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Introduction

The goal of the minimal model program is to construct a birational model of any complex pro-
jective variety which is as simple as possible in a suitable sense. This subject has its origins in the
classical birational geometry of surfaces studied by the Italian school. In 1988 S. Mori extended
the concept of minimal model to 3-folds by allowing suitable singularities on them. In 2010 there
was a great breakthrough in the minimal model theory when C. Birkar, P. Cascini, C. Hacon and
J. McKernan proved the existence of minimal models for varieties of log general type.

Mori Dream Spaces, introduced by Y. Hu and S. Keel in 2002, form a class of algebraic varieties
that behave very well from the point of view of Mori’s minimal model program. They can be
algebraically characterized as varieties whose total coordinate ring, called the Cox ring, is finitely
generated.

In addition to this algebraic characterization there are several algebraic varieties characterized by
some positivity property of the anti-canonical divisor, such as weak Fano and log Fano varieties,
that turn out to be Mori Dream Spaces, see Chapter 3| for details.

Chapter [5|is an introduction to moduli spaces of curves. The search for an object parametriz-
ing n-pointed genus g smooth curves is a very classical problem in algebraic geometry. In [DM]
P. Deligne and D. Mumford proved that there exists an irreducible scheme M, , coarsely repre-
senting the moduli functor of n-pointed genus ¢ smooth curves. Furthermore they provided a
compactification My, of M,, adding Deligne-Mumford stable curves as boundary points and
pointed out that the obstructions to representing the moduli functor of Deligne-Mumford stable
curves in the category of schemes came from automorphisms of the curves. However this mod-
uli functor can be represented in the category of algebraic stacks. Indeed there exists a smooth
Deligne-Mumford algebraic stack M, , parametrizing Deligne-Mumford stable curves. The stack
Mg, and its coarse moduli space M, , are among the most studied objects in algebraic geometry.
In [Hal] B. Hassett introduced new compactifications ﬂg, Afn) of the moduli stack M, , and Mg/ Alr]
for the coarse moduli space M, by assigning rational weights A = (ay, ..., a,), 0 < a; < 1 to the
markings. In genus zero some of these spaces appear as intermediate steps of the blow-up con-
struction of My, developed by M. Kapranov in [Ka], while in higher genus they may be related
to the Log Minimal Model Program on Mg, .

The aim of these notes is to give an introduction to Mori Dream Spaces, weak Fano and log Fano
varieties and to moduli spaces of rational curves. In Chapter i we will focus on some particular
and well understood examples of Mori Dream Space arising as blow-ups of projective spaces in
points, and we will discuss their relations with some moduli spaces of weighted rational curves.
Finally, after discussing a famous conjecture by Y. Hu and S. Keel [HK], predicting that My, is a
Mori Dream Space, we will summarize the main ideas of a paper by A. M. Castravet and I. Tevelev
[CT2]. In this paper the authors prove that My, is not a Mori Dream Space for n > 133.



CHAPTER 1
Singularities

Canonical singularities appear as singularities of the canonical model of a projective variety,
and terminal singularities are special cases that appear as singularities of minimal models. Termi-
nal singularities are important in the minimal model program because smooth minimal models do
not always exist, and thus one must allow certain singularities, namely the terminal singularities.
For instance, two-dimensional terminal singularities are smooth. The singular locus of a variety
with at most terminal singularities has codimension at least three. In particular for curves and
surfaces all terminal singularities are smooth. For 3-folds terminal singularities are isolated and
have been classified by S. Mori.

Surface canonical singularities are exactly the du Val singularities, and are analytically isomorphic
to quotients of C? by finite subgroups of SLy(C).

Cyclic quotient singularities. Any cyclic quotient singularity is of the form A" /u,, where u,
is the group of r-roots of unit. The action y, ~ A" can be diagonalized, and then written in the
form

ur x A" — A"
(€,X1,,xn) —> (€Mxq,...,€"xy)
for some ay, ...,a, € Z/Z,. The singularity is thus determined by the numbers r, a4, ..., a,,. Follow-
ing the notation set by M. Reid in [Re], we denote by 1(ay, ..., a,) this type of singularity.

EXAMPLE 0.1. Let us consider the action:

Uz X Az — Az
(€,x0,x1) —— (€xp,€x1)

The ring of invariants is given by:

k[x3, xox1, x3) = k[yo, y1, 2]/ (yoy2 — v3)

and we see that the singularity X = A2/ u, corresponds to the vertex v of the affine cone

X = Spec(k[xg, xox1, x1] = k[yo, 1, y2]/ (yoy2 — y1))

that is the vertex of a quadric cone Q C IP? or equivalently the singularity (1, 1) of the weighted
projective plane P(1,1,2). Now, dxo A dx; is a basis of A>Qp2, and (dxg A dx;)®? is invariant
under the action. The form

dyo Ndy)®? 1
- Uy 21/1) e (N Qi)™
Yo
is a basis of (A% Qx)®2 because the quotient map 7 : A> — X is étale on X \ {v}, and m*w =
4(dxo A dxq)®2.
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Blowing-up the vertex v we get a resolution f : ¥ — X. If [Ag : A; : Ay] are homogeneous
coordinates on IP? then the equations of Y in A3 x IP? are:

YoA1 —y1Ao =0,

YoA2 —y2A0 =0,

V1A2 — y2A =0,

Yoy2 = ¥i-
Therefore, y; = %yo, and /A\—f = % yields y, = %yl = ( j\\—;)zyo. Then, in Y we have an affine chart
isomorphic to A2 with coordinates (yo, t) where the resolution is given by (yo, t) — (yo, yot, yot?),
with t = %, and the exceptional divisor E over v is given by {yo = 0}. We have

frw = (dyo A dt)®2
Therefore, f*w has neither a pole nor a zero along E, and we may write Ky = f*Kx.

EXAMPLE 0.2. Let us consider the action:
Uz X A2 — A?
(€,x0,x1) —— (€xp,€x1)

The ring of invariants is given by:

k[xg, x5x1, x0x1, x3] = k[yo, y1, v2,ya)/ (Yoys — Vaya, Yov2 — Vi, v1ys — ¥3)

and we see that the singularity X = A?/uj3 corresponds to the vertex v of the affine cone

X = Spec(k[yo, y1,y2,y3]/ (Yoys — V1y2, Yoy2 — V1, V1y3 — ¥3))

over a twisted cubic C C IP3. Now, dxg A dx; is a basis of AZQ a2, and (dxg A dx1)®3 is invariant
under the action. The form

dyo Ndy)®® 3
W — (dyo y4y1) e (N Qk(X))®3
0
is a basis of (A% Qx)®? because the quotient map 77 : A2 — X is étale on X \ {v}, and

3xd(dxg A dxy))®3
7'[*0.) — ( xO( X0 - xl)) — 27(dx0 /\dx1)®3.
X0

Blowing-up the vertex v we get a resolution f : Y — X, and we have an affine chart isomorphic to
A? with coordinates (yo, t) where the resolution is given by (vo,t) — (yo, yot, yot%, yot>), and the
exceptional divisor E over v is given by {yo = 0}. We have

(dyo A\ (y()dt + tdyo))®3 (dyo A dt)®3

*w: =
/ Yo Yo

Therefore, f*w has a pole along E, and we may write Ky = f*Kx — 3E.

EXAMPLE 0.3. Now, let us consider the action:

U2 X AS — A3
(€,x0,x1,x2) +—— (€xp,€x1,€X7)

The ring of invariants is given by:

k v Vs v VA 7
k[22, xox1, XoX2, X2, X122, X3] =2 . [vo, 1 zyz Y3, Ya,Ys] .
(Yoy3 — Y1, YoYa — Y1Y2, YoYs — Y5, Y1Ya — Y23, Y1Y5 — Y2Ya, Y3Ys — Yi)
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The singularity X = A3%/pu, corresponds to the vertex v of the affine cone X over a Veronese
surface V C IP°. The differential form dx A dx; A dx; is a basis of A\> Q s, and (dxg A dxy A dxy)®2
is invariant under the action. The form

dyo Adyy Adyp)®2 3
w — (dyo yy13 y2) c (/\Qk(X)>®2
0

is a basis of (A% Qx)®2 because the quotient map 7 : A® — X is étale on X \ {v}, and

6 ®2
e — Axp(dxo A d’gl M%) g A dig A da) 2.
X0

Blowing-up the vertex v we get a resolution f : Y — X, and we have an affine chart isomorphic to
A3 with coordinates (yo, s, t) where the resolution is given by (yo, s, t) — (yo, ¥os, Yot, Yos>, yost, yot?),
and the exceptional divisor E over v is given by {yo = 0}. We have

f*w = yo(dyo A ds A dt)®2.
Therefore, f*w has a zero along E, and we may write Ky = f*Kx + 1E.

DEFINITION 0.4. A normal variety X is terminal (canonical) if Kx is Q-Cartier and there exists a
resolution f : Y — X such that

Ky = f*KX + Eaz‘Ei
i
with a; > 0 (a; > 0). The rational numbers a; are called discrepancies.

For instance, the quadric cone in Example [2.17]is canonical but not terminal, the cone over the
twisted cubic in Example is not even canonical, and the cone over the Veronese surface in
Example[0.3]is terminal.

A projective variety X has canonical singularities if it is normal, some power of the canonical bun-
dle of the smooth locus of X extends to a line bundle on V, and X has the same plurigenera as any
resolution of its singularities.

A normal projective variety X has terminal singularities, if some power of the canonical line bun-
dle of the smooth locus of X extends to a line bundle on X, and the pullback of any section of
wy™ vanishes along any codimension one component of the exceptional locus of a resolution of
the singularities of X.

EXAMPLE 0.5. Let S be a terminal projective surface, and let f : Y — S be a resolution of S.
Then

Ky = f*KS =+ ZaiEi
i

with a; > 0. By Grauert-Mumford theorem [BPV) Theorem 2.1] the intersection matrix of the E;’s
is negative definite. Therefore, there exists an E i such that

E] . (ZaiEi) < 0.
i
Let us check this in the case of two components E;, E;. The general case will be clear. The inter-

section matrix
= E? EE
E{E> E%
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is negative definite. In particular, if for the vector a = (a1,a,) we have
a-1-a' = atE? + 2aa,E1Ey + a3E3 < 0.
On the other hand
a?E? + 2a1a2E1 Ey + a3E5 = ayE1 (a1 Eq + a2E2) + a2 Ex (a1 Ey + a2E2) < 0.
Since a1, a; > 0 the last inequality yields either Eq(a1E1 + a2E2) < 0 or Ep(a1E1 4+ a2E;) < 0.

Furthermore EJZ < 0. We conclude that there exists an E; such that E; - (1; a;E;) < 0 and E].2 < 0.
By adjunction on the curve E; we get

2g(Ej) —2 =Ky - Ej + E} <0.

Therefore, g(E]-) = 0and Ky - E; + EJZ = —2. This forces, Ky - E; = EJZ = —1. By Castelnuovo
contractibility criterion [Har, Theorem 5.7] we can contract E; on a smooth surface. Proceeding
recursively we get that S is smooth. Therefore, a surface is terminal if and only if it is smooth.
Now, let S be a surface with canonical singularities, and let f : Y — S be a minimal resolution that
is there are no (—1)-curves contracted by f. We may write Ky = f*Ks + Y; a;E; with a; > 0. If S is
not smooth we have a; = 0, and

Ky = f*Ks.
If E is a curve contracted by f we get Ky - E = 0 and E? < 0. This imply 2¢(E) —2 = Ky - E+ E? =
E? < 0, which in turn yields ¢(E) = 0 and E? = —2. Since the intersection matrix is negative
definite (E; + E;)* < 0, and hence E; - E; < 1. Therefore, any contracted fiber of f is a tree of
rational curves corresponding to one of the Dynkin diagrams: A, D,, Es, E7, and Eg. Canonical
surface singularities are the so called Rational Double Points, also known as Du Val singularities
or ADE singularities.

1. Singularities of Pairs

Let us consider a Q-Weil divisor D = ) ;d;D; on a normal variety X. We assume that the D;’s
are distinct. We want to give a reasonable notion of singularities of the pair (X, D). We require
that Kx + D is Q-Cartier. Then for a resolution f : Y — X we have the formula

KY = f*(KX+D) +ZaiEi — 5,
i

where D is the strict transform. Even when X is smooth D could be very singular. A resolution of
X is meaningless for the pair (X, D).

DEFINITION 1.1. A divisor D = Y ; D; on a smooth variety X is simple normal crossing if D is
reduced, any component D; of D is smooth, and D is locally defined in a neighborhood of any point by an
equation in local analytic coordinates of the type

z1 ez =0
with k < dim(X).

Roughly speaking the singularities of D should locally look no worse that those of a union of
coordinate hyperplanes.

EXAMPLE 1.2. Let D = }; D; where the D;’s are hyperplanes in P, and let p; € IP"* be the
point corresponding to D;. Then D is simple normal crossing if and only if the p;’s are in linear
general position.
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The following is a consequence of Hironaka’s theorem on resolution [Hi|] of singularities.
THEOREM 1.3. Let X be an irreducible algebraic variety over C, and let D C X be an effective Cartier
divisor on X.

- There exists a projective birational morphism f : Y — X, where X is smooth and f~'D U Exc(f)
is simple normal crossing. The morphism f is called a log resolution of the pair (X, D).

- The smooth variety Y can be constructed as a sequence of blow-ups along smooth centers supported
in the singular loci of D and X. In particular f is an isomorphism over X \ (Sing(X) USing(D)).

We will need many times the following result.
PROPOSITION 1.4. Let X be a smooth variety, Z C X a smooth subvariety with codimz(Y) = ¢ > 2,
and 1t 1 Y — X the blow-up of X along Z with exceptional divisor E. Then
Pic(Y) = Pic(X) @ Z.
Furthermore,
Ky = 7T*KX + (C — 1)E
PROOF. Let us consider the map
p:Z — Pic(Y)
n +—— nkE
By [Har| Proposition 6.5] we have an exact sequence
Z — Pic(Y) = Pic(Y \ E) — 0.
Let us assume that nE ~ 0 for some n # 0. Then there exists f € k(Y) with a zero of order n along
E. Since 7t is surjective and birational, the function f induces a function ¢ € k(X) having only a

zero of order n a long Z. A contradiction because ¢ = codimy(Y) > 2. Therefore we have the
exact sequence

(1.1) 0 Z — Pic(Y) — Pic(Y \ E) — 0.
Since 7t is an isomorphism outside E we have Pic(Y \ E) = Pic(X \ Z), furthermore ¢ > 2 yields
Pic(X \ Z) = Pic(X), and
Pic(Y \ E) & Pic(X \ Z) 2 Pic(X).
Therefore, the pull-back map 77* : Pic(X) — Pic(Y) gives a section of the second map in the exact
sequence This implies that the sequence|l.1|splits and Pic(Y) = Pic(X) & Z.
Now, we may write Ky = 77*D + gE for some D € Pic(X). The isomorphism X \ Z = Y \ E yields
Kyy\g = Kx|x\z- Since Pic(X \ Z) = Pic(X) we get D = Kx, and Ky = 7*Kx + gE.
Now, our aim is to determine the integer 4. By adjunction and using Oy (E) |z = Op(—1) we get
Kg = (KY + E)\E = (7T*KX + (q + 1)E)|E = 7T*KX — (q +4 1)E.
Let F = z x 7 E be the fiber over a point z € Z. Then
WF = MW, @ MHowg = MW, @ 7 (T wx ® Op(—q —1)) = m;(m"wx ® Op(—q9 — 1)).
Now, a differential form on Y that is the pullback of a differential form on X must vanish on E. In
particular 7t (7" wy) is trivial, and
wr = 115 (Op(—q—1)) = Op(—q —1).
On the other hand F 2 P°~!. Therefore, wr = Op(—c) implies g = ¢ — 1. d
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EXAMPLE 1.5. Let Z C IP" be a smooth variety of codimension ¢, 77 : Y — IP" the blow-up of
Z, H the pullback of the hyperplane class of IP" and E the exceptional divisor. Then
Ky =(—n—1)H+ (c—1)E.

Now, let us assume that X and D are both smooth and consider (1 + €)D. The Idx : X — X is
a log resolution and

Kx = Idx(Kx+ (1+€)D) — (1+¢€)D.
Let 711 : X1 — X be the blow-up of a codimension two smooth subvariety Z; C D. Then
KX1 = 7T>1K(KX + (1 +€)D) — €E1 — (1 —|—€)D1
where D is the strict transform of D. Now, let f : X, — Xj be the blow-up of D; N E;, and
1ty = f o mry. Then
sz = ﬂ;(KX + (1 +€)D) — 2€E2 — €E1 — (1 —|—€)D2

Proceeding like this we see that starting with a discrepancy less than —1 we can produce arbitrarily
negative discrepancies. This motivates the following definition.

DEFINITION 1.6. Let X be a normal variety and D = ) ;d;D; be a Q-Weil divisor. Assume that
Kx + D is Q-Cartier. Let f : Y — X be a log resolution of the pair (X, D) and write

Ky = f*(Kx + D) + Y _a;E; — D.
i

The pair (X, D) is
terminal  if a; > 0 forany i,
canonical if a; > 0 forany i,

kit if a;>—landd; <1 foranyi,j,
plt if a; > —1foranyi,
I if a; > —1 foranyi.

Here klt, plt, Ic stands for Kawamata log terminal, purely log terminal, and log canonical respectively.

EXAMPLE 1.7. Assume that D is a simple normal crossing divisor, and that X is smooth. Then
Idy is a log resolution. If 0 < € < 1is a rational number then we have Kx = Id%(Kx +€D) — eD.
The pair (X, eD) is Kawamata log terminal.

Let D C IP? an irreducible curve with one node, and let f : Y — IP? be the blow-up of the node.
Then f~1D U E is simple normal crossing. Furthermore Ky = f*Kp2 + E and f*D = D + 2E where
D is the strict transform of D, yield

Ky = f*(Kp2 + D) — D — E.

Therefore the pair (P2, D) is log canonical.
Now, let us consider a cusp D C IP? to have a log resolution we have to blow-up three times.

Let €1 : X1 — IP? be the first blow-up. We have Kx, = €{Kp> + E; and C; = €;C — 2E;. If
€ : Xo — X is the second blow-up we have Kx, = €;(e;Kp2 + E1) + E» = €;€;Kp2 + E1 + 2E;
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and C; = €;C — E; = €;€C — 2E; — 3E;. Finally, let 3 : X3 — X, be the third blow-up.
Then KX3 = €§€§€1‘K]p2 + Eq1 +2E, +4E3 and C3 = €§C2 —E3 = (—,‘;6;61‘(: —2E1 — 3E, — 6E3. Let
€ = €1 0 €2 0 €3. Summing up we have

KX3 = G*KI[)Z + Eq + 2E» + 4E;3,

C3 =¢e*C— 2E1 — 3E2 — 6E3.
Therefore we get

KX3 = 6*(K1P2 + C) —C3—E1 — Ey — 2E;.
In particular, ;(E3, P2, D) = —2 and (IP?, D) is not log canonical.
Now, let us consider a slightly more complicated example.

EXAMPLE 1.8. Let us consider the cubic surface
S = {XQX1XZ + X0X1X3 + X0X2X3 + X1X2X3 = 0} C P3.

known as the Cayley nodal cubic surface. By taking partial derivatives it is easy to see that the
singular locus of S consists of the four coordinates points of IP?, and that each of them is a point
of multiplicity two for S. Let us consider the point p = [1: 0: 0 : 0]. In the chart U := {x¢ # 0}
the equation of S is given by {x1x2 + x1x3 + x2x3 + x1x2x3 = 0}. Therefore, the projective tangent
cone of S in p is the conic {x1x; + x1x3 + x2x3 = 0} C IP3. Since this conic is smooth p is an
ordinary double point. We conclude that the fundamental points of P are ordinary singularities
for S, and hence S can be resolved simply by blowing-up these four points. Now, let 77 : Y — IP3
be the blow-up with exceptional divisors Ej, ..., E4. Then we may write

Ky = m"Kps + 2(E1 + E» + E5+ E4),

and ~
eD = 1" (eD) — 2e(E; + E» + E3 + E4).
Therefore
Ky = 7T*(K]p3 + ED) + (2 — 26)(E1 + E,+ E;+ E4),
and since 2 — 2¢ > —1 if and only if € < 3 we get that (IP?,€S) is kit if and only if € < 1.



CHAPTER 2

Secant Varieties

We recall some definitions and basic facts concerning secant varieties.

DEFINITION 0.1. Let X C PN be an irreducible and reduced non-degenerate variety. We will denote
by
I(X)CcXx..xXxG(h—-1,N),
the reduced closure of the graph of o : X X ... Xx X --» G(h — 1, N), taking h general points to their linear
span (xy, ..., xy).

Therefore, T';(X) is irreducible and reduced of dimension hn. Let us call 7ty : T (X) — G(h —
1,N) the natural projection, and set S;(X) := m(T'y(X)) € G(h —1,N). The variety S,(X) is
irreducible and reduced of dimension hn as well. Finally, let us define Z;, := {(x,A) |x € A} C
PN x G(h — 1, N), with projections 7, and ;, onto the factors.

DEFINITION 0.2. Let X C PPN be an irreducible and reduced, non degenerate variety. We call the
abstract h-Secant variety the irreducible and reduced (hn + h — 1)-dimensional variety

Secy(X) := ()" (Su(X)) C T
We call the h-Secant variety
Secy,(X) := m,(Secy (X)) C PN.

The variety X is said to be h-defective if 6, = nh +h —1 — dimSec,(X) > 0. In this case Jj is
called the h-secant defect of X.

Let us consider some simple example.

EXAMPLE 0.3. Let C C IP? be the twisted cubic curve and let p € IP? be a general point. There
exists a line L passing thorough p and secant to C. Indeed, if a such line does not exist then
the projection of C in IP? from p would be a smooth plane cubic C isomorphic to C. However,
¢(C) = 0 and g(C) = 1, a contradiction. Let us assume that there are two distinct lines L, R
secant to C through p. Then for the plane H = (L, R) we have H - C > 4, a contradiction because
deg(C) = 3 and C is not contained in a plane.

Hence, a general point p € IP? lies on a unique secant line to C. We conclude that Sec(C) is the
whole of P3.

EXAMPLE 0.4. Let X = v(IP?) C IP° be the Veronese surface. Let u € IP° be a point lying on a
secant line to X. We write the secant line as (v(p),v(q)) with p,q € P2. Theline L = (p,q) C P?is
mapped via the Veronese embedding v to a conic C C X. Since u € (v(p),v(q)) and v(p), v(q) lie
in C the point u lies on the plane H spanned by C. All lines passing through u and contained in
H intersect C in two points and so are secant lines of X. We see that the general point of Sec, (X)
lies on a 1-dimensional family of secant lines. So dim(Sec,(X)) = 4. There is another way to see
this fact. The points of Sec; (X) represent conics which can be written as sum of two squares, that

12
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is conics of rank equal either 1 or 2. So we can describe Secy (X) C IP° as the determinantal variety
defined by

Xo X3 X4
det| X5 X7 Xs =0
Xy X5 X5

Therefore, Secy(X) is a cubic hypersurface in IP°.

EXAMPLE 0.5. Let G(1,n) C PN, with N = (”;1) — 1, be the Grassmannians of lines of P”
and let p € Secz(G(1,n)) be a point, and let L = (u,v) be a secant line through p. The points
u, v represent two lines Ry, R, in IP”". Now, two general lines span a 3-plane H C IP". The lines
contained in H are parametrized by the Grassmannian G(1,3) C G(1, n).

Now dim(G(1,3)) = 4, deg(G(1,3)) = 4 and G(1,3) spans a 5-plane E C PN. All the lines in E
and passing through p intersect G(1,3) in two points because deg(G(1,3)) = 2. We see that any
point p € Secy(G(1,n)) lies on a 4-dimensional family of secant lines. Therefore

dim(Secp(G(1,n))) =2dim(G(1,n))+1—4=4n—7,

5(G(1,n)) =2dim(G(L,n))+1—4n+7=4.

1. Terracini’s Lemma

Terracini’s Lemma [Te] is a fundamental result for the computation of the dimension of Secj, (X).
The leading idea is quite simple: let p € Sec; (X) be a general points. assume p € (xy, ..., x,). Then
a tangent vector to Sec,(X) at p can be interpreted as an infinitesimal direction of Sec;(X) in p.
This should correspond then to an infinitesimal movement of the x;’s in X, that is to a set of tangent
vectors to X at the x;’s.

THEOREM 1.1. (Terracini’s Lemma [Te]) Let X C PPN be a non-degenerate variety over a field of
characteristic zero. Let p € Sec,(X) be a point, lying in the linear span of x1, ..., x, € X. Then

T,Secy(X) 2 (T, X, ..., Ty, X) .
Furthermore, if p € Secy,(X) is general we have
T,Secy(X) = (T, X, ..., Ty, X) .

Alexander-Hirshowitz Theorem. A variation on the Waring problem (coming from a ques-
tion in number theory stated by E. Waring in 1770, see [Wa]] (which states that every integer is
a sum of at most 9 positive cubes) asked which is the minimum positive integer & such that the
generic polynomial of degree d on P" admits a decomposition as a sum of / d-powers of linear
forms:

PROBLEM 1.2. (Waring problem - first formulation) Given a general homogeneous polynomial F €
k[xo, ..., Xn]q what is the minimum positive integer h such that F admits a decomposition as a sum of h
d-powers of linear forms ?

In 1995 |. Alexander and A. Hirshowitz solved completely this problem over an algebraically
closed base field k of characteristic zero, see [AH]. They proved that the minimum integer & is the
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expected one h = Ln%rl (":{d)J , except in the following cases:
nid h
n|2(2<h<mn
214 5

(1.1) 3|4 9
413 7
414 14

Now, let v : P* — PN be the d-Veronese embedding, and let VI = v(IP") be its image. The
minimum positive integer h such that the generic polynomial of degree d on IP" admits a decom-
position as a sum of h d-powers of linear forms is indeed the minimum positive integer h such
that Secy, (V') = PN. Therefore, Waring problem for the general homogeneous polynomial can be
restated as follows:

PROBLEM 1.3. (Waring problem - second formulation) Given a pair of positive integers n,d what is
the minimum positive integer h such that Sec,(V}) = PN ?

Recall that the expect dimension of Secy, (V') is
expdim(Sec;,(V})) = min{hn +h —1,N}.

Therefore, by Alexander-Hirshowitz Theorem the expected dimension of Secy, (V') is its actual di-
mension with the exceptions in Table

Finally, by Theorem we may give a third interpretation of the Waring problem. Let p €
Sec,(V]') be a general point, and let s = dim(T,Sec,(V})) = dim(Sec,(V})). Let H € Opn(1)
be the linear system of hyperplanes of PV containing T,Sec;(V}). By Theorem a general
element of H correspond to an hypersurface of degree d in IP" having double points at p; =
v~ (x1), ..., pon = v~ 1(x;). Note that any double point imposes at most 1 + 1 independent condi-
tions, namely the vanishing of the first partial derivatives of the polynomials defining the hyper-
surface of IP". Therefore, the expected codimension of the H is:

expcodim(H) = min {h(n +1), <” ; d) } .

PROBLEM 1.4. (Waring problem - third formulation) Given a pair of positive integers n,d, let H be the
linear system of hypersurfaces of degree d in IP" having double points at h general points. In which cases
the expected codimension of H coincides with is actual codimension ?

Indeed this third formulation is the one taken into account by Alexander and Hirshowitz.
Finally, by Alexander-Hirshowitz Theorem the expected codimension of H is the actual one with
the exception in Table

2. Equations for secant varieties of Veronese varieties

Let v : P" — PN¢ be the d-Veronese embedding, and let V' = v(IP") be its image. Let [F] €
PN = Proj(k[xo, ..., x4]4) be a degree d homogeneous polynomial. Fixed a positive integer h such
that Sec;, (V') # PN we want to determine whether [F| € Sec; (V). We begin with the following
simple observation:

REMARK 2.1. If F = Y | ;L then its partial derivatives of order ! lie in the linear space
(Lil_l, vy LZ_I> foranyl =1,..,d—1.
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The partial derivatives of order I are (”Tl) homogeneous polynomials of degree d — I, so the

d*if”). The latter condition ensures
that (LY, .., LZ_Z ) is a proper subspace of the projective space IPN¢-! parametrizing homogeneous

polynomials of degree d — I.

previous observation is meaningful when h < (”IH) and h < (

Consider the partial derivatives Pllo = oF

:= ———— and the incidence variety
n oxQ,...oxln
0 7-9%n

Ty={FH)| €F , €H Vig+..+1l, =1} CPNxG(h—1,N;z)
”1/ \”2
PN G(h—1,N;)

where S, V) | € G(h —1,N;_;) is the abstract h-secant variety of V}' ;. Note that when h <

(”fl ) the map 71y is generically injective. Let X;, = m(Z;;) C PN be its image, note that X;
is irreducible. By remark we get Secy,(V}') € X;j. By construction X, is not too difficult to
describe, so we want to find cases when the equality holds in order to get a simple criterion to
establish whether [F] € Secy, (V}).

REMARK 2.2. The equality holds trivially when d = 2. Let F € k|[xy, ..., Xx]2 be a polynomial
and let M the matrix of the quadratic symmetric form associated to F. Then F € Secj,(V}') if and
only if rank(Mp) < h. But the rows of M are exactly the partial derivatives of F.

Consider the partial derivatives Fy, ..., F, € k[xo, ..., xu]4_; of order [ of F. Let ¢ : P" x PNe-1 —
IPM be the Segre-Veronese embedding induced by Oy, pn,; (d —1,1), and let £;_; 1 be its image.

PROPOSITION 2.3. If the partial derivatives Fy, ..., Fy lie in a (h — 1)-plane H C PNa-1 which is
h-secant to the Veronese variety V!, C PNi-1  with h — 1 < Ny_y, then [F] € Secy,(Z4-11).

F = PlL‘li_l +..+ PhLZ_l where P; € k[xo, ..., xx];, and this means that [F| € Secj,(Z4_;1). |
REMARK 2.4. Suppose that Fy, ..., Fx, € k[xo, ..., X, 4—1 are the partial derivatives of a homoge-

neous polynomial F € k[xo, ..., X,|4. Furthermore suppose that F;, € <Lf‘1, . LZ_1> for any i. By
Euler formula we get

F=PLI " + .+ PBLY,
where the P/’s are linear forms, i.e. F € Sec;(Z4_11). Since F € PN by hypothesis we have
F € Sec,(£;-11) NPN. Consider the following two statements
(i) Secy(Zq—1,1) NPYN = Secy,(V});
(i) Fy, € (L‘f‘l,..., Lz_l) forany i = 0, ..., n, implies [F] € Sec; (V}).
From the above discussion we deduce that (i) implies (ii).

The Case n = 1. We begin with the simplest case n = 1. We denote by C; C P the degree d
rational normal curve, in this case Secy,(C;) # P if and only if < 4.

LEMMA 2.5. Let F = Y iy txil]‘xf)x]i € k(xo, x1]4 be a homogeneous polynomial, and let ¢ = c(«; ;)

be the coefficient of xg in the partial derivative %, withh > 1. Then ¢ = C-wy_5s, where Cis a
constant.
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d—s
0

PROOF. Since the only monomial of F producing c is x;; °xj the assertion follows. O

THEOREM 2.6. Forany h < % we have Secy, (Cy) = Xy—p,n. Consequently if the partial derivatives of
order d — h of a homogeneous polynomial F € k[xo, x1]4 lie in a hyperplane of P" then [F] lies in Secy,(Cy).

PROOF. The partial derivatives of order d — h of F are d — h 4+ 1 homogeneous polynomials of
degree h. If F = Y, A;LY the partial derivatives lie in (L%, ..., LI') which is a hyperplane h-secant
to Cp,, but deg(Cy,) = h and the latter condition is irrelevant. Let H be a general hyperplane in P",
forcing the partial derivatives of a degree d polynomial G = };, ;4 ai,]'xf)x]i € k(xg, x1]4 toliein H
gives d — h + 1 linear equations in the coefficients of G. Without loss of generality we can suppose
H to be the defined by the vanishing of the first homogeneous coordinate on IP", then by [2.5/the
fiber of 7, is the linear subspace of PN defined by

m,'(H) = {ag_ss=0,Ys=0,..,d—h}.
The equations of 7t, ' (H) are independent so

dim(m,"(H)) =d— (d—h+1)=h—1,
and the dimension of X;_, j, is

dim(Xg_p) = dim(Zy_pp) =h—1+h =2h—1.
Finally dim(Sec;(C;)) = h+h —1 = 2h — 1 yields Sec,(Cy) = Xg_j - O
REMARK 2.7. The partial derivatives of order d — h of a homogeneous polynomial F € k[xg, x1]4

depend on d + 1 parameters. We consider the matrix M, whose lines are the partial derivatives.

From [2.6| we get equations for Sec;,(C;) imposing rank(M ;) < h, that is the classical determi-
nantal description of Sec;, (Cy).

The Case h < n. Now we consider the variety X;_1 ;. The partial derivatives of order d — 1
of F are linear forms i.e. points in (IP")*, so we restrict our attention on the case h < n to have
significant constraints. First we compute the dimension of the general fiber of 7, : Z;_1, —
G(h—1,n).

THEOREM 2.8. The fiber of 712 : Zy_1 5, — G(h —1,n) on a general (h — 1)-plane H € G(h — 1,n)
is a linear subspace of PN of dimension

dim(m (1) = (TR -1

Furthermore the dimension of X;_4 is given by

d+h—-1

dim(Xg1p) = h(n—h+1) + ( +d ) 1
PROOE. We can suppose H = {Xy = ... = X,,_;, = 0}, where {X, ..., X, } are homogeneous

coordinates on P". We write a general polynomial [F] € PV in the form

F = Z ocio,winxg)...xil.
ig+...+ip=d

The fiber 7, !(H) is the linear subspace of PV defined by the vanishing of the coefficients of
X, ..., Xy, in the derivatives of F. Many of these equations are redundant, the difficulty is in count-

ing the exact number of independent equations. We prove that this number is (7" ") + (“*771) —



2 Equations for secant varieties of Veronese varieties 17

(**"=1) by induction on n — h. If n — h = 0 then H is an hyperplane and the condition on the

derivatives are all independent, so the number of conditions is exactly the number of derivatives
(*-1™). Furthermore our formula for n — i = 0 gives (*5"71) 4+ (**171) — (*771) = (*t771), and
the case n — h = 0 is verified. Consider now the general case, let H={Xy=..=X,_j_1 =0},
let C,,_j,_1 the number of independent conditions obtained forcing the partial der1vat1ves to lie in
H. Adding the condition {X,Z = 0} gives new equations coming from the coefﬁcients of the

.....

Xy iy o xn that contain the Varlable X,—p- Now the monomials of degree d not containing x,,_j are
the monomials of degree d in x;,_j 11, ..., X5. So in the final step we are adding

()-()

conditions. Then the number if independent equations is C,_, = C,_;_1 + (dJrh) (‘Hgfl), by
induction hypothesis

_(d+n—1 d+n—1 d+n—(n—h—-1)—-1
o= (300)+ () ()

SoC, , = (d;le) + (d+271) o (d-i-n—(n;h—l)—l) + (d?;h) (d+h 1) _ (d+n 1) (dJrgfl) . (d+Zfl)‘
Finally we have dim(X;_1;,) = dim(G(h —1,n)) + dim(7, L(H) h(in—h+1)+ (‘Hzil) -
1. |

REMARK 2.9. Consider the case d = 2. By Alexander-Hirshowitz theorem [AH], Sec, (V}') #
PV if and only if 1 < n. By Theorem and Remark we recover the effective dimension of
Secy, (V),

2nh — h? +3h — 2

dim(Sec;, (V3')) = 5 ,
and consequently the formula for the h-secant defect of V',
h(h—1
a(vg) = "D,

2

At this point we have a complete description for polynomials of arbitrary degree in two vari-
ables and for polynomials of degree two in any number of variables. So we concentrate on the
casen > 2and d > 3.

THEOREM 2.10. Let n > 2,d > 3,h < n be positive integers. Then Secy,(V}') is a subvariety of
X4_1,n of codimension

) d+h—1

codimg,, (v (Xg—1,1) = < J ) — 1.

