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Abstract. The notion of Mori Dream Space was introduced by Y. Hu and S. Keel in
[HK]. This denomination is motivated by the fact that these spaces behave in the best
possible way from the point of view of Mori’s minimal model program. We recall the
definition of Mori Dream Space, and their main properties in relation to Fano and log
Fano varieties. After discussing a famous conjecture by Y. Hu and S. Keel, predicting
that M0,n is a Mori Dream Space, we summarize the main ideas of a recent paper by A.
M. Castravet and I. Tevelev [CT2]. In this paper the authors prove that M0,n is not a
Mori Dream Space for n > 133.
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1. Mori dream spaces

Let X be a normal projective variety. We denote by N1(X) the real vector space of
Cartier divisors and by ρX = dim(N1(X)) the Picard number of X.

- The effective cone Eff(X) is the convex cone in N1(X) generated by classes of
effective divisors. In general it is not a closed cone.

- The nef cone Nef(X) is the convex cone in N1(X) generated by classes of divisors
D such that D ·C ≥ 0 for any curve C ⊂ X. It is closed, but in general it is neither
polyhedral nor rational.

- A divisor D ⊂ X is called movable if its stable base locus is in codimension greater
or equal that two. The movable cone Mov(X) is the convex cone in N1(X) generated
by classes of movable divisors. In general, it is not closed.
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A small Q-factorial transformation of X is a birational map f : X 99K Y to another
normal Q-factorial projective variety Y , such that f is an isomorphism in codimension one.
The exponential exact sequence

0 7→ Z→ OX → O∗X 7→ 0

induces the following exact sequence in cohomology

0 7→ H1(X,Z)→ H1(X,OX)→ H1(X,O∗X)→ H2(X,Z)→ H2(X,OX).

The complex torus H1(X,OX)/H1(X,Z) is the Picard variety of X. This variety Pic0(X)
is the connected component of the identity of Pic(X) ∼= H1(X,O∗X) and it is an abelian
variety. The image of Pic(X) inside H2(X,Z) is isomorphic to Pic(X)/Pic0(X). The group
NS(X) ∼= Pic(X)/Pic0(X) is a finitely generated abelian group called the Néron-Severi
group. The group NS(X) parametrizes divisor on X modulo numerical equivalence.

Example 1.1. Let us consider a smooth projective curve X of genus g. That is X is a
compact Riemann surface with g handles. Then H0(X,Z) ∼= H2(X,Z) ∼= Z because X
is connected, and H1(X,Z) ∼= Z2g. Since H0(X,OX) ∼= Cg we have Pic0(X) ∼= Cg/Z2g ∼=
Jac(X), the Jacobian variety ofX. In this case the degree gives an isomorphism NS(X) ∼= Z.

Definition 1.2. A normal projective variety X is a Mori Dream Space if

(a) X is Q-factorial and Pic(X)Q ∼= N1(X)Q;
(b) Nef(X) is generated by finitely many semi-ample line bundles;
(c) there exist finitely many small Q-factorial modifications fi : X 99K Xi such that

each Xi satisfies (a), (b), and Mov(X) us the union of f∗i Nef(Xi).

Remark 1.3. Condition (a) is equivalent to the finite generation of Pic(X) which is equiv-
alent to h1(X,OX) = 0. Note that if X is a Mori Dream Space then the Xi are Mori Dream
Spaces as well.

- A normal Q-factorial projective variety of Picard number is one is a Mori Dream
Space if and only if Pic(X) is finitely generated.

- Let X be a normal Q-factorial projective surface satisfying (a), (b), then Nef(X) =
Mov(X) and, by taking IdX , we see that (c) is satisfied as well.

- Any projective Q-factorial toric variety and any smooth Fano variety is a Mori
Dream Space.

- If X is a smooth rational surface and −KX is big the X is a Mori Dream Space.
- A smooth K3 surface is a Mori Dream Space if and only if its automorphism group
is finite.

Example 1.4. Let X be the blow-up of P3 at two distinct points x1, x2. Let H be the
pullback of the hyperplane section and E1, E2 the two exceptional divisors. The anti-
canonical divisor of X is −KX = 4H − 2E1 − 2E2. If L is the strict transform of the line
〈x1, x2〉 we have −KX ·L = 0. Therefore X is not Fano. The Picard group of X is generated
by H,E1, E1 and ρX = 3. Clearly X is a toric variety. Therefore it is a Mori Dream Space.
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The following is the polyhedron of X in R3.

