u_{i} 's and the v_{i}^{\prime} 's are not zero the last two points are not on any coordinate hyperplane.
Now, for any choice of $d+1$ points in \mathbb{P}^{d} in general position there exists an automorphism of \mathbb{P}^{d} mapping these points in the coordinate points. Furthermore, the points $\left[u_{2} \ldots u_{d+1}: \ldots: u_{1} \ldots u_{d}\right],\left[v_{2} \ldots v_{d+1}: \ldots: v_{1} \ldots v_{d}\right]$ may be any points not on the coordinate hyperplanes. By the above construction the rational normal curve passing through these $d+3$ points is unique. We conclude that through $d+3$ general points in \mathbb{P}^{d} there passes a unique rational normal curve of degree d.

Now, we know that through seven general points $p_{1}, \ldots, p_{7} \in \mathbb{P}^{4}$ there exists an unique rational normal curve C of degree four. We may assume that C is the image of

$$
\begin{array}{ccc}
v_{4}: \begin{array}{c}
\mathbb{P}^{1} \\
{\left[x_{0}, x_{1}\right]}
\end{array} & \longmapsto & \left.\longmapsto x_{0}^{4}: x_{0}^{3} x_{1}: x_{0}^{2} x_{1}^{2}: x_{0} x_{1}^{3}: x_{1}^{4}\right]
\end{array}
$$

$\operatorname{Sec}_{2}(C) \subset \mathbb{P}^{4}$ is the cubic hypersurface given by the vanishing of the determinant of

$$
M=\left(\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{2} & x_{3} \\
x_{2} & x_{3} & x_{4}
\end{array}\right)
$$

that is

$$
\operatorname{Sec}_{2}(C)=\left\{F=x_{0} x_{2} x_{4}-x_{0} x_{3}^{2}-x_{1}^{2} x_{4}+2 x_{1} x_{2} x_{3}-x_{2}^{3}=0\right\} .
$$

The partial derivatives of F are given by

$$
\begin{aligned}
& \frac{\partial F}{\partial x_{0}}=x_{2} x_{4}-x_{3}^{2}, \\
& \frac{\partial F}{\partial x_{1}}=2\left(x_{2} x_{3}-x_{1} x_{4}\right), \\
& \frac{\partial F}{\partial x_{2}}=x_{0} x_{4}-x_{2}^{2}-2\left(x_{2}^{2}-x_{1} x_{3}\right), \\
& \frac{\partial F}{\partial x_{3}}=2\left(x_{1} x_{2}-x_{0} x_{3}\right), \\
& \frac{\partial F}{\partial x_{4}}=x_{0} x_{2}-x_{1}^{2} .
\end{aligned}
$$

Note that all the derivatives are linear combination of 2×2 minors of the matrix M and they vanish simultaneously on C. Furthermore the second partial derivatives of F are 15 linear polynomials that are never simultaneously zero. To see this, it is enough to notice that

$$
\frac{\partial^{2} F}{\partial x_{0} x_{3}}=-2 x_{3}, \frac{\partial^{2} F}{\partial x_{4} x_{1}}=-2 x_{1}, \frac{\partial^{2} F}{\partial x_{2}^{2}}=-6 x_{2}, \frac{\partial^{2} F}{\partial x_{4} x_{2}}=x_{0}, \frac{\partial^{2} F}{\partial x_{0} x_{2}}=x_{4} .
$$

We conclude that $\operatorname{deg}\left(\operatorname{Sec}_{2}(C)\right)=3, \operatorname{Sing}\left(\operatorname{Sec}_{2}(C)\right)=C$ and $\operatorname{mult}_{C} \operatorname{Sec}_{2}(C)=2$. In particular, since $p_{1}, \ldots, p_{7} \in C$ we have $\operatorname{mult}_{p_{i}} \operatorname{Sec}_{2}(C)=2$ for $i=1, \ldots, 7$. Then the secant variety $\operatorname{Sec}_{2}(C) \subset \mathbb{P}^{4}$ is an irreducible cubic hypersurface having multiplicity two in seven general points. This yields $\operatorname{dim}\left(\mathbb{P}\left(V_{4,3,7}\right)\right) \geq 0$, and $\operatorname{expdim}\left(\mathbb{P}\left(V_{4,3,7}\right)\right) \neq \operatorname{dim}\left(\mathbb{P}\left(V_{4,3,7}\right)\right)$.

CHAPTER 11

Riemann-Roch Theorem

Exercise 1. Har, Exercise 1.1-Chapter IV] We have two show that there exists a nonconstant rational function $f \in K(X)$ such that $\operatorname{div}(f)+k P \geq 0$ for some $k \gg 0$, that is $h^{0}(X, k P)>0$ for $k \gg 0$. By Riemann-Roch for the divisor $D=k P$ we have

$$
h^{0}(X, k P)-h^{0}\left(X, K_{X}-k P\right)=\operatorname{deg}(k P)-g+1=k-g+1 .
$$

Now, $\operatorname{deg}\left(K_{X}-k P\right)=2 g-2-k<0$ for $k \gg 0$. Therefore, for $k \gg 0$ we have $h^{0}\left(X, K_{X}-\right.$ $k P)=0$, and

$$
h^{0}(X, k P)=\operatorname{deg}(k P)-g+1=k-g+1>0 .
$$

Exercise 2. [Har, Exercise 1.2-Chapter IV] By the previous exercise for any $P_{i} \in X$ there exists a rational function $f_{i} \in K(X)$ that is regular everywhere except at P_{i}. Finally, we take $f=f_{1}+\ldots+f_{r}$.