PROOF. Sincen > 2,d > 3,and h < n, by Alexander-Hirshowitz theorem the effective dimen-
sion of Sec, (V}') is the expected one

dim(Sec,(V})) = min{hn + (h — 1), N;}.
Furthermore n > 2,d > 3, h < nimplies hn + (h — 1) < N;. So
dim(Sec, (V})) = hn+ (h —1).
Finally codims,, (vr)(Xg-14) = h(n —h+1) + (d+h Y 1l—hn—(h—1)= (d+Z—1) _ 2 0
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COROLLARY 2.11. Ifd = 3 then Secy(V3') = Xop for any n > 2. Consequently if the second partial
derivatives of a homogeneous polynomial F € k[xo, ..., X,]3 lie in a line of P" then [F| lies in Secy(V3').

PROOF. For h = 2,d = 3 we have (d+Z—1) — h? = 0. We conclude by theoremm O

2.1. The variety X; . Let’s look closer at the variety X; . This variety parametrizes polyno-
mials F € k[xo, ..., x,]; whose partial derivatives of order / span a (h — 1)-plane. Let M, be

the (") x ("+%") matrix whose lines are the I-th derivatives of F = Y} . i 48, i X0 X5

.....

homogeneous coordinates on PN. Let PM be the projective space parametrizing (”IH) X (”ﬁ,ﬁl )
matrices, and let M;, C IPM be the variety of matrices of rank less or equal than #. Then Mj, is
an irreducible variety of dimension M — ((”IH) - h) : ((”ﬁ?l ) — h). Clearly the variety X is a
special linear section of M;,.

LEMMA 2.12. The varieties X; , and X,_; j, are isomorphic.

PROOF. The matrix M,_;, whose lines are the (d — I)-th partial derivatives of F is the (”ﬁ?l ) X

("7') matrix given by
Ma_ip = My,

where M/, is the transposed matrix of M,_; . Then the assertion follows. 0
PROPOSITION 2.13. Consider the case h < n. The variety X1 j, is irreducible.

PROOF. By Lemma it is equivalent to prove that X;_;, is irreducible. Consider the map

72 ¢ Ly 15 — G(h—1,n). By Theorem [2.8 the general fiber of 7, is a linear subspace of PN of
dimension dim(rr; 1 (H)) = (“*"~') — 1 and 7, is surjective on G(h — 1,1), s0 X;_1, is irreducible.
O

In the cases d = 2 and d = 3,h = 2 we have that dim(X; ) = dim(Sec,(V})), since X; , is
irreducible we get Sec;,(V}') = Xj ;. So if the first partial derivatives of a polynomial F span a
linear space of dimension /1 — 1 then F can be decomposed into a sum of h powers of linear forms.

EXAMPLE 2.14. Consider a polynomial of degree three in three variables
F = apx® + a1x%y + axx%z + azxy? + agxyz + asxz® + agy® + azy*z + agyz> + agz>.
The variety Xj is defined by

F, 3a9 2a1 2ap; az ayg as
rank | F, =rank | a1 2a3 a4 3a¢ 2ay ag <2.
Fz an as 2&5 azy 2618 3619

Consider the projective space P!7 of 3 x 6 matrix with homogeneous coordinates
X0,07 s X0,5, X1,0, -+ X1,5, X2,0, -, X2 5.
The determinantal variety M, defined by

Xoo Xo1 Xoz Xoz Xosa Xos
rank | X109 X1 X2 Xi3 X144 Xi5 | <2
Xop Xo1 Xop Xo3 Xos4 Xos
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is irreducible of dimension 17 — 4 = 13. The linear space

[ 2X410— Xo1 =0,
2Xo0 — Xp2 =0,
2Xo3 — X110 =0,
Xoa — X12 =0,
2Xo5 — X22 =0,
2Xo3 — X144 =0,
2X54— X15 =0,
Xoa — X21=0.

cuts out on M), the variety X », which is irreducible of dimension 5 = dim(Sec(Vf) ).

REMARK 2.15. Considering a polynomial F € k[x, y, z]4 and proceeding as in example one
gets dim(Xj,) = 6, so
SECQ(VE) ; XLQ.

d—k+n) o

PROPOSITION 2.16. Let d = 2k be an even integer such that (”;gk) > Ny_y, where Ng_ = (“7,

1. The variety Xy N, , is an irreducible hypersurface of degree (”Zk) in PN,

PROOF. Themap 713 : Zgn, , — G(Nyj—r — 1, Ng_¢) = PNa-k is dominant, so Tin, ,and Xy N, ,
are irreducible. The assertion follows observing that X n, , is defined by the vanishing of the

determinant of a (") x ("{*) matrix. O

Let us look at some consequences of the previous proposition.
EXAMPLE 2.17. Consider a polynomial

F = agx* + ;1 x%y + apx®z + azx®y? + agx®yz + asx®z* + agxy® + azxy?z + agxyz>

+agxz® + aroy* + a1’z + appy?z? + apzyz® + angzt.

The map 7, : Z4 — G(3,5) is dominant, so X4 is irreducible. Let Zy, Z1, Zy, Z3, Z4, Zs be ho-
mogeneous coordinates on IP° corresponding to x2, xy, xz, %, yz, z> respectively. To compute the
dimension of the general fiber of 77, we can take the 3 — plane H = {Zy = Z3 = 0} which intersect
V2 in a subscheme of dimension zero. Computing the second partial derivatives of F it turns out
that

ﬂgl(H):{a0:a1:a22a3:a4 as = ag = ay = ayp = a1 = app = 0}.

So dim(7, ' (H)) = 14 — 11 = 3 and dim(Xz4) = 3 + 8 = 11. Since dim(Secs V) = 11 we get
S€C4V42 = X2,4.
Consider now 713 : Zp5 — IP°. This map is dominant, so Xy 5 is irreducible. We have dim(7t, ' (H)) =
14 — 6 = 8, where H = {Z) = 0}. So dim(X»5) = 13 and
S€C5V42 = X2,5
is an hypersurface of degree 6 in IP!4.
Consider now the case d = 4,n = 3,h = 9 and the second partial derivatives. The map 7, :
Tog — IP? is dominant and Xp9 is irreducible. The general fiber of 71, has dimension 24. Then
dim(Xp9) =24+9 =33 and
SEC9Vf = X2,9
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is an hypersurface of degree 10 in P3%.
Finally in the case d = 4,n = 4,h = 14 as before one can verify that Xj 14 is irreducible of dimen-
sion 68, so

Sec14V} = Xa14

is an hypersurface of degree 15 in IP%.

EXAMPLE 2.18. Consider now a polynomial F € k[x,y, z]¢ and the partial derivative of order
3. For h = 8,9 the map 7, is dominant, so X3g and X3¢ are irreducible. First let us take h = 8.
Proceeding as before we get dim(7, '(H)) = 27 — 19 = 8 and dim(Xz5) = 24. So SecsVZ C Xz
is a divisor.
In the case h = 9 we have dim(r, ' (H)) = 27 — 10 = 17 and dim(X39) = 17 + 9 = 26. So

S€C9 V62 = X3/9
is an hypersurface of degree 10 in P?’.

2.2. The first secant variety of V). We focus on the case i = 2. Without any assumptions on
d and 1 we obtain set-theoretical equations for the first secant variety of V}. In the proof we use

all the time the equality
" (d—1+k d+n
() =037)

k=0
which can be easily proved by induction on 7. In [Kan] V. Kanev, adopting a different approach,
proved that the same equations cut out the ideal of Sec; (V).

THEOREM 2.19. If h = 2 for the first secant variety of V' we have
Secy(Vy) = Xo4-2
foranynand d > 3.
PROOF. Consider the diagram
Dao2={(FH)| €F  €HVYil+..+1l,=d—2} CPNxG(1,N,)
m us
N / >

P G(ll NZ)

clearly 5,V}! C Im(m,). Let F € k[xo, ..., x4]4 be a polynomial whose partial derivatives of order
d — 2 lie on a line H C PPM2. The derivatives of order d — 3 of F are cubic polynomials whose
first partial derivatives are collinear. By X51 = Xop = Secy V3, so if we denote by G a partial
derivative of order d — 3 of F we get a decomposition G = L3 + L3. Then Gy, ..., Gy, (which are
partial derivatives of order d — 2 of F) lie on the line (L?, L3), and so the line containing the partial
derivative of order d — 2 of F is exactly the secant line to V' given by (L2, L3). This means that
Sszn = Im(ﬂfz).
Since the fibers of 71, are linear spaces we conclude that Z, ;_, and X; 4, are irreducible.
We compute now the dimension of the fiber of 71,. We fix on PN homogeneous coordinates
2y, ..., Zn, corresponding to the monomials in lexicographic order x%, X0X1, ..., x%, and consider the
line H = {Zo = Z1 =..= ZN2_2 = 0}

First consider monomials containing x. Forcing the derivatives to lie in {Zy = 0} we get (*"2*")
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conditions (the monomials containing x3, whose number is equal to the number of degree d — 2
monomials in X, ..., X,). Imposing {Z; = 0} we get (* 2"~} conditions (the monomials contain-
ing xox1, whose number is equal to the number of degree d — 2 monomials in x1, ..., x,;). Proceeding
in this way when we force {Z, = 0} we get (*"27"~") = 1 condition (the monomials containing

X0Xn, whose number is equal to the number of degree d — 2 monomials in x;). Up to now we have
i <d—2+k) _ <d—1+n>
= k d—1

conditions.
Consider now the monomials containing x;. Forcing {Z,;1 = 0} we get (d*if’{*l) conditions

(the monomials containing x2, whose number is equal to the number of degree d — 2 monomials

in x1,..., x,). Imposing {Z,12» = 0} we get (d*ifgfz) conditions (the monomials containing x1x2,

whose number is equal to the number of degree d — 2 monomials in xy, ..., x,;). Proceeding in this

way we get
"i d—2+k\ (d—1+n-1
= k B d—1

conditions.
Proceeding in this way at the step x,_» we have

22: (d—2+k> _ (d—1+2>
= k d—1
more conditions. At the step x,_; we have only to force {Zy,_» = 0}, and we get (d;l) =d-—1

conditions.
Summing up the fiber 7r, ! (H) is a linear subspace of PN defined by

"ol —14k & (d-1+k _(d+n
2( q_1 )+d—1_2< i1 )—1—d+d—1—< J )-z.

k=2 k=0

So the fiber has dimension

dim(m (1) =N = (15") +2 -1,

recalling that N = (dj;”) — 1. Finally we look at the map 71, : Z, 4_» — 52V}, since 715 is dominant

we have
dim(erd,z) = dim(Izrd,z) =2n+1.

Since dim(Sec, V') = 2n + 1 the assertion follows. O
2.3. The case n = 2,h = 4. In the same spirit of Theorem we obtain the following result.
THEOREM 2.20. If n = 2,h = 4 for the variety of 4-secant 3-planes of V we have

S€C4(de) = X4,L%J

for any d positive integer.
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PROOF. The cased = 4 is the Example Consider now the cased = 5. Themap 72 : Zy3 —
G(3,5) is dominant, so X4 3 and hence Xy, are irreducible. Let F € k[x,y,z]5 be a polynomial,
looking at the proof of theorem we get that forcing the partial derivatives of order 3 of F to lie
in {Zy = Z3 = 0} gives

2 2
conditions. Since dim(X4,) = dim(X43) = 20 — 17 4+ dim(G(3,5)) = 11 we conclude
S€C4(V52) = X4,2.

Consider the case d = 6 and the partial derivative of order 3. If the 3-th derivatives of F lie
in a 3-plane then the first partial derivative of F are degree 5 polynomials whose second partial
derivatives lie in a 3-plane. By the same trick of Theorem[2.19|we prove that the 3-plane containing
the 3-th partial derivative has to be 4-secant to V7. So Xy 3 is irreducible, and as usual by counting
dimension we get the equality

<5 —2F 2> + <5 —at 2) — #{monomials containing x*y*} =20 — 3 = 17

S€C4(V62) = X4/3.
Now we treat the general case by induction on d. Let F € k[x,y, z]; be a polynomial whose L%j -
th derivative lies in a 3-plane. Then the first partial derivative of F are polynomials of degree
d — 1 whose Ldglj-th derivatives lie in a 3-plane. So F, F,, F, can be decomposed as sums of
four powers of linear forms. As before we conclude that the map 7 : IM% |~ G(3,N |4 j)

is dominant, so X, 4] is irreducible. We conclude, by combinatorial computations similar to the

previous one, computing dim (X 42 J) = dim(Secs(V7)). O

REMARK 2.21. In a completely analogous way one can show that Secs(V7) is defined by size 6
minors of the matrix of partial derivatives of order L%J ford =4andd > 6.

Finally, we report part of a table in [LO] summarizing the known cases in which a secant of
a Veronese variety coincides at least set theoretically with a catalecticant variety. Indeed in these
cases the equations of catalecticants cut scheme theoretically the secant variety and in some cases
even the ideal. We denote by M, the matrix whose lines are the partial derivatives of order / of a
homogeneous polynomial F € k[xo, ..., X,]4-

Secant Catalecticant Reference
Sec, V! h + 1 minors of M, Classical
Secy, V‘} h 4+ 1 minors of My_j, | larrobino — Kanev and Th
Sec, VI 3 minors of Myg_, Kanev and Th[2.19|
Secy Vj 5 minors of M 14 Schreier and Th |2.20|
2
SecsVy, d =4, d > 6 | 6 minors of M| g, Th 3.2.1 [BCS]
SecqV?, d > 6 7 minors of M 4, Th 3.2.1 [CGLM]
2
Secg V62 determinant of M3 Ex |2.18|

3. Sigularities of Secant Varieties

We are particularly interested in secant varieties of rational normal curves. Just to get ac-
quainted with describe in detail the variety of secant lines of the degree four rational normal
curve C C P4
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EXAMPLE 3.1. Let C C IP* be a degree four rational normal curve. By [Harr, Proposition 9.7]
Secy(C) C IP* is the cubic hypersurface given by the vanishing of the determinant of

X0 X1 X2
M= |x1 x x3
X2 X3 X4

Secy(C) = {F = xoxpx4 — X0X3 — X3x4 + 2x1%2X3 — x5 = 0}.

that is

The partial derivatives of F are given by

_ 2
S = XaX4 — X3,
E = 2(3(23(3 — X1X4),

JoF __ 2 2
% = xoxg — x5 — 2(x5 — x1x3),
%73 = 2(leC2 — JCOX3),
F __ 2
9 XoX2 — X7.

Note that all the derivatives are linear combination of 2 x 2 minors of the matrix M and they vanish
simultaneously on C. Furthermore the second partial derivatives of F are 15 linear polynomials
that are never simultaneously zero. To see this, it is enough to notice that

o°F PE_ L, PF___ PE __ PF
N b %3 2 dxaxa Y 9xoxa

= —2x3, ———
0X0X3 " Oxaxq

X4.

We conclude that deg(Sec,(C)) = 3, Sing(Sec2(C)) = C and multc Sec, (C) = 2.
PROPOSITION 3.2. Let C C IP" be a degree n rational normal curve, and let k be an integer such that
1<k < 5. Then
dim(Seci(C)) = 2k — 1.

Furthermore

deg(Sec(C)) = (” _I£+ 1), Sing(Seck(C)) = Seck_1(C).

Finally, if n = 2h is even then
multsech_t(c) Sech(C) =t+1
forany1 <t <h.

PROOF. Since C C IP" is non-degenerate we have dim(Secx(C)) = 2k — 1. By [EH| Theorem
12.16] we get deg(Seci(C)) = (" K.
The rational normal curve C C IP" is given by the Veronese embedding induced by the line bundle
L = Opi(n) onP. Note that if k < % then n — 2k — 1 > —1. This yields

(P, Opi(n — 2k — 1)) = n — 2k = K°(P!, Op:1 (n)) — (2k + 1).

Therefore, C C IP" is embedded by a (2k + 1)-very ample line bundle. By [Vel Theorem 1.1] we
have that Sec,(C) is normal and Sing(Seci(C)) = Seck_;(C) for any k < 7.
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Now, let n = 2h even. It is well know, see for instance [Harr, Proposition 9.7], that Sec; (C) C P2k
is the degree h + 1 hypersurface given by the vanishing of the determinant of the matrix

X0 X1 X2 .. X5
X1 X2 X3 e Xpaa
My =
Xh-1  Xn Xpp1l oo X2n-1
Xno Xp+1 Xpy2 oo X2n

Let F = det(Mj,). Then Sec,(C) = {F = 0} C P?". Let M{: be the h x h minors of M}, produces
by erasing in M, a row and a column meeting in an entry of type x;, for j = 0, ..., 2h. Let p; be the
number of such minors. Then

oF i i j

aixj - Z; lXi det(Ml).
1=
Now, proceeding recursively we see that for any 1 < t < & the partial derivatives of order t of F
are linear combinations of determinants of (h+1 —t) x (h+ 1 — t) minors of Mj,. Again by [Harr,
Proposition 9.7] such minors define Sec;,_;(C). Furthermore, since Sing(Seci(C)) = Secy_1(C) for
any k < 7, there is at least one partial derivative of order t 4 1 of F not vanishing on Secj,_;_1(C).

This means that multg,,, ,c)Sec;(C) =t+1forany 1 <t <h. O

REMARK 3.3. Let n = 2h be even. By Proposition 6.7] we have that Sec,(C) C P?" is an
hypersurface of degree 1 + 1, and multc Sec, (C) = h.

The following proposition is just a particular instance of [Be, Theorem 1]. The general state-
ment for smooth curves embedded via a 2h-very ample line bundle can be found in [Ve, Theorem
3.1] as well.

PROPOSITION 3.4. Let C C IP" be a degree n rational normal curve, and let h be the greatest integer
such that h < 7. Consider the following sequence of blow-ups:

- 111+ X3 — IP" the blow-up of C,
- 11y : Xp — X the blow-up of the strict transform of Sec,(C),

- 7ty + Xy — Xp_q the blow-up of the strict transform of Secy,(C).
Let 7t : X — IP" be the composition of these blow-ups. Then, for any k < h the strict transform of Secy(C)
in Xy_1 is smooth, irreducible and transverse to all exceptional divisors. In particular X is smooth and the
divisor in X given by the union of the exceptional divisors is simple normal crossing.

PROOF. Since h < 7 we have
(P, Opi(n —2h)) = n —2h +1 = K°(P!, Op:1 (n)) — 2h.

This means that C C IP" is embedded by a 2h-very ample line bundle. To conclude it is enough to
apply [Be|, Theorem 1]. Il



CHAPTER 3
Weak Fano varieties, log Fano varieties and Mori Dream Spaces

Let X be a normal projective variety. We denote by N'(X) the real vector space of Cartier
divisors and by px = dim(N'(X)) the Picard number of X.

- The effective cone Eff(X) is the convex cone in N!(X) generated by classes of effective
divisors. In general it is not a closed cone.

- The nef cone Nef(X) is the convex cone in N*(X) generated by classes of divisors D such
that D - C > 0 for any curve C C X. Itis closed, but in general it is neither polyhedral nor
rational.

- Adivisor D C X is called movable if its stable base locus is in codimension greater or equal
that two. The movable cone Mov(X) is the convex cone in N!(X) generated by classes of
movable divisors. In general, it is not closed.

A small Q-factorial transformation of X is a birational map f : X --» Y to another normal Q-
factorial projective variety Y, such that f is an isomorphism in codimension one.
The exponential exact sequence

0—Z—0Ox —0x—0
induces the following exact sequence in cohomology
0~ H'(X,Z) — H'(X,0x) = H'(X,0%) = H*(X,Z) — H*(X, Ox).

The complex torus H' (X, Ox)/H' (X, Z) is the Picard variety of X. This variety Pic’(X) is the con-
nected component of the identity of Pic(X) = H!(X, O%) and it is an abelian variety. The image of
Pic(X) inside H?(X, Z) is isomorphic to Pic(X)/ Pic’(X). The group NS(X) = Pic(X)/ Pic®(X) is
a finitely generated abelian group called the Néron-Severi group. The group NS(X) parametrizes
divisor on X modulo numerical equivalence.

EXAMPLE 0.1. Let us consider a smooth projective curve X of genus g. That is X is a compact
Riemann surface with ¢ handles. Then H(X,Z) & H?(X,Z) = Z because X is connected, and
HY(X,Z) = Z. Since H°(X,Ox) = C8 we have Pic’(X) = C8/Z% = Jac(X), the Jacobian

~

variety of X. In this case the degree gives an isomorphism NS(X) = Z.

DEFINITION 0.2. A normal projective variety X is a Mori Dream Space if
(a) X is Q-factorial and Pic(X)q = N'(X)q;
(b) Nef(X) is generated by finitely many semi-ample line bundles;
(c) there exist finitely many small Q-factorial modifications f; : X --» X; such that each X; satisfies
(a), (b), and Mov(X) us the union of f; Nef(X;).

REMARK 0.3. Condition (a) is equivalent to the finite generation of Pic(X) which is equivalent
to h!'(X,Ox) = 0. Note that if X is a Mori Dream Space then the X; are Mori Dream Spaces as
well.

25
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- A normal Q-factorial projective variety of Picard number is one is a Mori Dream Space if
and only if Pic(X) is finitely generated.

- Let X be a normal Q-factorial projective surface satisfying (a), (b), then Nef(X) = Mov(X)
and, by taking Idx, we see that (c) is satisfied as well.

- Any projective Q-factorial toric variety and any smooth Fano variety is a Mori Dream
Space.

- If X is a smooth rational surface and —Kjx is big the X is a Mori Dream Space.

- A smooth K3 surface is a Mori Dream Space if and only if its automorphism group is
finite.

EXAMPLE 0.4. Let X be the blow-up of IP3 at two distinct points x1, x5. Let H be the pullback
of the hyperplane section and E;, E; the two exceptional divisors. The anti-canonical divisor of X
is —Kx = 4H — 2E; — 2E;. If L is the strict transform of the line (x1, x,) we have —Kx - L = 0.
Therefore X is not Fano. The Picard group of X is generated by H, E;, E1 and px = 3. Clearly X is
a toric variety. Therefore it is a Mori Dream Space. The following is the polyhedron of X in R>.

Let |Zy, x,(2)| be the linear system of quadrics in IP® through x1,x;. The corresponding linear
system on X induces an morphism

contracting L. Since the normal bundle of L is O (—1)%? the singular point f(L) € f(X) = Yisa
node. Furthermore f is a small contraction and f(X) is not Q-factorial. Let us blow-up the curve
L and let Z be the blow-up. The exceptional divisor is isomorphic two P! x P!. By contracting
one ruling we get X. On the other hand by contracting the other ruling we find another smooth
variety X . The birational map g : X --+ X is the flip of f. The situation is summarized in the
following diagram.
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The following is a section of Eff(X).

Let L be the strict transform of a general line and Ry, R, the classes of a line in the exceptional
divisors Ej, E;. Then the strict transform of the line through x1, x; is given by C = L — E; — E».
Now, let H1, Hp, Hi; be strict transforms of planes through x1, x; and containing the line (x1, x2)
respectively. Consider D = aHjy + bH; + cHy. We have D - C = —a. Therefore D - C is always
less or equal that zero and its zero if and only if 2 = 0. On the other hand after the contraction of
C any divisor of this form becomes nef.

The variety X has exactly two small Q-factorial transformations: the identity and the flip g. Fur-
thermore we have Mov(X) = Nef(X) U g*Nef(X'). In the picture Nef(X) is the cone generated
by H, Hj, H, and Nef(X/) is the cone generated by H; », Hy, H».

We recall two important facts about Mori Dream Space.

PROPOSITION 0.5. Let X a be a Mori Dream Space.

- Any normal projective variety Y which is a small Q-factorial modification of X is a Mori Dream
Space. Furthermore the f; of Definition [0.2]are the only small Q-factorial transformations of X,
[HK|, Proposition 1.11].

- If there is a surjective morphism X — Y on a normal Q-factorial projective variety Y, then Y is a
Mori Dream Space, [Ok, Theorem 1.1].

DEFINITION 0.6. Let I be a semigroup of Weil divisors on X. We can consider the I'-graded ring:
Rx(T) = €p H(X, Ox(D)).
Der
If the divisor class group C1(X) is finitely generated and T is a group of Weil divisors such that Tq
Cl(X)q then the ring Rx (T') is denoted by Cox(X), and called the Cox ring of X.

REMARK 0.7. Let X be a normal and Q-factorial projective variety with finitely generated and
free Picard group and Picard number px. Let Dy, ..., Dy, be a basis of Cartier divisors of Pic(X).
Then

o~

Cox(X)= P HUX, %mlpi).
i=1

Different choices of divisors Dy, ..., D, yield isomorphic algebras.
For the details of the proof of the following Theorem we refer to [HK] Proposition 2.9].

THEOREM 0.8. A Q-factorial projective variety X with Pic(X)q = N'(X)q is a Mori Dream Space
if and only if Cox(X) is finitely generated. In this case X is a GIT quotient of the affine variety Y =
Spec(Cox(X)) by a torus of dimension px.
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PROOF. Let X be a Mori Dream Space. Then the effective cone is rational and polyhedral and
we have a decomposition:

k

Eff(X) = J P,

i=1

where the P;’s are rational polyhedra. Furthermore there are finitely many rational maps f; : X --»
X; such thatif D € Eff(X) then fp = f; for some i = 1,..., k. Let us take Dy, ..., D), divisors gener-
ating the cone P;. The cone Rx(Dj, ..., D) does not change by replacing X with X; and Dy, ..., Dy,
by the corresponding divisors D, ..., Dy ; on X;. On X; the divisors D, ..., Dy ; are semi-ample.
Then Rx, (D1, ..., Dy ), and hence Rx(Dsj, ..., D) are finitely generated.

Now, let us assume that Cox(X) is finitely generated. Then we have an equivariant embedding,
with respect a torus G, of Y = Spec(Cox(X)) is A". Taking the GIT quotient we have an embed-
ding Y € Q = A"//G. Since G is a torus Q is a toric variety and hence a Mori Dream Space. Fur-
thermore if r : X --» Y is a rational map then there is a rational map of toric varieties t : M --» N
inducing r by restriction. Therefore X is a Mori Dream Space. U

1. Weak Fano and log Fano varieties
DEFINITION 1.1. Let X be a smooth projective variety. We say that X is:

- weak Fano if —Kx is nef and big,

- log Fano if there exists an effective divisor D such that —(Kx + D) is ample and the pair (X, D)
is Kawamata log terminal. In particular if D = 0 we have terminal Fano varieties,

- weak log Fano if there exists an effective divisor D such that —(Kx + D) is neg and big, and the
pair (X, D) is Kawamata log terminal.

For instance, any toric variety is log Fano, a smooth hypersurface X C IP" of degree d is log
Fano if and only if d < n.
If X is a normal Q projective variety with p(X) = 1 then X is a Mori Dream Space if and only if
Pic(X) is finitely generated. For instance, the only Mori Dream Space of dimension one is IP1.
The bridge between Mori Dream Spaces and log Fano varieties is the content of the following
proposition.

PROPOSITION 1.2. [BCHM, Corollary 1.3.2] Let X be a smooth projective variety. If X is log Fano
then X is a Mori Dream Space .

REMARK 1.3. On the other hand a Mori Dream Space is not necessarily log Fano. Indeed, by
Grothendieck-Lefschetz theorem if X C IP" is a general hypersurface and n > 4 then Pic(X) = Z
is generated by X N H where H is a general hyperplane in IP"”. Therefore, X is a Mori Dream
Space. On the other hand, if d = deg(X) then X is not rationally connected as soon as d > n + 1.
In particular if d > n + 1 the hypersurface X is not log Fano.

By Noether-Lefschetz theorem we have Pic(S;) = Z and generated by the restriction of the hy-
perplane section of IP® for a general surface of degree d > 4 in IP2. These give other examples of
Mori Dream Spaces that are not log Fano.

Even when X is a Mori Dream Space with big and movable anti-canonical divisor it is not neces-
sarily log Fano. Indeed we have the following:
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PROPOSITION 1.4. [CG| Proposition 2.6] Let X be a projective Q-factorial variety which is a Mori
Dream Space, and let Ly, ..., L, be ample line bundles on X. Then

is a Mori Dream Space.

Now, following [CG| Example 5.1] we consider a smooth projective variety X of general type
such that H(X,Ox) =0and p(X) = 1. Let E = L1 ® Ly ® (wy & LY @ LY), and Y = P(€). Then
—Ky is big and movable. On the other hand if Y would be rationally connected then X would
be rationally connected as well. A contradiction because X is of general type. Therefore Y is not
rationally connected and in particular it is not log Fano.

The following is an important result in order to achieve, among other things, an useful char-
acterization of big divisors.

LEMMA 1.5. (Kodaira’s Lemma) Let D and E be respectively a big and an effective Cartier divisor on
a projective variety X. Then

H°(X,mD — E) #0
form > 0.

PROOF. Since D is big there exists a constant ¢ > 0 such that 1°(X, Ox(mD)) > ¢ - m3™X) for
m > 0. On the other hand dim(E) = dim(X) — 1 implies that h°(X, Og(mD)) grows at most like
mIm(X)=1 and h(X, Ox(mD)) > h%(X, Og(mD)) for m > 0.
Now, let us consider the following exact sequence:

0+ Ox(mD —E) — Ox(mD) — Og(mD) 0.
By taking cohomology we get
W(X, Ox(mD — E)) > h°(X, Ox(mD)) — h°(X, Og(mD)) > 0
form > 0. U

LEMMA 1.6. Let D be a divisor on an irreducible projective variety X then D is big if and only if for any
integer ample divisor A on X there exist an integer m and an effective divisor E such that mD ~;,, A + E.

PROOF. Assume that D is big and consider mD — rA with r > 0. Then rA and (r — 1) A are
both effective and by Lemma we get HO(X, mD — rA) # 0. Therefore, there exists an effective
divisor E such that mD — rA ~y;,, E. Thatis

mD ~jjy A+ (r—1)A+E=A+E

where E' = (r — 1) A + E is effective.
Now, let mD ~;, A + E with A ample and E effective. Therefore, possibly passing to an higher
multiple, we have r - mD ~y;;, rA + rE with H = rA very ample, and 7E effective. Then

kod(X,D) > kod(X, H) = dim(X)
and D is big. O
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REMARK 1.7. Note that in the proof of Lemma we have to consider a multiple of A in order
to have an effective divisor. To see this for instance consider three general points p1, p2,p3 € C
where C is a smooth curve of genus ¢ = 2. The divisor D = p; + p» — p3 is ample, indeed
deg(5D) = 5 = 2¢ + 1 and by [Har, Corollary 3.2] 5D is very ample. Then D is ample. Now, let us
consider D' = p; + p,. Then deg(Kc — D') = 0. If i%(Kc — D') # 0 then deg(Kc — D) = 0 yields
Kc— D' ~ 0and h°(Kc — D') = 1. On the other hand h°(K¢) = 2, and since py, p» are general
they impose independent conditions to the differential forms on C, that is h°(Kc — D) = 0. By
Riemann-Roch this gives h°(p; + p2) = 1. Now, assume that 1°(p; + p2 — p3) # 0. The inclusion
H(C,p1 + p2 — p3) € H(C,p1 + p2) forces H'(C,p1 + p2 — p3) = HY(C,p1 + p2), that is any
global section s € H°(C, p1 + p2) = k vanishes at p3. Therefore s is zero because it is constant.
This implies h°(p; + p2) = 0, a contradiction. We conclude that H°(C, p; + p2 — p3) = 0, that is
there is no effective divisor on C linearly equivalent to p; + p2 — ps.

LEMMA 1.8. Let D be a nef and big divisor on an irreducible projective variety X. Then there exist an
effective divisor E such that D — €E is ample for 0 < € < 1.

PROOF. Let D be a nef and big divisor. Since D is big, by Lemma there exist an ample
divisor A, an effective divisor E, and a positive integer k such that kD = A+ E. If h > k we can

write hD = (h — k)D + A 4 E. The divisor D' = (h — k)D + A is a sum of a nef and an ample
divisor. Therefore D' is ample. If € = 1 we get that

D—¢eE=eD
is ample. O

PROPOSITION 1.9. Let X be normal, irreducible, projective variety with at most kit singularities. If X
is weak Fano then X is log Fano.

PROOF. Since X is weak Fano —Kx is nef and big. By Lemma [I.8] there exists an effective
divisor D and a rational number 0 < € < 1 such that —Kx —eD = —(Kx + €D) is ample. The
pair (X, eD) is klt for € < 1 because X has at most klt singularities. D

REMARK 1.10. The converse of Proposition [1.9|is false. For instance the Hirzebruch surface
X, = P(Op1 ® Opi(—e)) is a toric surface and hence log Fano. The anti-canonical divisor is
—Kx, =2Cp + (2 + e)F, where Cj is the section and F is the fiber. Therefore —Ky, - Cop = ZC(% +24+
e = —e +2,and —K, is not nef for e > 2. We conclude that for any e > 2 the Hirzebruch surface
X is log Fano but not weak Fano.

It is quite easy to see that projective toric varieties are log Fano.

LEMMA 1.11. Let D = Y, d;D; be a Q-divisor on a normal projective variety X such that d; < 1 and
the pair (X, [D]) is Ic. Then (X, D) is kit.

PROOF. Let f : Y — X be a log resolution of the pair (X, [D]). We have
Ky = f*KX + ZaiE,‘
i

and

D] = £[D] - LbiE,
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where [D] is the strict transform of [D|. Therefore,

Ky = f*(Kx +[D]) + ) _(a; — b;) = [D]

and since (X, [D]) is Ic we have a; — b; > —1. On the other hand
D= f"D—Y HE;
i

with t; < b; because d; < 1 for any i. This yields a; —t; > a; — b; > —1, and the pair (X, D) is
Klt. O

PROPOSITION 1.12. Let X be a projective toric variety. Then X is log Fano.

PROOF. Let DX, ..., DX be the irreducible toric invariant divisors on X. Then we have Kx =
-y DiX, see [Ful]. Now, let A =}, aiDiX be an ample toric invariant divisor, and € a rational
number 0 < € < 1. Therefore

—KX —€eA = Z(l — eai)DiX
1

with 1 — ea; < 1. The divisor D = Y ;(1 — ea;) DX is such that eA = —Kx — D is ample. Note that
[D] ~ —Kx. Let f : Y — X be a toric log resolution of (X, [D]), and let D, ..., D) be the invariant
toric divisors on Y. We have

Ky = f*(Kx + [D]) + }_aE; — [D] = }_a;E; — [D]
because [D] ~ —Kx. On the other hand Ky = — ¥; D) yields

Ky = ZﬂiEi — |—5—‘ = —ZDZY

This forces a; = —1 for any i. Therefore, the pair (X, [D]) is lc. To conclude it is enough to apply
Lemma 0

It turns out that weak log Fano is equivalent to log Fano.

PROPOSITION 1.13. Let X be a projective variety with at most kit singularities. Then X is log Fano if
and only if X is weak log Fano.

PROOF. Clearly X log Fano implies X weak log Fano. Now, let X be weak log Fano. Then
there exists an effective divisor D such that —Kx — D is big and nef and (X, D) is klt. By Lemma
there exists an effective divisor E such that —Kx — D — €E = —Kx — (D + €E) is ample for
O<exl.

Let D' = D + €E. Therefore, D’ is effective and —Kx — D' is ample. Furthermore, since X has at
most klt singularities and (X, D) is kit we get that (X, D') is klt for 0 < e < 1. O

Finally, we have two important facts about log Fano varieties. We will prove just the latter, for
the first one we refer to [GOST].

LEMMA 1.14. [GOST, Corollary 1.3] Let f : X — Y be a projective surjective morphism between
normal projective varieties over an algebraically closed field of characteristic zero. If X is log Fano then Y is
log Fano.

The second result says that being log Fano is preserved under small transformations.
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LEMMA 1.15. Let X and Y be normal varieties over a field of characteristic zero that are isomorphic in
codimension one. Then X is log Fano if and only if Y is so.

PROOF. There exists a small transformation f : X --» Y. Such a small transformation can
be factored as f = fro ..o f; where any f; : X; --+ Xj;; is small, and fits in a diagram of the
following form

where f; is a small projective birational contraction. To conclude, we have to prove that if X and
Y are normal varieties over a field of characteristic zero and f : X — Y is a small birational
morphism the X is log Fano if and only if Y is log Fano.

Assume that X is log Fano. Then there exists D effective such that —Kx — D is ample and (X, D) is
klt. Let us take an ample divisor H on Y such that —Kx — D — e¢f*H is ample and (X, D + €f*H)
is klt. Note that since f is small f,(D + ef*H) may not be Q-Cartier. To deal with this we need
the following trick. We take an ample divisor A on X such that (X, D +ef*H + A) is klt and

Kx+D+ef"H+ A ~qO0.
Therefore,
Ky —f-f*D —|—€H—|—f*A = f*(KX +D —|—€f*H—|— A) ~Q 0.
Now, since f is small we have
f*(Ky + f*D+eH + f.A) = Kx + D + ef*H + A.
We conclude that (Y, f.D + f.A) iskltand —(Ky + f«D + f.A) ~q €H is ample.
Now, let us assume that Y is log Fano, and let D an effective divisor on Y such that —Ky — D is
ample and (Y, D) is klt. Let D be the strict transform of D in X. Since f is small we have
Kx + D = f*(Ky + D).