Let |Ix1,x2(2)| be the linear system of quadrics in P3 through x1, x2. The corresponding
linear system on X induces an morphism

X

P3 Y ⊂ P7

ε
f

contracting L. Since the normal bundle of L is OL(−1)⊕2 the singular point f(L) ∈ f(X) =
Y is a node. Furthermore f is a small contraction and f(X) is not Q-factorial. Let us blow-
up the curve L and let Z be the blow-up. The exceptional divisor is isomorphic two P1×P1.
By contracting one ruling we get X. On the other hand by contracting the other ruling we
find another smooth variety X ′ . The birational map g : X 99K X

′ is the flip of f . The
situation is summarized in the following diagram.

Z

X X
′

Y
f

g

The following is a section of Eff(X).

Let L be the strict transform of a general line and R1, R2 the classes of a line in the
exceptional divisors E1, E2. Then the strict transform of the line through x1, x2 is given
by C = L − E1 − E2. Now, let H1, H2, H12 be strict transforms of planes through x1, x2

and containing the line 〈x1, x2〉 respectively. Consider D = aH12 + bH1 + cH2. We have
D · C = −a. Therefore D · C is always less or equal that zero and its zero if and only if
a = 0. On the other hand after the contraction of C any divisor of this form becomes nef.
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The variety X has exactly two small Q-factorial transformations: the identity and the flip
g. Furthermore we have Mov(X) = Nef(X)∪ g∗Nef(X

′
). In the picture Nef(X) is the cone

generated by H,H1, H2, and Nef(X
′
) is the cone generated by H1,2, H1, H2.

We recall two important facts about Mori Dream Space.

Proposition 1.5. Let X a be a Mori Dream Space.
- Any normal projective variety Y which is a small Q-factorial modification of X is
a Mori Dream Space. Furthermore the fi of Definition 1.2 are the only small Q-
factorial transformations of X, [HK, Proposition 1.11].

- If there is a surjective morphism X → Y on a normal Q-factorial projective variety
Y , then Y is a Mori Dream Space, [Ok, Theorem 1.1].

Definition 1.6. Let Γ be a semigroup of Weil divisors on X. We can consider the Γ-graded
ring:

RX(Γ) =
⊕
D∈Γ

H0(X,OX(D)).

If the divisor class group Cl(X) is finitely generated and Γ is a group of Weil divisors such
that ΓQ ∼= Cl(X)Q then the ring RX(Γ) is denoted by Cox(X), and called the Cox ring of
X.

Remark 1.7. Let X be a normal and Q-factorial projective variety with finitely generated
and free Picard group and Picard number ρX . Let D1, ..., DρX be a basis of Cartier divisors
of Pic(X). Then

Cox(X) =
⊕

m1,...,mρX∈Z
H0(X,

ρX∑
i=1

miDi).

Different choices of divisors D1, ..., DρX yield isomorphic algebras.

For the details of the proof of the following Theorem we refer to [HK, Proposition 2.9].

Theorem 1.8. A Q-factorial projective variety X with Pic(X)Q ∼= N1(X)Q is a Mori Dream
Space if and only if Cox(X) is finitely generated. In this case X is a GIT quotient of the
affine variety Y = Spec(Cox(X)) by a torus of dimension ρX .

Proof. Let X be a Mori Dream Space. Then the effective cone is rational and polyhedral
and we have a decomposition:

Eff(X) =
k⋃
i=1

Pi

where the Pi’s are rational polyhedra. Furthermore there are finitely many rational maps fi :
X 99K Xi such that if D ∈ Eff(X) then fD = fi for some i = 1, ..., k. Let us take D1, ..., Dh

divisors generating the cone Pi. The cone RX(D1, ..., Dh) does not change by replacing
X with Xi and D1, ..., Dh by the corresponding divisors D1,i, ..., Dh,i on Xi. On Xi the
divisors D1,i, ..., Dh,i are semi-ample. Then RXi(D1,i, ..., Dh,i), and hence RX(D1, ..., Dh)
are finitely generated.
Now, let us assume that Cox(X) is finitely generated. Then we have an equivariant em-
bedding, with respect a torus G, of Y = Spec(Cox(X)) is An. Taking the GIT quotient we
have an embedding Y ⊆ Q = An//G. Since G is a torus Q is a toric variety and hence a
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Mori Dream Space. Furthermore if r : X 99K Y is a rational map then there is a rational
map of toric varieties t : M 99K N inducing r by restriction. Therefore X is a Mori Dream
Space. �

