Construction 0.1. Let $F \in k[x, y, z]_{5}$ be a generic homogeneous polynomial. By Hilbert's Theorem we know that there exists a unique 7 -polyhedron $\left\{L_{1}, \ldots, L_{7}\right\}$ for F. Following the idea of our proof we consider the third partial derivatives of F. These derivatives span a 5 -plane $H_{\partial} \subseteq \mathbb{P}^{9}$ contained in the 6 -plane $H_{L}=<$ $L_{1}^{3}, \ldots, L_{7}^{3}>$. Consider the projection from H_{∂}

$$
\pi: \mathbb{P}^{9} \longrightarrow \mathbb{P}^{3}
$$

If $V \subseteq \mathbb{P}^{9}$ is the Veronese variety then $\pi(V)=\bar{V} \subseteq \mathbb{P}^{3}$ is a surface and hence given by a single equation $\bar{V}=(f=0)$. By Hilbert's Theorem \bar{V} has a unique singular point of multiplicity 7 , the point $P_{L}=\pi\left(H_{L}\right)$.
Now it is clear that $<P_{L}, H_{\partial}>=H_{L}$ and it is easy to find the 7-polyhedron of F computing the intersection

$$
V \cdot H_{L}=\left\{L_{1}^{3}, \ldots, L_{7}^{3}\right\} .
$$

We give an example of the previous construction in an easiest case. We take $F \in k[x, y]_{3}$, by Sylvester's Theorem we know that there is a unique 2-polyhedron of F. We compute this polyhedron in a completely analogous way.

Example 1. We consider the polynomial

$$
F=x^{3}+x^{2} y-x y^{2}+y^{3} \in k[x, y]_{3}
$$

i.e. the point $[F]=[1: 1:-1: 1] \in \mathbb{P}^{3}$. The projection from $[F]$ to the plane $(X=0) \cong \mathbb{P}^{2}$ is given by

$$
\pi: \mathbb{P}^{3} \longrightarrow \mathbb{P}^{2},[X: Y: Z: W] \mapsto[Y-X: X+Z: W-X]
$$

Using the following sequence of MacAulay2 we compute the projection $C=\pi(X)$ of the twisted cubic curve X.
Macaulay 2 , version 1.2
$i 1: P 3=Q Q[X, Y, Z, W]$
$o 1=P 3$
o1: PolynomialRing
$i 2: P 1=Q Q[s, t]$
$o 2=P 1$
o2: PolynomialRing
$i 3: T C=\operatorname{map}\left(P 1, P 3, s^{3}, 3 * s^{2} * t, 3 * s * t^{2}, t^{3}\right)$
$o 3=\operatorname{map}\left(P 1, P 3, s^{3}, 3 s^{2} t, 3 s * t^{2}, t^{3}\right)$
o3: RingMapP1<---P3
i4: ITC = kernelTC
$o 4=\operatorname{ideal}\left(Z^{2}-3 Y * W, Y * Z-9 X * W, Y^{2}-3 X * Z\right)$
o4: Idealof P3
$i 5: R T C=P 3 / I T C$
$o 5=R T C$
o5: QuotientRing
$i 6: P 2=Q Q[A, B, C]$
$o 6=P 2$
o6 : PolynomialRing
i7: projmap $=\operatorname{map}(R T C, P 2, Y-X, X+Z, W-X)$
$o 7=\operatorname{map}(R T C, P 2,-X+Y, X+Z,-X+W)$
o7: RingMapRTC $<---P 2$
i8: $I=$ kernelprojmap
$o 8=\operatorname{ideal}\left(14 A^{3}+15 A^{2} * B+15 A * B^{2}-13 B^{3}-18 A^{2} * C+45 A * B * C-18 B^{2} *\right.$ $\left.C+54 A * C^{2}\right)$
o8: Idealof P2
The latter is the equation of $C=\pi(X)$. Using Bertini we compute the singular point of C,

$$
P=\operatorname{Sing}(C)=[4:-10: 9] .
$$

The line generated by P and $[F]$ is given by the following equations

$$
L=(6 X-10 Y-4 Z=5 X-9 Y+4 W=0)
$$

We compute the intersection $X \cdot L$, where X is the twisted cubic curve, with Bertini and we find $L_{1}^{3}=[-0.0515957: 0.4157801:-1.1168439: 1]$ and $L_{2}^{3}=$ [155.0515957: 86.5842198: 16.1168439:1]. These points correspond to the linear forms

$$
L_{1}=-0.3722812 x+y, L_{2}=5.3722813 x+y
$$

Indeed we have

$$
F=0.99322 \cdot(-0.3722812 x+y)^{3}+0.00678 \cdot(5.3722813 x+y)^{3} .
$$