Therefore, (X, f)) is klt and —Kx — D is nef and big. This means that X is weak log Fano, and by
Proposition it is log Fano. O



CHAPTER 4

Blow-ups of IP" in k general points

The aim of this chapter is to prove the following result:

THEOREM 0.1. Let X} be a blow-up of IP" at k points in general position, withn > 2 and k > 0. Then
X} is log Fano if and only if one of the following holds:

-n=2andk <8,
-n=3andk <7,
-n=4andk <8,

-n>4dandk <n+3.

1. Root systems

Let V be an Euclidean space over a field k with inner product (—, —) : V x V' — k. For any
non-zero vector w € V we may consider its orthogonal hyperplane
Hy =w' ={vec V| (v,w) =0}
Let us consider the following map:
Ry: V—V

(1.1 v—v—2

(o,w)
(w,w)

Note that Ry, (w) = —w and Ry (v) = v for any v € Hy,. Therefore, R, is the reflection with respect

to the hyperplane H,, = w.

DEFINITION 1.1. A root system in V is a finite set R of non-zero vectors of V such that:
- the vectors in R generate V,
- ifv,Av € Rthen A = %1,
- for any w € R we have Ry, (R) C R,
- for any v, w € R the projection of w onto the line generated by v is a half-integer multiple of v,
that is 2\2% € Z.

/
(0)
The vectors in R are the roots of the root system. The root lattice of a root system R is the Z-submodule of
V generated by the roots of R.

Let ® = {ry,..,r,} C V. The subgroup W of the group of isometries of V generate by
Ry, ..., Ry, is the Weyl group of fR.
DEFINITION 1.2. Let 8 C V be a root system. A subset S C R is a set of simple roots in R if

- the elements in & form a basis of V,
- any v € R can be written as a linear combination of elements of & with integer coefficients all of
the same sing.

33
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The root v € R is positive if all the coefficients are nonnegative. The set of positive root is denoted by R™.
The vectors in R~ = R\ R are called negative roots.

We can associate to a root system a graphs, called the Dynkin diagram of the root system. Given
a root system 9, we choose a set & of simple roots. The vertices of the associated Dynkin diagram
correspond to vectors in &. Any non-orthogonal pair of vectors is connected by an edge. This
edge is an undirected single edge if they make an angle of %7‘[ radians, a directed double edge if
they make an angle of 37 radians, and a directed triple edge if they make an angle of 27 radians.
Where "directed edge" means that double and triple edges are marked with an angle sign pointing
toward the shorter vector.

EXAMPLE 1.3. The following is a representation of the rank two root system A, = {«, 8, a +

B —a,—p,—a— B}

B a+3

/\

-a-f3 -B

We may choose A5 = {a, B, a + B}. Since a and B are simple the Dynkin diagram associated to
A is the following;:

o [©]

Note that the Dynking diagram A, is exactly the dual graph of the cyclic quotient singularity of
type A2 given by {y5 +yi+y; = 0}.

1.1. Representations of semi-simple Lie algebras. A complex Lie algebra is a C-vector space
g with a binary operation [—, —] : g X g — g called the Lie bracket such that:

- the Lie bracket is bilinear,

- |g/8] =0forany g € g,
- the Lie bracket satisfies the Jacobi identity

81,82, 83]] + (83, (81, 82]] + 82, (83, 81]] = O

for any ¢1,82,83 € 9.
A simple Lie algebra is a non-abelian Lie algebra that does not have non-trivial ideals. A direct
sum of simple Lie algebras is called a semi-simple Lie algebra.
Now, let g be a semi-simple Lie algebra and let h C g be a Cartan subalgebra that is a subalebra
which is maximal among abelian, diagonalizable subalgebras.
For any ¢ € g we may consider the endomorphism

adg: g—9
x> [g,x]
The linear map

ad: g — End(g)
g+ adg
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is called the adjoint representation of g.
Now, we consider the adjoint action of h on g. Since this action is diagonalizable we get a decom-
position

gzb@@gr

called Cartan decomposition. The elements r € h* are the eigenvalues of the action and for any
Hebh, X € gowehavead(H)(X) = r(H)X. The eigenvalues r € h* are called the roots of the Lie
algebra g, we denote by R(g) C h* the set of all roots of g. In the following we concentrate on the
adjoint representation of sl3(C). For details on the general theory see [FH, Lecture 14].

Adjoint representation of sl3(C). We consider the Lie algebra sl3(C) of traceless 3 x 3 matrices:

s13(C) = {X € M5(C) | tr(X) = 0}.

We have dim(sl3(C)) = 8, and we consider the bases of sl3(C) given by:
1 0 0 0 0 O
H=[0-101|, =01 o0
0 0 O 0 0 -1

and the matrices E;; for 1 < i # j < 3 having the entry (i,j) equal to 1 and all the other entries
equal to zero. Now, let

h = {X = {xl-,]-} € 5[3(([:) ’xi/]‘ =0,Vi 75 ]}

be the Cartan subalgebra of diagonal traceless matrices. Note that dim(h) = 2 and ) = (H;, Hp).
The linear functionals L; : h — C given by

a1 0 0
L; 0 a O =a;
0 0 as

fori =1,2,3 form a basis of h*. For any

we have

ad(H)(EZ,]) = EldH(Ei,]') = [H, E,‘,]'] = <[ll' — a]'>Ei,]'.

Therefore, we have the six eigenvalues Ly — Ly, L1 — L3, L, — L3, L3 — Lo, L3 — L1, L, — L; for the

adjoint action of h, and the eigenspace corresponding to L; — L; is the 1-dimensional subspace
sl3(C)r,—1, = (Ei ). Since dim(sl3(C)) we get

sh(C)=ho @ s(C) 1,
1<i#j<3
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The roots L; — L; are represented as follows:

Note that the L; — L; are exactly the roots of the root system A; in Example The Weyl group of
Aj acts as the symmetric group S3 on the generators Ly, Lp, L3 of h*. The example of sl3(C) reflects
a general phenomenon. The classification of semi-simple Lie algebras proceeds by considering a
Cartan subalgebra and the adjoint action of the Lie algebra on this subalgebra. The root system of
the action determines the Lie algebra and the corresponding Dynkin diagram.

2. Intersection theory of a blow-up

Let X be a smooth projective variety, and let i : Z — X be a smooth subvariety. Let 7t :
Y = BlzX — X be the blow-up of X along Z with exceptional divisors j : E < Y. We have the
following commutative diagram:

E—' . y—BIXx

nEJ | |~

Z X

We have E = P(Nz,x), and let C = ¢1(Og(1)) € AY(E). Furthermore, Ng,y = Og(—1), so that
c1(Ngyy) = —a1(Op(1)) =

PROPOSITION 2.1. [EH, Proposition 15.10] The Chow ring A(Y) of Y = BlzX is generated by
* A(X) and j, A(E) with the following multiplication rules:

- = 7 (a- P) fora, p e A(X),
T jiy = al(y- Ttl*Ei*oc) fora € A(X), v € A(E),

Jev j«0 = —ju(y-0-8) forvy,d € A(E).

EXAMPLE 2.2. Let us take X = P" and Z = p € P" a point. The groups A%(Y) and A"(Y)
are both isomorphic to Z, generated respectively by the fundamental class of Y and the class of a
point. The group A'(X) is generated by H and E while A"~1(Y) is generated by the pull-back L
of the class of a line of IP", and by the class of a line R in the exceptional divisor E = P"~1.

In this case Op(1) = Ops1(1) and ¢ = H, where H is the hyperplane section of E = IP"_l. For
instance, we get EF = (—1)*"1H*~!, and in particular:

E" — (_1)1171an1 — (_1)1171‘



3 The standard Cremona transformation of IP" 37

EXAMPLE 2.3. Let us consider the case X = IP? and Z = C C IP? a smooth curve of degree
d and genus g. Let H € A!(IP%) be the class of an hyperplanes, and L = H? € A?(IP?) the class
of a line. We denote by H and L their pull-backs in Y. For any divisor D € Z'(C) let Fp be the
corresponding linear combination of the fibers of 7tp : E — C.

Clearly, A°(Y) = Z, and A3(Y) = Z, generated by the fundamental class of Y and the class of
point respectively.

Now, A'(Y) is generated by H and E. Furthermore, A%(Y) is generated by L, j.&, and j.Fp for
D € A'(C). Note that geometrically the class j.& corresponds to a curve in E = C x P! that is
mapped by 7t isomorphically to C. By Proposition in A'(Y) we have:

B2 T2 A-E—ju(E-Fu) = jo(Fu), B = —ju(E-E-8) = —j.
where H is the the hyperplane section of C. The pairing between A!(Y) and A2(Y) is given by
H-L=1, H*-j,fp=0, H-j.f=H-C=d.
Furthermore,
E-L=0, E-jFfp=—j:(E-Fp-{) =—deg(D), E-ji§=—jif = —c1(Nesp)-
Now, let us consider the exact sequence
0—Tc — TP3|C — N¢/ps — 0.
For the Chern polynomials we have c;(Tps|c) = c:(Tc) - c:(N¢,p3). Now, by the Euler’s sequence
0 Ops = Ops(1)%* = Tps — 0
we get
ci(Tps) = 14 4ht + 61*1> + 40313 4 h*H
Since ¢;(Tc) =1+ c1(Te)t =1+ (2 — 2¢)t we have
(1+ (2 =2g)t) - (1 +c1(Neyps)t + ca(Neyps ) 1) = 1+ dhyct + 6l + 4t + it = 1+ 4hyct
and since hjc = deg(C) = d we get
1+ (01 (N ps) +2 = 29)E+ (caNeyps) + 1 (Neyps) (2 — 29)) 2 + e2(Neyps) (2 — 26)F = 1+ e
This yields
E-j,& = —cy(Neyps) = —4d — 29 +2.
Finally,

H*=1, H* E=0, H-E>=-H-j.{=—d, E*=—j,E-j.f =j.(E-¢)=—4d —2g+2.

3. The standard Cremona transformation of IP”
Let p1, ..., put1 € IP" be general points. We may assume
p1=1[1:0:..:0],.., pus1 =1[0:..:0:1].
We consider the standard Cremona transformation:

Y P" -3 P
[x0: 1 xy] —> [—0 Dt o]
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Note that ¢ o ¢ = Idpn, and ~! = . Let Hj, ..., H, 11 be the coordinate hyperplanes of P"". Then
1 is not defined on the locus

U HinH;.

1<i<j<n+1
Furthermore, ¢ is an isomorphism off of the union

U H.

1<i<n+1

Now, ¢ induces a birational transformation ¢ : X" 41 ——* Xji; and we have the following com-
mutative diagram:

XZH ****** *XZH
Lo

Note that, since 1 contracts the hyperplane H; passing spanned by the n points py, ..., p;, ..., Pu+1 to
the point p;, the map ¢ maps the strict transform of H; onto the exceptional divisor E;. Therefore
¢ is an isomorphism in codimension one. Indeed, it is a composition of flops. In particular ¢

induces an isomorphism Pic(X]; ;) — Pic(X],, ;).

Now, the linear system on IP" associated to the standard Cremona 1 is

H = Opn (1’1) ®I(n—1)(p1+-~-+Pn+1)’

that is H is the linear system of hypersurfaces in IP" of degree n having points of multiplicity at
least n — 1 in py, ..., pu+1. Therefore, the inverse image of a general hyperplane of IP" via 1 is an
hypersurface of degree n with points of multiplicity n — 1 in py, ..., pp+1, and

$*H=nH— (n—1)(E; + ... + Ey1)-

Furthermore, since ¢ contracts the hyperplane H; passing spanned by the n points py, ..., pi, ..., Pn+1
to the point p; we have

$*Ej=H—E —..—E —..—E, 1.
We conclude that the simple reflection R,, with respect to ay = H — E; — ... — E,, 11 is realized by
the small transformation .

PROPOSITION 3.1. Let D C IP" be an hypersurface of degree d having points of multiplicities my, ..., my,+q
in p1, ..., Put1, and let P : P* ——» P" be the standard Cremona of IP". Then

n+1

deg(y(D)) = dn — Z m;

and

mult,, (D) =d(n—1) =) _m;
j#i

foranyi=1,..,n+1.
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PROOF. Let X! | = Bly, ., ,P", and P X} .4 —-» X}, be the birational map induced by ¢.
The strict transform of D in X};, ;, --+ X]| | can be written as D~dH — Z”H m;E;.
Now, since . H = nH — /4! (n — 1)E;, and . E; = H — ¥ ; E; we get
IIJ*D - ( Zn+1 E) Zln 1 ml(H E];él ) -
dnH — dz”“(n—nE — Y HA Y Y By =
(dn — S5 mi) H = S (d(n = 1) = Sy m))E

Pn+1

O

Let py, ..., px € IP" be general points with k > n, and let X! = Bl,, ., IP" be the blow-up of IP"
in p1, ..., pk- The Picard group Pic(X}) is a free Z-module of rank k + 1. Let H be the pull-back of
the hyperplane class of IP”, and E; be the class of the exceptional divisor over p;. Then

H,Eq, ..., Ex,
is a basis of Pic(X}). The anti-canonical class of X} is given by
—Kxp = (n+1)H — (n = 1)(E1 + ... + Eg).
In [Mul] S. Mukai defines the following symmetric bilinear form on Pic(X}):
(3.1) (H,E;) =0, (HH)=n—-1, (E,Ej)=—6,

A straightforward computation, see [Mul], shows that Pic(X]’z) has another Z-basis a1, ..., &y, Ex,

where
a1 = E; — B,

aj = Ej — Eiq,

ap-1 = Ex—1 — Eg,
=H-E —..—E, 1.
Furthermore, a1, ..., & is a Z-basis of the orthogonal complement K)L(;: of KX;: with respect to ii
For instance, we have

n+1
(Kxgai) = (n+ 1) (H,H) = (n=1) Y (B B) = (n+1)(n = 1) = (1= 1) (n +1) =0,
i=1
Moreover, a1, ..., & is a system of simple roots of a finite root system with Dynkin diagram T y_,,_1 5+1:
oal O“Z ————————————— O“?H»l ———————————— o“kfz B — Oak—l
Oﬂlk

Let WV be the Weyl group of orthogonal reflection with respect to «y,...,a;. Clearly KX;; is W-
invariant. Following Mukai [Mul] we give the following definition.

DEFINITION 3.2. Let X be normal Q-factorial variety. A (—1)-divisor in X is a divisor D C X such
that there exists a small Q-factorial transformation f : X --» Y and a morphism 7w : Y — Z where 7 is
the blow-up of a projective variety Z in a smooth point and D is the strict transform via f of the exceptional
divisor of 7.
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Now, our aim is to prove that any transformation w € W is induced by a small Q-factorial
transformation of Xj'.

THEOREM 3.3. [Mul), Theorem 1] For any transformation w : Pic(X}}) — Pic(X}) in W there
exists a small Q-factorial transformation fy, : X! -+ X such that X is also a blow-up of P" in k general
points, and the pull-back via f,, of the tautological basis of X coincides with the transformation of the
tautological basis of X! by w.

PROOF. It is enough to prove the theorem for simple reflection. Note that a simple reflection
with respect to a; = E; — E; 1 corresponds to a transposition of a pair of centers. Indeed bywe
have
(H,E; — Eiy1)

R, (H)=H-2
w(H) (Ei — Eiz1,Ei — Eitq)

(Ei—Eiy1) =H,

for any k # i,i + 1 we have

(Ex, Ei — Eit1)

Ry (Ex) = Ex—2
o (Ex) = Ex (Ei — Eiy1,Ei — Eirq)

(Ei —Eit1) = Eg,

furthermore
(Ei,Ei — Eit1)
(Ei — Ei+1,Ei — Eitq)

Ry (Ei) = E;i —2 (Ei —Eiy1) = E; — (E; —Ei11) = Eipq,

and finally

(Eit1,Ei — Eix1)

Ry (Eiv1) = Eiy1—2
ozl( z+1) i+1 <Ei — EH_], E, — Ei+1>

(Ei — Eiy1) = Eiy1 — (=Ei + Eij1) = Ei.

Therefore, the simple reflection with respect to a; is realized by the lifting to X! of an automor-
phism of IP" switching p; and p; 1, and fixing the p;’s with j # i,i + 1.

For any I C {1,...,k} with |I| = n+ 1 we have that a; = H — Y ;; E; is a root. The reflection R;
with respect to a; is given by:

H—H+n—-1)a;=nH—(n—1)Y;c; E;,

(3.2) Ei— Ei+a; fOT’ iel,
In particular the simple reflection R,, with respect to ay = H — E; — ... — E, 11 on the tautological

basis of Pic(X}') is given by:

H— H+ (n—1)a;=nH—(n—1)CE,
Ei— H—E —..—Ei—...—E.q for 1<i<n+1,
E;— E; for n+2<i<k

Let p1, ..., put1 € IP" be general points. We may assume
p1=1[1:0:..:0],..., pys1 =[0:..:0:1].

We consider the standard Cremona transformation:
p P -3 P
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Note that ¢y o ¢ = Idps, and ¥~ = ¢. Let Hy, ..., H,1 be the coordinate hyperplanes of P". Then
1 is not defined on the locus
U HinH;.

1<i<j<n+1
Furthermore, ¢ is an isomorphism off of the union

U H.

1<i<n+1

Now, ¢ induces a birational transformation ¢ : X" 41 ——* X, and we have the following com-
mutative diagram:

XZH ”*lf”’ XZH
| |
P?-------- > P*

Note that, since i contracts the hyperplane H; passing spanned by the n points py, ..., i, ..., P41 to
the point p;, the map ¢ maps the strict transform of H; onto the exceptional divisor E;. Therefore
¢ is an isomorphism in codimension one. Indeed, it is a composition of flops. In particular ¢

induces an isomorphism Pic(X); ;) — Pic(X], ;).

Now, the linear system on IP" associated to the standard Cremona 1 is

H = OIPVI (7’1) ®I(n71)(p1+---+}7n+1)’

that is H is the linear system of hypersurfaces in IP" of degree n having points of multiplicity at
least n — 1 in py, ..., pny1. Therefore, the inverse image of a general hyperplane of IP” via ¢ is an
hypersurface of degree n with points of multiplicity n — 1 in py, ..., pp+1, and

¢*H=nH— (n—1)(Ey + ...+ Ep11).

Furthermore, since ¢ contracts the hyperplane H; passing spanned by the n points py, ..., pi, ..., Put1
to the point p; we have

$*Ej=H—-E —..—E —..—E, 1.
We conclude that the simple reflection R,, with respect to ay = H — E; — ... — E,1; is realized by
the small transformation 1. O

4. Cox rings and the effective cone

Let X be a normal and Q-factorial projective variety with finitely generated and free Picard
group and Picard number px. Let D1, ..., Dy, be a basis of Cartier divisors of Pic(X). Then

Cox(X)= P HU(X L= HOXZmD
LePic(X) My .. Mpy €Z

Note that Cox(X) is an integral domain graded by the free abelian group Pic(X). Now, let us
consider the following definition:
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DEFINITION 4.1. Let A be an integral domain graded by a free abelian group G,
A= A,
geG

The support of A is the semi-group
Supp(A) = {g € G| Ag # 0}.

LEMMA 4.2. Let e € G be the identity element. If Supp(A) is not finitely generated as a semi-group
then A is not finitely generated as a ring over Ae.

PROOF. Assume that A is finitely generated. Then, there exist finitely many non-zero homoge-
neous elements a; € Ag, fori =1,..., h such that ay, ..., a, generate A. Therefore, g1, ..., g, generate

Supp(A). O

For instance the support of Cox(X) is the semi-group of linear equivalence classes of effective
divisors on X:

Eff(X) = {L € Pic(X) | H*(X, L) # 0}.

Cox(Xj)= @ H'X,L)= € H'(X}, Oxi(aH —biEy — ... — bEy)).
LGPiC(X;’) a,bl,...,bkEZ

The following result is fundamental for our study of Eff(X}).

LEMMA 4.3. Let T : X — Y be the blow-up of a projective variety Y at a point y € Y. Let E be
exceptional divisor of 7t. Then E belongs to any system of generators of the semi-group Eff(X).

PROOF. Let us assume that E is linearly equivalent to the sum D; + D; of two effective divi-
sors. Let A be the pull-back of an ample divisor on Y. Then

E- Adim(Y)—l —0.

Therefore
1)1 X Adim(Y)fl + D2 . Adim(Y)fl —E. Adim(Y)fl =0

yields Dy - A4m(Y)=1 = D, . Adm(¥)=1 — 0. Hence, both Supp(D;) and Supp(D,) are contained in
E. Then either D; = 0 or D, = 0. Il

Now, let us consider the variety X}

DEFINITION 4.4. We define the H-degree of D = aH — Y*_; b;E; € Pic(X}') as

deg(D) = a.
PROPOSITION 4.5. If the following inequality holds
1 1 1
+ + <1

2 ' n+1l k-n—-1-
then the VW-orbit of Ey is infinite.
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PROOF. Let w € W. Then there exists a subset I C {1, ..., k} with |I| = n + 1 such that

n k
Y deg(u(E)) < " Y- deg(w(E)

iel

Since —Kxy is Wh-invariant we have

k
w(—Kxy) = (n+Dw(H) — (n—1) ) w(E;) = —Kx;,

k
i=1

and in particular

k
(n+1)deg(w(H)) — (n—1) ;deg(w(Ei)) = deg(—Kxy) =n+1.

Then

n+1¢
deg(w(H)) — ) deg(w(E:)) = deg(w(H)) — = — ) ,deg(w(Ey))

i€l
Now, Y¥ ; deg(w(E;)) = 25 ((n+1) deg(w(H)) — n — 1) yields
(n+1)?

deg(w(H)) — Y_deg(w(E:)) > deg(w(H)) — 175 (deg(w(H)) - 1)
iel
Now, note that
1 1 1 (n+1)2
— < <1.
PR e T g ¥ s R
In particular, % + n%rl + ﬁ <1 yields
deg(w Zdeg
iel

Now, consider the reflection R; with respect to #; in (3.2). We have:

Ri(H -H=nH—-(n—1)Y Ei—H=(n—1)(H-)_E),
i€l iel
and
deg(w(Ri(H))) — deg(w(H)) = (n —1)(deg(w Z;deg

Therefore, the degree of H is increased by the reflection R;, and the W-orbit of H is infinite. Finally,
since (n + 1) deg(w(H)) — (n — 1) ©5_, deg(w(E;)) = deg(— Kxr) = n+1, we see that the degree
of Ej is increased by R; as well. Therefore, also the W-orbit of E; is infinite. O

THEOREM 4.6. If the following inequality holds

1 1 1
- <
2+n+1+k—n—1_1

then Cox(X}) is not finitely generated.
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PROOF. By Lemma 4.2]it is enough to prove that Eff(X}') is not finitely generated. In order to
to this, by Lemma |4.3|it is enough to prove that X! contains infinitely many (—1)-divisors, in the
sense of Definition
Let us begin with the (—1)-divisor Ei. By Propositionwe have that if 1 + %H + ﬁ < 1the
the orbit of E; under the action of the Weyl group WV is infinite. Let E be an element of this orbit.
By Theorem [3.3| there exists a small transformation which is a lifting of a suitable standard Cre-
mona centred in n 4 1 points among py, ..., px such that D is linearly equivalent to the pull-back
of an exceptional divisor via the lifting of the Cremona. Therefore, we produce infinitely (—1)-
divisors in X} and Eff(X}') can not be finitely generated. O

Explicitly, Theorem can be rephrased as follows: if
-n=2,k>9,
-n=3,k>8,
-n=4,k>9,
-n>5k>n+4
then Cox(X}') is not finitely generated.

4.1. Blow-up of P? in nine points. Let p, ..., po be nine points in IP2. First, let us assume
that {p1, ..., po} is the complete intersection of two general cubics C = Z(f),T = Z(g) in IP2. Let
X = {p1, ..., ps}. Since C and T are irreducible X does not have either four points on a line or seven
points on a conic. Then the set X imposes independent conditions to the cubic, and C, I are a basis
of the cubics through X. Therefore, any other cubic D = Z(h) through X is such that h = af + Bg.
In particular h(pg) = 0. We conclude that the cubics through pj, ..., pg are parametrized by P!
Therefore the linear system of cubics through py, ..., p induces a rational map ¢ : P? --» P!,
which in turns induces a morphism ¢ : X2 — P

X3 N
f&
]1)2,,,7?7779 ]Pl

Now, the general fiber of ¢ : X2 — P! is an elliptic curve, and the nine exceptional divisors
Ey, ..., Eg are sections of the fibration ¢. The generic fiber C of ¢ is an elliptic curve over C(P') =
C(t). Now, by considering the orbits of the nine sections Ej, ..., Eg via the group law of C we pro-
duce infinitely many (—1)-curves in X2.

Now, we consider the case of nine general points. In this case we follow the general philosophy
of Theorem Our aim is to produce infinitely many (—1)-curves in X3 by applying iteratively
the standard Cremona of IP?, and by replacing the symmetries of the elliptic fibration ¢ : X3 — P!
with the symmetries of Pic(X3) with respect to the Weyl group of the Dynkin diagram T ¢ 3:

51 a2 a3 Xq 5 X6 a7 g

O [©] @] O (6] (6] O [©]

o™

We begin with the line C; = (pj, p2), and consider the standard Cremona f; : P? --» IP? centred
in p7, ps, p9. By Proposition 3.1] the curve C3 = £,(C;) is a conic through py, ..., ps. We proceed
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recursively by taking at the step i the standard Cremona f; 1 : IP? --» P2 centred at the three
points among p1, ..., p9 of lowest multiplicity for the curve C; = f;_1(C;_1). We denote by d the
degree and by m; the degree and the multiplicity in p; of these curves. The following table displays
the step from i = 2 to i = 16 of the iteration.

i d nmq | My | M3 | My | M5 | Mg | My | Mg | Mg
211 1 1 0 0 0 0 0 0 0
312 1 1 1 1 1 0 0 0 0
4 | 4| 2 2 2 1 1 1 1 1 0
51613 3 2 2 2 2 1 1 1
6 |9 4 4 4 3 3 2 2 2 2
7 112| 5 5 5 4 4 4 3 3 2
8§ |16 | 7 7 6 5 5 5 4 4 4
9 |20 8 8 8 7 7 6 5 5 5
1025|110 |10 |10 | 8 8 8 7 7 6
113012 (12|11 |10(10| 10| 8 8 8
1213614 |14 |14 |12 |12 |11 | 10| 10 | 10
1314216 |16 |16 |14 |14 | 14 | 12 | 12 | 11
14149119 |19 |18 |16 |16 |16 |14 | 14 | 14
15(56|121 |21 (2111919 |18 |16 | 16 | 16
16 164|124 2424|121 (21|21 (19|19 | 18
Now, we want to prove that:
)
deg(C)) ~
and multp]. C; ~ (14“2)2_12# forj=1,2,3, multp]. C;, ~ (14“1)2_12# forj =,4,5,6, multp]. C; ~

12_1% forj = 7,8,9, where ~ means that the values differs at most by a rational number —1 <
€ < 1. This is verified for all the steps in the table. Let us assume it is true at the step i. Then

) D . 2
deg(Civ1) = 2deg(Cy) — m7(C:) — ms(Cy) — mo(C) ~ 27 — 3! 1221 1_( 21) .

From the table we see that
m;j(Cit1) = mj3(C;) ~

for j = 4,5,6. Furthermore

(i+2)2-2(i+2)—-1
12

(i+1)2-23G+1)-1
12

m;(Ciy1) = mj_3(C;) ~
for j =7,8,9. Finally
2 2-2i—1 ?+4i+2 (i+3)>—-2(i+3)—1

(Cist) ~ — —2 —
mj(Civ1) ~ 12 12 12

The line C; = (p1, p2) isa (—1)-curve in X;3. Therefore, C; is a (—1)-curve as well. Finally, since

deg(cl) N§ 00 *
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we get infinitely many (—1)-curves in X3.

4.2. Blow-up of P? in eight points. Now, let us apply the same procedure to X3. In this case
we get the following table:

i|d|my|my|mg|my|ms| mg|my| mg
2(1{1|1|{0j0|O0OJ0|0]|0O
3(12(1 |1 11 ]1]0]O0]0O0
414122211111
5/5{3 |3 |3 |2 (2|2 |1]1
6|6/ 3|33 |3 |2|2]2]2
7163 (3 (3|3 |2]2|2]2

We see that deg(C;) = 6 for any i > 6.
4.3. The Mori cone of X}'. In this section we determine the cone of curves of X}

LEMMA 4.7. Let py, ..., ps € P® be general points, and C C P2 an irreducible curve of degree d having
multiplicity m; = multy, (C) at p;, 1 < i < 8. Then my + ... + mg < 2d.

PROOF. If C is degenerate, then m; # 0 for at most three points p;, and the conclusion follows
easily from Bézout. So from now on we assume that C is non degenerate. Let A be the pencil
of irreducible quadric surfaces passing through py, ..., ps. Suppose that m; + ... +mg > 2d. It
follows from Bézout that C is contained in every member of A. In particular, C is a non degenerate
irreducible curve contained in the intersection of two irreducible quadric surfaces. So d € {3,4}.
Suppose that d = 3. Then C must be a twisted cubic through at most 6 of the p;’s, and thus
my + ... +mg < 2d = 6, contradicting our assumptions. We conclude that d = 4, m; > 1 for every
i, and m; > 2 for some j. If follows from Bézout that m; = 2, and m; = 1 for i # j. Consider the
projection from p;

Ttp; : C ==>» IP2.

The image 71, (C) is a conic though the seven general points 71, (p;), i # j, which is impossible.
This shows that mq + ... + mg < 2d. O

PROPOSITION 4.8. Let X! be the blow-up of P" at points in general position py,...,p, 1 > 2.
Denote by R; a line in the exceptional divisors over p;, and by L; j the strict transforms of the line through
pi # pj. Suppose that either of the following holds:

-k <2n.
-n=3and k <8.
Then the Mori cone NE(X}!) is generated by the classes of the R;’s and L; ;'s.

PROOF. Let X}/ be the blow-up of IP", n > 2, at points in general position py, ..., pi. First of
all, note that

4.1) L= Li/]' + R; + Rj and L;=L—R; = Li,]‘ + R]‘.

Let C C X} be an irreducible curve not contained in any exceptional divisor E;, and denote by C
the image of C in P”. It is an irreducible curve of degree d > 0 and multiplicity m; = mult,, C >0
at p;, C is the strict transform of C, and

(4.2) C=dL- m1R1 — e T’l’lkRk.
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We must show that the class of C in N1(X}) lies in the cone generated by the R;’s and L;;’s. We
may assume that m; < mp < --- < my.
First let us assume that k is even. We write

C= dL- ml(Rl + Rz) — (m2 — ml)Rz — m3(R3 + R4) — (m4 — m3)R4—
o = M1 (Re1 + Ry) — (my — my_1)Ry.

Note that mq + (my — my) + mz + (mg — m3) + ... + my_q + (Mg — my_1) = my + my + ... + my. We
claim that my + my + ... +my < d . Indeed, since k < 2n, the set {py, p4, ..., px} has cardinality at
most n. Consider the linear space P = (p2, pa, ..., Pk) ; P If my+my+..+m >d, thenC C P
by Bézout . Since the p;’s are general, p1, p3,..., px—1 € P, and so my = m3 = ... = my_1 = 0. But
this implies that m; = 0 for i < k — 1 and m; > d, which is impossible. This proves the claim. So
we can rewrite (4.3) as

6 = ﬂ’l1L1,2 —+ (7712 — ml)Lz —+ M3L3,4 + (7114 — 7713>L4—
et Mg Ly_q k + (mk - mk_l)Lk +(d —my —my — ... — my)L.

It follows from that the class of C in Ny (X]’(l) lies in the cone generated by the R;’s and L;;’s.
Now suppose that k is odd, and write

(4.3)

C= dL-— ﬂ’ll(Rl -+ Rz) — (ﬂ’lz — ml)Rz — ﬂ’l3(R3 + R4) - (TVZ4 - m3)R4—

4.4
@4 o = Mg (R + Ri—1) — (mg—1 — my—2) Rg—1 — miRy.

In this case my + (mp —my) +mz + (mg —mz) + ... + my_1 + (Mg — mg_q) = my+ Mg+ ... +my_1 +
my. Just as in the even case, one shows that my + my + ... + myp_q1 + my < d and rewrite (4.4) as an
effective linear combination of the R;’s and L; ;’s.

From now on we suppose that n = 3and k < 8. Then m; < d and m; + ... + my < 2dby Lemma
If my_1 = 0, then C = myLy + (d — my)L. It follows from that the class of C in Ny (X}) lies in
the cone generated by the R;’s and L;;’s. If my_1 # 0, then rewrite (4.2) as

C= (kal,k) —d'L — miR1 — e T m%Rk,

whered' =d —1,m} = m;fori < k—2,and m; = m; —1fori = k— 1 or k. Note that m] < d’. This s
clear fori = k — 1 or k. For i < k — 2 it follows from the assumptions that m; <mp, <--- <my <d
and my + ... + my < 2d. We also have m} + ... + m; < 2d’. So we can repeat the process and

conclude by induction that the class of C in N;(X}) lies in the cone generated by the R;’s and
L,',]"S. O

5. Proof of Theorem

By Theorem 4.6 we know that if the hypothesis of Theorem [0.1|are not satisfied then X' is not
a Mori Dream Space. In particular by Proposition [1.2]it is not log Fano. In this section our aim it
to prove the other implication by producing explicitly an effective divisor D such that —Kxy — D
is ample and (X}, D) is klt.
In order to clarify ideas let us consider the following example.

5.1. Blow-ups of IP>. A version of the following result with more details on the postulation of
the points py, ..., px € IP° has been proven in [BL, Proposition 2.9].

PROPOSITION 5.1. Let X3 be the blow-up of P° at k general points px, ..., py. Then X3 is weak Fano if
and only if k < 7.
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PROOF. The anti-canonical divisor of X? is given by
—Kyxs =4H —2E; — ... = 2B, = 2(2H —E1 — ... — Ey).

If k > 7 then (—KX£)3 < 0 and X} can not be weak Fano. We have that —Ky: - R = 2, and
_KX;f -L; =0. By Proposition—KX]? is nef if k < 7. Furthermore (—ka)3 > O0fork <7,and by
[La, Theorem 2.2.14] —Kx, is big. [l

REMARK 5.2. Let Xg be the blow-up of IP3 at eight general points py, ..., ps. By Proposition
—Kx, is nef. On the other hand (—Kx, ) = 0, and so —K, is not big by [La, Theorem 2.2.14].

By Proposition we have that X? is log Fano for any k < 7. In the following we show how
to produce an explicit Q-divisor D such that —(Kx, + D) is ample and the pair (X}, D) is kit.
First of let us observe that if k < 4 then X? is a toric variety. In this case it is enough to take D as
a suitable combination of toric invariant divisors. However, in the case k = 4 we may choose an
irreducible divisor D. For instance we may consider the cubic surface

A = {xox1x2 + xoX1X3 + XoX2X3 + X1 X2x3 = 0} C IP3,

that is the Cayley’s nodal cubic surface. Note that A is an element of the linear system of the
standard Cremona transformation of IP?. The surface A has exactly four singularities in the fun-
damental points of IP? that are ordinary double points. We may write the strict transform D of A
as
D =3H —2(E; + ...+ Ey).

Then

—Kys —eD = (4—3€e)H—(2—2¢)(E1+ ...+ Ey).
We have (—Kxi —€eD)-R; =2—2¢eand (_Kxi —e€eD)-L;j =4 —3e —2(2 — 2¢) = 4e. By Propo-
sitionwe conclude that —(Ky; + €D) is ample forany 0 < € < 1.

Let us consider the other three cases. If k = 5 we consider all the planes H; j spanned by three of
the p;’s. We get a divisor A = }; ;1 H; jx, and any of the p; is a of multiplicity six for A. Therefore,
we may write the strict transform D of A, through the blow-up morphism, as

D =10H — 6(E; + ... + Es).
Then —Ky; —eD = (4 —10e)H — (2 — 6€)(Eq + ... + E5). We have _(Kxg —€eD)-R; =2—6¢
and —(Ky; —€D) - L;; = 2¢. Then, by Proposition|4.8 we have that —(Ky; + €D) is ample for any

0<e< % Furthermore we can take € > 0 arbitrarily small in order to have have the pair (Xs5,€eD)
klt.