2. Weak Fano and log Fano varieties

LetD =
∑k

i=1 diDi be a simple normal crossing Q-divisor on a normal varietyX. Assume
that KX +D is Q-Cartier. Then for a resolution f : Y → X of X we can write

KY = f∗(KX +D) +
∑

aiEi,

where the Ei are either f -exceptional or a strict transforms of the Di.

Definition 2.1. A log resolution of the pair (X,D) is a birational surjective morphism
f : Y → X such that Y is smooth and f−1D∪Exc(f) is a simple normal crossing Q-divisor.

By [Hi] a log resolution always exists.

Definition 2.2. Let D =
∑k

i=1 diDi be a simple normal crossing Q-divisor on a normal
variety X. Assume that KX +D is Q-Cartier and let f : Y → X be a log resolution with

KY = f∗(KX +D) +
∑

a(Ei, X,D)Ei.

We call:
discrep(X,D) = minEi{a(Ei, X,D) | Ei is f− exceptional},

and
totaldiscrep(X,D) = minEi{a(Ei, X,D)}.

We say that the pair (X,D) is
- terminal if discrep(X,D) > 0;
- canonical if discrep(X,D) ≥ 0;
- Kawamata log terminal (klt) if discrep(X,D) > −1 and di < 1 for any i = 1, ..., k;
- purely log terminal (plt) if discrep(X,D) > −1;
- log canonical (lc) if discrep(X,D) ≥ −1.

Example 2.3. Assume that D is a simple normal crossing divisor, and that X is smooth.
Then IdX is a log resolution. If 0 < ε � 1 is a rational number then we have KX =
Id∗X(KX + εD)− εD. The pair (X, εD) is Kawamata log terminal.
Let D ⊂ P2 an irreducible curve with one node, and let f : Y → P2 be the blow-up of
the node. Then f−1D ∪ E is simple normal crossing. Furthermore KY = f∗KP2 + E and
f∗D = D̃ + 2E where D̃ is the strict transform of D, yield

KY = f∗(KP2 +D)− D̃ − E.
Therefore the pair (P2, D) is log canonical.
Now, let us consider a cusp D ⊂ P2 to have a log resolution we have to blow-up three times.
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Let ε1 : X1 → P2 be the first blow-up. We have KX1 = ε∗1KP2 +E1 and C1 = ε∗1C − 2E1. If
ε2 : X2 → X1 is the second blow-up we haveKX2 = ε∗2(ε∗1KP2+E1)+E2 = ε∗2ε

∗
1KP2+E1+2E2

and C2 = ε∗2C1 − E2 = ε∗2ε
∗
1C − 2E1 − 3E2. Finally, let ε3 : X3 → X2 be the third blow-up.

Then KX3 = ε∗3ε
∗
2ε
∗
1KP2 +E1 +2E2 +4E3 and C3 = ε∗3C2−E3 = ε∗3ε

∗
2ε
∗
1C−2E1−3E2−6E3.

Let ε = ε1 ◦ ε2 ◦ ε3. Summing up we have

KX3 = ε∗KP2 + E1 + 2E2 + 4E3,
C3 = ε∗C − 2E1 − 3E2 − 6E3.

Therefore we get
KX3 = ε∗(KP2 + C)− C3 − E1 − E2 − 2E3.

In particular discrep(P2, D) = a(E3,P2, D) = −2 and (P2, D) is not log canonical.

Definition 2.4. Let X be a smooth projective variety. We say that X is:
- weak Fano if −KX is nef and big,
- log Fano if there exists a divisor D such that −(KX + D) is ample and the pair

(X,D) is Kawamata log terminal. In particular if D = 0 we have terminal Fano
varieties.

The Picard group of a Fano variety Pic(X) = H2(X,Z) is always finitely generated. Any
toric variety is log Fano. Let X ⊂ Pn be a smooth hypersurface of degree d. Then X is log
Fano if and only if d ≤ n.