Exercise 3. [Har, Exercise 1.5-Chapter IV] By Riemann-Roch we have $h^{0}(X, D)=$ $\operatorname{deg}(D)-g+1+h^{0}\left(K_{X}-D\right)$. Since D is effective we have that sections of $K_{X}-D$ are differential forms on X vanishing on the effective divisor D. Then

$$
h^{0}\left(X, K_{X}-D\right) \leq h^{0}\left(X, K_{X}\right)=g .
$$

This yields

$$
h^{0}(X, D)=\operatorname{deg}(D)-g+1+h^{0}\left(K_{X}-D\right) \leq \operatorname{deg}(D)+1 .
$$

If $D=0$ then $h^{0}\left(X, K_{X}-D\right)=h^{0}\left(X, K_{X}\right)=g$ and the equality holds. If $g=0$ then $K_{X}=-2 P$ and $\operatorname{deg}\left(K_{X}-D\right)<0$ yields $h^{0}\left(K_{X}-D\right)=0$. Again the equality holds. On the other hand if $g>0$ then $h^{0}\left(X, K_{X}-D\right)=h^{0}\left(X, K_{X}\right)=g$ yield that D is linearly equivalent to zero. Since D is effective we conclude that $D=0$.

Exercise 4. Har, Exercise 1.6-Chapter IV] Let us consider $g+1$ points $P_{1}, \ldots, P_{g+1} \in X$ and the divisor $D=\sum_{i=1}^{g+1} P_{i}$. By Riemann-Roch we have

$$
h^{0}(X, D)=\operatorname{deg}(D)-g+1+h^{0}\left(X, K_{X}-D\right) \geq 2+h^{0}\left(X, K_{X}-D\right) \geq 2
$$

Therefore, there exists a non-constant rational function $f \in K(X)$ having poles at most on some of the $P_{i}{ }^{\prime}$ s. Then, f induce a morphism $\bar{f}: X \rightarrow \mathbb{P}^{1}$ such that $\bar{f}^{-1}(\infty) \subseteq\left\{P_{1}, \ldots, P_{g+1}\right\}$. Hence $\operatorname{deg}(\bar{f}) \leq g+1$.

Exercise 5. [Har, Exercise 1.7-Chapter IV] A curve X is hyperelliptic if $g(X) \geq 2$ and there exists a finite morphism $f: X \rightarrow \mathbb{P}^{1}$ of degree two.
(a) Let X be a curve of genus two. Then, $\operatorname{deg}\left(K_{X}\right)=2 g-2=2$, and $h^{0}\left(X, K_{X}\right)=$ $g=2$. Let $P \in X$ be a point. By Riemann-Roch

$$
h^{0}\left(X, K_{X}-P\right)=2 g-2-1-g+1+h^{0}(X, P)=g-2+h^{0}(X, P)=h^{0}(X, P) .
$$

Now, since $P \in X$ is effective we have $h^{0}(X, P) \geq 1$. On the other hand $h^{0}(X, P) \leq$ 1 because X is not rational. We conclude that

$$
h^{0}\left(X, K_{X}-P\right)=h^{0}(X, P)=1=h^{0}\left(X, K_{X}\right)-1
$$

Then $\left|K_{X}\right|$ is base point free and it induces a morphism $f_{K_{X}}: X \rightarrow \mathbb{P}^{1}$ of degree two.
(b) Let X be a smooth curve of bidegree $(g+1,2)$ on a smooth quadric surface $Q \cong$ $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Then

$$
g(X)=2(g+1)-(g+1)-2+1=2 g+2-g-1-1=g .
$$

Let L and R be the two generators of $\operatorname{Pic}(Q)$. We may write $C \sim(g+1) L+2 R$. Then

$$
C \cdot L=(g+1) L^{2}+2 R \cdot L=2
$$

This means that the restriction of the second projection $\pi_{2}: Q \rightarrow \mathbb{P}^{1}$ defines a morphism $\pi_{2 \mid X}: X \rightarrow \mathbb{P}^{1}$ of degree two.
Exercise 6. Let X be a smooth projective curve. Prove that X is rational if and only if $g(X)=0$.

Assume that X is rational, that is X is birational to \mathbb{P}^{1}. Since X is smooth and projective we have that X is isomorphic to \mathbb{P}^{1}. Then $g(X)=g\left(\mathbb{P}^{1}\right)=0$.
Conversely, assume that $g(X)=0$. Let $P, Q \in X$ be two points with $P \neq Q$, and consider the divisor $D=P-Q$. We have $\operatorname{deg}\left(K_{X}-D\right)=2 g-2=-2<0$. Then $h^{0}\left(X, K_{X}-D\right)=0$. By Riemann-Roch we get $h^{0}(X, D)=\operatorname{deg}(D)-g+1=1$. On the other hand $\operatorname{deg}(D)=0$ forces $D \sim 0$, that is $P \sim Q$. Then there exists a non-constant rational function $f \in k(X)$ such that $\operatorname{div}(f)=P-Q$. The rational function f induces a non-constant rational map $\phi: X \rightarrow \mathbb{P}^{1}$ such that $\phi^{-1}(0)=P$ and $\phi^{-1}(\infty)=Q$. Since ϕ is non-constant it is dominant. Furthermore, since $\phi^{-1}(0)=P$ the map ϕ is generically injective. This means that $\phi: X \rightarrow \mathbb{P}^{1}$ is birational.

Bibliography

[PhE] Ph. ElLIA, Un'introduzione light alla geometria algebrica, IntroLight-GA-2006.pdf
[Har] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, no. 52, Springer-Verlag, New York-Heidelberg, 1977.
[Ku] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, first edition, 1984.