If k = 6 we have to take care of the twisted cubic through the p;’s. Therefore linear subspaces
are not enough. Let Q; be the unique quadric cone with vertex p; and having a simple point in
p; for any j # i. We consider the divisor A = Q1 + Q2 + Q3 + Hy 56, where Hys is the plane
spanned by p4, ps, ps. Since any of the p; is a points of multiplicity four for A we can write

D =7H —4(E1 + ...+ E¢).
Then —Kys —eD = (4 —7e)H — (2 —4€)(E1 + ... + Eg). Therefore, _(Kxg +e€eD)-R; =2—4eand
—(Kxs +€D) - R; = e. By Propositionwe have that —(Ky; 4 €D) is ample forany 0 < € < 3.
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If k = 7 we have to consider cubic surfaces. First, we claim that there exists an irreducible cubic
surface having nodes at pj, ..., p4 and simple points at ps, ps, p7. Cubic surfaces are parametrized
by P(k[xo, ..., x3]3) = P'. Furthermore, any node imposes at most four conditions, and simple
point at most one condition. We have exactly at most 4 -4 + 3 = 19 conditions. Therefore, there
exists a cubic surface S having nodes at py, ..., p4 and simple points at ps, ps, p7. Now, we want
to prove that S is irreducible. Since the p;’s are general and S passes through all of them with
three planes we can construct a cubic having nodes at most at two of the p;’s. Similarly with an
irreducible quadric and a plane we can construct a cubic having nodes at most at three of the p;’s.
We conclude that S is irreducible. Let S; j x be a cubic surface having simple points at p;, p;, px and
nodes at py, forany h #, i, j, k. Any of the p; is of multiplicity fifty-five for the surface A =} ; ;  S; k-

Since A has (Z) = 35 components of degree three we can write its strict transform as
D = 105H — 55(E; + ... + E7).

Then —Ky; —eD = (4 —105¢)H — (2 — 55¢)(E1 + ... + E7), —(KX; +eD)-R; = 2 —55¢ and
—(Kxs +€D) - L;; = 5¢. By Proposition —(Kxs +€D) is ample forany 0 < € < Z.

6. Blow-ups of P, n > 4

6.1. Blow-ups of P" in n + 1 points. The variety X}, is toric. Therefore it is log Fano. In this
section we show that for X} ; the divisor D in the definition of log Fano variety can be chosen
irreducible.

Let |H| C |Opn(n)| be the linear system of hypersurfaces of degree n and having multiplicity at
least n — 1in py, ..., pu+1. This linear system induces the standard Cremona transformation of IP"
given by:

¢|H| . P i P
[X0 : i Xy +—> [xio N xl—n]
LEMMA 6.1. Let A € |H| be a general element, L;,, i, = {pi, ..., pi,), and 7w : Y — P" be the

blow-up of all the strict transforms of the linear subspaces L;,, _;, for h =1,...,n — 1 in order of increasing

dimension. Then the strict transform D of A in Y is smooth and transversal to all the exceptional divisors
of 7t. Furthermore

multy, . A=mn—h

foranyh=1,..,n—1

PROOF. By [MM, Theorem 1] the Cremona ¢y lifts to an automorphism of Y. In particular

this implies that the strict transform D of A via 77 is smooth and transversal to all the exceptional
divisors of 7. Therefore, A is smooth out of the union of the codimension two linear subspaces

Now, let us consider the element of the linear system || given by:

Ay = {X0X1...Xp—1 + X0X1...Xp—2Xp + ... + X1X2...X, = 0}

.....

.....
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equation of Ay and taking the monomials of lowest degree we get that the projective tangent cone
of A in x is the hypersurface T C P"~! given by:

T = {xpXps1--Xn—2Xn—1 + XpXpi1--Xn—2Xn + oo + Xpy1 X540 Xp—1X, = 0},

Then mult;, , Ag = deg(T) = n — h. To conclude it is enough to observe that for any A € [H| we
have multle ; A>n—h. O

-----

PROPOSITION 6.2. Let A be a general element in the linear system of the standard Cremona of P" and
let D be its strict transform in X, ;. For any 13 < € < 1 the divisor —(Kx» , +€D) is ample, and the
pair (X}, €D) is kit.

n

PROOF. We have
D=nH-(n—1)(Ey+..+E,_1)
and
—Kxn  —eD=(n+1-en)H—(n—1—€e(mn—1))(E1 + ...+ Eny1).

Therefore, —(Kx»  +€D)-R;=n—1—¢(n—1) > Oifand only if e < 1. Furthermore, —(Kx»  +
eD)-Lij=(mn+1—en)—2(n—1—€e(n—1)) = (n—1)e —n+3 > Oifand only if e < =3. By
Proposition we conclude that for any =3 < e < 1 the divisor —Kxn , — €D is ample. Now,
by Lemma we have that the blow-up 7w : Y — P" of all the strict transforms of the linear

.....

pair (X, ;,eD). Now, let p, be the number of linear subspaces of dimension & — 1 that have been
blown-up, and let Ei"l, E"-1 be the exceptional divisors over such linear subspaces. Then, we

v Ep,
may write
n—1
Ky = m*Kyo, + Y (n—h)(E} "'+ ..+ Ep7 ).
h=2

Furthermore, by Lemma 6.1 we have
n—1
n*(eD) =€y (n—h)(E{ ' +..+E; ') +eD,
h=2
where we denote by D the strict transform of D in Y. Therefore, we get

n—1
Ky = (K}, +€D)+ Y (n—h—e(n— h))(EF1 4+ + Efjh’l) —eD.
h=2
We see that for € < 1 all the discrepancies are greater than zero. Therefore the pair (X} ;,€D) is
terminal and hence kit. U
REMARK 6.3. The toric variety Y used as a log resolution in the proof of Proposition that

is is IP" blown-up at all the linear spaces of codimension at least two spanned by subsets of 7 + 1
points in linear general position, is the Losev-Manin’s moduli space L1 introduced by A. Losev
and Y. Manin in [LM], see [Ha, Section 6.4]. The space L, 1 parametrizes (n + 1)-pointed chains
of projective lines (C, X0, Xoo, X1, -.., Xp+1) Where:

- C is a chain of smooth rational curves with two fixed points xo, X« on the extremal com-

ponents,
- X1,..., Xu+1 are smooth marked points different from x(, x. but non necessarily distinct,
- there is at least one marked point on each component.
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6.2. Hyperplane arrangements and the blow-ups of P” in n 4 2 points. Let py, ..., pu42 be
general points in IP”. We consider the hyperplane arrangement

H = {{pi, . pi,) |ij € {1,..,n+2}}.

Note that H is supported on a reducible divisor H = Y¥",' H;, where H; is an hyperplane and
Pn—1 = (”:2) = w We keep denoting by H the strict transform of H in X]; ,. Although
any H; is smooth the H;’s intersects with hight multiplicity along the strict transforms of the linear
subspaces of IP" determined by the intersections of the H;’s themselves. Therefore (X, ,, ) is
not a log resolution of (IP", ). Let us consider the set #" = {(pi,, ..., pi,,,) |ij € {1,..n +2}}}
of all the h-planes spanned by the p;’s.

PROPOSITION 6.4. Let 71 : Y — X!, be the blow-up of all the lines in H?, all the planes in H?,..., all
the (n — 2)-planes in 1" 2, in order of increasing dimension. Let us consider the pair (X! ,, e H) where
€ € Q is a rational number, and let H be the strict transform of H through 7. Then (Y,eH) is a log
resolution of (X!, ,,€H). Let E;l be the exceptional divisor over an h-plane, and let us write

n—2
Ky = 7" (Kxy, + €M) +dy1(H1 + .. + Hp, ) + hzl dy(E} + ..+ Ep ).

Then pp—1 = ("}?),d, 1 = —€, and

n+2 n—h+1
Oon = <h+1>,dh—(n—h—l)—e(n_h_1>.

PROOF. Clearly p,—1 = (”:[2) = WZEM At each step, the spaces to be blown-up do not

intersect because their intersections have been blown-up at an earlier step. Clearly the divi-
sor Exc(7r) UHy U ..U H,, , is simple normal crossing. Therefore (Y,eH) is a log resolution of
(X", ,,€H). Clearly, any element of H" is determined by / + 1 points. Therefore p; = (Zﬁ) for
h =1,..,n —1. Now, let us compute the discrepancies. First of all we have

n—2
(6.1) Ky =" Kxr, + Y (n—h—=1)(E{ + ...+ E}} ).

h=1
Now, fix an h-plane, let us say (p1, ..., pp+1)- In order to construct an hyperplane in # containing
(p1,--s Pns1) we have to choose n — h — 1 points out of py 5, ..., Pnt2. Therefore we have (Z:Zﬂ) of
them, and

* = (n—h+1\ h
(6.2) T (eH) =€) b1 (Ef 4 ...+ Ep,) +€(Hi + ... + Hp, ).
h=1

Finally, subtracting[6.2] from[6.T| we get

. Pn—-1 n—2 n_h+1 . .
KYZN(KXS+2+€H)_€ZHi+Z (n—h—l)—e h_1 (E1+”'+E,Dh)'
i=1 h=1

THEOREM 6.5. If p1, ..., px € IP" are general points then X' is log Fano for any k < n + 2.
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PROOF. If k < n + 1 then X}! is toric and hence log Fano. Let us consider X|; , , and the divisor
‘H of Proposition Our aim is to prove that there exits a rational number € such that —(Kx» , +
€H ) is ample and (X}, eH) is klt. Let Ey, ..., E;;;2 be the exceptional divisors over py, ..., pn42. Then

_KX:;JrZ = (1’1 + 1)H - (1’1 - 1)E1 — (1’1 — 1)En+2~

n—+2

Furthermore, since we have ("}

) = 2(n+2)(n+ 1) hyperplanes in H, and thorough any p; there

are (""1) = 1(n + 1)n hyperplanes we have
1 1 1
H= E(n +2)(n+1)H — E(n +1)nE — ... — E(n + 1)nE, 4o

Therefore

€ € n+2
—(Kxn, +eH)=(n+1- E(n +2)(n+1)H—(n—1-— E(n +1)n) Y E.
i=1

Now, we have:
~(Kxr  +eH) Ri=(n—1— g(n+1)n)

n+2

and
—(Kxn, +€H) - Lij=(n+1— g(n +2)(n+1))—2(n—1- g(n +1)n).
By Proposition 4.8 we have that for any rational number e such that

2(n—3) <€<2(n—1)
(n+1)(n—2) nn+1)
the divisor —(Kx» , +€H) is ample.
To conclude we have to show that (X, ,,eH) is klt. By Proposition the discrepancy of the
log resolution 7 : Y — X, with respect to the exceptional divisor E; over an h-plane is given
by d, = (n—h—1)—e("_I"1). Now, (n —h—1) —e("_"}) > —1if and only if e < =
Therefore, if € < % thend, > —1forany h = 1,..,n — 2. To conclude, it is enough to observe that

2(n—1) 2
n(n+1) < 0

6.3. Blow-ups of P" in n 4 3 points.

6.6 (The effective cone of the blow-up of IP" at n + 3 points). Let X be the blow-up of P" at n + 3
points p; in general position. By [CT2, Theorems 1.3], X is a Mori dream space. Next we describe the
1-dimensional faces of Eff(X) ([CT2, Theorem 1.2]). We denote by H the pullback to X of a hyperplane
in P", and by E; the exceptional divisor over the point p;. For each subset I C {1,---,n + 3} whose
complement has odd cardinality |I'| = 2k + 1, consider the divisor

E] = kH—kZEl‘— (k—l) Z El‘.
i€l i€l
There is a unique divisor in the linear system |E;|, which we also denote by E;. When k = 0 we have
Eje = Ei When k > 1, Ej can be described as follows. Let 7ty : P" --» P%*=2 be the projection from
the linear space (p;)ic;. Let C; C P%*=2 be the image of the unique rational normal curve through all the

pis. The divisor Ey is the cone with vertex (p;)icr over Secx_1Cy. Each Ep generates a 1-dimensional face
of Eff(X), and all 1-dimensional faces are of this form.
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In this section we exhibit integral divisors D C X], 5 and rational numbers € > 0 such that
A = €D makes X] 5 log Fano. In the previous cases, D was taken as sum of strict transforms
of hyperplanes through 7 of the n + 3 points. For X]/, 5, we will also need to add other extremal
divisors E; C X, 5 introduced in Paragraph 6.6, This will make the log resolution of (X, A) more
complicated, and we will need to understand well how the divisors E;’s intersect. For this pur-
pose, we start this section with some preliminaries on secant varieties of rational normal curves.
Then we will consider separately the cases n = 2k + 1 odd, and n = 2h even.

6.4. Preliminaries on secant varieties of rational normal curves. Given an irreducible and
reduced non-degenerate variety X C IP”, and a positive integer i1 < n we denote by Seci(X) the
k-secant variety of X. This is the subvariety of IP" obtained as the closure of the union of all (k — 1)-
planes (x1, ..., x¢) spanned by k general points of X. We will be concerned with the case when
X = Cis arational normal curve of degree n in IP". The following proposition gathers some of the
basic properties of the secant varieties Secy(C) in this case.

PROPOSITION 6.7. Let C C IP" be a rational normal curve of degree n, and let k be an integer such
that 1 < k < 3. Then the following hold.
(1) dim(Seck(C)) = 2k — 1 (see for instance [Har, Proposition 11.32]).
2) deg(Seck(C)) = (”’,’i“) (see for instance [EH| Theorem 12.16]).

(
(3) Secy(C) is normal and Sing(Secy(C)) = Secy_1(C) (see for instance [Vel, Theorem 1.1]).
(4) If n = 2h is even, then for any 1 < t < h we have

multSech,t(C) SeCh(C) =t+1.

PROOF OF (4). Suppose that n = 2h is even, and consider the (h + 1) x (h + 1) matrix

X0 X1 e X5

X1 X2 cee Xpa1
(6.3) M, = .

Xno Xpt1 --- X2

For any 1 < k < I, the secant variety Secy(C) can be described as the determinantal variety:
Secy(C) = {rank(M;) < k}.

(See for instance [Har, Proposition 9.7]). In particular, Sec;,(C) C P?" is the degree h + 1 hyper-

surface defined by the polynomial F := det(M,). For each j € {0,...,2h}, let {M]} be the set of
h X h minors of My, produced by erasing in M; a row and a column meeting in an entry of type x;
Denote by p; be the number of such minors. Then

oi . .

O Y ol det(m]),

] i=1

for suitable a} > 0. Inductively, we see that for any 1 < t < h the partial derivatives of order t of F
are linear combinations of determinants of (1 +1 —t) x (h+ 1 — t) minors of Mj,. The vanishing
of such determinants defines Sec,_;(C), while the vanishing of the of determinants of the (h —
t) x (h — t) minors of M}, defines Secj,_; 1(C) C Secj,_;(C). Therefore, there is at least one partial
derivative of order ¢ + 1 of F not vanishing on Secy,_(C). This means that multg,, ,(c)Sec;(C) =
t+1foranyl <t <h. O
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The following proposition is just a particular instance of [Be, Theorem 1]. The general state-
ment for smooth curves embedded via a 2h-very ample line bundle can be found in [Ve, Theorem
3.1] as well.

PROPOSITION 6.8. Let C C IP" be a rational normal curve of degree n, and set h := |4 |. Consider
the following sequence of blow-ups:
- 111+ X3 — IP" the blow-up of C,
- 11y : Xp — X the blow-up of the strict transform of Sec,(C),

- 71+ Xy, — X1 the blow-up of the strict transform of Secy,(C).
Let 7t : X — IP" be the composition of these blow-ups. Then, for any k < h the strict transform of Secy(C)
in Xy_1 is smooth and transverse to all exceptional divisors. In particular X is smooth and the exceptional
locus of 7t is a simple normal crossing divisor.

NOTATION 6.9. Let py, ..., put3 € P" be general points, and let C C IP" be the unique rational
normal curve of degree n through these points. Given1 < m < n, I = {i1 < -+ < iy} C
{1,...,n+ 3}, and a positive integer k such that 0 < k < 75", we consider the following variety
of dimensiond = 2k — 1+ m:

Y{ = Join ((pi,..., pi,) , Seck(C) ).

Alternatively, Yfi can be defined as follows. Let 77 : P" --» IP"~™ be the projection from the linear
space (pi,,- - -, Pi,)- Let C; C IP"~" be the image of C under 77;. It is the the unique rational normal
curve of degree n — m through the points 71(p;), j & I. Then Y{ is the cone with vertex (p;,, ..., pi,)
over Secy(Cy).

By convent, when k = 0, we set Y}”’l = (Piys- -, Pi,)-

Fix I = {iy < -+ <in} C {1,...,n+3}, with m < n. Given k such that 0 < k < 5", set
d := 2k — 14 m. By Proposition[6.7, we have

(6.4) deg(Y?) = (” - k_ kot 1) and Sing(Y{) = Y{~2

Moreover, if n —misevenand dy = 2k; — 1+ m > 2k, — 1 +m = d,, then Yfz - YId1 and
d d] — dz

(6.5) rnul’cyf2 Y, = 7 + 1.

We also have analogs of Proposition [6.8| for sequences of blow-ups of Y¢, for |I| -1 < d <
n — 1. More precisely:

PROPOSITION 6.10. Let C C IP" be a rational normal curve of degree n, p1,...,pm € C distinct

n—m

points, with 1 < m < n, and set h := |"5™ |. Consider the following sequence of blow-ups:

- 71 Xq — P the blow-up of Y"1 := (p1,..., pm),
- 713+ Xo — Xy the blow-up of the strict transform of Y"1,

- 1ty ¢ Xy — Xy the blow-up of the strict transform of Y}”“h_l.

Let 7t : X — IP" be the composition of these blow-ups. Then, for any k < h the strict transform of Y+
in Xy_1 is smooth and transverse to all exceptional divisors.
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Proposition follows easily from Proposition In the next sections, we will blow-up
varieties of type Y/ for several subsets I C {1,...,n+ 3}, in a suitable order. In order to show the
smoothness and transversality of the strict transforms of the Yfl ‘s in the intermediate blow-ups,
we will need the following result.

PROPOSITION 6.11. Let W C Z C X be smooth projective varieties, and let Y C X be a projective
variety such that Sing(Y') = Z and Y has ordinary singularities along Z. Let my : Xw — X be the blow-
up of W, and denote by Zy, and Yy the strict transforms of Z and Y, respectively. Then Sing(Yw) = Zw
and Yw has ordinary singularities along Zy.

PROOF. Denote by Ey the exceptional divisor of 7ry. Then 7, (Z) = Zw U Ew. Let 7z, :
Xz, — Xw be the blow-up of X along Zy, with exceptional divisor Ez,, .

We claim that the composite morphism 7ty o 17, : Xz, — X is isomorphic to the blow-up
ntz : Xz — X of X along Z, followed by the blow-up of X7 along 77, ! (W). Indeed, by the universal
property of the blow-up ([Har, Proposition 7.14]), there exits a unique morphism f : X7, — Xz
making the following diagram commute.

X7 ! Xz
TZy J Tz
Xy — 2 }(

Note that all varieties in this diagram are smooth. Since Z and W are smooth, the intersection
Zw N Ew C Xy is smooth. Thus, any normal direction of Zy in Xy at a point p € Zy N Ew
is the image of a normal direction at p of Zy N Ew in Ew. In other words, the inverse image of
W in Xz, consists of the strict transform E of Ey in Xz,,. Therefore, the inverse image of the
smooth variety 77, (W) in Xy is precisely Ew. Using the the universal property of the blow-up,
and comparing the Picard number of these smooth varieties, we conclude that f : Xz, — Xz is
the blow-up of Xz along 7, (W), proving the claim.

Next we prove that Sing(Yy) = Z. Clearly Zy C Sing(Yw ). Suppose that this inclusion is
strict. Then the strict transform Yz, of Yy in Xz, is singular. Since f : Xz, — Xz is a smooth
blow-up, f(Yz,) C Xz is singular as well. But notice that f(Yz,) C Xz is the strict transform
of Y C X via rrz. Since Sing(Y) = Z and Y has ordinary singularities along Z, the blow-up 7z
resolves the singularities of Y. This contradiction shows that Sing(Yw) = Z. Moreover, since Y
has ordinary singularities along Z, the intersection of its strict transform Yz with the exceptional
divisor Ez of 77 is transverse. This implies that the intersection Yz, N Ez,, is also transverse, i.e.,
Yw has ordinary singularities along Zyy. O

We end this section by describing the intersection of some of the Y¢’s. This can be computed
using elementary projective geometry. In what follows we adopt the following notation. Given
two finite sets I and |, we define their distance to be

d(1,]) = |[(tup\ (I},
We start by intersecting varieties Y¢’s with the same dimension.

PROPOSITION 6.12. Let the assumptions and notation be as in Notation Let ), b c {1,...,n+
3} be subsets with cardinality my and my, respectively, and suppose that ) NI, = @. Let ki and ky be
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integers such that 0 < k; < "5™ i = 1,2, and my +2k; — 1 = mp + 2k, — 1 =: d. Set s = "13"2 gnd
suppose that d < n —s. Then

d d d—
YIl N YIZ - U Y] S,
J

where the union is taken over all subsets | C Iy U I, satisfying d(I;, ]) = s fori = 1,2.
Moreover, for a general point in any irreducible component of the above intersections, the intersection
is transverse.

PROOF. We note that the assumptions of the theorem imply that d = k; + k2 +s — 1 and
mq — mp = 2(](2 — kl).

Let ] C 1 UL be such that d(I;, J) = s for i = 1,2. We shall prove that Y]d_s - Yﬁ N Yﬁ. Write
J=TUJh where]; C I;,i =1,2,setl; :==|];| ,i =1,2,and £ = |]J| = {1 + {. The assumption
that d(I;,J) = s fori = 1,2 implies that k, — k; = ¢1 — {». We setk := ky — {1 = k1 — {5, and note
thatd —s = ¢+ 2k — 1.

Let x € de_s. Then there exists a point g € Secy(C) such that x € (q,p; | i € J ) = P‘. The

following two linear subspaces of this P
(x,pi|lich)=P" and (gq,p;|ic ) =P
have complementary dimensions. Hence there exists a point
ze(xpiliei)N{qgpilicl).
In particular, z € Secy,,(C). Since k + ¢, = kq, we conclude that x € Y}il. Similarly we show that
x ey
Now assume that x is a general point of Yfl’s. Keeping the same notation as above, we will

prove now that Yﬁ and Yle intersect transversely at x. This amounts to proving that Tx(Yﬁ )N
T, (Yfi2 ) =T (Y]d_s). By Terracini’s Lemma [Te], we have

To(Y]) = ((pilieh), (T,C|1<i<k), (T,Cli€h)),
Te(YR) = ({pili€ k), (T,C|1<i<k), (T,Cli€h)),
T(YES) = ((pilie]), (T,Cl1<i<k)),
where q1,...,qx € Caresuch thatg € (¢q; |1 <i<k).
Consider the linear subspaces:
Li = ((pilieh), (T,Clic]2)),
Ly == ((pilieh), (T,Cliei)),
L:= ((pilie])) C LiNL.
We have that dim((Lq, Lp)) < mj + mp + £ — 1, and equality holds if and only if L; N L, = L. On
the other hand, note that L intersects C in at least m; + m; + ¢ points, counted with multiplicity.

Therefore we must have dim((Ly, Ly)) = my +mp + ¢ — 1, and L1 N L, = L. It follows from the
description of the tangent spaces above that Ty (Y{) N T (Y{) = Ty (Y}i_s).
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It remains to prove that Yﬁ N Yg c Y Yfl_s. Write {p; | i € I} = {x1,...,xm,} and
{pili € L} = {y1,...,Ym}. Suppose that x € Yldl NY{. This means that there exist points
Z1, -y 2k, W1, - - ., Wi, € Csuch that:

(X1, X)) N (21, 2K) = @ = Y1, Ymy) N (W1, ..., Wy,), and
X € (X1,ee, Xmy, 21 Zky) VY1 oo Yy W1, -, Wy )
The assumption that d < n — s implies that my + mp + k1 + ko < n + 1, and thus
(X1, X, 20, Zky) N Yo Yy W, o, Why) =
({x1, o xm,zi, oz ) OV, Yy, W, Wiy ).
By relabeling the points if necessary, we may write, for suitable integers s, s, and r:
{x1,...x} = {21, xm ) N{wy, ..., W, }
Wyt = v ym ) N{z1,.. 21}
{zi=w1,....,zs =w,} = {z1,..., 21} N{w1,..., Wi, }.

Note thats; +r < k;, {i,j} = {1,2}, and we have

(6.6) X € (X1,0ee X, Y1, ee ey YsgrZ1, -0 21 )
Let Jo C I; U I be the subset corresponding to the points {x1,..., %5, y1,---,Ys, } C {P1, - Pnt3}-
Note that d(Jo, I;) = m; —s; +s;, for {i,j} = {1,2}. In particular we have
d(]O/ Il) + d(]O/ IZ) = 2s.
Suppose first that d(Jo, I;) = d(Jo, Io) = s. It follows from that

x €Join ((pi|i€Jo), Sec,(C) ).
Since s; +r < kj, {i,j} = {1,2}, we get that
[Jol +2r—1 = s1+sp+2r—1 < ky+kp—1 = d—s.

Hence x € YIdO’S .

From now on we consider the case when d(Jo, 1) # d(Jo, ). Without lost of generality, we
assume that

d(]o, 11) — d(](), 12) = mq —my+2sp) —2s57 > 0.

We will modify the subset Jy C I; U I by adding points of I; \ Jo or removing points of I N Jy
to obtain another subset ] C I U I, satisfying d(I;,J]) = s for i = 1,2. Note thatifi € I; \ Jo,
thend(JoU{i}, 1) = d(Jo,[1) —1and d(Jo U {i}, L) = d(Jo, ) + 1. Similarly, if i € I, N Jo, then
d(Jo\{i}, 1) =d(Jo, 1) —1and d(Jo \ {i}, ) = d(Jo, ) + 1. So we have to modify ], by adding

or removing exactly "1572 + s, — s; points of the appropriate I;.

Suppose first that ‘Il \ ]0| = my —s; > "5"2 4 sy — s1. This is equivalent to the inequality
s > sp. We construct J; C I U I by adding to Jo ™52 + 5 — s points of I \ Jo. Thend(I;, J1) = s
fori = 1,2, and it follows from that
x €Join ((pi|i€ ), Sec,(C)).
Since s; +r < ki, we get that

1| +2r—1 = (ko —k1+2s5) +2r—1 < ky+ky—1 = d —s.
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Hence x € Y]dl_s .

Next we suppose thats < sp. Let I, C I be the subset corresponding to the points {y1,..., s},
and set [, :== I UI}. Then d(l;, Jo) = s for i = 1,2, and it follows from that

x €Join ((pi|i€Ja), Secris,—s(C) ).
Since s; + 1 < ki, we get that
| +2(r+s2—s)—1 = m;+2(r+s)—s—1 < m+2k—1-s =d—s.

Hence x € Yﬁ’s .
O

6.5. The odd case n = 2h + 1. In this subsection we construct divisors A making X} 5 log
Fano when n = 2h + 1 is odd. In order to clarify the ideas we begin by developing an example.
The case n = 3 is in Section Therefore, the first non trivial case is n = 5. Let 7; : P> --» P* be
the projection from p;, and let C; C IP* be the unique rational normal curve of degree four passing
through 71;(p;) for j # i. By Propositionthe secant variety Secy(C;) C IP* is an hypersurface of
degree three, Sing(Sec>(C;)) = C; and multc, (Secp(C;)) = 2. Let A; be the cone over Sec,(C;), and
1"12 be the cone over C; with vertex p;, that is

A; = Join(p;,Secz(C)), T? = Join(p;, C).
We denote by D; the strict transform of A; in Xg .
LEMMA 6.13. Foranyi =1, ...,8 we have
deg(A;) =3, multy A; =3, multp A; =2.

Furthermore, let 7t : Y — X3 be the blow-up of X3 along the strict transform of I2. Then the strict
transform of D; in Y is smooth and transversal to the exceptional divisor of 7t over the strict transform of
2,

PROOF. Since A; is a cone over Secy (C;) by Proposition[6.7lwe have deg(A;) = deg(Sec2(Ci)) =
3, multy, A; = deg(Secz2(C;)) = 3, multp: A; = multc, Seca(C;) = 2.
Now, the projection 7; : IP° --» P from p; lifts to a morphism B, IP° — IP* and therefore induces
a morphism 7i; : X3 — P% Let Z be the blow-up of P* along C;. Since 7T, '(C;) is the strict
transform of I'?, by [Har, Corollary 7.15] there exists a unique morphism f; : Y — Z such that the
following diagram

fi

Y—Z

L,

5
X3 — p4

—_—

is commutative. Therefore, if Sec, (C;) is the strict transform of Sec, (C;) in Z we have f; ! (Sec> (C;)) =
D;. Now, to conclude it is enough to observe that by Proposition Secy(C;) is smooth and
transversal to the exceptional divisor over C;. O

.....

A=A UA,UA3U H4,...,8-
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Note that A; N A; is a 3-fold of degree nine. Let C C IP° be the rational normal curve of degree five
through py, ..., ps, L;j the line spanned by p; and p;, and C;; = 7;;(C), where 7;; : P° --» P3 is
the projection from L;;. Let Yi?j = Join(L;;, C) be the cone over C;; with vertex L;;. Then Sec,(C)
and Yg’j are both contained in A; N A;. Furthermore deg(Sec>(C)) = 6 and deg(Yi’j) = 3 yield

(6.7) AiNAj = Sec(C)U Y,
scheme-theoretically. We denote by D the strict transform of A in Xg.

PROPOSITION 6.14. Let us consider the following chain of blow-ups:
- blow-up the strict transforms in X3 of the lines L1 5, Ly 3, Lo 3 and of the rational normal curve C,
- blow-up the strict transforms of I3,T3,T3,
- blow-up the strict transform of Secy(C),
and let 7t : Y — X3 be the composition of these blow-ups. Then 7t is a log resolution of the pair (X3, D).

PROOF. Let as assume that there exists a point p € I7 N FJZ with p ¢ CUL;;. This means
that there are two lines Ly, 4, = (pi,q1), Lp;q, = (pj,g2) such that 1,92 € Cand p € Ly 4 N
Ly,q,- Therefore, the plane spanned by Ly, 4 and Ly 4, intersects C in at least four points. A
contradiction because deg(C) = 5. Now, let p € C be a general point and assume that T,I? =
']l"pl"]z. Then, p;, p; € T,I? N C and T,I? intersects C in p with multiplicity at least two. This
means that T,I? is a plane intersecting C in at least four points counted with multiplicity. Again
we find a contradiction. Now, since the strict transforms C and Ei,]- of Cand L;; in X3 are smooth
and disjoint we conclude that the strict transforms of I'? and T’ ]2 in X3 are smooth and intersects

transversally along the disjoint union C U Zi,]-.

Next, we want to prove that Secy (C) N Y?] =T?U F;T. Assume that there is a point p € Sec2(C) N ij
with p ¢ T? U FJZ. Then, there is are a secant line L;; = (q,t) with q,t € C and a line L, s = (r,s)
withr € L;jand s € Csuch that p € Ly N L, 5. The 3-plane spanned by L, Ly s and L;; intersects
C in at least five points. A contradiction. Now, let p € T? U FJZ- be a general point and assume that
T,Sec2(C) = Tlerf’j. We may assume that p lies on a secant line L,, ; = (p;, q) with g € C. Note
thatp; € L;j C ”IFPY%. By Terracini’s Lemmawe have that T,,C, T;,C C T,Secy(C). This means
that TSecz(C) = TPYS’]. is a 3-plane intersecting C in at least five points counted with multiplicity.

A contradiction. o
Now, after blowing-up L;j and C we know that the strict transforms I'?, FJZ of I? and F]z- are smooth

and do not intersect. Furthermore,

5662((:) N ?i,j = f12 U f]z
Now, we blow-up ths;flz/’s. By the previous part of the proof, Proposition |6.8/ and Lemma m

we know that now Sec,(C) and 171',]', where we keep the same notations for the strict transforms
on this further blow-up, are smooth, disjoint and intersects transversally along all the exceptional
divisors. By equation |6.7| we get that A; and A; are smooth and intersects transversally along the
disjoint union Sec,(C) U Yi,j.

Let us consider a third cone Ay. Since the p;’s are general Ay does not contain YZ?’]-. On the other
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.....

transversally C in py, ..., pg and intersects transversally all the subvarieties that have been blown-
up. Finally, by Proposition[6.8] and Lemma we conclude that the divisor

Zl U Zz U 53 U ﬁ4,...,8 U EXC(T[)
in Y is simple normal crossing. t

PROPOSITION 6.15. The variety X3 is log Fano.

PROOF. Let us consider the divisor D C Xg that is the strict transform of A = A; + Ay + Az +
Hy gin Xg . By Lemma we have

deg(A) =10, mult, A =7.

Therefore, we have

D =10H —7(E; + ... + Eg)
and

_(Kxg +eD) = (6—10e)H — (4 —7¢)(E1 + ... + Eg).

By Proposition @ in order two find a rational number € such that — (Kxg +€D) is ample we have
two consider its intersection with the curves of type L;; and R;. We have

—(KXg +€D) R, =4—-7¢

and

—(Kxg +€D)-Lij =6—10e —2(4 —7¢) = 4e - 2.
Therefore, for any 1 < € < 2 the divisor —(Kxs +€D) is ample.
Now, by Proposition we know that 71 : Y — X3 is a log resolution of the pair (X3, eD). We
denote by Ey, , Ec, Er2, Egey () the exceptional divisors over L;; , C, I? and Secz(C) respectively.
The canonical divisor of Y is given by

Ky = 7T*KX§ + 3(EL1,2 + EL1,3 + EL2,3) +3Ec + Z(EF% + El‘% + El‘%) + ESECQ(C)‘

Now, L; ; has multiplicity two for A;, A; and one for Ay with k # i,j. The curve C has multiplicity

two for any A;. The cone I'7 has multiplicity two for A; and one for A; with j # i. Finally Sec,(C)
has multiplicity one for any A;. Then we may write

* (eD) = 65 + 5€(EL1,2 + EL1,3 + ELZ,S) + 6€Ec + 4€(El"% + El"% + El"%) + 3€ES€C2(C)
and
Ky = 7" (Kys +€D) + (3 —5€) ) | Er,; + (3 — 6€)Ec + (2 — 4€) } | Ep2 + (1 — 3€) Eseey () — eD.
i,j i

Therefore, for any € < 3 all the discrepancies are greater than —1. We conclude that for any

1 < e <  the divisor —(Kxs +€D) is ample and the pair (X3, €D) is kit. O

Let us move to the general case. We follow Notation Foreach1 <i <3, letA; C X)) 13 be
the strict transform of the divisor Yl?h C IP", and denote by Hy,. 13 C X], 5 the strict transform of
the hyperplane {p4, ..., pnt3) C P"3.
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THEOREM 6.16. Let n = 2h +1 > 5 be an odd integer. Set

D:=AUAUA3U H4,“_,n+3 - XZ+3.

For any 3=3 < e < 57 the divisor —(Kx» , +€D) is ample, and the pair (X};

.3 €D) is kit.

For the proof of Theorem we will need the following.

PROPOSITION 6.17. Let the assumptions be as in Theorem and follow Notation For 0 <
m < n — 3, we define a modification X, of X}, , 5 recursively as follows:

- Xo = X3

- Xog1 is the blow-up of Xy along the strict transforms of Secy1(C), and of the Yf}‘“ s(0<k<
h - 2)/

- Xy is the blow-up of Xoi_1 along the strict transforms of the Y**'s, and of le,’§,3 1<k<h-1),

- Xy is the blow-up of X,,_3 along the strict transform of Sec;,(C).
Then for any k the strict transforms of Secyy1(C) and of the szH s in Xk, and of the Y2's and Y74 5 in

Xok—1 are smooth, disjoint and intersect transversally all the exceptzonal divisors.
In particular, let 7t : Xy, — X, , 5 be the composition of these blow-ups. Then 7t is a log resolution of the
pair (XI5, D).