Lemma 2.5. Let D be a nef and big divisor on an irreducible projective variety X. Then
there exist an effective divisor E and a rational number 0 < ε � 1 such that D − εE is
ample.

Proof. Let D be a nef and big divisor. Since D is big, by [La, Corollary 2.2.6], there exist
an ample divisor A, an effective divisor E, and a positive integer k such that kD ≡ A+E.
If h > k we can write hD ≡ (h− k)D+A+E. The divisor D′

= (h− k)D+A is a sum of
a nef and an ample divisor. Therefore D′ is ample. If ε = 1

h we get that

D − εE ≡ εD′

is ample. �

Proposition 2.6. Let X be normal, irreducible, projective variety with at most klt singu-
larities. If X is weak Fano then X is log Fano.

Proof. Since X is weak Fano −KX is nef and big. By Lemma 2.5 there exists an effective
divisor D and a rational number 0 < ε� 1 such that −KX − εD = −(KX + εD) is ample.
The pair (X, εD) is klt for ε� 1 because X has at most klt singularities. �

Remark 2.7. The converse of Proposition 2.6 is false. For instance the Hirzebruch surface
Xe = P(OP1 ⊕OP1(−e)) is a toric surface and hence log Fano. The anti-canonical divisor is
−KXe = −2C0−(2+e)F , where C0 is the section and F is the fiber. Therefore −KXe ·C0 =
2C2

0 + 2 + e = −e+ 2, and −KXe is not nef for e > 2. We conclude that for any e > 2 the
Hirzebruch surface Xe is log Fano but not weak Fano.

The bridge between Mori Dream Spaces and log Fano varieties is the content of the
following proposition.
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Proposition 2.8. [BCHM, Corollary 1.3.2] Let X be a smooth projective variety. If X is
log Fano then X is a Mori Dream Space .

Remark 2.9. Let X be a Mori Dream Space with big and movable anti-canonical divisor.
Then X is not necessarily log Fano [CG, Example 5.1]. Indeed X admits a small Q-factorial
modification Y such that −KY is nef and big, but Y could have bad singularities. In
particular the variety X in [CG, Example 5.1] is not rationally connected. Therefore it is
not log Fano.

Let X be the blow-up of P3 at seven general points p1, ..., p7. Then X is not toric. In
what follows we give a direct proof of the fact that X is log Fano. We remark that, by [BL,
Proposition 2.9], X = Bl7P3 is weak Fano. Therefore, by Proposition 2.6 X is log Fano.

Lemma 2.10. Let p1, ..., p7 ∈ P3 be general points. There are not irreducible quartic curves
C ⊂ P3 such that p1 = Sing(C) is a point of multiplicity two, and p2, ..., p7 ∈ C.

Proof. Let us assume that such a quartic curve exists and consider the projection

πp1 : C 99K P2.

Since multp1 C = 2 and C is irreducible the image C = πp1(C) is a conic though the six
general points πp1(pi) for i = 2, ..., 7. A contradiction. �

Lemma 2.11. Let p1, ..., p7 ∈ P3 be general points, C ⊂ P3 an irreducible curve of degree
d, and mi = multpi(C) the multiplicity of C at pi. If

m1 + ...+m7 = 2d

then C is either a line through two of the pi’s or a twisted cubic through six of the pi’s.

