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Introduction

The goal of the minimal model program is to construct a birational model of any complex pro-
jective variety which is as simple as possible in a suitable sense. This subject has its origins in the
classical birational geometry of surfaces studied by the Italian school. In 1988 S. Mori extended
the concept of minimal model to 3-folds by allowing suitable singularities on them. In 2010 there
was a great breakthrough in the minimal model theory when C. Birkar, P. Cascini, C. Hacon and
J. McKernan proved the existence of minimal models for varieties of log general type.
Mori Dream Spaces, introduced by Y. Hu and S. Keel in 2002, form a class of algebraic varieties
that behave very well from the point of view of Mori’s minimal model program. They can be
algebraically characterized as varieties whose total coordinate ring, called the Cox ring, is finitely
generated.
In addition to this algebraic characterization there are several algebraic varieties characterized by
some positivity property of the anti-canonical divisor, such as weak Fano and log Fano varieties,
that turn out to be Mori Dream Spaces, see Chapter 3 for details.
Chapter 5 is an introduction to moduli spaces of curves. The search for an object parametriz-
ing n-pointed genus g smooth curves is a very classical problem in algebraic geometry. In [DM]
P. Deligne and D. Mumford proved that there exists an irreducible scheme Mg,n coarsely repre-
senting the moduli functor of n-pointed genus g smooth curves. Furthermore they provided a
compactification Mg,n of Mg,n adding Deligne-Mumford stable curves as boundary points and
pointed out that the obstructions to representing the moduli functor of Deligne-Mumford stable
curves in the category of schemes came from automorphisms of the curves. However this mod-
uli functor can be represented in the category of algebraic stacks. Indeed there exists a smooth
Deligne-Mumford algebraic stackMg,n parametrizing Deligne-Mumford stable curves. The stack
Mg,n and its coarse moduli space Mg,n are among the most studied objects in algebraic geometry.
In [Ha] B. Hassett introduced new compactificationsMg,A[n] of the moduli stackMg,n and Mg,A[n]
for the coarse moduli space Mg,n, by assigning rational weights A = (a1, ..., an), 0 < ai ≤ 1 to the
markings. In genus zero some of these spaces appear as intermediate steps of the blow-up con-
struction of M0,n developed by M. Kapranov in [Ka], while in higher genus they may be related
to the Log Minimal Model Program on Mg,n.
The aim of these notes is to give an introduction to Mori Dream Spaces, weak Fano and log Fano
varieties and to moduli spaces of rational curves. In Chapter 4 we will focus on some particular
and well understood examples of Mori Dream Space arising as blow-ups of projective spaces in
points, and we will discuss their relations with some moduli spaces of weighted rational curves.
Finally, after discussing a famous conjecture by Y. Hu and S. Keel [HK], predicting that M0,n is a
Mori Dream Space, we will summarize the main ideas of a paper by A. M. Castravet and I. Tevelev
[CT2]. In this paper the authors prove that M0,n is not a Mori Dream Space for n > 133.
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CHAPTER 1

Singularities

Canonical singularities appear as singularities of the canonical model of a projective variety,
and terminal singularities are special cases that appear as singularities of minimal models. Termi-
nal singularities are important in the minimal model program because smooth minimal models do
not always exist, and thus one must allow certain singularities, namely the terminal singularities.
For instance, two-dimensional terminal singularities are smooth. The singular locus of a variety
with at most terminal singularities has codimension at least three. In particular for curves and
surfaces all terminal singularities are smooth. For 3-folds terminal singularities are isolated and
have been classified by S. Mori.
Surface canonical singularities are exactly the du Val singularities, and are analytically isomorphic
to quotients of C2 by finite subgroups of SL2(C).

Cyclic quotient singularities. Any cyclic quotient singularity is of the form An/µr, where µr
is the group of r-roots of unit. The action µr y An can be diagonalized, and then written in the
form

µr ×An −→ An

(ε, x1, ..., xn) 7−→ (εa1 x1, ..., εan xn)

for some a1, ..., an ∈ Z/Zr. The singularity is thus determined by the numbers r, a1, ..., an. Follow-
ing the notation set by M. Reid in [Re], we denote by 1

r (a1, ..., an) this type of singularity.

EXAMPLE 0.1. Let us consider the action:

µ2 ×A2 −→ A2

(ε, x0, x1) 7−→ (εx0, εx1)

The ring of invariants is given by:

k[x2
0, x0x1, x2

1]
∼= k[y0, y1, y2]/(y0y2 − y2

1)

and we see that the singularity X = A2/µ2 corresponds to the vertex v of the affine cone

X = Spec(k[x2
0, x0x1, x2

1]
∼= k[y0, y1, y2]/(y0y2 − y2

1))

that is the vertex of a quadric cone Q ⊂ P2 or equivalently the singularity 1
2 (1, 1) of the weighted

projective plane P(1, 1, 2). Now, dx0 ∧ dx1 is a basis of
∧2 ΩA2 , and (dx0 ∧ dx1)

⊗2 is invariant
under the action. The form

ω =
(dy0 ∧ dy1)

⊗2

y2
0

∈ (
2∧

Ωk(X))
⊗2

is a basis of (
∧2 ΩX)

⊗2 because the quotient map π : A2 → X is étale on X \ {v}, and π∗ω =
4(dx0 ∧ dx1)

⊗2.
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6 1. SINGULARITIES

Blowing-up the vertex v we get a resolution f : Y → X. If [λ0 : λ1 : λ2] are homogeneous
coordinates on P2 then the equations of Y in A3 ×P2 are:

y0λ1 − y1λ0 = 0,
y0λ2 − y2λ0 = 0,
y1λ2 − y2λ1 = 0,
y0y2 − y2

1.