PROOF. We proceed by induction on X,,. The center of the blow-up X411 — X, is a disjoint

union of smooth subvarieties, all transverse to the exceptional divisors of X, — Xo. For simplicity
of notation we will denote by Z the strict transform of a subvariety Z C X" ni3 inany X,
First of all note that by Proposition [6.11] the blow-up py, ..., pn+3 resolves the vertex singularity
of the Y and does not produce any effect on the singularities of the other Y?’s involved in the
resolution. Since the p;’s have been blown-up the strict transforms of C and of the lines Yllj do not
intersect in Xy and the statement is verified for m = 0. Now, by Proposition[6.12)in X we have

YzﬂYz CUY1 YN Y5 = YilrUYils'

By blowing-up the Y1 ’s and C we separate the Y?’s and Y122 ;- In X; the Y?’s and Y1 » 3 are smooth

and disjoint. So the statement is verified form =1
Now, suppose that the statement is true m = 2k. We will show that it holds for Xy, ,1 and Xok.».

By Propositions . and we know that the subvarieties YZHZ C Xor1, 1 <7 < 3, and

Secy.2(C), Yl j+3 C Xok42, 1 <i < j <3, are all smooth and transverse to the exceptional divisors
over Xj.
It remains to show that the the

Secy4»(C) and the Yf]’.‘+3’s in Xopio.
Consider the blow-up X1 — Xok. By Proposition on X5, we have

Y2k+2/ Y2k+2

s and 123 are pairwise disjoint in X1, and similarly for

Lr,s

Y242 1 }7j2k+2 = Secy1(C) U izjlyﬂl Y2H2 Y22 = Y2k+1 UYZk“.

By the induction hypothesis, Sec,1(C) and ?izlfﬂ are smooth and disjoint. So the intersection

is everywhere transverse. We conclude that on Xy 1, which is obtained from Xj; by blowing-

up Secy;1(C) and Y2k+1 the Y2k+2’s and lelgz are pairwise disjoint. Note that the 171-2k+2’s and
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1712’%2 are smooth because their singular loci have been blown-up in the preceding step. Further-

more, keeping in mind that Sing(Sec;(C)) = Sec;—1(C), Sing(Y*?) = YZ, Sing(Yi,th) = Yf;‘l,
Sing(Y7557) = Y7 5, we have the following.

CLAIM 6.18. We have Seci,1(C) C Sec;—1(C) for t > k+2, Secy,1(C) C Y**2 for t > k,
Secy1(C) C Y%]?H for t > k+1, Secx1(C) C Y755 for t > k+1, and Secq N Yf’;gz —

1
YZRU YUYz,
For any i,7,s € {1,2,3} and t > k+ 1 we have Yff“ C Y+1 while Yf;‘“ NYX+ = vy Yiz,f,s'
Furthermore, Yi,]’-”rl C Sing(Sect(C)) = Sec;—1(C) forany t > k+ 3, while Yf;‘“ NSing(Seck12(C)) =
YU Y]?k, and Yf]’-‘ﬂ C lertzgz for any t > k. Finally, Yf]’.‘ﬂ C Y?*2 for any i,j,r € {1,2,3} and
t >k+1,and for t = k+ 1 we have

Y2k ifr € {ij}

k ) k ) 7, 7
Y2 N Sing (Y = { S UYRUYE ifr g {ij}
j ijr 7

1
Moreover, for a general point in any irreducible component of the above intersections, the inter-
section is transverse.

PROOF. Let us prove the last equality. The others can be proved by similar arguments. We

have Yi?']].‘+1 NY?+2 = (Yl.zjl.‘jz N Y2542) 0 Y2+ Now Yl.z]'.‘jZ N Y22 is the cone with vertex p, over

Yf}‘“ N Secy,1(C), and by Proposition the last intersection is given by Y?* U szk. Therefore,
Y2EP N YRR = Y24 U Y2 and by Proposition [6.12] (YA U YZ) N YA = YU YR U

1L,],r
Y2k O

ijre

This means that we blow-up either a smooth variety contained in in the singular loci of the
strict transforms of the cones that have not yet been blown-up or a smooth variety not intersecting

P

these strict transforms. Therefore, by Proposition (6.8 Seci»(C) is smooth and transversal to all
the exceptional divisors. By Proposition |6.10|the same is true for the Yiz]’-“rs’s. On the other hand,

by Proposition |6.11| the singularities of Sec;(C) for t > k + 3, of the 1712;+ s for t > k+2, and of

the 171,2”2’5 and 1712”9241“32 for t > k are not affected by these blow-ups, so that we can proceed with the
induction.
Now consider the blow-up Xpx,» — Xok11. By Proposition on X1 we have

V2k+3 _ 2k+2 | y2k+2 V2k+3 ~ v2k+3  _ 2k+2 | y2k+2
Seciio(C) NYAT = Y2 Y242, VA3 Y2 — y2ke2 g y2he2,

By the induction hypothesis, the 171-27‘+2’s and 1712’?5,2 are smooth and pairwise disjoint. So the in-
tersection is everywhere transverse. We conclude that on Xy ,, which is obtained from Xy;,1 by

Y?*2’s and Y75, the varieties Secy;>(C) and the 171%]’.‘+3’s are pairwise disjoint.

Furthermore, arguing as in the proof of Claim we have the following.

blowing-up the

CLAIM 6.19. Forany t > k+1and i,j € {1,2,3} we have leggz C YIZ;H and Yi’;gz C YH*2,
Moreover
Y2 ift >k+3,

Y42 Seey (C) = ]
125 (186(C) =) 3B Gyt Gyt g > kg2
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For the YZ.ZHZ’S we have Y; C Sec;(C) fort > k+1, Yf’”rl C Yitzgz for t > k+ 1. Moreover,
Yl-2k+2 - Y]-ZH'Z fort >k+1, Yfkﬂ C er,?“l fort > k+2andi,j,r,s € {1,2,3}. Finally

Y242 sz+3 Y2 ifi € {rs},
SeckH(C) UYZFLO YRS ifi ¢ {rs}).

Moreover, for a general point in any irreducible component of the above intersections, the inter-
section is transverse.

By Proposition l6.10] the 171.2”4’s and 17121;34 are smooth and transverse to all the exceptional
divisors. By Claim |6.19|we blow-up either a smooth variety contained in in the singular loci of the
strict transforms of the cones that have not yet been blown-up or a smooth variety not intersecting
these strict transforms. Therefore, by Proposition |6.11| the singularity of the Y2t+2’ letzgz and

—_——

Seci(C) for t > k + 2, and of the ijfﬂrs for t > k + 1 are not affected by these blow-ups.

On X,,, 3, the divisors A1, Ay and A; are smooth and transverse to the exceptional divisors over X,

by Propositions and

The same is clearly true for Hy _ ,.3. Moreover, the same argument used above shows that their

—~—

intersection are pairwise smooth and everywhere transverse. At the last step we blow-up Secy,(C).
By Proposition we have

Zl N 52 N 83 = Sech(C).

So, after the blow-up of Secy, (C ) in the last step, we get a log resolution of (X!

n+3'D)' O

PROOF OF THEOREM [6.161 We have
D=M+A+A3+Hy 43~ (3h+4) (3h+1)(E1+...—|—En+3).

.....

Recall from Proposition [4.8| that the Mori cone of X} ; is generated by the classes R;’s and L;’s.
One computes
—(Kx» ,+€D)-R;=2h—€(3h+1) and — (Kx» , +€D)-L;; =€(3h—2) —2h +2.
Therefore —Kx» . — €D is ample provided that %Z 2 <e< A +1
Next we check when the pair (X];, 5,€D) is klt. Let 77 : X=X, 2 — X"
of (X, 3,€D) introduced in Prop051tlonm 6.17|above. We have

113 be the log resolution

h h—1 h—1
Ky = m*Kxr , + Y (1 = 2k)Egeq(c) + Y (n — 2Kk) ZEYl;f,l + 3 (n =2k = 1) (3 Eya + Eyax ).
k=1 k=1 ij k=1 i .

Here we denote by Ey the exceptional divisor with center Y’ C IP". In order to compute discrep-
ancies, we will compute the the multiplicities of the Y?’s along the images in IP" of the subva-
rieties blown-up by 7. By Proposition we have multg,, c) Sec;,(C) = h —k+ 1. Moreover,
multSECk( ) Yzh =h—-—k+ 1,

multgeck(c) Sech(C) =h—k+1 ifre {1,]}1
multSeckH(C) Sech(C) =h—k if r % {i,j},

multg,, (o) Secy(C) =h —k+1 ifr=1i,
multseckH(C) Sb’Ch(C) =h—k if r 75 i,

multylg]}g] YE h — {

mult, th = {
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and multyzk Y2 = = multg,,  (c)Secy(C) = h —kforfork =1,..,h — 1. Let A C IP" be the divisor
whose strict transform is D. We have
multseck(c) A = 3(h —k -+ 1),

multys1 A = 2(h—k+1)+h—k=3(h—k)+2,
L]
(6.8) multyy A = 3(h—k),
ijr
multyo A = h—k+1+2(h—k)=3h—3k+1.

Now, equalities[6.8] yield:
(D) = D+YI_13(h—k+1)Ese,(c) + Lis1(3(h—k) +2) Ly Eyaict
+ A (8 — 3k + 1) Ty Eya + =1 3(h — K)Eyac ,
and hence
K)} = ﬂ*(sz+3+€D) +Zk 1(2”1 2k+1—3€(l’l k+1))ESeck( Q)
(Zh 2k+1—€(B(h—k)+2)) Zz,] Y21
)
( (h—k)—e(Bh—3k+1))Y; Eyx
+ Zk:l( (h—k) —e(3h —3k))Eyx_—eD.

Therefore the pair (X", 5, €D) isklt forany 0 < e < 3. O

n+37

6.6. The even case n = 2h. Let us begin with the case n = 4. Forany i,j = 1, ...,7 we consider
the projection 7, : P* --» IP? from the line L;; = (p;, p;). Let C;; be the unique conic through the
points 77; ;(px) for k # i,j, and A; ; = Join(L; ;, C) the cone over C; ; with vertex L; ;. By Proposition
the secant variety Secy(C) C IP* of the rational normal curve C through the p;’s is an hyper-
surface of degree three, Sing(Sec,(C)) = C and multc(Secz(C)) = 2. Finally let Hs 67 be a general
hyperplane through ps, ps, p7, and consider the divisor

A= A1,2 U A3,4 U S€C2(C) U H5,6,7.

PROPOSITION 6.20. Let us consider the following chain of blow-ups:

- blow-up the strict transforms of the lines L1, and L34,
- blow-up the strict transform of the rational normal curve C,

and let 7t : Y — X3 be the composition of these blow-ups. Then 7t is a log resolution of the pair (X3, D).

PROOF. First of all we want to prove that A1 N Az4 NSec2(C) = CUL13ULj 4 ULyzULpg.
Assume that there is a point p € A1, N Az4 N Secy(C) such that p ¢ CUL1j3ULj4ULyz U Lpy.
Since p € A1 NSecy(C) there is secant line L,, = (q,7) with g, € C, and a line L;; = (s,t)
with s € L1, and t € Csuch that p € L, N Lss. The lines L1, Ly, L5 generate an hyperplane
intersecting C in at least five points. On the other hand, deg(C) = 4 forcesq = p1 = sand r = ¢.
Thatis p € (A1, NSec2(C))\ (CUL;3ULyaULysULys) implies that there exists a pointr € C
such thatp € Ly, = (p1,7).

The same argument shows that p € (A3z4 N Seca(C)) \ (CUL13ULaULyzULys) implies that
there is a point u € C such that p € L3, = (p3,u). Since p ¢ CUL13U L1 4 U Ly3U Ly4 the lines
Li,, L3, L1o span an hyperplane intersecting C in at least five points. A contradiction.
Now, note that deg (A1, N Az 4 NSeca(C)) = 12. Since multc(Seca(C)) = 2 we get that

Al,Z N A3,4 N SEC2(C> =CuU L1,3 U L1,4 U L2/3 U L2,4



6 Blow-ups of P", n > 4 65

scheme-theoretically. After blowing-up the L;;’s the strict transform of the A,; ; are smooth. Sim-
ilarly, by Proposition |6.8 blowing-up C we have that the strict transform of Sec(C) is smooth.
Clearly the hyperplane Hs g7 intersects transversally C in ps, pe, p7 and intersects transversally all
the subvarieties that have been blown-up. Again by Proposition [6.8 we conclude that the divisor

—_—

Z]/z U E3,4 U SECZ(C) U ﬁ5,6,7 U EXC(K)

in Y is simple normal crossing. O
PROPOSITION 6.21. The variety X is log Fano.

PROOF. We consider the strict transform D C Xg’ of A = A1+ Ay + A3+ Hy g in Xg. By
Lemmal6.13|we have
deg(A) =8, mult, A =5.
Therefore, we have
D =8H —5(E; + ...+ Es)
and
_(Kxé +eD) = (5—8¢)H — (3—5¢)(E1 + ... + Ep).

Intersecting with the curves of type L;; and R;, by Proposition we get that —(KX;; +e€D) is

ample forany 3 < € < 3

< .
Now, by Propositionwe have that 77 : Y — X3 is a log resolution. Furthermore we have
n*(eD) = €D +3¢(Ey,, + E1,,) +4€Ec

and N

Ky = 7" (Kys +€D) + (2 - 3¢) ZELI.J. + (2 —4e)Ec —eD.

L]

Then for any € < 3 the pair (X2,€D) is klt. We conclude that for any 3 < ¢ < 2 the divisor
—(Kys +€D) is ample and the pair (X7, eD) is kit. O

.....

and A;; the strict transform of Yiz;“’l according to Notation @

THEOREM 6.22. Let n = 2h > 4 be an even integer. Set

-----

For any % < € < ¥=1 the divisor —(Kxn , +€D) is ample, and the pair (X}, ;,€D) is kit.

For the proof of Theorem we will need the following results.

LEMMA 6.23. Any point of Yfféfl N Y;Z’l which is smooth for both Yf’g’l and Yé’i’l is a smooth point
of Yfﬁ‘l N Y;ﬁ_l as well.

PROOF. Letx € Y4~1 N Y2"~1 be a point such that x ¢ Sing(YZ: 1)U Sing(Yi’i’l). It is enough
to prove that the intersection of Yfg’l and Yg’i’l in x is transverse, that is T Yf’;’l # Ty Yglffl.
Assume by contradiction that Tfog_l = Tngz_l = H?"-1 Since x € Yfg_l by Terracini’s Lemma

[Te] we have
I{z}li1 = <p1, P2, Tzl C, ceey Tzh_1C> = <P2/ P3, Twlcl e Twh—1C>
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for z;,w; € C. Now, lets = [{z1,...,z_1} N {w1, ... w1}, r = {z1, ., zn_1} N {p3, pa}|, and
r = |[{wy, ..., wp_1} N {p1, p2}|.- Note that since z; ¢ {p1, p2} and w; & {p3, pa} for any i, we have
s <h—1—max(r,t). We may assume r > t so that s < h —1 — r. Therefore H?"1 intersects C in
at least

22(h—=1)—s)+2—r+2—t>2h+2+r—t>2h+2
points counted with multiplicity. A contradiction because the rational normal curve C has degree
2h. O

PROPOSITION 6.24. Let the assumptions be as in Theorem and follow Notation For 0 <
m < n — 3, we define a modification X, of X, , 5 recursively as follows:

_ yn
- Xo = Xn+3’

- Xok1 is the blow-up of Xo along the strict transforms of Secy1(C), of the Yf}‘“ s, and of Yf’;gh
(0 <k < h —3), (note that for k = 0 we do not have Yf’;ﬁgh),

- Xy is the blow-up of Xpr_1 along the strict tmnsforms, of the Y?*'s, and of the Yf]’-‘/r’s (1<k<
h—2).
- Xy—3 is the blow-up of X,,_4 along the strict transforms of Sec,_1(C), of Yf’g*“o’ and of Y;Z’g’ .

Then for any k the strict transforms of Secy.1(C), of the 1/1-’]“1’5, and of Y55, in Xoi; of the YX's and of
the Yl?]kr’s in Xp_1 are smooth, disjoint and intersect transversally all the exceptional divisors.

In particular, let 7t : X,,—3 — X, 5 be the composition of these blow-ups. Then 7t is a log resolution of the
pair (XI5, D).

PROOF. Following the same notation of the proof of Proposition[6.17/we proceed by induction
on m. By Proposition the blow-up of py, ..., pn13 does not affect the singularities of the Y¢’s
involved in the resolution. Since the p;’s have been blown-up the strict transforms of C and of the
lines ng do not intersect in Xy and the statement is verified for m = 0. Now, by Proposition m
in Xg we have: Y2 NY? = CUYL, V2N Y2 = {pj, pr,ps}ifi & {j,7,s}, Y2 N Y}, =Y, UY], and

i,j’ jrs 7 N i,j,r N ir’
Yl%jﬂ’ N Yl%j,s = ng. By blowing-up the Yilrj’s and C we separate the Y?’s and the Y7, 's which are

i,jr
smooth and disjoint. So the statement is verified for m = 1.
Now, suppose that the statement is true m < 2k — 1. We will show that it holds for Xy, and Xy 1.
By Proposition we have:

U1 ~ y2k+1 vk vk
Yii T NY = YUY,
Seck1(C) N Yf]’.‘“ = Y*uU Y],Zk,
Sht1 ~ okt _ 21, y2k—1 | y2k—1,  y2k—1  y2k-1
YA Ay = Seqi(C) UYZ T UYETUYE Uy Uy,
and finally
2%l 2%-1
Seck+1(C) N Y15, = U v

{i,j}c{1,2,3,4}
Since all the irreducible components of these intersections have been blown-up either at the step
m = 2k — 2 or at the step m = 2k — 1 we see that the strict transforms of Secy; (C), of the YZ.ZJIFH’S,

and of le1§+§14 in Xy are disjoint. Furthermore, by Propositions|6.8{and |6.10| these strict transforms
are smooth and transversal to all the exceptional divisors. Furthermore, as in Claims and
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it is easy to check that the intersections of Yf’;g , with Sec;1(C), 1/2]“rl and le]t . for t > k are union
of cones of these four types and of dimension d < 2k + 1. This fact together with Claims and
60.19/implies that we blow-up either a smooth variety contained in in the singular loci of the strict
transforms of the cones that have not yet been blown-up or a smooth variety not intersecting these
strict transforms. By Proposition these blow-ups do not modify the singularities of the strict
transforms of the cones that we are going to blow-up in the following steps.

Now, let us consider Xpy1. By Proposition [6.12] we have:

) ],r,s 4

Y2k+2 N Y2k+2 — Seck+1 (C) YZ]k+l,
Y2k+2 N Y2k+2 — Y2k+1 U Y2k+1
] 7
2k+2 2k+2 Zk Zk 2k 2k 2k Zk
YA2ayHe vy gy Uy uYFuyHuy;

As before, all the irreducible components of these intersection have been blown-up either at the
step m = 2k or at the step m = 2k — 1. Therefore, by Proposition the strict transforms of
the Yizk+2’s, and of the Yf]'f;rz’s in Xpr41 are pairwise disjoint, smooth and transversal to all the

exceptional divisors. As in the previous step it is easy to check that the intersections of the Yzzjka

with Sec;41(C), Y2t+1 Y2 and Yf]t:z for t > k + 1 are union of cones of these four types and of
dimension d < 2k + 2. As before, this fact together with Claim and Proposition implies
that these blow-ups do not affect the singularities of the strict transforms of the cones that will be
blown-up in the next steps.

Now we have to take care of the last step. First of all we need to understand the intersection of

Y7~ and Sing (V2! 1) = v2L 3.

CLAIM 6.25. We have
YZh 1my2h3 Y2h 4UY2h 4UY2h 4UY2h 4.

ir,s jr.s

Moreover, for a general point in any irreducible component of the above intersections, the inter-

section is transverse.
PROOF. We write YZh 'nyh=3 = (YZh 'n le]hr yNY?=3 By Propos1t1onwe get YZh 'n

Y.2h 1 Y2h 2yy-2 Now y2h=2 ﬂYZh 3 = (YZh 2 ﬂYzh 2) erg 2 which by Proposmon

ij,1,s ijr i,j,s ijr ij,r i,r,s

is equal to (Y2h 3 U Y#-3) N Y2~ which in turn by Proposition 6.12|is equal to Y?=* U Y24 U

1,],7,5 Lr,s
Yff s 4. In the same way we have lejhs 2N Yzh S =y2hty lef S ‘U szr s 0
: v2h—1 V2h-1 1 e V213 V213
The strict transforms Y7, and Y3, in X4 are still singular along Y7, ~ and Y3~ respec-

tively. However, by Claim we have

1712,’;*1 N Sing(f/g{l) = 1732,2*1 N Sing(f/lz,g*l) = Q.
Hence, Lemma yields that 1712,’;_1 N 173%’1_1 is smooth. Therefore, after blowing-up the strict
transforms of Sec;,_1(C), of Y12,1;3 and of Y;Z%, by Proposition in X,,_3 the strict transforms

Sec;,(C), Yfg_l 173?2_1 are smooth and intersect transversally all the exceptional divisors. We al-
ready know that the intersection 1712’;’1 N )73%1:1 is transversal. On the other hand, by Proposition

6.12/in X,,_3 the intersection Sec,(C) N 171-2;‘_1 = 171-2h_2 U 17]-2h_2 is a union of two smooth, disjoint
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subvarieties. Therefore Sec;,(C) N \712;1 ~1is transversal as well. To conclude it is enough to observe
that clearly in X,,_3 the strict transform ITI5,_._,2;1+3 is transversal to Secy, (C), Y21 y2h=1 and to all
the exceptional divisors. 0

PROOF OF THEOREM We may write:
D~ (3h+2)H — (Bh—1)(E; + ... + Ep43)
and
~Kxn, —€D ~ (2h+1—e(3h+2))H — (2h — 1 — (3 — 1)) (Ey + ... + Ezysa).
Now, we have
(—Kx» ,—€D)-Ri=2h—1—¢€(Bh—1) and (—Kx» , —€D)-L;; = €(3h —4) —2h +3.

By Proposmon.the divisor —Kx» = — €D is ample for gz 3 <e< %Z 1

Now, our aim is to compute the mult1phc1t1es of Secy,(C), Y41, and Ygﬁ ! along the subvarieties
blown-up in the resolution 7t : X=X, 1— X}, 3 of Proposition First of all, we have:

multg,, ,(c)Secy—1(C) =h—k+1 ifije {rs},
mult, 1 Yl%]h_l = ¢ multg,, ) Secy1(C) =h —k if eitheri € {r,s}orj € {r,s},
' mults,, ,(c)Secn-1(C) =h—k—1 ifij¢ {r,s},

multg,, ,(c)Secy—1(C) =h—k—2 ifi,j¢ {T,s,t}, -
multhk Y2h T— mults,, . (c) Sec, 1(C)=h—k—1 ifeitheri € {r,s,t}orje {rs,t},
multg,, (o) Secy,1(C) = h —k ifi,j e {r,s,t},

multyz Y7 ! {mults“"“@ Secy1(C) =h—k—1 ifr¢ {ij},

multggck(c) Sech_l(C) =h—k ifr e {Z,]},
fork =1,...,.h — 1. Finally,

multyz Y7 2 = multg,, () Y7 = multseq, (¢) Seep1(C) = h —k,

fork=1,..,h—1. Now, let us consider the component Sec;,(C). We have:
multg,, ) Secy(C) = h—k+1,

multyzk—l Sec,(C) = multg,,, (c)Secn(C) =h —k,
multyzk Sec;,(C) = multg,, ,c)Secy(C) =h—k—1,
multyzk Sech(C) = multg,, ,c)Seci(C) =h—k,
multyﬁg’sh Sec,(C) = multg,, ,(c)Sec,(C) =h—k—1.
Let A C IP" be the divisor whose strict transform is D. We have:
multg,., )& = 2(h—k)+(h—k+1)=3h—-3k+1,
multyzHA = 2h—-k)+(h—-k)=(h—-k+1)+(h—k—1)+ (h—k) =3h — 3k,
(6.9) multyzkA = (h—k-1)+h—-k)+(h—k—-2)=3h—3k—-3,

Ljr

multyzk A

(h—k—1)+ (h—k)+ (h—k) =3h—3k—1,
2(h—k)+h—k—1=3h—3k—1.

mUItYZk 1 A
1,234
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Let 7w : X := X, 3 — X1, 5 be the log resolution of the pair (X[, 5, D) in Proposition m The
canonical divisor of X is given by:
Kg = m*Kxr 4+ Y021 (1 — 2k)Esee(c) + Tiot (n — 2k) ¥y Eyair
+ Xm (1 — 2k = 1)(5i By + L By ) + Ea (n - 2K)E Y-
The equalities yield:
(D) = D+ X1 (3h — 3k + 1)Eseey(c) + Li—1 (3h — 3k) Ly Eyaiet
+ X23 (3h — 8k — 1) i By + S5 (81 — 3k = 3) K By
+ L4253 = 3k — 1)Eyaca

and
Ky = m*(Kxr +eD) :—}(Zh — 2k — €(3h — 3k + 1)) Esee, ()
“1(2h— 2k — e(3h —3k)) T;; Eyoi
+ Y1 3(2h —2k—1—€(3h — 3k —1)) T Eyx
13(2h—2k—1—e(3h—3k—3)) L, Eya
12(2h — 2k — €(3h — 3k — 1)Eyan — eD.

Fore < %Z 2 all the discrepancies are greater than —1. Finally, for Zh S <e< %Z 1 the divisor

—Kx»n, , —€eDis ample and the pair (X!, 5,€D) is Klt. 0



CHAPTER 5

Moduli of Curves

To fix the ideas, we work over an algebraically closed field k. Consider a class of objects M

over k, for instance the class of closed subschemes of IP" with fixed Hilbert Polynomial, the class
of curves of genus g over k, the class of vector bundles of given rank and Chern classes over a
fixed scheme, and so on. We wish to classify the objects in M.
The first step is to give a rule to determine when two objects of M are the same (usually isomor-
phic) and then to give the elements of M up to isomorphism. This determines M as a set. Now
we want to put a natural structure of variety or scheme on M. In other words we are looking
for a scheme M whose closed points are in a one-to-one correspondence with the elements of M,
and whose scheme structure describes the variations of elements in M, more precisely how they
behave in families.

DEFINITION 0.1. A family of elements of M, over the parameter scheme S of finite type over k, is a
scheme X — S flat over S, whose fibers at closed points are elements of M.

The first request on M, to be a Moduli Space for the class M, is that for any family f : X — S
of objects of M there exists a morphism ¢ : S — M such that for any closed point s € S, the image
f(s) € M corresponds to the isomorphism class of the fiber X; = f~1(s) in M.

Furthermore we want the assignment of the morphism ¢ to be functorial. To explain the last sen-
tence consider the functor F : Gch — GSets, that assigns to S the set F(S) of families X — S of
elements of M parametrized by S. If S — S is a morphism, for any family X — S we can consider
the fiber product X x5S — S, that is a family over S. In this way the morphism S' — S gives
rise to a map of set F(S) — F(S'), and F becomes a controvariant functor.

In this language to assign a morphism ¢ : S — M to any family X — S with the required proper-
ties, means to give a functorial morphism « : ¥ — Hom/(—, M).

Finally we want to make M unique with the above properties. So we require that if N is any other
scheme, and § : F — Hom(—,N) is a functorial morphism, then there exists a unique morphism
e : M — N such that § = h, o«, where h, : Hom(—, M) — Hom(—,N) is the induced map on
associated functors.

DEFINITION 0.2. We define a coarse moduli space for the family M to be a scheme M over k, with a
morphism of functors « : F — Hom(—, M) such that

- the induced map F (Spec(k)) — Hom(Spec(k), M) is bijective i.e. there is a one-to-one corre-
spondence with isomorphism classes of elements of M and closed points of M,
- w is universal in the sense explained above.

We define a tautological family for M to be a family X — M such that for each closed point m € M,
the fiber Xy, is the element of M corresponding to m by the bijection F (Spec(k)) — Hom(Spec(k), M)
above.

70
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A jump phenomenon for M is a family X — S, where S is an integral scheme of dimension at
least one, such that all fibers X; for s € S are isomorphic except for one X, that is different. In this
case the corresponding morphism S — M have to map s¢ to a point and all other closed points of
S to another point, but this is not possible for a morphism of schemes, so a coarse moduli space
for M fails to exist.

EXAMPLE 0.3. Consider the family y> = x% + t?x + > over the t-line. Then for any t # 0 we
get smooth elliptic curves all with the same j-invariant
6
4t _ 103, 4 ,
416 + 2716 31
and hence all isomorphic. But for t = 0 we get the cusp y*> = x°. This is a jump phenomenon, so
the cuspidal curve cannot belong to a class having a coarse moduli space.

]’:123.

DEFINITION 0.4. Let F be the functor associated to the moduli problem M. If F is isomorphic to a
functor of the form Hom(—, M), then we say that F is representable, and we call M a fine moduli space for

M.

Let « : F — Hom(—, M) be an isomorphism. In particular 7 (M) — Hom(M, M) is an
isomorphism, and there is a unique family X;; — M corresponding to the identity map Idy; €
Hom(M, M). The family X;, is called the universal family of the fine moduli space M. Note that for
any family X — S there exists an unique morphism S — M, such that X — § is obtained by base
extension from the universal family. Conversely, if there is a scheme M and a family X;; with the
above properties then F is represented by M.

REMARK 0.5. If M is a fine moduli space for M then it is also a coarse moduli space, further-
more the universal family X;; — M is a tautological family.

A benefit of having a fine moduli space is that we can study it using infinitesimal methods.

PROPOSITION 0.6. Let M be a fine moduli space for the moduli problem M, and let Xy € M be an
element corresponding to a point xo € M. The Zariski tangent space Ty, M is in one-to-one correspondence
with the set of families X — D over the dual numbers D = kle]/ (€?), whose closed fibers are isomorphic
to X().

PROOF. We know that to give a morphism f : Spec(D) — M is equivalent to give a closed
point xp € M and a tangent direction v € Ty,M. But a morphism f : Spec(D) — M corresponds
to a unique family X — Spec(D) whose closed fibers are isomorphic to Xy € M corresponding to
the point xg € M, where xo = f((Spec(D))yeq)- O

Let F : Gch — Gets be the functor associated to the moduli problem M. Suppose that F is
representable, and let M be the corresponding fine moduli space. For any local Artin k-algebra
A we have that Spec(A) is a fat point and (Spec(A)),eq is a single point. For any xy € M we can
define the infinitesimal deformation functor of F as the functor Art — Gets that sends A in the
set of morphisms f : Spec(A) — M such that f((Spec(A))eq) = xo. Clearly studying this functor
we get information on the geometry of M in a neighborhood of xo.

Recall that a pro-object is an inverse limit of objects in 2tt, the category of Artin local algebras
over a field k. If F : drt — Gets is a deformation functor we say that F is pro-representable if it is
isomorphic to Hom(—, R) for some pro-object R.
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PROPOSITION 0.7. Let F be the functor associated to the moduli problem M, and Xo € M. Consider
the functor Fy that to each local Artin ring A over k assigns the set of families of M over Spec(A) whose
closed fiber is isomorphic to Xo. If M has a fine moduli space, then the functor Fg is pro-representable.

PROOF. Let M be a fine moduli scheme for M, and let xo € M corresponds to Xy € M. Let
Owm,x, be the local ring of M at xg and 9, its maximal ideal. The natural homomorphisms

e — OM,xo/mio — (’)M,XO/?)R?(O — OM,xO/me,

makAe (Om,x /DY) into an inverse system of rings. The inverse limit l&n OM,x, /M, is denoted
by Om,x,, and is called the completion of Oy, with respect to My, or the M, -adic completion of
OM,x,-

SirA:IézoM is a fine moduli space, each element of F((A) corresponds to a unique morphism Spec(A) —
M that maps (Spec(A)yq) = Spec(k) at xo. Such morphism corresponds to a ring homomorphism
Owm,x, = A. We conclude that the functor F is pro-representable and that it is represented by the
pro-object Oy »,, My,-adic completion of Oy . U

DEFINITION 0.8. A controvariant functor F : &chy — Gets is a sheaf for the Zariski topology, if for
every scheme S and every {U;} open covering of S, the diagram

FS) = []FU) =T[FU:nt)
is exact. This means that:

- given x,y € F(S) whose restriction to F (U;) are equal for all i, then x =y,

- given a collection of elements x; € F (U;) for each i, such that for each i, j, the restrictions of x;, x;
to F(U; N U,;) are equal, then there exists an element x € JF(S) whose restriction to each F (U;)
is x;.

PROPOSITION 0.9. If the moduli problem M has a fine moduli space, then the associated functor F is
a sheaf in the Zariski topology.

PROOF. Since M has a fine moduli space, for any scheme S we have F(S) = Hom(S, M).
Furthermore morphisms of schemes are determined locally, and can be glued if they are given
locally and are compatible on overlaps. U

REMARK 0.10. Using Grothendieck’s theory of descent one can show that a representable func-
tor is a sheaf for the faithfully flat quasi-compact topology, and hence also for the étale topology.

Examples of Moduli Spaces. We will give some examples of representable functors.

EXAMPLE 0.11. (Grassmannians) Let V be a k-vector space of dimension 7, and let » < n be a
fixed integer. Consider the controvariant functor Gr : &ch — Gets defined as follows

- For any scheme S, Gr(S) is the set of rank r vector subbundle of the trivial bundle S x V.
-Iff:S— S'isa morphism of schemes, and E is a rank r subbundle of S' x V, we define

Gr(f)(Eg) = f*(Eg) = (f x Idy)~}(Eg).
Note that for S = Spec(k) we have that Gr(Spec(k)) is the set of rank r subbundle of Spec(k) x V =
V i.e. the set of r-dimensional subspace of V, that is the Grassmannian Gr(r, V).
If E € Gr(S) is a rank r subbundle of S x V, we can construct a morphism fr : S — Gr(r,V)
defined by s — Es, where E; is the fiber of E over s € S. In this way we get a map

¢(S) : Gr(S) = Hom(S,Gr(r,V)), E — fE.
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The collection {¢(S)} gives a functorial isomorphism between Gr and Hom(—, Gr(r,V)). Then
the functor Gr is representable and the Grassmannian Gr(r, V) is the corresponding fine moduli
space. The universal family corresponding to the identity map Idg,(,,vy € Hom(Gr(r,V),Gr(r,V))
is clearly the universal bundle on Gr(r, V) givenby {(W,v) |v € W} C Gr(r,V) x V.

EXAMPLE 0.12. (Hilbert Scheme) Let P € Q|z] be a fixed polynomial. For any S scheme over k
consider PY = PN x; S, and the functor

HilbY : Sch — Sets,

that maps S in the set of subschemes Y C ]Pg] such that the projection 7 : Y — S is flat, and for
any s € S the fiber 777 1(s) is a subscheme of PN with Hilbert polynomial P. The functor Hilb} is
representable by a scheme Hilbp(IPN) projective over k and called the Hilbert Scheme.

To any closed subscheme Y C PN we can associate its structure sheaf Oy, its ideal sheaf Zy,
and the structure sequence
OHIy%OPN%OyHO.

Then we can regard the Hilbert scheme as the space parametrizing all the quotients Opy — Oy,
with Hilbert polynomial P.

EXAMPLE 0.13. (Grothendieck’s Quot Scheme) As a generalization of the discussion above
consider a fixed coherent sheaf £ on IPV. The scheme parametrizing all the quotients £ — F + 0
with Hilbert polynomial P is called the Quot Scheme. Grothendieck showed that the local defor-
mation functor of the Quot functor is pro-representable and that the Quot functor is representable
by a projective scheme.

EXAMPLE 0.14. (Picard Scheme) Let X be a scheme of finite type over an algebraically closed
field k and let x € X be a fixed point. Consider the functor

Picx y : Gch — Gets,

that associates to S the group of all invertible shaves £ on X x S, with a fixed isomorphism £, x
S = Os.

If X is integral and projective, then this functor is representable by a separated scheme, locally of
finite type over k, called the Picard Scheme of X.

EXAMPLE 0.15. (Hilbert-Flag Scheme) Consider a functor that associates to each scheme S a

flagY; C Y, C ... C Y C IPé\[ of closed subscheme, all flat over S and where the fibers if Y;
have a fixed Hilbert Polynomial P; for any j = 1, ..., k. This functor is representable by a scheme,
projective over k, called the Hilbert-Flag Scheme.

1. GIT construction of M,

The aim of Geometric invariant theory is to solve the problem of constructing quotient in the
framework of algebraic geometry. In this section we collect the main results of this theory, which
are fundamental for the construction of moduli spaces. For a detailed discussion see [MFK].