Proof. Let us consider the case of a plane curve C ⊂ P2. We may assume that the plane
containing C is generated by p1, p2, p3. Therefore we have m1 +m2 +m3 = 2d and mi = 0
for i = 4, ..., 7. Since C is irreducible, if one of the three lines 〈pi, pj〉 ⊆ C then C = 〈pi, pj〉.
Therefore we may assume that m1,m2,m3 are positive. We have mi +mj ≤ d for any i 6= j
otherwise the line 〈pi, pj〉 would be a component of C. Summing up these three inequalities
we get 2(m1 + m2 + m3) = 2(m1 + ... + m7) ≤ 3d and so the contradiction 4d ≤ 3d. We
conclude that if C is plane then C is a line through two of the pi’s.
Now, let us assume C to be non-degenerate. Let p ∈ C be a general point. Then there is
a pencil Λ of quadric surfaces passing through p1, ..., p7 and p. Let Q be such a quadric
surface. Now, C · Q ≥ m1 + ... + m7 + 1 = 2d + 1 implies C ⊂ Q. In particular for
Q1, Q2 ∈ Λ we have C ⊂ Q1 ∩Q2 and this yields d ≤ 4. Furthermore C is non-degenerate
and irreducible. So d = 3, 4.
Let us assume d = 3. Then m1 + ... + m7 = 6. If mi ≥ 2 for some i then, for two general
points p, q ∈ C, we have C · 〈p, q, pi〉 ≥ 4 and so the contradiction C ⊂ 〈p, q, pi〉. Therefore
0 ≤ mi ≤ 1 for any i and since m1 + ... + m7 = 6 we get the seven twisted cubic through
six of the pi’s.
Finally, let us assume d = 4. Then m1 + ...+m7 = 8. Suppose to have mi ≥ 2 and mj ≥ 2
for i 6= j and let p ∈ C be a general point. Then C · 〈p, pi, pj〉 ≥ 5 and again we get the
contradiction C ⊂ 〈p, pi, pj〉. So there exists at most one integer mi ≥ 2. Note that mi

has to be exactly equal to two otherwise C would be contained in a plane. Furthermore
m1 + ... + m7 = 8 implies that there exists exactly one mi = 2. We may assume that
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m1 = 2 and m2 = ... = m7 = 1. Thus C is a quartic rational curve with a singular point
of multiplicity 2 at p1 and passing through p2, ..., p7. By Lemma 2.10 such a curve does not
exist. �

Proposition 2.12. Let X be the blow-up of P3 at seven general points p1, ..., p7. Then X
is log Fano. In particular Cox(X) is finitely generated and X is a Mori dream space.

Proof. The anti-canonical divisor of X is given by

−KX = 4H − 2E1 − ...− 2E7 = 2(2H − E1 − ...− E7).

By Lemma 2.11 we know that |−KX | contracts just the strict transforms of the lines through
two of the pi’s and of the twisted cubics through six of the pi’s.
Surfaces of degree k in P3 are parametrized by a vector space of dimension

(
k+3

3

)
. A point

of multiplicity m imposes at most
(
m+2

3

)
conditions. Let us fix a k � 0 and a m > k

2 such
that (

k + 3

3

)
− 7

(
m+ 2

3

)
> 0.

Then, by [Su, Proposition 11], there exists an irreducible surface S ⊂ P3 such that Sing(S) =
{p1, ..., p7} and having ordinary singularities of multiplicity m at p1, ..., p7. Furthermore the
general element in the linear system |S| has this property.
Let S̃ ⊂ X be the strict transform of S. Note that, being p1, ..., p7 ordinary singularities of
S, the divisor S̃ is smooth. Let 0 < ε � 1 be a rational number. Our aim is to prove that
the divisor

D = −(KX + εS̃)

is ample. Since S̃ = kH −mE1 − ...−mE7 we can write

D = (4− εk)H + (εm− 2)E1 + ...+ (εm− 2)E7.

Let L be the strict transform of a general line in P3 and Ri be the class of a line in the
exceptional divisor Ei for i = 1, ..., 7. Let C ⊂ X be an irreducible curve. We distinguish
two cases.

- C ⊂ Ei for some i ∈ {1, ..., 7}. We may assume C ⊂ E1. Then C = dR1 and

D · C = d(2− εm) > 0

being ε < m
2 .

- C is the strict transform of a curve in P3. Then C = dL−m1R1 − ...−m7R7 that
is C comes from a curve of degree d in P3 having points of multiplicity m1, ...,m7

at p1, ..., p7. Then

D · C = d(4− εk)− (m1 + ...+m7)(2− εm).

By the proof of Lemma 2.11 we get (m1 + ... + m7) ≤ 2d. Since ε < m
2 we have

(2− εm) > 0, and

D · C ≥ d(4− εk)− 2d(2− εm) = ε(2dm− kd).