We concentrate on the special case of projective schemes and reductive groups. So let Z be a
projective scheme and let G be a reductive group acting on Z. Consider an embedding Z —
Proj” = Proj(V) given by a line bundle £ on Z, so that Z = Proj(S) for some graded ring S finitely
generated over k. When the action of G on Z can be lifted to an action on V we say that there exists
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a G-linearization of £, or that G acts linearly with respect to the given embedding. In this case G
acts on S and the subring

S¢={s€S|gs=sVgeG}CS,
is called the ring of invariants of S with respect to the action of G. A fundamental theorem in
geometric invariant theory ensures that if G is reductive then S is a graded algebra, finitely
generated over k. In particular for affine schemes we have the following.
THEOREM 1.1. (Nagata) Let G be a geometrically reductive algebraic group acting rationally on an
affine scheme Spec(A). Then A is a finitely generated k-algebra.

The inclusion S¢ < S induces a rational map
7 :Proj(S) = Z - Q := Proj(8°), z+— (fo(2), ... fn(2)),
where the f;’s are generators of SC. The open subset
7% .= {z € Z| f(z) # 0for some homogeneous nonconstantf € S°},

that is the locus where 7 is regular, is called the locus of semi-stable points with respect to the
action of G. Now it seems natural to view Q as the quotient of Z%°* modulo G. However the fibers
of 7t may fail to be equal to the orbits of G, indeed it may happen that there are non-closed orbits
and in this case the closed points of Q will not be in bijective correspondence with the orbits of G.
Let M¢ be the maximum among the dimensions of all G-orbits in Z**, this discussion leads us to
the following definition

75 :={z € Z% | Og(z) N Z* = Og(z) and dim(O¢(z)) = Mg}

The subset Z° is called the set of stable points with respect to the action of G. We expect that the
fibers of 71,7: are equal to orbits of G.

THEOREM 1.2. (Fundamental Theorem of GIT) Let G be a reductive group acting linearly on a projec-
tive scheme Z = Proj(S). The quotient Q := Proj(SC) is a projective scheme and the morphism

T:Z% = Q

satisfies the following properties:
- Forevery x,y € Z*°, m(x) = nt(y) if and only if Og(x) N Og(y) N Z% # @.
- (Universal property) If there exists a scheme Q with a G-invariant morphism @ : 7% — Q,

then there exists a unique morphism ¢ : Q — Q' such that 1 = o 7.
- Forevery x,y € Z°, m(x) = nt(y) if and only if Og(x) = Og(y).

A quotient satisfying the first and the second properties of Theorem [1.2is called a categorical

quotient and denoted by Z//G. If in addition the quotient satisfies the third property then it is
called a geometric quotient and denoted by Z/G.
The most efficient tool to check stability is probably the so called numerical criterion for stability.
This criterion reduces the study of the action of a reductive group G to the study of the action
of its one-parameter subgroups. Let G be a reductive group acting linearly on Proj(V) and let
Z C Proj(V) be a G-invariant subscheme. If G,, denotes k* with is multiplicative structure and

AGy—G
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is a one-parameter subgroup of G, there exist a basis {vy, ..., v, } of V and integers {wy, ..., w, } such
that the action of A on V is given by

At)v; = tY0; Vit € Gy, 0<i <.

If v = }i_oa;v; the integers n; such that the a; do not vanish are called the A-weights of v. We
denote by z € Z the point corresponding to the vector v, € V.

THEOREM 1.3. (Hilbert-Mumford) The point z € Z is semi-stable if and only if for any one-parameter
subgroup A of G the A-weights of v, are not all positive.
The point z € Z is stable if and only if for any one-parameter subgroup A of G the vector v, has both positive
and negative A-weights.
The point z € Z is unstable if and only if there exists a one-parameter subgroup A of G such that the
A-weights of v, are all positive.

Construction of M,. Fix integersd > 0,¢ > 3and N = d — g. Let Hilbg(x) be the Hilbert
scheme finely parametrizing the close subschemes of PN with Hilbert polynomial P(x) = dx —
g + 1. There exists a universal family ‘H with a tautological polarization £

£ —H = Hilbh™,

such that the fiber X;, := 7~ 1(h) is isomorphic to the subscheme of PN corresponding to h €
Hilbi,(x), and Ly, := L)y, is isomorphic to the line bundle giving the embedding of X}, in PN,

Let X C PN be a curve, we want to construct its Hilbert point in Hilbi(x), and consider the exact

sequence
0—Zx = Opy — Ox — 0.

By a theorem due to J. P. Serre, for m >> 0, we get the following exact sequence in cohomology
0 — H(IPN, Zx(m)) — H°(PN, Opx(m)) — H(X, Ox(m)) — 0.

Furthermore it can be proven that there exists an integer 7 such that for any m > m and for any
subscheme of PN having Hilbert polynomial P(x) the above sequence is exact. This means that the
degree m part of the ideal of X, that is HO(PN, Zx (m)), uniquely determines X. We can associate
to X a point in the Grassmannian parametrizing P(m)-dimensional quotients of H*(IPN, Opx (m))
and this correspondence is injective. For any m > m we get an embedding

P(m)
b : HilbRY — P( A\ HY(PN, Opw (m))).

We have an action of SL(N + 1) on P(A”"™) HO(IPN, Opx (1)) and any embedding ¢,, determines
a linearization of the action of SL(N + 1) on Hilbg(x). Our aim is to construct M, as a quotient of

a suitable subscheme of Hilbg(x).

Translating the Hilbert-Mumford criterion[1.3]in this setting one gets the following theorem:
THEOREM 14. Ifd > 20(g — 1) then there are infinitely many linearizations of the action of SL(N +
1) on Hilbg(x) such that

- (Mumford-Gieseker) if X C PN is a smooth, connected, non-degenerate curve of genus g and
degree d, then its Hilbert point is stable,
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- (Gieseker) if h € Hilbi(x) is a SL(N + 1)-semi-stable point then all connected component of Xj,
are Deligne-Mumford semi-stable curves.

Consider now the case d = r(2g — 2) for an integer r and fix once and for all an integer m such
that Gieseker-Mumford theorem holds. Consider the following subset of Hilbf\](m) ”

H={he Hilbﬁj(m) = Lx, = w% and the curve is connected }.

The SL(N + 1)-invariant set H parametrizes only DM-stable curves by Gieseker’s theorem. In
fact, for r > 3 the dualizing sheaf w}" is very ample on DM-stable curves and it contracts exactly
the destabilizing components of a D M-semi-stable curve.

Finally one can prove that H consists only of SL(N + 1)-stable points, that it is a closed subscheme

of Hilbf\,(m) * and that the r-th projective canonical model of any stable curve of genus g is an H. At
this point it is natural to construct the moduli space of genus g stable curves as the GIT quotient

Mg := H/SL(N +1).

2. The moduli functor of smooth genus g curves is not representable

In this section we will see that the moduli functor of smooth genus g curves is not repre-
sentable and how the obstructions to its representability came from the automorphisms of the
curves.

A family 7 : C — S of genus g curves is called isotrivial if all its fibers are isomorphic to a fixed
curve C. Note that there are isotrivial but non-trivial families of curves, take for instance a ruled
surface that is not a product.

Now, assume that the moduli functor of smooth genus g curves is representable by a scheme
Mg, and let 71 : C — S be an isotrivial family. Then, such a family corresponds to a morphism
fr: S — Mg, and the family 77 : C — S is the pull-back of the universal curve U, — My,

c Us
7T
| [
P M,

Now, since 7 : C — S is isotrivial fr(S) is a point, and C = § x 7y L(f(8)) is trivial. We conclude
that:

If the moduli functor of smooth genus g curves would be representable then any isotrivial family of curves
would be trivial. However, we know that there are isotrivial but non-trivial families of curves.
Therefore, moduli functor of smooth genus g curves can not be representable. Let us look at little
bit closer to some simple examples.

Curves of genus zero. There is only one smooth curve of genus ¢ = 0 over an algebraically
closed field k, namely IP}. A family of curves of genus zero over a scheme S is a scheme X, smooth
and projective over S, whose fibers are curves of genus zero.

PROPOSITION 2.1. The space M = Spec(k) is a coarse moduli scheme for curves of genus zero.
Furthermore it has a tautological family.
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PROOF. The set Hom(Spec(k), Spec(k)) consists of a single element and clearly is in a one-to-
one correspondence with the set of families over Spec(k) that consists of the family IP} — Spec(k).
Clearly P{ — Spec(k) is a tautological family. If X — S is a family there is a unique morphism
S — M = Spec(k), in this way we get the functorial morphism « : ¥ — Hom(—, M).

Now suppose that  : F — Hom(—, N) is another morphism of functors. In particular the family
P{ — M determines a morphism ¢ € Hom(M, N). Let X — S a family over a scheme S of finite
type over k. For any closed point s € S the fiber is X; 2 P!, then any closed point s goes to the
point n = e(M) € N. Finally, since H'(IP1, Tp1) = 0, that is IP! is rigid, any family of curves
of genus zero parametrized by the spectrum of an Artin ring with residue field k is trivial. We
conclude that  factors through a. U

Clearly the tautological family is P! — Spec(k), that is the unique family over M = Spec(k).

Suppose M = Spec(k) to be a fine moduli space for the curves of genus zero. Then the universal
family is P! — Spec(k). Since any other family is obtained by base extension from the universal
family it must be trivial i.e. of the form P! x; S — S. But the ruled surfaces provide an example
of non trivial families of curves of genus zero.
Consider for instance the blow up BI,IP? of IP? is a point p. The projection 7t : Bl,IP?> — P! makes
Bl,IP? into a ruled surface, but it is not a product. Note that Pic(BI,IP?) = Pic(P! xP') = Z ¢ Z,
but on BI,P? we have a (—1)-curve, the exceptional divisor. Suppose that there is a (—1)-curve
C = (a,b) on P! x P!. We have C? = (aL + bR)(aL + bR) = 2ab = —1, a contradiction.

DEFINITION 2.2. A pointed curve of genus zero over k is a curve of genus zero with a choice of a

k-rational point. A family of pointed curves of genus zero is a flat family X =5 S, whose geometric fibers
are curves of genus zero, with a section o : S — X.

The fact that o : S — X is a section means that 71 o ¢ = Ids. Then for any point s € S the image
o(s) is a point of the fiber Xs = IP! over s. The section ¢ is sometimes called an S-point of X.
A way to obtain a fine moduli space for the curves of genus zero is to rigidify the curves by taking
three distinct points. We know that there is a unique automorphism of P! that fixed three dis-
tinct points, namely the identity. Consider the families of curves of genus zero with three marked
points i.e. the families of X — S, whose fibers are curves of genus zero, with three sections
o1,02,03 : S — X, such that on each fiber the sections have distinct support. Assume that X — S
is isotrivial. Then we may use the three sections to write an isomorphism between X — S and
P! x S — S. Therefore, any isotrivial family of smooth genus zero curves endowed with three
sections is trivial, and the corresponding moduli functor is represented by Spec(k). This reflects
the fact that a curve X of genus zero with three marked points is rigid i.e. Aut(X) = {Idx}, the
corresponding functor is representable by M = Spec(k) and the universal family is P! — Spec(k)
with three distinct points, say [0: 1],[1:0],[1: 1].

Now, we want to understand how to use the automorphisms of the curves in order to construct
isotrivial but non-trivial families. Let C be an hyperelliptic curve and leti : C — C be the hy-
perelliptic involution. Let X be a K3 surface (a smooth projective surface with trivial canonical
bundle wy = Ox and irregularity ¢ = dim H'(X,Ox) = 0) with a fixed point free involu-
tion j such that Y = X/j is an Enriques surface (a smooth surface such that wj*> = Oy and
g = dim H'(Y,Oy) = 0). Then i x j is a fixed point free involution on C x X. Since the action of

j on X is free the morphism C x X — X induces a family (C x X)/(i x j) — Y with all the fibers
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isomorphic to C. We want to show that (C x X) /(i X j) — Y is non-trivial. '
Let S be a smooth surface, and consider the Hodge numbers h"/ = dim H/(S,Q)). They can be
arranged in the Hodge diamond:

h0,0
hl,O hO,l
hZ,O hl,l hO,Z
h2,1 h1,2
h2,2

The Hodge diamond of the Enriques surface Y is given by:

1
0 0
0 10 0
0 0
1

In particular W29 = dim HO(Y, Q%) = 0, and there are non-zero holomorphic 2-forms on Y. This
yields that the product C x Y does not have non-zero holomorphic 3-forms.
The Hodge diamond of the K3 surface X is given by:

1
0 0
1 20 1
0 0
1

and h?? = dim H%(X,0%) = 1. Let w € H%(X,()%) be a generator. Now, take v € H°(C, Q)
a non-zero holomorphic 1-form on the curve C. Any invariant 1-form on C would descend to a
1-form on C/i = P!, but H(IP?, Q]},l) = 0. Therefore, there are not invariant 1-forms on C, and -y
is anti-invariant under the involution i. For the same reason, any invariant 2-form on X induces a
2-form on the Enriques surface Y, but H O(Y, Q%) = 0. Then, there are not invariant 2-forms on X.
This implies that w is anti-invariant under j. Consider the product:

XxC
7 i)
X/ \C

Since w and <y and anti-invariant for j and i respectively the 3-form 7w A 7127y is a non-zero 3-
form on X x C invariant under i x j. Therefore, it induces a non-zero 3-form on the quotient
(C x X)/(i x j). On the other hand we saw that there are not non-zero 3-forms on the product
C x Y. Therefore, the family (C x X)/(i x j) — Y can not be isomorphic to the trivial family
CxY =Y.

The above construction works in a more general context. Let X be a projective scheme such
that Aut(X) contains a non-trivial finite subgroup G. Let Y be a projective scheme admitting a
free G-action, and let Y = Y /G be the quotient. Then, G acts freely on X x Y and the quotient
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X = (X xY)/G is a projective scheme. The projection X x Y — Y is G-equivariant and induces
a morphism 77 : X — Y. We have a commutative diagram

XxY X
ﬂzl Jn
y — % .y

where f and g are étale morphisms and the any fiber of 7t over a closed point y € Y is isomorphic
to X. Since there is a Y-isomorphism X x Y — Y Xy X’ the above digram is cartesian. Therefore,
any section of 7t induces a section of 71, that is a morphisms Y — X x Y given by y — (x,y) for
some x € X. On the other hand the point x € X has to be fixed under the action of G. Therefore,
since G is finite the morphism 77 : X — Y admits at most finitely many sections. In particular the
family 77 : X — Y can not be trivial.

3. The Stack M,

The study of moduli problems introduces a new kind of objects: the so called moduli stacks.
We have seen that a moduli problem gives rise to a functor, if the functor is representable we have
a fine moduli space, that is a scheme. Sometimes, if it is not representable one can find a coarse
moduli space, which parametrizes the isomorphism classes of our objects over a field, but does
not describe all the possible families of objects. It happens that the functor related to a moduli
problem is not representable by a scheme. We search for a sort of generalized scheme.

A scheme is constructed out of affine schemes by gluing the isomorphism defined on Zariski open
subset. In the same spirit consider a collection of schemes {X;}, and for each i, j étale morphisms
Yi; = Xi, Yj; — Xj and isomorphisms ¢;; : Y;; — Yj, satisfying a cocycle condition for each i, j, k.
We glue together the X; along the ¢; ;. This quotient may not exist in the category of schemes, but
it is an algebraic space.

Instead of the functor F, which sends any scheme S in the set of isomorphism classes of families
X — S, consider a new object F, which to each scheme S assigns the category F(S) of families
and isomorphisms between such families. This object is called a fibered category over the category
of schemes. The sheaf axioms for the functor F are replaced by the stack axioms for the fibered
category F, which are the following. For any scheme S and any étale covering {U; — S}, consider

f(S) —>HJ—"(LL) 3H.F(UZ Xs U]) :;H]—"(UZ X5 U] Xs Uk)

- The fact that the first arrow is injective means that if a,b € F(S) and if a;, b; are their
restriction on F(U;), and there is an isomorphism ¢; : a; — b; such that for each i, j the
isomorphisms ¢;, ¢; restrict to the same isomorphism of 4; ; and b; ; on U; x s U, then there
is a unique isomorphism ¢ inducing ¢; on each U;.

- The fact that the sequence is exact at the first middle term means that if we give objects
a; € F(U;) for each i and isomorphisms ¢ij : a; — aj on U; X U; satisfying a cocycle
condition on each U; x5 U; x5 Uy, then there exists a unique object a € F(S) restricting
to each a; on U;.

A Deligne-Mumford stack is a fibered category F satisfying the stack axioms, and such that there
exists a scheme X and a surjective étale morphism Hom(—, X) — F. An Artin stack is a fibered
category J satisfying the stack axioms, and such that there exists a scheme X and a surjective
smooth morphism Hom(—, X) — F.
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The moduli space of curves M, is a Deligne-Mumford stack for any g > 2. In the paper The irre-
ducibility of the space of curves of given genus [DM], Deligne and Mumford introduced stacks for the
first time, they compactified the stack M, adding stable curves, and they proved its irreducibility
in any characteristic.

We define a family of pointed curves of genus g parametrized by a scheme S as an object

C

7T J) 01+-/0n

S

where 77 is a flat and proper morphism, ¢; is a section of 77 forany i = 1,..,n, Cs = 7T*1(s) is a
nodal connected curve of arithmetic genus g and o;(s) are distinct smooth points for any s € S(k).
A morphism between two families C — S, C' — S over § is a morphism of schemes ¢ : C — C’
such that the following diagrams

commute. We consider the pseudofunctor
My 2 Sch — Sroupoids

mapping a scheme S to the groupoid M ,,(S) whose objects are the families parametrized by S
and whose morphisms are the isomorphisms between these families. A curve (C,xi,...,x,) €
Obj (Mg (Spec(k))) is called a pre-stable genus g curve. We denote by 91, , the stack associated to
this pseudofunctor.

REMARK 3.1. The stack 9, is never a D M-algebraic stack. It contains points representing
curves with automorphism groups of positive dimension. Take a smooth curve (C, x, ..., X,) €
Obj (M (Spec(k))) and consider (C,x}, .., x,,) where C' := CUP!, x; := x; fori < nand x,, :=
o € P!, Then C’ is a nodal connected curve of arithmetic genus p,(C') = g, but dim(Aut(C')) =
1.

DEFINITION 3.2. A pre-stable genus g curve (C, x1, ..., X, ) with n marked points is called stable if one
of the following equivalent conditions are satisfied
- Aut(C, xq, ..., xp,) is étale;
- Aut(C, xq, ..., x,) is finite;
- Let C — C be the normalization of C. For any irreducible component C; of C the inequality
2¢(C;) — 2+ n; > 0 holds, where n; is the number of special points on C;, that are points mapped
to a node or to a marked point on C.

We define My, in the same way of the stack 91, , but adding the stability condition on the
fibers. Clearly we have a natural morphism Mg, — Mg, and if 2¢ — 2+ n > 0 there is a mor-

phism Mg, — My ,. Both these morphisms are open embeddings.
On the other hand we can construct a category fibered in groupoids in the following way. Let
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g, n € Z such that g,n > 0 and 2¢ — 2 +n > 0. We define a category 91, , over the category of
schemes in the following way. Obj(90, ) consists of families

C

T J > 01+-/0n

S

where 7 is a flat and proper morphism, ¢; is a section of 7w forany i = 1,...,n, Cs = 7'[‘1(5) is a
smooth connected curve of genus ¢ and o;(s) are distinct smooth points for any s € S(k).

A morphism between two objects C — S and C' — S is a couple (f, f) where f : C — C and
f:S5— S are morphisms of schemes and the following diagrams

CLc’ CLC
”l J/n/ ‘TIW Tlm‘/
STyS S8

commute. This category is called the category of n-pointed genus g smooth curves. The category M, ,
is a category fibered in groupoids over the category of schemes and this remains true even if the
inequality 2¢g — 2 +n > 0 does not hold. One can prove that in this category morphisms are a
sheaf and that every descend datum is effective.

THEOREM 3.3. The category fibered in groupoids My ,, is a stack.

PROOF. Consider a scheme S and two families & and &

C c
"p e p :

parametrized by S. We define a functor
F:6ch/S5S — Gets

sending f : X — S to Mor(f*&, f*&). By applying the universal property of the fiber product we
get the following diagrams

(T,‘Of
X

0 x

Cxi:CXSX%C

Idx nxl . J”

X

To give a morphism f*& — f*& is equivalent to giving a morphism f : Cx — Cy such that
Oix = 0’1-, wof mx = 7T;( o f,and f makes the diagram over the identity cartesian. That is f is an
isomorphism. Now, let {X; — X} be an étale cover, and consider isomorphisms f; : Cx, — CIX,-
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such that ﬁ-‘c ~and jfj\c ~are naturally isomorphic. Since {Cy, — Cx} is an étale cover and

morphisms form a sheaf in the étale topology, the f; glue to a morphism f : Cx — Cy. The
morphism f commutes with 7x, 0y ;, 7tX, O‘Xl, since this is true for the fZ and morphisms are a
sheaf in the étale topology. Furthermore we can define ¢! étale locally and then glue. This
proves that morphisms are a sheaf.

Now, let S be a scheme, {S; — S} an étale cover, §; objects C; — S;, and ¢;; : C; s; = Cils,;
isomorphisms. Using the ¢; ; we can glue the ¢; to a global ¢ over S, by descent theory we obtain
a morphism 77 : C — S. To construct the sections consider the composition

0'5.[/
Si—C——C

which agree locally and glue to define global sections o;5 : S — C. Since {S; — S} is an étale
cover, and the ground field is algebraically closed, any morphism Spec(K) — S factors through
at least one of the S; — S. Then the fibers of 77 are genus ¢ connected curves. Finally, since
smoothness and properness are local in the target even in the Zariski topology the morphism 7 is
smooth and proper. This proves that every descent datum is effective. 0

LEMMA 3.4. Let (C,{x1, ..., xn }) be a n-pointed genus g pre-stable curve. The sheaf wc(x1 + ... + xp)
is ample if and only if (C, {x1, ..., x,, }) is stable.

PROOF. An invertible sheaf £ on a proper curve C is ample if and only if it has positive de-
gree on every irreducible component of C. Let C; be an irreducible component of C. We have
deg(wc(x1 + .. + xn)|c,)) = deg(weic,) +mc, = deg(we,) +#(Ci N Cf) +me, = 2pa(C;) — 2+
#(CiNCY) + me, = 2pa(Ci) — 2+ nc,, where mc,, nc, are respectively the number of marked and
special points on C;. Now, deg(wc(x1 + ... +x4)|c,|) > 0 for any i if and only if 2p,(C;) — 2+ nc, >
0 for any i if only if (C, {x1, ..., x, }) is stable. O

DEFINITION 3.5. Let X be a scheme, and G be a group scheme acting on X. The quotient stack [X/ G]
is defined as the category whose objects are of the type

P——X

|

S

where P — S is a principal G-bundle, P — X is a G-equivariant morphism, and whose morphisms are
isomorphisms of principal G-bundle commuting with maps to X.

Let t : C — S be a family of stable curves of genus g. By Lemma [3.4] the relative dualizing
sheaf wc/s is relatively ample. The r-th power w(] /s 1s relatively ample, and n*w?; ¢ is locally
free of rank N +1 = h(wg 7s) = (2r —1)(g — 1) on S. Therefore any genus g stable curve
can be embedded in PV using the sections of w() 7s- The Hilbert polynomial of such a curve is
determined by deg(P) = 1,P(0) = 1—g,P(1) = X(W?;S)- We can write P(z) = Az + B, then
P(0) =B=1-g,and P(1) = A = x(w&)s). Then

P(z) = (2rz—1)(g—1).
Let Hilb” (PV) be the Hilbert scheme parametrizing subschemes of PN with Hilbert polynomial
P. There is a closed subscheme H of Hilb” (IPN) parametrizing m-canonically embedded stable
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curves. To give a morphism S — H is equivalent to give a closed subscheme i : C < PN x S such
that the projection 77 : C — S is a family of genus g stable curves, and there exists an isomorphism
¢ : P(rm.wl)s) — PN x S making the diagram

¢

C P(mwcys)
\ e
PN x S

commutative. Finally there is a natural action of Aut(IPN) = PGL(N + 1) on H given by
PGL(N+1)xH = H, (c,a:C—=PNx8) s (¢7lon:C— PN x§).
THEOREM 3.6. For g > 2 there is an equivalence of stacks
M, = [H/PGL(N +1)].

PROOF. Let 7t : C — S be a family of genus g stable curves. We have a canonical projective
bundle Py := P(m.w()s) — S. Let E := Isoms(Pr, PY) be the S-scheme parametrizing isomor-
phisms from P to PY. The group PGL(N + 1) acts on E by

PGL(N+1)xE—E, (0,¢) — o L o¢.
and E is a PGL(N + 1)-principal bundle. Now, consider the pull-back

TTE
CE:CXSE%E

| J

C S

|

since the projection E x5 E — E has a section A : E — E x E, the PN-bundle P, := IP(NE*w?E"}E)
is trivial, and we have an isomorphism &g : P, — IPIS\] xs E. Letig : Cg — Py, be the canonical
embedding, the composition ¢ o g : Cg — PY X E gives a family of stable curves in PV, corre-
sponding to a morphism f : E — H, which clearly is PGL(N + 1)-equivariant.

Now, consider a morphism

, ¢
B

/
T

N« 0O

C
|
S

. . . . ' ~ .
in M. We have a canonical isomorphism 7, w ;¢ = ¢* 7 .wc /s and two cartesian squares

v

Sy

—>E

Pwiy) — Pwilh) E
| | J

where f is compatible with frand f ;. Then we get the following:
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- an objects 1: C — S to

fr
E——H
S
- a morphism
¢
c—C
! 7r
q, ]
S—S5
to a morphism
fy

This defines a morphism of stacks

F: Mg — [H/PGL(N +1)].

On the other hand given a morphism S — H we have a corresponding family 7ts : C — S of genus
g stable curves embedded in PY. By forgetting the embedding C < PPY we obtain an object in
Mg, furthermore morphisms in the same PGL(N + 1)-orbit are sent to the same object of M. So

we get a morphism

G:[H/PGL(N +1)] = M,.

Take an object & := (E'/S — H) in [H/PGL(N +1)], and let t,» : C' — E be the family induced
by the PGL(N + 1)-equivariant morphism E — H. If £ — H is the universal family then g
C' — E is the pull-back of H — H by the morphism E — H. Furthermore if E — E we can

consider the pull-back Cr — E and the following diagram

— C —— H

Ce C

=]
E—F —H
|
S

The scheme Cf. carries a natural PGL(N + 1)-action. By descent theory C = Cr/PGL(N + 1) exists
as a scheme, and there is a morphism 7t : C — S such that the base extension 7t/ : C x E > FE
is exactly 7. : C — E:

!

CxgE —

= C
ﬁE/\ lnE/ ln
E S

C

!/
B —
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The family 77 : C — S is exactly G(&) € M. If E = Isoms(Py, PY') where Pr = P(mm.w(/s) we

get that F o G(¢&) is isomorphic to ¢, thatis F o G = Id. Finally, from the construction it is clear that

GoF = 1d. O
PROPOSITION 3.7. For any g > 2 the stack M is a Deligne-Mumford stack.

PROOF. Since a genus ¢ > 2 stable curve over an algebraically closed field has a finite and
reduced automorphism group the stabilizers of the geometric points of M, are finite and reduced.
So M is a DM stack. O

4. Details on algebraic Curves

In this section we recall some well known results on algebraic curves and their automor-
phisms. Finally, using deformation theory we prove that M, is as smooth stack.

Grothendieck Spectral Sequence. We begin recalling the notion of five terms exact sequence or
exact sequence of low degree terms associated to a spectral sequence. Let

E)f — H"(A)

be a spectral sequence whose terms are non trivial only for &, k > 0. Then this is an exact sequence

0 E° = H'Y(A) = Ey' — E3° — H*(A).
The Grothendieck spectral sequence is an algebraic tool to express the derived functors of a composi-
tion of functors G o F in terms of the derived functors of 7 and G.
Let 7 : C; = C;and G : C; — C3 be two additive covariant functors between abelian categories.
Suppose that G is left exact and that F takes injective objects of C; in G-acyclic objects of C,. Then
there exists a spectral sequence for any object A of C;

EMF = (R"G o RFF)(A) = R'"K(G o F)(A).
The corresponding exact sequence of low degrees is the following

0~ R'G(F(A)) = RY(GF(A)) = G(R'F(A)) — R*G(F(A)) = R*(GF)(A).
As a special case of the Grothendieck spectral sequence we get the Leray spectral sequence. Let
f : X — Y be a continuous map between topological spaces. We take C; = 20b(X) and C; = 2b(Y)
to be the categories of sheaves of abelian groups over X and Y respectively. Then we take  to be
the direct image functor f, : Ab(X) — Ab(Y) and G = T'y : Ab(Y) — Ab to be the global section
functor, where b is the category of abelian groups. Note that
Iyofi=Tx:2b6(X) — 2Ab
is the global section functor on X. By Grothendieck’s spectral sequence we know that (R'Ty o
RFf)(E) = Rk (Ty o £.)(£) = RMIT(€) for any € € 2Ab(X), that is
H"(Y,R¥f.£) = H'" (X, €).
The exact sequence of low degrees looks like
0 HY(Y, f.€) = HY(X,E) — H(Y,R'f.E) — HA(Y, f.€) — H*(X,E).

Finally we work out the spectral sequence of Ext functors. Let £ € €oh(X) be a coherent sheaf on a
scheme X. Consider the functor

Hom(E,—) : Coh(X) — Coh(X), Q — Hom(E, Q),
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and the global section functor
FX : Q:O[) X) — b, Q — rx(Q)

(
Note that T'x o Hom (&, —) = Hom(E,—). By Grothendieck spectral sequence we have (R'Tx o
RFHom(E,-))(Q) = R (Hom(E,—)(Q) for any Q € €oh(X), that is

H"(X, Ext*(£,Q)) = Ext"** (€, Q).
The corresponding sequence of low degrees is

0— HYX, Hom(E,Q)) — Ext}(£,Q) — HY (X, Extl (€, Q)) — H*(X, Hom(E,Q)) — Ext* (&, Q).

Deformations of Schemes. Let X be a smooth scheme of finite type over k. We define the
deformation functor Defx : Art — Gets of X sending an Artin ring A to the set of couples
(X4 8 Spec(A),¢) modulo isomorphism, where 74 is a smooth morphism, ¢ : X — Xj is
an isomorphism, Xy is defined by the cartesian diagram

Xo X4

l l

Spec(k) —— Spec(A)

and (X4,¢), (X,,¢') are isomorphic if there is an isomorphism a : X, — X, such that the
diagram

XA - X,
TTA Aé;

Spec(

commutes and ¢’ = & o ¢.
- THEOREM 4.1. For any semi-small exact sequence 0 — I — A — B — 0 in Art, let T'Defx =
H'(X, Tx), then
(1) there exists a functorial exact sequence
T'Defx ® I — Defx(A) — Defx(B) — T?Defx ® I;

(2) forany (Xa,7ta,¢) € Defx(A), let G = Stab(X4) C T'Defx ® I, we have a functorial exact
sequence
0+ T'Defx @ I — Aut(X,) — Aut(Xp) — G — 0.

Now let X be any scheme over k. Consider the exact sequence of low degree for Ext functors
with sheaves Q) x and Ox. We have

0 — HY(X, Hom(Qx, Ox)) — Ext'(Qyx, Ox) — HY(X, Ext}(Qx, Ox)) — H*(X, Hom(Qx, Ox)).
The set of deformations of X over the dual numbers D = @ is in one-to-one correspondence with

the group Ext!(Qyx, Ox). Then we get the sequence
0 — HY(X,Hom(Qx, Ox)) — Defx(D) — H°(X,Ext(Qx, Ox)) — H*(X, Hom(Qx, Ox)).
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Differentials and Ext groups. Let X be a smooth scheme and let Y be a closed subscheme
with ideal sheaf 7. We have an exact sequence of sheaves

T/T% = Qx @ Oy — Qy — 0,

where the first map is the differential. Furthermore Y is smooth if and only if

e (y is locally free,
e the sequence is also exact on the left

0—Z/T%* = Qx Oy — Qy — 0.

In this case the sheaf 7 is locally generated by Codim (Y, X) elements, and its is locally free of rank
Codim(Y,X)onY.

REMARK 4.2. Let Y C X be an hypersurface not necessarily smooth. We can associate to Y
a Cartier divisor {(;, f;)}, and the ideal sheaf 7 is locally generated by f; on ;. Furthermore
Ox(Y) is the sheaf locally generated by f,* on U;. We conclude that Ox(—Y) 2 7 is locally free.
If Y C X is a reduced hypersurface, then 7 is locally free of rank one. We have the differential
d:Z/I? — Qx ® Oy, if f is a local generator of Z then df is a local generator of In(d), since Y
is reduced then df # 0, Im(d) is locally free of rank one, and the map d is injective. So we have
again an exact sequence

0 Z/T% = Qx ® Oy — Qy — 0.
Let f = f(xq, ..., xy), with n = dim(X), be a local equation for Y in X. Thendf = ﬁdxl + ..+

- 8x1
867];. Since Y is reduced the differential is injective, furthermore Z/Z? is locally free of rank one
and Qx ® Oy is locally free of rank n. Applying Hom(—, Oy) to the sequence

0—Z/I%> = QxR 0y = Qy — 0,
we obtain
0 — Hom(Qy, Oy) — Hom(Qxyy, Oy) — Hom(Z/I? Oy) — Ext'(Qy, Oy) — Ext' (Qxy, Oy).

REMARK 4.3. Let X be a noetherian scheme such that any coherent sheaf on X is quotient of a
locally free sheafi.e. Coh(X) has enough locally free objects. We define the homological dimension
of F € Coh(X), denoted by hd(F), to be the least length of a locally free resolution of F or oo if
there is no finite one. Clearly F is locally free if and only if hd(F) = 1if and only if Ext!(F,G) =0
far any G € Mod(X). Furthermore hd(F) < n if and only if Ext'(F,G) = 0 for any i > n and
G € Mod(X). Finally hd(F) = Supyex(pdo,Fx), where pd is the projective dimension.

In our case Qxy is locally free, and by the preceding remark Extl(QX|Y, Oy) = 0. Then we
get the exact sequence

00— HOm(Qy, Oy) — Hom(QX|Y, Oy) — HOM(I/I2, Oy) — Extl(Qy, Oy) — 0.

Consider now the special case X = A" and Y = Spec(A), where A = k[x1,...,x,]/(f). The map
Hom(Qpnpy, Oy) — Hom (Z/T?,Oy) is the transpose of the differential d : Z/Z* — Qpnpy. Fur-
thermore Hom(Qpny, Oy) = A" and Hom(Z/T?) = A. We can write the map Hom(Qpn)y, Oy) —
Hom(Z/Z? Oy) as

of 9f

$: A" = A, (a1,...,0y) — “1871 +...+0¢nax”.
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We rewrite our exact sequence as
0+ Hom(Qy, Oy) — A" — A — Ext'(Qy, Oy) ~ 0.
d 3 ~ 3 3

Then Im(¢) = (2,.., L) C A,and Ext'(Qy, Oy) = A/ (3, .., 3).
Now let Y = C C AZ be a nodal curve. In an étale neighborhood of the node we can assume

= Spec(A), where A = k[x,y]/(xy). From the preceding discussion we get Ext!(Q¢c, Oc) =
A/(x,y) = k. So Ext'(Qc,Oc), = 0 if p is a smooth point of C and Ext'(Qc, Oc), = k if
p € Sing(C). Furthermore

Sxtl (Qc, Ox) = Z Op.
peSing(C)

Curves of Genus One. An elliptic curve over an algebraically closed field is a smooth projective
curve of genus one.
Let X be an elliptic curve and let P € X be a point, consider the linear system |2P| on X. Since the
curve is not rational |2P| has no base points, and since deg(K —2P) = 2¢ —2 —2 = —2 < 0 the
divisor |2P| is non-special i.e. hi°(K —2P) = 0. By Riemann-Roch theorem h°(2P) = deg(2P) —
¢+ 1 = 2. Then the linear system |2P| defines a morphism f : X — P! of degree 2 on P!. Now by
Riemann-Hurwitz theorem we have

2¢ —2 =deg(f)(28p — 2) +deg(Ry),
then deg(Ry) = 2-deg(f) = 4, and f is ramified in four points and clearly P is one of them. If
X1, X2, x3,00 are the four branch points in P!, then there is a unique automorphism of P! sending
x1 to 0, x7 to 1, and leaving oo fixed, namely y = [ —. After this change of coordinates we can
assume that f is branched over 0,1, A, 00 € P!, whit A € k, A #0, 1.
We define the j-invariant of the elliptic curve X by

(A2—A+1)°

A2(A—=1)2
It is well known that over an algebraically closed field k with char(k) # 2 the scalar j(X) depends
only on X. Furthermore two elliptic curves X, X are isomorphic if and only if j(X) = j(X'), and

every element of k is the j-invariant of some elliptic curve. Then there is a one-to-one correspon-
dence with the set of elliptic curves up to isomorphism and A! given by X — j(X).

j=jA)=2°

DEFINITION 4.4. A family of elliptic curves over a scheme S is a flat morphism of schemes X — S
whose fibers are smooth curves of genus one, with a section o : S — X. In particular, an elliptic curve is a
smooth curve C of genus one with a rational point P € C.