Now, m > k
2 implies D · C > 0.
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Finally we compute

D3 = 8− ε3(k3 + 7m3) + ε2(12k2 − 42m2)− ε(48k + 84m) > 0

for ε sufficiently small. Note that we do not need to intersect D2 with surfaces. Indeed,
the base locus of |D| zero dimensional we have D2 · S = D · C, where S is an irreducible
surface and C a curve numerically equivalent to D · S and meeting S properly. Therefore,
by the first part of the proof, D2 · S > 0 for any irreducible surface S ⊂ X. Finally, by
Nakai-Moishezon criterion [La, Theorem 1.2.19] we conclude that D = −(KX+εS̃) is ample.
Recall that S̃ is the strict transform of a surface having ordinary singularities at p1, ..., p7

and smooth everywhere else. Therefore S̃ is a smooth divisor in the smooth 3-fold X, and
the pair (X, εS̃) is klt. We conclude that X is log Fano. �

Remark 2.13. For a complete classification of Mori Dream Spaces obtained by blowing-up
points in Pn see [CT2].

3. The moduli space of pointed rational curves

Let M0,n the moduli space of n-pointed rational curves. In [Ka] M. Kapranov realized
M0,n as a blow-up of Pn−3.

Construction 3.1. [Ka] Fixed (n− 1)-points p1, ..., pn−1 ∈ Pn−3 in linear general position:
(1) Blow-up the points p1, ..., pn−2, then the lines 〈pi, pj〉 for i, j = 1, ..., n − 2,..., the

(n− 5)-planes spanned by n− 4 of these points.
(2) Blow-up pn−1, the lines spanned by pairs of points including pn−1 but not pn−2,...,

the (n− 5)-planes spanned by n− 4 of these points including pn−1 but not pn−2.
...

(r) Blow-up the linear spaces spanned by subsets {pn−1, pn−2, ..., pn−r+1} so that the or-
der of the blow-ups is compatible with the partial order on the subsets given by inclu-
sion, the (r− 1)-planes spanned by r of these points including pn−1, pn−2, ..., pn−r+1

but not pn−r,..., the (n − 5)-planes spanned by n − 4 of these points including
pn−1, pn−2, ..., pn−r+1 but not pn−r.
...

(n− 3) Blow-up the linear spaces spanned by subsets {pn−1, pn−2, ..., p4}.
The composition of these blow-ups is the morphism fn : M0,n → Pn−3 induced by the
psi-class Ψn. In particular the variety obtained at the end of this sequence of blow-ups is
isomorphic to M0,n.

In [HK, Question 3.2] Y. Hu and S. Keel asked ifM0,n is a Mori Dream Space. If n = 4, 5

this is well known because M0,4
∼= P1 and M0,5 is a Del Pezzo surface of degree five. By

[HK] M0,n is log Fano if and only if n ≤ 6. In particular M0,6 is a Mori Dream Space. For
g ≥ 1 it is know that:

- in characteristic zero Mg,n is not a Mori Dream Space for g ≥ 3, n ≥ 1. This was
proven in [Ke] by providing a nef but not semiample divisor on Mg,n;

- in [CC] D. Chen and I. Coskun proved that M1,n is not a Mori Dream Space for
n ≥ 3 because it has infinitely many extremal effective divisors.
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Remark 3.2. The step r = 1, s = n − 3 of Construction 3.1 is the Losev-Manin’s space
Ln−2 [Ha, Section 6.4]. This space is a toric variety of dimension n − 3. It is the last
toric variety in Construction 3.1. For instance L3 is a Del Pezzo surface of degree six. The
following picture represents the corresponding polyhedron.

The space L4 is the blow-up of P3 at four general points and along the strict transform of
the six lines joining them. The corresponding polyhedron is the following.

Note that both the polyhedra are very symmetric.

In a way M0,n is very close to a toric variety. This is one of the reasons that led to
conjecture that M0,n is a Mori Dream Space.

Theorem 3.3. [CT1, Theorem 1.3] Let n = a+ b+ c+ 8 where a, b, c are positive coprime
integers. If BleLn−3 is a Mori Dream Space then BleP(a, b, c) is a Mori Dream Space.

Proof. Let e1, ..., en−2 be vectors in Rn−3 such that e1 + ...+ en−2 = 0. Let N be the lattice
generated by e1, ..., en−2, and consider the fan Σn−2 spanned by the primitive lattice vectors∑

i∈I ei for each subset I ⊂ S = {1, ..., n − 2} with 1 ≤ |I| ≤ n − 3. The toric variety
associated to this fan is the Losev-Manin space Ln−2 = X(Σn−2).
Let us consider a partition S = S1 ∪ S2 ∪ S3 into subsets of order a+ 2, b+ 2, c+ 2. Then
n = a+ b+ c+ 8. We fix ni ∈ Si for i = 1, 2, 3, and consider the sublattice spanned by the
vectors

(3.1) eni + er, for r ∈ Si \ {ni}, i = 1, 2, 3.

Let N ′
= N/N

′′ be the quotient and let π : N → N
′ be the projection. Then N ′ is a lattice,

it is spanned by the vectors π(eni) for i = 1, 2, 3, and aπ(en1) + bπ(en2) + cπ(en3) = 0.

Example 3.4. Take a = 1, b = 2, c = 3, and S1 = {e1, e2, e3}, S2 = {e4, e5, e6, e7}, S3 =

{e8, e9, e10, e11, e12}. The we take en1 = e1, en2 = e4, en3 = e8. Clearly N
′

= N/N
′′ is

generated by π(e1), π(e4), π(e8). Since π(e1) = −π(ei) for i = 2, 3, π(e4) = −π(ei) for
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i = 5, 6, 7, and π(e8) = −π(ei) for i = 9, 10, 11, 12, the relation
∑12

i=1 ei = 0 gives π(e1) −
π(e1)−π(e1)+π(e4)−π(e4)−2π(e4)+π(e8)−π(e8)−3π(e8) = −(π(e1)+2π(e4)+3π(e8)) = 0.
Therefore

π(e1) + 2π(e4) + 3π(e8) = 0.

It follows that the toric surface with lattice N ′ and rays spanned by π(eni) for i = 1, 2, 3
is the weighted projective plane P(a, b, c). For instance the following is the fan of P(1, 2, 3).

Let Nj , for j = 1, ..., n−4, be the lattice obtained by taking the quotient of N by a sublattice
spanned by the first j − 1 vectors of the sequence 3.1. Let Γj be a sets of rays obtained by
projecting the rays of the fan of Ln−2, and Xj = X(Γj). Mote that Nn−4 = N

′ and we have
a regular map Xn−4 → P(a, b, c) obtained forgetting all vector of Γn−4 except the π(eni) for
i = 1, 2, 3. Since this map is an isomorphism on the torus it induces a birational morphism
BleXn−4 → BleP(a, b, c), where e is the identity of the torus. In this way we get a sequence
of toric morphism

X1 → X2 → ...→ Xn−4 → P(a, b, c).

Note that X1 has the same rays of Ln−2 and therefore is a small modification of Ln−2 which
is an isomorphism on the torus. Then BleX1 is a small modification of BleLn−2. �

Next we consider the following theorem.

Theorem 3.5. [CT1, Theorem 1.1] There exists a small Q- factorial projective modification
L̃n−2 of BleLn−2, and surjective morphisms

L̃n−2 →M0,n → BleLn−3.

In particular, by Proposition 1.5, if M0,n is a Mori Dream Space then BleLn−3 is a Mori
Dream Space, if BleLn−2 is a Mori Dream Space then M0,n is a Mori Dream Space.

In particular, ifM0,n is a Mori Dream Space then BleLn−2 is a Mori Dream Space, and by
Theorem 3.3 BleP(a, b, c) is a Mori Dream Space. Now, the key ingredient is the following
result due to S. Goto, K. Nishida, and K. Watanabe.

Theorem 3.6. [GNW] Assume char(k) = 0. If (a, b, c) = (7h − 3, 5h2 − 2h, 8h − 3), with
h ≥ 4 and 3 - h, then BleP(a, b, c) is not a Mori Dream Space.

An immediate consequence of Theorems 3.3, 3.5 and 3.6 is the following.

Theorem 3.7. [CT1, Corollary 1.4] Assume char(k) = 0. Then M0,n is not a Mori Dream
Space for n > 133.
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Proof. We have n(h) = a+ b+ c+ 8 = 7h− 3 + 5h2 − 2h+ 8h− 3 + 8 = 5h2 + 13h+ 2. So
n(4) = 134. Therefore M0,134 is not a Mori Dream Space. If n > 135 we have a surjective
forgetful morphism πi : M0,n → M0,134. Therefore, by Proposition 1.5, M0,n is not a Mori
Dream Space for n ≥ 134. �
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