Consider the functor F : Gch — Sets where F(S) is the set of families of elliptic curves over
S modulo isomorphism. One can prove that F does not have a fine moduli space, but the affine
line A} is a coarse moduli space for F.
Now a natural question is how to compactify this coarse moduli space to obtain a complete moduli
space. In addition to elliptic curves we admit also irreducible nodal curve of arithmetic genus
pa = 1 with a fixed nonsingular point. We consider families X — S whose fibers are elliptic
curves or pointed nodal curve, then taking j(C) = oo for the nodal curve the projective line P!
becomes a coarse moduli space.
Let C be a reduced, irreducible curve with p, = 1 and such that Sing(C) is a node. Such a curve
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can be embedded in IP? as the nodal cubic C = Z(y?z — x® + x2z). Consider the low degrees exact
sequence for Ext functors,

0 — HY (X, Hom(Qc, Oc)) — Ext'(Qc, Oc) — HY(X, Ext'(Qc, Oc)) — HA(X, Hom(Qc, Oc)).

Since Ext!(Q¢, Oc) is concentrated at the singular point of C we know that H(X, £xt}(Qc, O¢))
is a 1-dimensional k-vector space. Now we consider the sheaf Hom(Q¢,C) = Tc.

Recall that if X is a smooth variety and Y C X is a closed irreducible subscheme defined by the
sheaf of ideals Z, then there is an exact sequence

I/Izﬁﬂx®0y—>0yf—>0.

Furthermore Y is smooth if and only if

- the sheaf Q)y is locally free, and
- the sequence above is also exact on the left

0—Z/7% = Qx @Oy — Qy — 0.
Consider the sequence for a general subscheme Y and apply the functor Hom(—, Oy). We obtain
0 Ty — Txjyy = Ny,x = Ext'(Qy, Oy) = 0.
For our nodal curve C in IP? we have
0 Tc — Tp2jc = Neyp2 = Ext' (Qc, Oc) — 0.

We know that N p2 = Oc(C) = O¢(3), let D be the divisor associated to Oc¢(3). Since C is a local
complete intersection the dualizing sheaf w*® is an invertible sheaf. We define the canonical divisor
as the divisor corresponding to w® with support in C,. Since there are no regular differentials on
C we have deg(K — D) < 0. By Riemann-Roch theorem for singular curves we get

W (Neyp2) = deg(D) +1—p,=9+1—-1=09.

Consider now the Euler sequence

0 — O]PZ — O]PZ(].)EBS — TI[)Z — 0
Tensorizing by Oc we get

0~ Oc = Oc(1)®? — Tpa/c > 0.
Using the dualizing sheaf w2 = O, and Serre duality we get h!(O¢ (1)) = h°(Oc(—1)) = 0. The
cohomology sequence looks like

0 H(C,Oc) = H(C,0c(1)**) = H(C, Typzic) — H'(C,Oc) — 0,

s0 h%(Tpzc) = 9. Furthermore the map H°(C,N¢/p2) — HY(C,Ext'(Qc, Oc)) is surjective
since the former parametrizes the embedded deformations of C as a subscheme of IP? and the
latter parametrizes the abstract deformations of the node. We conclude that h°(T¢) > 0. Let
o € HY(C, T¢) be a nonzero section, we have an exact sequence 0 — Oc % Tc — R > 0. The
cokernel R is not zero, because T¢ is not locally free. Then T is a proper subsheaf of Oc, using
the dualizing sheaf w2 = O¢ and Serre duality we get h!(Tc) = h°(T;) = 0. We conclude that
Def(C) is one-dimensional.
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Automorphisms of Curves. The only curve of genus one is P!, and its automorphism group
is PGL(2) which is an open subset of IP2. If we choose one or two marked points in P! the auto-
morphism group remains infinite of dimension two and one respectively. However a well known
theorem in projective geometry asserts that if we fix three marked points the automorphism group
is trivial.

We will see that an elliptic curve has infinitely many automorphisms, but if we choose a marked
point then its automorphism group is finite. Finally we will prove that any curve X of genus g > 2
has finitely many automorphisms, and we will give a bound on the cardinality on Aut(X).

Recall that an elliptic curve X has a group structure, more precisely if we fix a point on X then we
get a bijective correspondence between the points of X and the divisors of degree zero in CI°(X),
so any translation X x X — X gives an automorphism of X. Clearly if we choose a marked point
p € X, then the only possible translation is the identity, in this way the automorphism group
becomes finite.

PROPOSITION 4.5. Let E be an elliptic curve over k with a marked point. The automorphism group
Aut(E) is a finite group of order dividing 24. More precisely
- if j(E) # 0,1728, then | Aut(E)| = 2,

- if j(E) = 1728 and char(k) # 2,3, then | Aut(E)| = 4,
- if j(E) = 0 and char(k) # 2,3, then | Aut(E)| = 6,

- if j(E) = 0,1728 and char(k) = 3, then | Aut(E)| = 12,
- if j(E) = 0,1728 and char(k) = 2, then | Aut(E)| = 24.

PROOF. We consider the case char(k) # 2,3. Then E can be realized as a plane smooth cubic
and can be written in Weierstrass form

¥ =2 +ax+B,
furthermore every automorphism of E is of the form

! !
x:uzx,y:u3y,

for some u € k*. Such a substitution will give an automorphism if and only if
utn=a, utg =4
If o - B = 0 then j(E) # 0,1728, the only possibilities are u = £1. If § = 0 then j(E) = 1728, and

u satisfies u* = 1, so Aut(E) is cyclic of order 4. If & = 0 then j(E) = 0, and u satisfies u® = 1, so
Aut(E) is cyclic of order 6. O

PROPOSITION 4.6. Any smooth curve X of genus ¢ > 2 has finitely many automorphisms.

Before proving the proposition we recall some general facts about canonically embedded va-
rieties.

REMARK 4.7. (Canonically Embedded Varieties) Let f : X — Y be a dominant morphism between
smooth varieties. The pullback f* : f*()y — Qx defines a canonical morphisms between the
cotangent sheaves, and since pullback commutes with maximal exterior powers we get a canoni-
cal morphism f* : f*wy — wx of the canonical sheaves. In particular if X = Y and f € Aut(X),
since f*wx = wy, we get an automorphism f* of wx. Then an automorphism of X induces an au-
tomorphism of wy, and an automorphism on the vector space of the its global section H*(X, wx).
Suppose now that wx is ample, then wg?” is very ample for some n > 0. Any automorphism of
X induces also an automorphism of wy". Let ¢ : X — P(H%(X,wy")*) be the corresponding
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embedding. Then we have an action of Aut(X) on P(H%(X, w$")*), and any f € Aut(X) induces
an automorphism of P(H’(X, w{")*) = IPN. We have seen that if X has ample canonical sheaf
then Aut(X) is a closed algebraic subgroup of PGL(N + 1). Clearly the same argument works if
X has ample anticanonical sheaf.

PROOF. Recall thatif f : X — Y is a morphism of schemes, with X separated and Y smooth,
and Defy is the deformation functor of f, then T'Def; = H%(X, f*Ty). In particular for f = Idx :
X — X we get TlldXDefIdX = Ty, Aut(X) = H(X, Tx), and h°(X, Tx) = 0 since X is a curve of
genus ¢ > 2. The curve X has canonical ample sheaf, and by the preceding remark we can embed

Aut(X) in PGL(N +1) € PNt1*~1 a5 closed subscheme. Since the tangent space of Aut(X) has
dimension zero we conclude that Aut(X) is a finite set of points. O

In the following proposition we give a bound on the number of automorphisms of a curve of
genus g > 2.

PROPOSITION 4.8. Let X be a projective curve of genus g > 2, then the group Aut(X) is finite and
| Aut(X)| < 84(g—1).

PROOE. Let W(X) be the set of Weierstrass points of X, we know that W(X) is finite. If ¢ €
Aut(X) is a non trivial automorphism then ¢ has at most 2¢ + 2 fixed points. Since the set of
Weierstrass points is fixed by the group Aut(X) we have a morphism

F: Aut(X) — Perm(W(X)),

where Perm(W(X)) is the group of permutations of W(X). If X is non hyperelliptic there are
more than 2¢ 4 2 Weierstrass points on X and there is a unique automorphism that leaves more
that 2¢ + 2 points fixed, the identity. So ker(F) = {Idx}.

If X is hyperelliptic then any automorphism in the subgroup (J) generated by the involution
J : X — X fixes the Weierstrass points, but since J> = Idx this subgroup is finite. We conclude
that F is a morphism of Aut(X) into a finite group and with finite kernel, then the group Aut(X)
is finite.

Let G = Aut(X) and |G| = n, consider the projection 7 : X — X/G. For any ¥ € X/G we
have 77 1(%) = {x € X|n(x) =%} = {x € X|3g € G, g(x) =%} = {¢g7'(X), g € G}, then
7t is a morphism of degree n. The map 7 is branched only at fixed point of G. Let P, ..., Ps be a
maximal sets of ramification points of X lying over distinct points of X/G, and let 7; be the index
of ramification of P;. Recall that if P € X is a ramification point, and r is its ramification index,
then the fiber 777! (77(P)) consists of exactly Z points, each having ramification index r, essentially
because X is a covering space for X/G. So in the fiber of any P; there are ;i] points each with

ramification index r;. Then the degree of the ramification divisor is

By Riemann-Hurwitz formula we get2¢ —2 = n(2a —2) + n 3 4 (1 — %), where « is the genus of
X/G. Then

2 —2 s 1
B _on—24 Y (1--).
n =1 Tj



92 5. MODULI OF CURVES
Note that since r; > 2 we have % <1- % < 1. Since we may assume n > 1 it is clear that g > «.
Now we have to analyze the expression 2a —2 + 37 (1 — rl])

- Ifa > 2weobtain 20 — 2+ Y5 (1~ 1) > 2 =554 (1 - ) > 2,50 22 >2and

n<g-—1
- IfoczlthenZoc—2+Z§:1(1—%) :zizl(l—%_) > 1,50 2gn—2 > 1 and
n<d4(g—1).

-Ifa=0then2w -2+ Y3 ,(1—4) = X0, (1— %.) —2. Since Y3 (1 - +) -2 > 0and

?']' 7‘]'

1-— rl] < 1, we conclude that s > 3.
2¢-2
-Ifs > 5,then2]€f:1(1 — rl]) —2> %,so gn > %and

n<4(g—1).

- If r = 4 then the rj cannot be all equal to 2, otherwise we would have Zgn—_z =0, so
g = 1. Then at least one is > 3 and gives}; (1 — rl]) —2>3(1-3)+(1-3)-2=

%, SO Zgn;Z > % and
n<12(g—1).
- In the case s = 3 we can assume without loss of generality 2 < r; < r, < r3. We have
r3 > 3 otherwise Z?:l(l - rl]) —2 < 0. Thenr, > 3.
Ifr3 > 7thenn < 84(g—1).
Ifrs=6andr, =2thenr, >4andn <24(g—1).
Ifr3=6andry > 3thenn <12(¢—1).
Ifr3=5andr; =2thenr, >4andn <40(g—1).
If r3 =5and r; > 3thenn <15(¢ —1).
Ifr3=4thenr; >3andn <24(¢g—1).
O

To compactify the coarse moduli space M, Deligne and Mumford introduces stable curves.

We have seen that Ty, Aut(X) = H°(X, Tx), an element of this space is called an infinitesimal
automorphism.

DEFINITION 4.9. A reduced, connected, projective curve X, having at most nodes as singularities is
said to be stable if H(X, Tx) = 0, i.e. X has no infinitesimal automorphisms.

Clearly for a curve X of genus g > 2 the following are equivalent,
- X has no infinitesimal automorphisms,
- HY(X, Tx) =0,
- Aut(X) is finite.
By the preceding discussion any smooth curve of genus g > 2 is stable.
Consider the local infinitesimal deformation functor of F for a stable curve X of genus g > 2,

Defx : et — Gets,

which associates to any Artin local algebra A the set of isomorphism classes Y — Spec(A) of fam-
ilies of curves of genus g over Spec(A), with a fixed isomorphism Yy — X, where Yy — Spec(k)
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is the central fiber of Y. Note that the isomorphism Yy — X is not unique, indeed we can recover
any other isomorphism composing with an automorphism of X, and the set of such isomorphisms
is a principal homogeneous space under the action of Aut(X). The following remark will be im-
portant in order to prove that M, is smooth.

REMARK 4.10. Let X be a proper scheme and let Defx be its deformation functor. Then T%, =

Ext'(L%, Ox), where L% is the cotangent complex of X. If X has only local complete intersection
singularities the L} coincides with Qx in degree zero. Recall that from the spectral sequence of
Ext groups we have

Hq(X, €xt”(QX, Ox)) = Extp+‘7(QX, Ox)
Consider the special case where X = C is a nodal curve and p + g = 2. Then

- HY(C,Ext2(Qc, Oc)) = 0 because Q¢ admits a locally free resolution of length one. In-
deed take an embedding C — Y of Y in a smooth surface, then we have an exact sequence

0—Z/T* = Qy®0Oc — Q¢ — 0.

- HY(C,Ext'(Qc, Oc)) = 0 because Ext' (Qc, Oc) is supported on Sing(C) which is zero
dimensional.
- H%(C,Hom(Qc,Oc)) = 0 because dim(C) = 1.

We conclude that Ext?(Q¢, Oc) = T?Defc = 0.

Heuristically, Riemann computed that dim(M,) = 3¢ — 3. By Riemann-Hurwitz formula to
any collection of 2d + 2g — 2 points on IP! corresponds a curve X with a finite morphism ¢ : X —
P! of degree d. To give such a morphism is equivalent to choose a divisor D of degree d on X
(i.e. d distinct points on X) and a element in H’(X, Ox(D)). If we consider divisors of degree
d > 2g — 2, by Riemann-Roch we get h°(D) = d — ¢ + 1. Then we have to subtract dim(Aut(X))
but a curve of genus g > 2 as only a finite number of automorphism. We conclude that

dim(M,) =2d +2¢—-2—(d+d—-g+1) =3¢ —-3.
In what follows we rigorously prove this fact by arguments of deformation theory.

THEOREM 4.11. (Smoothness of M) Let X be a stable curve of arithmetic genus § > 2. Then
the functor of local infinitesimal deformations Defx of X is pro-representable by a regular local ring of
dimension 3¢ — 3. In other words Mg is a smooth Deligne-Mumford stack of dimension

dim(M,) = 3g — 3.

PROOF. The functor Defy is pro-representable since X is projective and does not have infin-
itesimal automorphism. Furthermore T?Defx = H?(X,Tx) = 0 since dim(X) = 1, then there
are no obstructions to deforming X and the local ring representing Defx is regular. Furthermore
from remark we get Ext?(Qyx, Ox) = T?Defx = 0 for a nodal curve. Then in any case the
deformation functor of X is unobstructed. So far we have proved that M, is a smooth DM stack.
To compute its dimension we distinguish two cases.

- If X is a smooth curve, and 0 — I —+ A — B +— 0 is a semi-small exact sequence in 2tt,
then there is a functorial exact sequence

HY(X,Tx) ® I — Defx(A) — Defx(B) — H*(X,Tx) ® L.
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On a curve Tx = wx, where wy is the canonical sheaf of X. Then deg(Tx) = 2 — 2g, and
since h°(Tx) = 0, by Riemann-Roch theorem we get 1°(Tx) — KFX) =2-29—-g+1=

3 —3g, and h'(Tx) = 3g — 3. We conclude that in a point x € M, corresponding to the

isomorphism class of a smooth curve X, the tangent space TyxM has dimension 3g — 3.
- Now consider the case where X is a stable nodal curve. We have a sequence

00— H! (X, Hom(QX, Ox)) — Extl(Qx, Ox) — HO(X, Sxtl (Qx, Ox)) — 0,
there being no H? on a curve. We denote by 6 the number of nodes in X. Since the sheaf
Qy is locally free on the smooth locus of X, the sheaf £xt!(Qx, Ox)) is just k at each node,
then dim(H°(X, £xt!(Qyx, Ox))) = 8. The curve X is l.ci, then the dualizing sheaf wy is
an invertible sheaf, and since wx = ()x on the open set of regular points, we have an
injective morphism wy — Hom(Qx, Ox), and an exact sequence

0 — wy — Hom(Qx, Ox) = Oz —0,
where Z = Sing(X). Since X is stable h°(Hom(Qx, Ox)) = 0, by the cohomology exact
sequence we get h°(wy) = 0, and
0 H(X,0z) = H' (X, wy) — H' (Hom(Qx, Ox)) + 0.
By Riemann-Roch for singular curves we get ! (wy) = 3¢ — 3, and since 1°(Oz) = § we
get il (Hom(Qx, Ox)) = 3¢ — 3 — 4. Finally
dim(Ext'(Qx, Ox)) = h}(Tx) + W2 (Ext'(Qx, Ox)) =3¢ —3 -6+ =3¢ — 3.
We conclude that any point of M, is smooth and M, is a smooth stack of dimension 3¢ —3. [
REMARK 4.12. Theorems andhold also for n > 0. That is ﬂg,n is a smooth D M-stack

of dimension 3¢ — 3 + n for any g,n such that 2¢ —2 +n > 0. The notation is more convoluted
but the proofs work exactly in the same way.

Nodal curves. The arithmetic genus ¢ of a connected curve C is defined as ¢ = h!(C, Oc).
Suppose that C has at most nodal singularities. Let C = U], C; be the irreducible components
decomposition of C, and set ¢ := §Sing(C). Let

v
v:C=|]G—C
i=1
be the normalization of C. The associated morphism O¢ < O on the structure sheaves yield the
following sequence in cohomology

0+ H°(C,Oc) — H°(C,0z) — C° — H'(C,O¢) — H'(C,Op) + 0.
We get a formula for the arithmetic genus g of C
_ g
§=h(COz)+o—7+1=} gi+i—7+1
i=1
where ¢; = h!(G;, OC-) is the geometric genus of C;.
DEFINITION 4.13. A stable n-pointed curve is a complete connected curve C that has at most nodal

singularities, with an ordered collection x1, ..., x, € C of distinct smooth points of C, such that the (n +1)-
tuple (C, x1, ..., X, ) has finitely many automorphisms.
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This finiteness condition is equivalent to say that every rational component of the normaliza-
tion of C has at least 3 points lying over singular or marked points of C.
Moduli spaces of smooth algebraic curves have been defined and then compactified adding sta-
ble curves by Deligne and Mumford in [DM]. Furthermore Deligne and Mumford proved that, if
2g —2+4n > 0, there exists a coarse moduli space Mg, parametrizing isomorphism classes of
n-pointed stable curves of arithmetic genus g, and this space is an irreducible projective variety of
dimension 3¢ — 3 + n.

Boundary of Mg, and dual graphs. The points in the boundary 0Mj,, of the moduli space
Mg, represent isomorphisms classes of singular pointed stable curves. The geometry of such
curves is encoded in a graph, called the dual graph. The boundary has a stratification whose loci,
called strata, parametrize curves of a certain topological type and with a fixed configuration of the
marked points.

Each nodal curve has an associated graph. This allows to represent nodal curves in a very simple
way and translate some issues related to nodal curves in the language of graph theory.

Let C be a connected nodal curve with < irreducible components and J nodes. The dual graph
I'c of C is the graph whose vertices represent the irreducible components of C and whose edges
represent nodes lying on two components.

More precisely, each irreducible component is represented by a vertex labeled by two numbers:
the genus and the number of marked points of the component. An edge connecting two vertices
means that the two corresponding components intersect in the node corresponding to the edge. A
loop on a vertex means that the corresponding component has a self-intersection.

Recently, S. Maggiolo and N. Pagani developed a software package, called boundary, that generates
all stable dual graphs for prescribed values of g, n whose detailed description can be found in
[MP]. We will use this package to generate graphs needed in this paper.

We denote by A, the locus in Mg,n parametrizing irreducible nodal curves with n marked points,
and by A; p the locus of curves with a node which divides the curve into a component of genus
i containing the points indexed by P and a component of genus ¢ — i containing the remaining
points.

The closures of the loci A;, and A; p are the irreducible components of the boundary dM, ,,, see
[HM, Chapter 2].

REMARK 4.14. The number of different classes in the boundary grows very fast with ¢ and .
For example, in M, 3 we have three different class of stable irreducible curves, whose graph are
the following;: E|

S ()
(1,0) (1,1) (1,2) @

IThe couple of numbers before each graph are respectively the number of components of the curve and the codi-
mension of the corresponding stratum in M 3.
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while the graphs of stable curves with two irreducible components are the following;:

oS0
(23) (23) (23) (23)

D=0
(2,3) (2,3) (2,3) (2,3)

@,

B—CP | D@ B @7
(2,3) (2,2) (2,2) (2,2)

=0 O—@F D=0
(2,2) (2,2) (2,2) (2,2)

O ©—0F
(2,2) (2,2) (2,1) (2,1)
(2,1) (2,1)

Furthermore there are 163 other graphs representing curves with 3,4 or 5 irreducible components.

Forgetful morphisms and the universal curve. For any i = 1, ..., n there is a canonical forget-
ful morphism

7-[1 : Mg,n — Mg,n—l
forgetting the i-th marked point. If ¢ > 2 and [C, x1, ..., £}, ..., x| € Mg,nq is a general point the
fiber
”fl([cf X1, ey iy ooy X)) =2 C

is isomorphic to C. However 7; is not the universal curve. Indeed if (C, xq, ..., £, ..., X;;) has non
trivial automorphism group then 7'(1._1 ([C, x1, ..., Xi, ..., X ) is not isomorphic to C but to the quotient
of C by the automorphism group of the pointed curve (C, x1, ..., £, ..., X, ). For example the moduli
space M, 1 with the forgetful morphism 77 : Mg 1 — M, at first glance seems to play the role of the
universal curve over M,. However, on closer examination one realizes that 7-1([C]) = C if and
only if [C] € Mg, the locus of automorphism free curves. It is well known that the set-theoretic
fiber of 71 : M1 — M, over [C] € M, is the quotient C/ Aut(C). For example over an open subset
of Mj the fibration 7t : Mp; — M, is a P!-bundle and this is true even scheme-theoretically.

The situation is different if instead of considering the moduli space Mg 1 we consider the Deligne-
Mumford moduli stack My 1. In fact, in this case the fiber 777! ([C]) is isomorphic to C and via the
morphism 7 : Mg1 — M, the stack M, is the universal curve over M.

Note that if n > 2 the fiber 71, 1([C, X1, .., Xi, .., X)) always intersects the boundary of Mg,n. In
fact the points of the fiber corresponding to marked points represent singular curves with two
irreducible components: C itself and a IP! with two marked points and intersecting C in a point. In
the same way for any I C {1,...,n} we have a forgetful map 7t; : Mg, — M, ,_|;- The map 7; has
sections s;; : Mg ,—1 — My, defined by sending the point [C, x1, ..., X, ..., X4] to the isomorphism
class of the n-pointed genus g curve obtained by attaching at x; € C a P! with two marked points
labeled by x; and x;.
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Divisor classes on M, ,. Let us briefly recall the definitions of classes A and ¢; on M.
Consider the forgetful morphism 77 : Mg ,,1 — M, , forgetting one of the marked points and

its sections o1, ..., 0y, : ﬂg,n — Mg,nﬂ. Let w;; be the relative dualizing sheaf of the morphism 7.
The Hodge class is defined as

A= c1(m(wr)).
The classes 1; are defined as
Yi =07 (e1(wn))

for any i = 1, ..., n. Finally we denote by 6;,» and J; p the boundary classes on ﬂg,n.

5. Cohomology classes on the moduli space of curves
Letr: ég — M be the universal curve over the stack Mg, and let

7 =a(w)
be the first Chern class of the relative dualizing sheaf w := w, of m. We define the classes k; €
H?(M,) as
ki = 7_[*(,)/1'4-1)'

The Hodge bundle over M, is defined as E = 77w and its Chern classes are usually denoted by
Ai = ¢;(E). The fiber of E over a point [C] € M, is the space H(C,wc) of regular differential
forms on C. Therefore E has rank g. The difference T, — Ty, in K(Cy) is the relative tangent
bundle. Therefore

td(Cy) vy, Y 7
— ol —d(w)=1— 2+ — 4 .
o td (M) (w?) 2t 120"
Furthermore we have
- Y,
ch(w) =1+7+ 5+ ¢+

and by Grothendieck-Riemann-Roch we get

ch(mw) = 7, <W> = T, (1 + % + '{; + >

Now, 1(w) = mw — R'm.w and R'mw = O M, Therefore we have

ch(E) — 1 = rank(E) — 1+ ¢; (E) + S(E) - 20(E) g (7 L )

Since <y has degree 2¢g — 2 on a fiber of 7 we find

rank(E) = 7, (%)—l—lzg—l—i—l:g.

Furthermore )
v ki
Note that the degree three component of % is %3 — %3 + % = 0. Therefore M =0
and ) X
c1(E k
C (IE) _ 4 ( ) 1
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In general the Chern classes of the Hodge bundle can be expressed as polynomials in the tauto-
logical classes k;. -
Now, we want to derive some relations on the compactification M,. By [HM, Proposition 3.93]

a relation among divisor classes on M, corresponds to the same relation among the associated
divisor classes on the base B of any family X — B of stable curves, where B and the general fiber
are smooth curves. Let f : X — B be such a family and let ¢ be a local parameter on B. We consider
a minimal resolution r : Y — X of the singularities of X. The family g = for : Y — B is a family
of semi-stable curves. We summarize the situation in the following diagram.

,
X
N
B

Each note p of a fiber of X — B satisfying xy = t" has been replaced by a chain of m — 1 smooth,
rational curves. We conclude that ¢ : Y — B is a family of semi-stable curves, with smooth total
space, and over a node of a fiber of X — B with equation xy = " we have now m — 1 nodes.
Note that each exceptional component over a node of a fiber of X — B is a smooth rational
component intersecting the rest of the fiber on two points. Therefore the canonical bundle of such

a component is trivial and the relative dualizing sheaf of the family ¢ : Y — B is trivial on the
exceptional divisor of the resolution r. Therefore

wy /B = r*wx/p, §«wy/p = fuwx/p and gi(c1(wy,p)?) = fulc1(wx/p)?).
Let p € Y be anode of a fiber over o point [C] € B. We have an injective morphism

Oy <dt> — Oy (dx, dy>
dt —  xdy +ydx

Y

which is the injection 77*Ty — Ty. The cokernel is the relative cotangent sheaf
Oyp = Oy (dx, dy) '
(xdy + ydx)
This sheaf is an invertible sheaf on Y \ Z, where Z is the locus of nodes of fibers of Y — B. The
relative dualizing sheaf is the unique invertible sheaf w such that wjy\z = Qy/pjy\z. We can
write w = Oy (a) with a = %" — % Furthermore we have xa = 2dx and ya = —2dy. Therefore
O = QOy,p =17 @w. Let § be the class of the singular locus Z. The exact sequence

0—~Z; >0y 5 Oz —0

yields ch(Zz) =1 — ¢. We have

ch(w) -ch(Zz) = <1 +7+ 22 +> (1-9)

Q
=
—~
©)
~—
Il

that is ) ,
0 —2c(0)
alQ) 5 cal )+...:1+7+<72—§>+...

c1(w) and indeed Q) and w differ on a codimension two locus. Further-

Therefore ¢1(Q)) = ¢

2_
more Cl(Q) 22C2(Q)

Cz(Q) = 5
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We conclude that

2
P G e
td(Y/B) =1 2+ 1

+ ...
and by Grothendieck-Riemann-Roch

2 2

(v (alwys)+E
c1(g+wy/p) = 8« < B ) = gx ( B :
Now, coming back to the family f : X — B we get

ki+9
12

where 6 is the locus corresponding to Z. Finally on the moduli space M, we have

A=

1

where 1A is the divisor parametrizing elliptic tails and the rational coefficient ; keeps trace of
the elliptic involution of the elliptic tail fixing the attachment point.

The canonical class. On the smooth locus of the moduli space Mg we can consider the bundle
() generated by regular differential forms of top degree 3¢ — 3. We define the canonical bundle of
Mg, as the unique Q-line bundle restricting to (2 on the smooth locus.
The cotangent space to the stack M, ata point [C] is H?(C, Q¢ ® wc). The canonical class of M, is
given by associating to a family f : X — B of stable curves the class ng (f) = f+(Qx/p @ wx/B)-
Note that the higher direct images of f.(Qx,p ® wx,p) vanish. We have
49% - 2F
2

ch(Qx/p @ wx/p) =1+ 27+ =1+y+292-¢

and by Grothendieck-Riemann-Roch we have

2
ch(f(Qx/p ®wxsp)) = fo ((1+2y+27* =) (1 2+ VE(:))
2
=f(1-T+25 5 42y -2 +29% ¢
= fe (L4274 17 = pé)
=328 =2+ (k- 129) -
Recalling that k; = 12A — § we conclude
ch(fu(Qx/p @ wxsp)) = 5(28 —2) + (35k1 — 136)
=3¢ -3+ 3120 -4) - 15
=3¢ —3+ 131 —24.

N—

In particular the canonical class of the stack M is

Kz, = 13A —24.
Let 71 : Mgy — M, be the canonical morphism between the stack an the coarse moduli space. The
morphism 77 is ramified along the divisor A; C M, parametrizing elliptic tails. We have

T[*Kﬁg = ng + 1
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and recalling that any point of A; has automorphism group of order two we conclude that

1
Ky, = 1380 =28+ S Ay

6. Moduli spaces of weighted pointed curves and Kapranov’s construction of M,

In [Hal] B. Hassett introduced new compactifications ﬂg, Al of the moduli stack Mg, and
Mg, Al] for the coarse moduli space My ,, by assigning rational weights A = (a1,..,a,),0<a; <1
to the markings. In genus zero some of these spaces appear as intermediate steps of the blow-up
construction of My, developed by M. Kapranov in [Ka], while in higher genus they may be related
to the LMMP on M, ..

We work over an algebraically closed field of characteristic zero. Let S be a Noetherian scheme and
g, n two non-negative integers. A family of nodal curves of genus ¢ with n marked points over S
consists of a flat proper morphism 7 : C — S whose geometric fibers are nodal connected curves
of arithmetic genus g, and sections sy, ..., s, of 77. A collection of input data (g, A) := (g, a1, ..., an)
consists of an integer ¢ > 0 and the weight data: an element (4, ..., a,) € Q" such that0 < a4; <1
fori=1,..,n,and
n
2¢—2+) a;>0.
i=1

DEFINITION 6.1. A family of nodal curves with marked points 7t : (C,s1, ...,5,) — S is stable of type

(8, A)if
- the sections s, ..., s lie in the smooth locus of 7, and for any subset {s;,, ...,s; } with non-empty

intersection we have a;, + ... +a; <1,
- wr (Y7 a;s;) is mt-relatively ample, where wy is the relative dualizing sheaf.

B. Hassett in [Ha, Theorem 2.1] proved that given a collection (g, A) of input data, there exists
a connected Deligne-Mumford stack ﬂg, Aln], sSmooth and proper over Z, representing the moduli
problem of pointed stable curves of type (g, A). The corresponding coarse moduli scheme Mg, Alr]
is projective over Z.
Furthermore, by [Ha, Theorem 3.8] a weighted pointed stable curve admits no infinitesimal au-
tomorphisms, and its infinitesimal deformation space is unobstructed of dimension 3¢ — 3 + n.
Then ﬂg, A[n] 18 a smooth Deligne-Mumford stack of dimension 3¢ — 3 + .

REMARK 6.2. Since Mg, Aln] 18 smooth as a Deligne-Mumford stack the coarse moduli space

M, 41y has finite quotient singularities, that is étale locally it is isomorphic to a quotient of a
smooth scheme by a finite group. In particular, Mg, A[n] 18 normal.

For fixed g,n, consider two collections of weight data A[n], B[n| such that a; > b; for any
i = 1,...,n. Then there exists a birational reduction morphism

PB(, Al * Mg A — My iy

associating to a curve [C, sy, ..., 5u] € Mg ap the curve pgpy 4 ([C, 51, ..., 84]) obtained by collaps-
ing components of C along which w¢(bis1 + ... + bysy) fails to be ample, where wc denote the
dualizing sheaf of C.

Furthermore, for any g consider a collection of weight data A[n] = (a3,...,4,) and a subset
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Alr] := (aj,..,a;,) C Aln] such that 2¢ —2 +a;, + ... +a; > 0. Then there exists a forgetful
morphism

Al ap] * Mg,alm = Mg apy
associating to a curve [C, sy, ..., Su] € Mg,A[n} the curve 7t 4(,) afy] ([C,s1,...,sn]) obtained by collaps-
ing components of C along which wc(aj,si, + ... + a;,s;,) fails to be ample. For the details see [Ha,
Section 4].

In the following we will be especially interested in the boundary of M, 4(,. The boundary
of Mg, Aln], S for Mg,n, has a stratification whose loci, called strata, parametrize curves of a fixed
topological type and with a fixed configuration of the marked points.

We denote by A, the locus in Mg, Aln] parametrizing irreducible nodal curves with n marked
points, and by A; p the locus of curves with a node which divides the curve into a component
of genus i containing the points indexed by P and a component of genus ¢ — i containing the re-
maining points. Note that in Mg, A[z) may appear boundary divisors parametrizing smooth curves.
For instance, as soon as there exist two indices i, j such that 4; + a; < 1 we get a boundary divi-

sor whose general point represents a smooth curve where the marked points labelled by i and j
collide.

Kapranov’s blow-up constructions. We follow [Ka]. Let (C,xy,...,x,) be a genus zero n-
pointed stable curve. The dualizing sheaf wc of C is invertible, see [Kn]. By [Kn| Corollaries 1.10
and 1.11] the sheaf wc(x1 + ... + x,) is very ample and has n — 1 independent sections. Then it
defines an embedding ¢ : C — IP"~2. In particular, if C 2 P! then deg(wc(x1 + ... + x,)) = n — 2,
we (X1 + oo +x4) = ¢*Opn2(1) = Opi(n —2), and ¢(C) is a degree n — 2 rational normal curve
in P"~2. By [Ka, Lemma 1.4] if (C,x, ..., x,) is stable the points p; = ¢(x;) are in linear general
position in P" 2.

This fact combined with a careful analysis of limits in Mg,n of 1-parameter families in M, led M.
Kapranov to prove the following theorem [Ka), Theorem 0.1]:

THEOREM 6.3. Let py,...,pn € P"2 be points in linear general position, and let Vo(p1, ..., pn) be the
scheme parametrizing rational normal curves through p, ..., pn. Consider Vo(p1, ..., pn) as a subscheme of
the Hilbert scheme H parametrizing subschemes of P"~2. Then

- Vo(p1, s Pn) = Mo -
- Let V(p1, ..., pn) be the closure of Vo(p1, ..., pn) in H. Then V (p1, ..., pn) = Mo.

Kapranov’s construction allows to translate many issues of My, into statements on linear
systems on IP" 3. Consider a general line L; C IP"~2 through p;. There is a unique rational normal
curve Cp, through pi, ..., ps, and with tangent direction L; in p;. Let [C,x1,...,X,] € My, be a
stable curve, and let I € Vj(py, ..., pn) be the corresponding curve. Since p; € I' is a smooth point
considering the tangent line T),T’, with some work [Kal, we get a morphism

fit Mon — P" 3, [C,x1, ..., xp] — T, T.

Furthermore, f; is birational and it defines an isomorphism on My . The birational maps f; o it
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are standard Cremona transformations of IP" 3 [Kal, Proposition 2.12]. For any i = 1, ..., 1 the class
Y, is the line bundle on Mo,n whose fiber on [C, x1, ..., X,,| is the tangent line T,,C. From the previous
description we see that the line bundle ¥; induces the birational morphism f; : Mg, — IP"~3, that
is ¥; = fOps-3(1). In [Ka] Kapranov proved that ¥; is big and globally generated, and that the
birational morphism f; is an iterated blow-up of the projections from p; of the points py, ..., pi, ...pn
and of all strict transforms of the linear spaces they generate, in order of increasing dimension.

CONSTRUCTION 6.4. [Ka] More precisely, fix (n — 1)-points p1, ..., pp—1 € P"~3 in linear gen-
eral position.
(1) Blow-up the points p, ..., pu—2, the strict transforms of the lines (pj, pj) fori,j =1,..,n —
2, the strict transforms of the linear spaces spanned by the subsets of cardinality n — 4 of
(P12}
(2) Blow-up p,_1, the strict transforms of the lines spanned by pairs of points including p,,—1
but not p,—»,..., the strict transforms of the linear spaces spanned by the subsets of cardi-
nality (n —4) of {p1, ..., pn—1} containing p,_1 but not p,_».

(r) Blow-up the strict transforms of all the linear spaces spanned by subsets of the form
p p P y
{pPn-1, Pn—2, ., Pn—r+1}, so that the order of the blow-ups in compatible by the partial
order on the subsets given by inclusion.

(n — 3) Blow-up the strict transforms of the codimension two linear space spanned by the subset
{Pn-t, Pu—2, . Pa}-
The composition of these blow-ups is the morphism f,, : My, — IP"~3 induced by the psi-class ¥,.
Identifying My, with V(p1, ..., pn), and fixing a general (n — 3)-plane H C IP"~2, the morphism f,
associates to a curve C € V(py, ..., pu) the point T,,C N H.
We denote by W, s[n], where s = 1,...,n — r — 2, the variety obtained at the r-th step once we
finish blowing-up the subspaces spanned by subsets S with |S| < s+ r — 2, and by W,[n] the
variety produced at the r-th step. In particular, Wy 1 [n] = P"~3 and W,,_3[n] = M .

In [Ha| Section 6.1], Hassett interprets the intermediate steps of Construction as moduli
spaces of weighted rational curves. Consider the weight data

Arsn]l:=1/(n—r—-1),.,1/(n—r—-1),s/(n—r— 1)'1%/-1)

(n—r—1)—times r—times

forr =1,.,n—3ands = 1,..,.n —r — 2. Then W,4[n] = MO,A,S[n]I and the Kapranov’s map
fu : Mo, — IP"~3 factorizes as a composition of reduction morphisms

pAr,s—l[”]/Ar,s[”] : MO,im[ﬂ] — MO,Ar@[n}' s=2,.,n—r—2,
pAr,n—r—Z[nLAr+1,l [l”l] : MO/Ar+1,1 [n] — MO/Ar,nﬂ‘72[n]'

REMARK 6.5. The Hassett’s space M, Ayn_sln), that is IP"~3 blown-up at all the linear spaces
of codimension at least two spanned by subsets of n — 2 points in linear general position, is the
Losev-Manin’s moduli space L,_, introduced by A. Losev and Y. Manin in [LM], see [Hal, Section
6.4]. The space L,_» parametrizes (n — 2)-pointed chains of projective lines (C, xq, Xco, X1, -, X—2)
where:
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- Cis a chain of smooth rational curves with two fixed points x¢, X on the extremal com-
ponents,

- X1,..., Xy—2 are smooth marked points different from x(, x. but non necessarily distinct,

- there is at least one marked point on each component.

By [LM, Theorem 2.2] there exists a smooth, separated, irreducible, proper scheme representing
this moduli problem. Note that after the choice of two marked points in My, playing the role of
X0, X0 We get a birational morphism Mg, — L,—, which is nothing but a reduction morphism.
For example, L; is a point parametrizing a P! with two fixed points and a free point, L, = IP!, and
Lj is P? blown-up at three points in general position, that is a Del Pezzo surface of degree six, see
[Ha) Section 6.4] for further generalizations.

For example consider Del Pezzo surface of degree six MO, Av2[5] >~ 53 =~ 8. Letus say that Sg is
the blow-up of IP? at the coordinate points p1, p2, p3 with exceptional divisors ey, e, e3 and let us
denote by I; = (pj, px), i # j,k, i = 1,2,3 the three lines generated by p1, p2, ps.

Such surface can be realized as the complete intersection in IP? x IP? cut out by the equations
XoYo = X1y1 = X2y2. The six lines are given by ¢; = {x; = x4 = 0}, [; = {y; = yx = 0} fori # j,k,
i =1,2,3. The torus T = (C*)3/C* acts on P?> x IP? by

()\0,/\1,)\2) . ([XO tX1 .X‘Z], [yo tYp yz]) = ([ono A )\2}(2], [)Lalyo : Af1y1 : /\Elyz])

This torus action stabilizes Sg. Furthermore S, acts on Sg by the transpositions x; <> y;, and Sz
acts on Sg by permuting the two sets of homogeneous coordinates separately. The action of S3
corresponds to the permutations of the three points of IP?> we are blowing-up, while the S;-action
is the switch of roles of exceptional divisors between the sets of lines {e1,ez,e3} and {I,1,13}.
These six lines are arranged in a hexagon inside Sg

which is stabilized by the action of S3 x S;. The fan of S¢ is the following

e

It

where the six 1-dimensional cones correspond to the toric divisors ey, 13, e,11,e3 and I,. It is clear
from the picture that the fan has many symmetries given by permuting {e1, e2,e3}, {I1,12,13} and
switching e; with /; fori = 1,2, 3.
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EXAMPLE 6.6. Let n = 5, and fix py, ..., ps € IP? points in general position. Kapranov’s map fs
is as follows: blow-up p1, p2, p3 and then blow-up ps.
Atthestepr = 1,5 = 1 we get M, Avi[n] = = P2 and the weights are

Aq1[5):=1(1/3,1/3,1/3,1/3,1).
While forr = 2,5 = 1 we get M, Az [n] %MO 5, indeed in this case the weight data are
Ax1[5]:=1(1/2,1/2,1/2,1,1).

Note that as long as all the weights are strictly greater than 1/3, Hassett’s space is isomorphic
to My, because at most two points can collide, so the only components that get contracted are
rational tail components with exactly two marked points. Since these have exactly three special
points they have no moduli and contracting them does not affect the coarse moduli space even
though it does change the universal curve, see also [Ha, Corollary 4.7]. In our case My, Anils] =
Mops. —

We have only one intermediate step, namely r = 1, s = 2. The moduli space My 4, ,[5) parametrizes
weighted pointed curves with weight data

A1,[5] == (1/3,1/3,1/3,2/3,1).

Since ag +a; = 1fori =1,2,3 and a4 4 as > 1 the point py is allowed to collide with py, p2, p3 but
not with ps which has not yet been blown-up. Kapranov’s map f5 : Mgs — IP? factorizes as

Mos & Mo,Az,1 5]

N

fs MO,ALZ [5]
s
P2 2 Mg 4, ,[5)

where p1, p2 are the corresponding reduction morphisms. Let us analyze these two morphisms.
- Given (C, sy, ...,85) € MO,A21[5] the curve p1(C, sy, ..., 55) is obtained by collapsing compo-

nents of C along which K¢ + %51 + %sz + %53 + %54 + s5 fails to be ample. So it contracts
the 2-pointed components of the following curves:

along which K¢ + %51 + 52 4+ 153 + 254 + s5 is anti-ample, and the 2-pointed components
of the following curves:




7 Mo, is not a Mori Dream Space for n > 133 (following Castravet and Tevelev) 105

along which K¢ + %sl + %52 + %53 + %34 + s5 is nef but not ample. However all the con-
tracted components have exactly three special points, and therefore they do not have
moduli. This affects only the universal curve but not the coarse moduli space.

Finally K¢ + %sl + %sz + %53 + %54 + s5 is nef but not ample on the 3-pointed component
of the curve

In fact this corresponds to the contraction of the divisor Es4 = f ! (p4).
The morphism p; contracts the 3-pointed components of the curves

along which K¢ + %sl + %52 + %53 + %54 + s5 has degree zero. This corresponds to the
contractions of the divisors Es3 = f5 ' (p3), Esp = f5 ' (p2) and Es1 = f5 ' (p1).

EXAMPLE 6.7. Now, let us consider the case n = 6. Construction [6.4|is as follows:

r=1,s =1, gives IP3,

r = 1, s = 2, we blow-up the points py,..,ps € P and get the Hassett's space with
weights A1,[6] := (1/4,1/4,1/4,1/4,1/2,1),

r =1, s = 3, we blow-up the strict transforms of the lines (p;, p;), i,j = 1, ...,4, and get
the Hassett’s space with weights A;3[6] := (1/4,1/4,1/4,1/4,3/4,1),

r =2,s =1, we blow-up the point ps, and get the Hassett’s space with weights A, (6] :=
(1/3,1/3,1/3,1/3,1,1),

r = 2,5 = 2, we blow-up the strict transforms of the lines (p;, ps), i,j = 1,...,3, and get
the Hassett’s space with weights A,,[6] := (1/3,1/3,1/3,2/3,1,1),

r = 3,s = 1, we blow-up the strict transform of the line (p4, ps) and get the Hassett’s
space with weights A3 [6] := (1/2,1/2,1/2,1,1,1), that is M.

7. My, is not a Mori Dream Space for n > 133 (following Castravet and Tevelev)

In [HK|, Question 3.2] Y. Hu and S. Keel asked if M, is a Mori Dream Space. If n = 4,5 this
is well known because My = P! and My is a Del Pezzo surface of degree five. By [HK] M, is
log Fano if and only if n < 6. In particular Mo is a Mori Dream Space. For ¢ > 1 it is know that:

in characteristic zero Mg,n is not a Mori Dream Space for ¢ > 3,n > 1. This was proven
in [Ke]] by providing a nef but not semiample divisor on Mg,,;

in [CC] D. Chen and 1. Coskun proved that M , is not a Mori Dream Space for n > 3
because it has infinitely many extremal effective divisors.

REMARK 7.1. Thestepr = 1,5 = n — 3 of Construction is the Losev-Manin’s space L, »
[Ha) Section 6.4]. This space is a toric variety of dimension n — 3. It is the last toric variety in
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Construction For instance L3 is a Del Pezzo surface of degree six. The following picture
represents the corresponding polyhedron.

ertez

The space Ly is the blow-up of P? at four general points and along the strict transform of the six
lines joining them. The corresponding polyhedron is the following.

Note that both the polyhedra are very symmetric.

In a way My, is very close to a toric variety. This is one of the reasons that led to conjecture
that My, is a Mori Dream Space.

THEOREM 7.2. [CT1, Theorem 1.3] Let n = a + b+ ¢ + 8 where a, b, c are positive coprime integers.
If Bl,L,_3 is a Mori Dream Space then Bl,IP(a, b, c) is a Mori Dream Space.

PROOF. Let ey, ...,e,_» be vectors in R" 3 such that e; + ... + e,_» = 0. Let N be the lattice
generated by ey, ..., e,_2, and consider the fan ¥, _, spanned by the primitive lattice vectors ) ;. e;
for each subset I C S = {1,...,n — 2} with 1 < |I| < n — 3. The toric variety associated to this fan
is the Losev-Manin space L,—2 = X(Z,_2).

Let us consider a partition S = S; U Sp U S3 into subsets of order a +2,b 4 2,c +2. Thenn =
a+b+c+8 Wefixn; € S;fori =1,2,3, and consider the sublattice spanned by the vectors

(7.1) en, +er, for reS\{m}, i=123.
Let N' = N/N’ be the quotient and let 77 : N — N’ be the projection. Then N is a lattice, it is
spanned by the vectors 7t(ey,) fori = 1,2,3, and art(e,,) + brt(en,) + crt(e,;) = 0.

EXAMPLE 7.3. Take a = 1,b = 2,c = 3, and S = {ey,ez,e3},S2 = {es, e5,e6,67},53 =
{es, e9,€10,€11,€12}. The we take e,, = e1,e,, = es,€,, = eg. Clearly N = N/N"is generated
by 7t(e1), 7w(es), t(eg). Since m(e1) = —r(e;) fori = 2,3, m(es) = —7(e;) fori = 5,6,7, and
mt(es) = —7(e;) fori =9,10,11,12, the relation Y12, ¢; = 0 gives 7t(ey) — 7t(e1) — 7(ey) + (eq) —
t(es) —27t(es) + 1t(eg) — mw(es) — 37(eg) = —(7t(e1) +27m(es) + 37 (es)) = 0. Therefore

mt(e1) + 27(es) + 37(eg) = 0.
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It follows that the toric surface with lattice N' and rays spanned by 7(e,,) for i = 1,2,3 is the
weighted projective plane IP(a, b, ¢). For instance the following is the fan of IP(1,2,3).

Let Nj, for j = 1,..,n — 4, be the lattice obtained by taking the quotient of N by a sublattice
spanned by the first j — 1 vectors of the sequence Let I'; be a sets of rays obtained by projecting
the rays of the fan of L,_», and X=X (Fj). Mote that N,,_4 = N’ and we have a regular map
Xy—4 — P(a, b, c) obtained forgetting all vector of I',,_4 except the 7(e,,) for i = 1,2,3. Since this
map is an isomorphism on the torus it induces a birational morphism Bl.X,_4 — Bl IP(a,b,c),
where ¢ is the identity of the torus. In this way we get a sequence of toric morphism

X; = Xo— ... > Xy_g = P(a,b,0).

Note that X; has the same rays of L,_» and therefore is a small modification of L,_» which is an
isomorphism on the torus. Then Bl X; is a small modification of Bl,L,_». O

Next we consider the following theorem.

THEOREM 7.4. [CT1, Theorem 1.1] There exists a small Q- factorial projective modification L, of
Bl L, 5, and surjective morphisms

Ly, _»— MOn — Bl zn_g.

In particular, by Proposition |0.5} if Mo,, is a Mori Dream Space then Bl,L,_3 is a Mori Dream Space, if
Bl.L,_> is a Mori Dream Space then MO n 18 a Mori Dream Space.

In particular, if My, is a Mori Dream Space then Bl,L,_, is a Mori Dream Space, and by
Theorem [7.2| BI,IP(a, b, c) is a Mori Dream Space. Now, the key ingredient is the following result
due to S. Goto, K. Nishida, and K. Watanabe.

THEOREM 7.5. [GNW] Assume char(k) = 0. If (a,b,c) = (7h — 3,5h*> — 2h,8h — 3), with h > 4
and 3 { h, then Bl IP(a, b, c) is not a Mori Dream Space.

An immediate consequence of Theorems and [7.5)is the following.

THEOREM 7.6. [CT1, Corollary 1.4] Assume char(k) = 0. Then My, is not a Mori Dream Space
forn > 133.

PROOF. We have n(h) = a+b+c+8 = 7h — 3 +5h* — 2h + 8h — 34 8 = 5h* + 131 + 2. So
n(4) = 134. Therefore My 34 is not a Mori Dream Space. If n > 135 we have a surjective forgetful

morphism 7t; : Mo, — Mj134. Therefore, by Proposition m Moy,, is not a Mori Dream Space for
n > 134. Il
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7.1. A problem by Hassett. Let S be a Noetherian scheme and g, n two non-negative integers.
A family of nodal curves of genus g with n marked points over S consists of a flat proper mor-
phism 77 : C — S whose geometric fibers are nodal connected curves of arithmetic genus g, and
sections sy, ..., s, of 7t. A collection of input data (g, A) := (g, a1, ..., a,) consists of an integer g > 0
and the weight data: an element (a3, ...,a,) € Q" such that0 < a4; <1fori=1,..,n,and

n
2¢—2+) a;>0.
i=1

DEFINITION 7.7. A family of nodal curves with marked points 7t : (C,s1,...,5n) — S is stable of type
(8, A)if
- the sections s1, ..., sy lie in the smooth locus of 7, and for any subset {s; , ...,s; } with non-empty
intersection we have a;, + ... +a; <1,
- wr (Y a;s;) is m-relatively ample, where wy is the relative dualizing sheaf.

B. Hassett in [Ha, Theorem 2.1] proved that given a collection (g, A) of input data, there exists
a connected Deligne-Mumford stack ﬂg, Aln], sSmooth and proper over Z, representing the moduli
problem of pointed stable curves of type (g, A). The corresponding coarse moduli scheme Mg, Alr]
is projective over Z.
For fixed g, n, consider two collections of weight data A[n], B[n] such thata; > b; foranyi =1, ..., n.
Then there exists a birational reduction morphism

PBin, Al * Mg alm) = Mg b
associating to a curve [C, 1, ..., 81| € Mg 4[| the curve ppp apu)([C, 81, .-, $4]) obtained by collaps-
ing components of C along which w¢(bis1 + ... + bysy) fails to be ample, where wc denote the
dualizing sheaf of C. For the details see [Ha) Section 4].
In the following we will be especially interested in the boundary of My 4(,). We consider a par-
tition IUJ = {1,..,n}, such that |I|,|]| > 2 and a;, + .. +a; > 1, a; +..+a;_, > 1 where
I ={i1,...,ir}, ] = {j1, s ju-r}. We denote by Dj j(A) the divisor in My 4[,) whose general point
corresponds to a nodal curve with two irreducible components with marked points x; , ..., x; on
one component and x;,, ..., xj,_, on the other.
Furthermore, for any partition with I = {i;,i>} and i; + i, < 1 corresponds to a divisor Dj;(A)
as well. Such a divisor parametrizes curves where the marked points x;,, x;, coincides. Note that
these curves are note necessarily nodal. In [Ha] Hassett proposed the following problem:

PROBLEM 7.8. [Ha, Problem 7.1] Let A[n] be a vector of weights and consider the moduli space
MO/ Aln]- Do there exist rational numbers aj,j such that

Kty T IX}; a1,y Dry(A)

is ample and the pair (Mg af), X1 j &1,D1,5(A)) is log canonical?

In [Ha, Sections 7.1, 7.2, 7.3, Remark 8.5] Hassett provides examples in which Problem
admits a positive answer. By taking advantage of Proposition [4.§ we are able to provide two new
classes of examples. Let us recall the following construction due to M. Kapranov [Kal.

CONSTRUCTION 7.9. Fixed (n — 1)-points py, ..., pp—1 € P"~2 in linear general position:
(1) Blow-up the points py, ..., pu—1,



7 Mo, is not a Mori Dream Space for n > 133 (following Castravet and Tevelev) 109

(2) Blow-up the strict transforms of the lines (p;,, pi,), i1,i2 = 1,...,n — 1,
(k) Blow-up the strict transforms of the (k — 1)-planes (pj,, ..., pi,), i1, .., ik = 1,..,n — 1,

(n — 4) Blow-up the strict transforms of the (n — 5)-planes (pj,, ..., pi, ,), i1,y in-a =1,..,n — 1.

Now, consider Hassett’s spaces Xy [n] := M, A fork=1,...,n — 4, such that

-a;+a, >1fori=1,.,n—1,

- aj, + ... +a; < 1foreach {iy,...,ir} C{1,.,n—1} withr <n—-k—-2,

- aj, + ... +a; > 1foreach {iy,...,ir} C {1,..,n—1} withr >n—k—2.
Then X [n] is isomorphic to the variety obtained at the step k of the blow-up construction. There-
fore the variety Y appearing in Proposition |6.4|is isomorphic to My ,+3 and the boundary divisor
of the log resolution 77 : Y — X/, is nothing but the total boundary divisor of M ,3. Fur-
thermore X, , is isomorphic to the Hassett’s space Xi[n + 3]. Therefore, by Proposition |6.5 the
Hassett’s space X [n + 3] is log Fano.
Now, let us consider the space M 4, ] = Xi1[n] obtained at the first step of Construction In
our notations this is XZ:;’ = Blpll,_.,pnflIP”_? This fix ideas Mo, Aq[n] can be realized taking

Ain|=(1/(n-3),...,1/(n—3),1).
PROPOSITION 7.10. For the moduli spaces Mg 4, (n] Problem|7.8|admits a positive answer.

PROOF. The blow-up morphism M, Adn] P"~3 is nothing but the reduction morphism
01 Moa, — P~ =3 given by (1/(n —3),...,1/(n — ) 1) — (1/(n-2),..,1/(n—2),1). We
have n — 1 partitions of the type I = (I,n), ] = (1, ,n —1). The (n — 1) divisors Dy cor-
responding to these partitions are contracted to a pomt by p and are nothing but the n — 1 ex-
ceptional divisors of the blow-up. Furthermore, we have (") divisors D; j(A) with I = {f, 1},
J={ph, 1,1, .., jn-3 n} and therefore x,, = x,,. These divisors are mapped by p to the (”;1)
hyperplanes spanned subsets of cardinality n — 3 of {p, ..., pn—1}. As usual we denote by H the
pullback of the hyperplane class of P"~% and by Ej, ..., E,_1 the exceptional divisors. Then we
have

KMO/AM =—m—-2)H+(n—4)(Ey + ...+ E;,—1).

Let H;, ; ., be the strict transform of the hyperplane <pl~1, ey Pi,,,3>- Using the same notations of
Problem 7.8 we take a; = a for any Dy j(A) of type

I = {fl,fz}, ]: {jl,...,fl,...,fz,...,jn_3,n}
and aj; = B for any Dy ;(A) of type

I=@Gn), J=@Q,.,5.,n—-1).
Then
Z“I /Dij(A)=a(Hy, y3+..+Hs n1)+B(Er+ ..+ En1)

and since Hl’lr~~-ﬂn—3 =H-E, —..—E, ,weget

n—1 n—2 n—1
Kty T 201Dy (A) = (a7, ") —n+2)H— (a7 ) —n—p+4) ) E:
’ 1] 4
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Now, in the notations of Section.3lwe have

(7.2) (ST Za”D” A)) - Ri:%(n—Z)(n—B)—n—ﬁ+4,

and

(7.3) (Kt oy + LDy (A)) - Lyj = %(n —2)(5—n)+2B+n—6.
L]

In particular for « = -5 and B = £ we have that both 2) and (7 .) are strictly positive. There-
fore, by Proposmon.for a = -2 and B = 3 the divisor (KM gt Yy arDrj(A) is ample.

Letp : Mon — Mg a,[u be the reductlon morphlsm obtained by Composition of the blow-ups in
Construction By Proposition |6.4 the morphism p is a log resolution of the pair (Mg 4, ), D),
where D =a ) Zﬂ ,Hi, iy + B Ei

We have pj, = (), +1) h-planes spanned by subsets of cardinality 1 + 1 of {p1, ..., pn—1}. Let Eh for
j =1,..., pj be the exceptional divisors over them. Then we have

Kty = P Kty 5 T Z (n—h—4)(Ef +..+E}).
=1

Furthermore, through any such an h-plane there are (Z: e 4) ofthe H;, i
proof of Proposition 6.4 we may write:

n—5 N
p*(D)zZ(x(n Z 2>(E{1+...+Eh +u¢ Z 2 ZH+[32E

An—3

’s. Proceeding as in the

where H; ;.

Ky, = 0 (KM(]A[]+D)+Z (n—h—4—a("—g—2)) (Ef + ..+ E!)
“le 11 ..... 521

To conclude it is enough to observe that for « = -2 and g = % all the discrepancies are greater
than —1. Therefore the pair (M 4, in], D) is klt and in particular log canonical. U

and E; are respectively the strict transforms in M, of Hj, . i, ,and E;. Finally

Now, let us consider Construction The moduli space M 4, ,[,] With weights
Apnl =(1/(n—-2),..,1/(n—-2),2/(n—-2),1)
is the blow-up X3 = Bl,, ,, ,P" 5.

PROPOSITION 7.11. Problem|7.8|admits a positive answer for the moduli spaces M, Ava[n) 08 well.

PROOF. In this case the divisors Dy j are the following:
- the n — 2 exceptional divisors Ey, ..., E,—2,
- the strict transforms H;,_; , of the n — 2 hyperplanes spanned by subsets of cardinality
n—3of {p1, ..., pn-2},
- the strict transforms A; i , of the ("gz) hyperplanes spanned by subsets of cardinality
n—4of {pi,.., pn—2} and pn 1.
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We consider the divisor

D= ZD‘I]DII Z Hll ~~~~~ 1n3+7 Z A]l ]n4+ ZE

L] Zl ez T e,
We proceed as in the proof of Proposition|7.10l Now, H;,,_ ;. , = H—E; —..—E; ;and A . , =
H —Ej — .. — E;,_,, through each of the p;’s for i = 1,..,n — 2 there are (Z_i) = n — 3 of the

Hi, i _,’sand (”53) of the A;, i ,’s. Therefore, we may write:

_ 2 2(n-23) 2 m=-3N\\"F . 3n — 11 "=2
D_(n—l)H—|—<3— — —n_2< ) ));El_(n—l)H— 3 ;El

and
n—2

3n\ =2 1
”) Z;Ei:H—§ZEi.
i=

i=1

11
+D=(—n+2+n—-1)H+ <n—4+

MO,ALZ [n]

Now, (K37 Mo 1 + D)-R; = (KMO/AM[”] +D)- Lij= % and by Propositionthe divisor (KMO/AI,Z[”] +

D) is ample
Now, let 71,,_1 : X:l’::l5 — X;’:g be the blow-up of p,_; and consider the composition

—_— _ e Tty—1 _ -
P

where p is the log resolution used in the proof of Proposition Then p is a log resolution
of the pair (M, A, D). Let E,—1 be the exceptional divisor over p,_1, E]}-’ be the 7, = (Zﬁ)
exceptional divisors over the h-planes spanned by subsets of cardinality & + 1 of {p1, ..., pn—2},

and E be the 7), = (" 2) exceptional divisors over the h-planes spanned by subsets of cardinality
h of {pl, . Pn—2} and p,_1. Now, note that

- the point p,,_1 is contained in any A, , and we have (”52) of them,
- any h-plane spanned by subsets of cardinality & + 1 of {py, ..., pp—2} is contained in n —
h — 3 of the H; ’s and in (”712173) of the Aj i ,'s,

Treorln—3

4
- any h-plane spanned by subsets of cardinality / of {p, ..., pp—2} and p,_1 is contained in
("h%) of the Ay, _j, ,'s.

Therefore, we have

FD= 2 (")E, ,122 S(n—h=3+("40) (Bl + ..+ By )+
20 (E ) (Ef 4.+ E5,) + D.
Now, since

n—5
+(n—4)Ey 1+ Y (n—h—4)(El + ..+ E" +E{+.. +E)

— — * K-
KMO,n p KMO,ALZ [

n)



112 5. MODULI OF CURVES
we get

KMO,n = ﬁ* (K O,A n] + (n 4 o % " 2)) Enil—{—
-3+

T (1= h—4— 2 (n ”h*3)))(Eh+ HEL)+
Thot ”_h_4_f(ng ))(E1+ ‘|‘E )~ D

where D is the strict transform of D in My,. The discrepancies are all greater or equal than —1
hence the pair (Mg 4,, (s, D) is log canonical. O

Finally, we observe that for 3-fold Hassett’s spaces a little improvement is at hand. The moduli
space My is a log Fano 3-fold, see [HK]. By Propositionit is a Mori Dream Space. See [?] for
a direct proof of this last fact and the detailed description of Cox(Moy).

PROPOSITION 7.12. Any 3-fold Hassett’s space MO,A[@ is log Fano.

PROOF. By [Ha, Theorem 4.1] there exists a birational reduction morphism p : MO,6 — MO, Al6]-

Now, it is enough to recall that by [HK] My is log Fano, and to apply [GOST), Corollary 1.3] to
the morphism p. O

An immediate consequence of Proposition is that the following varieties are log Fano.

- The blow-up of IP? in four general points, along the strict transforms of the lines spanned
by them, and in a fifth general point. Indeed, by Construction [6.4] this variety con be
realized by taking A[6] = (1/3,1/3,1/3,1/3,1,1).

- The blow-up of IP? in five general points, and along the strict transforms of the lines
spanned by them. By Construction this is M itself.

- The blow-up X; of P{ x P} x P inpy = ([0:1],[0:1],[0:1]), p2 = ([1:0],[1:0],[1:0]),
and p3 = ([1:1],[1:1],[1 : 1]). By [Ha| Section 6.3], X; is isomorphic to My 4, With
Aql6) = (2/3,2/3,2/3,1/6,1/6,1/6).

- Consider the projections 7; : P} x IP2 x P} — P}, and define Fy = U7, 7; 1([0 : 1]),
F=Um"1:0]),Fe=U3m ' ([1: 1]) Let A; be the union of the 2-dimensional
diagonals of P} x P} x IPJ. Then we have X, the blow-up of X; along the strict trans-
form of Ay N (Fy U F; U Fy). By [Ha, Section 6.3], X, can be realized taking A;[6] =
(2/3,2/3,2/3,1/3,1/3,1/3).

- Finally, the blow-up X3 of X; along the strict transform of the 1-dimension diagonal A; of
IP{ x P} x IP1. Again by [Hal Section 6.3] this is M.

PROPOSITION 7.13. Let us consider the points g1 = ([1: 0],...,[1 :0]), g2 = ([0 : 1],...,[0 : 1]),
g3 = ([1:1],...,[1:1]) € (PY)"~3. There exits a small transformation

fr XZ:% -7 Yg_S = Bly,40.05 (Ipl)n_S-
In particular, Y33 is log Fano.

PROOF. First of all, note that p(X"~2) = p(Yy ) = n. We may assume p; = [1:0 : ... :
0, 2 =0:1:..:0},., pp—2 =1[0: .. :0:1], ppoq1 = [1:1:..:1]. Let us consider
X"3 = Bly,, . ,P"%and YJ > = Bl,, o,(IP})"~3. These are both toric varieties. Let ey, ..., 43
be the standard basis vectors of the co-character lattice of (k*)"~3. The rays of the fan of P"~2
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are ey, ...,ey—3 and —e; — ... — e,—3. By blowing-up pj, ..., pu—2 we add the rays —ey, ..., —e,—3 and
e1 + ... + e;—3. On the other hand the rays of (]Pl)”‘?’ areey,...,€,—3, —€y, ..., —€,_3, and the blow-up
of 41,42 corresponds to introduce the two rays e; + ... +-e,_3 and —e; — ... — e,_3. We see that the

toric fans of XZ:;’ and Y3 —3 are the same. Therefore, XZ:; and Y§_3 are isomorphic in codimension
one.

Now, consider the points pj, ..., p,—3. We have n — 3 codimension two linear subspaces H n=> L=
i

(piys s Pi, 4 )- For any choice of iy, ..., iy—4 we define {j1,jo} = {0,...,n =3} \ {i1 — 1,. zn 4— 1}
Then, the projection from HZ’S i, is the rational map

T yin g P2 -7 P!
[XQ Dt Xn_3] = [le : sz]
We get a rational map
g: P - (P)™>
x=[xo:ixna] = (Mn-a(X), 0 7, 0-3(X))

Note that the hyperplane W = (p1, ..., pn—3) = {x4—3 = 0} is mapped by g to the point q; =
([1:0],..,[1:0]) € (P})"~3. Furthermore, this is the only divisor contracted by g. Therefore,
blowing-up g1 € (P!)"~3 we get a small transformation g7 : X;’:g = Blpl;~~-;pn—3]]?n_3 — Yln_3 =
Bl (P1)"~3 fitting in the following diagram:

-3 _
Xy 3" > YT ’

¢"73l l‘l’l
]I)n_B 77777 5 (lpl)i’l—3

Note that g, maps the strict transform W of W to the exceptional divisor E;,, while the exceptional
divisors E,,, ..., E,, , are mapped to the strict transforms of the n — 3 divisors in (IP')" 3 obtained
by fixing one the factors.

Furthermore, g([0 : ... : 0 : 1]) = ([0 : 1],..,[0 : 1]) and g([1 : ... : 1]) = ([1 : 1],...,[1 : 1]).
Let Y C X" 3 and V C Y{'2 be the two open subsets on which g; is an isomorphism. Now,
by applying the universal property of the blow-up [Har, Corollary 7.15] we get that g, lifts to
an isomorphism f : Bl, ,, U — Blg, 4, V. Since g1 is an isomorphism in codimension one we
conclude that f induces a small transformation f : X'~ 3 - Y3 3 mapping Ep, ,to Eg,and Ep,
to Eg;.

To conclude that Y§ 2 is log Fano it is enough to recall that by Theorem 6.5/ X" "3 is log Fano, and
to apply Lemmato the small map f : X"~3 --» YJ 3. O

Finally, we observe that by [Ha| Section 6.3] the variety Yj > = qul 42,3 (P1)" 73 can be inter-

preted as an Hassett’s space My 4[,) with A[n] = (3,33, 3(n1 7+ 30 4))

8. My is weak Fano

In order to understand the intersection numbers appearing in this section it is useful to keep
in mind Section Let us recall the Krapranov’s blow-up construction of M.

CONSTRUCTION 8.1. Let py, ..., p5 € P3 be points in linear general position. We consider:
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- 11 2 X — IP3 the blow-up of py, ..., ps,
- 1 Y — X the blow-up of the strict transforms of the lines (p;, pj),i,j = 1,...,5,

Then Y = M4, and the morphism fs = 71 0 712 : M6 — IP? is induced by the psi-call ¥4 on M.

By [KM(d, Theorem 1.2] the Mori Cone NE(Mg) of My is generated by classes of vital curves.
Let us denote by E; and E;; the exceptional divisors over p; and the strict transform of < Pi, pj>
respectively.

In the first blow-up X the strict transforms of the lines (p;, p;) intersects the exceptional divisor
E; over p; in four points g; for j # i. Therefore, after blowing-up all the strict transforms of the

lines the divisor E; in My is isomorphic to the blow-up of IP? in four points. We denote by L} ,
the strict transform in E; of the line spanned by g;, and gy, and by R} the exceptional divisor over
gn- So, in any exceptional divisor, we get 10 vital curves: 6 of type L;;/k and 4 of type R}.

Now, for any line (p;, pj) C IP® we have three planes (p;, pj, Px) for k # i,j containing this line.
The strict transforms of the three planes intersects the exceptional divisor E;; in three vital curves

O'ZIfj. Therefore, we have (g) -3 = 30 of them.
Note that R;- is numerically equivalent to R} for any i, j because the are fibers of the same ruling
of E; ;. Furthermore, the O’Ilfj’s for k # i,j are all numerical equivalent because they are fibers of
the other ruling of E; ;. We conclude that NE(M) is a polyhedral cone generated by 50 extremal
rays.
LEMMA 8.2. For any i we have:
H>-E;=H-E? =0, E} =1.
Furthermore H - E%j = —1, H* - E;j = O for any i, j, and
R
Ik 0 ifié¢ {hk}
Finally E? - E = 0 for any i, h, k.
PROOF. We will denote by E; both the exceptional divisor over p; in X and its strict transform
in Y. Let H; be the strict transform of a general plane through p;. Then H; = H — E; and HZ3 =

H3—3H2-Ei—|—3H-Ei2—E?,HZ3:Hz-Ei:H-EfzoyieldE?:H3:1.
Now, let us consider the following diagram:
j

Ei,j — Y

e | | ln

Li; X

where 7tp = 7rg, . We have (H — E;j)*> = H® — H*- (H — E; ;) = 0. Therefore,

H-E}; = m*H - j.E}; = ju(E}; - mpinH) = =1,
H2. Ei,j — 7*H2 'j*Ei,j = j*(Ei,j . 7'[21'*]—[2) =0,
E;- E%j = *E; - Eiz,j — ]‘*(E%j R E;) = —1,
Ei2 “Eij= 71*]512 ‘Eij= ]'*(EZ-,]- . nEi*Ef) =0.
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Finally (H — E;;)° = H> - 3H? - E;; + 3H - E;; — E}; = H}; = O yields E}, = —2. O

PROPOSITION 8.3. The moduli space My is weak Fano.

PROOF. The anti-canonical bundle is given by
5 5

—Ky,, =4H—-2) Ei— ) Eij.
' i=1 i,j=1

First we consider the curves of type L! ,. We have
‘ -1 ifi=t
1 . — 7
L Bt { 0 ifi#t
Furthermore,

Li . E, = 1 ifs=iandt € {hk},
hk == 0 otherwise.

Finally, L , - H = 0, and
Kty - Lig = —2(=1) = (1+1) =0.
Now, let us consider a curve of type R; Then R; -H = R; -Ex = 0foranyi,j,k and
i | -1 if{ij} = {hk},
R Enx = { 0 otherwise.
This yields
—Ky,, - Rj=1.
Finally, we consider a curve of type 0;;. Note that the normal bundle of the strict transform of
aline L;; = (pi, pj) is Ni,; = Op1(—1) ® Op1(—1). Therefore, O, .(E;;) = Of, (—1,~1). This

yields
5 =1 if{ij} = {nk},
0ij - Eng = { 0 otherwise.

Furthermore 0;;- H = 1 and

. [ 1 ifhe{ij},
i+ En = { 0 otherwise.

Therefore
—Kgg, 0y =4-2(1+1) = (-1) = 1.
This means that —Ky;, . is nef. Now, by the formulas in Lemma 8.2 we get that (_Kﬁm)s >0

which implies that —Ky; is big. O
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