Therefore, y1 = λ1
λ0

y0, and λ2
λ1

= λ1
λ0

yields y2 = λ1
λ0

y1 = (λ1
λ0
)2y0. Then, in Y we have an affine chart

isomorphic to A2 with coordinates (y0, t) where the resolution is given by (y0, t) 7→ (y0, y0t, y0t2),
with t = λ1

λ0
, and the exceptional divisor E over v is given by {y0 = 0}. We have

f ∗ω = (dy0 ∧ dt)⊗2.

Therefore, f ∗ω has neither a pole nor a zero along E, and we may write KY = f ∗KX.

EXAMPLE 0.2. Let us consider the action:
µ3 ×A2 −→ A2

(ε, x0, x1) 7−→ (εx0, εx1)

The ring of invariants is given by:

k[x3
0, x2

0x1, x0x2
1, x3

1]
∼= k[y0, y1, y2, y3]/(y0y3 − y1y2, y0y2 − y2

1, y1y3 − y2
2)

and we see that the singularity X = A2/µ3 corresponds to the vertex v of the affine cone

X = Spec(k[y0, y1, y2, y3]/(y0y3 − y1y2, y0y2 − y2
1, y1y3 − y2

2))

over a twisted cubic C ⊂ P3. Now, dx0 ∧ dx1 is a basis of
∧2 ΩA2 , and (dx0 ∧ dx1)

⊗3 is invariant
under the action. The form

ω =
(dy0 ∧ dy1)

⊗3

y4
0

∈ (
2∧

Ωk(X))
⊗3

is a basis of (
∧2 ΩX)

⊗3 because the quotient map π : A2 → X is étale on X \ {v}, and

π∗ω =
(3x4

0(dx0 ∧ dx1))
⊗3

x12
0

= 27(dx0 ∧ dx1)
⊗3.

Blowing-up the vertex v we get a resolution f : Y → X, and we have an affine chart isomorphic to
A2 with coordinates (y0, t) where the resolution is given by (y0, t) 7→ (y0, y0t, y0t2, y0t3), and the
exceptional divisor E over v is given by {y0 = 0}. We have

f ∗ω =
(dy0 ∧ (y0dt + tdy0))⊗3

y4
0

=
(dy0 ∧ dt)⊗3

y0
.

Therefore, f ∗ω has a pole along E, and we may write KY = f ∗KX − 1
3 E.

EXAMPLE 0.3. Now, let us consider the action:

µ2 ×A3 −→ A3

(ε, x0, x1, x2) 7−→ (εx0, εx1, εx2)

The ring of invariants is given by:

k[x2
0, x0x1, x0x2, x2

1, x1x2, x2
2]
∼=

k[y0, y1, y2, y3, y4, y5]

(y0y3 − y2
1, y0y4 − y1y2, y0y5 − y2

2, y1y4 − y2y3, y1y5 − y2y4, y3y5 − y2
4)
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The singularity X = A3/µ2 corresponds to the vertex v of the affine cone X over a Veronese
surface V ⊂ P5. The differential form dx0 ∧ dx1 ∧ dx2 is a basis of

∧3 ΩA3 , and (dx0 ∧ dx1 ∧ dx2)⊗2

is invariant under the action. The form

ω =
(dy0 ∧ dy1 ∧ dy2)⊗2

y3
0

∈ (
3∧

Ωk(X))
⊗2

is a basis of (
∧3 ΩX)

⊗2 because the quotient map π : A3 → X is étale on X \ {v}, and

π∗ω =
(4x6

0(dx0 ∧ dx1 ∧ dx2))⊗2

x6
0

= 4(dx0 ∧ dx1 ∧ dx2)
⊗2.

Blowing-up the vertex v we get a resolution f : Y → X, and we have an affine chart isomorphic to
A3 with coordinates (y0, s, t) where the resolution is given by (y0, s, t) 7→ (y0, y0s, y0t, y0s2, y0st, y0t2),
and the exceptional divisor E over v is given by {y0 = 0}. We have

f ∗ω = y0(dy0 ∧ ds ∧ dt)⊗2.

Therefore, f ∗ω has a zero along E, and we may write KY = f ∗KX + 1
2 E.

DEFINITION 0.4. A normal variety X is terminal (canonical) if KX is Q-Cartier and there exists a
resolution f : Y → X such that

KY = f ∗KX + ∑
i

aiEi

with ai > 0 (ai ≥ 0). The rational numbers ai are called discrepancies.

For instance, the quadric cone in Example 2.17 is canonical but not terminal, the cone over the
twisted cubic in Example 2.18 is not even canonical, and the cone over the Veronese surface in
Example 0.3 is terminal.
A projective variety X has canonical singularities if it is normal, some power of the canonical bun-
dle of the smooth locus of X extends to a line bundle on V, and X has the same plurigenera as any
resolution of its singularities.
A normal projective variety X has terminal singularities, if some power of the canonical line bun-
dle of the smooth locus of X extends to a line bundle on X, and the pullback of any section of
ω⊗m

X vanishes along any codimension one component of the exceptional locus of a resolution of
the singularities of X.

EXAMPLE 0.5. Let S be a terminal projective surface, and let f : Y → S be a resolution of S.
Then

KY = f ∗KS + ∑
i

aiEi

with ai > 0. By Grauert-Mumford theorem [BPV, Theorem 2.1] the intersection matrix of the Ei’s
is negative definite. Therefore, there exists an Ej such that

Ej · (∑
i

aiEi) < 0.

Let us check this in the case of two components E1, E2. The general case will be clear. The inter-
section matrix

I =
(

E2
1 E1E2

E1E2 E2
2

)
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is negative definite. In particular, if for the vector a = (a1, a2) we have

a · I · at = a2
1E2

1 + 2a1a2E1E2 + a2
2E2

2 < 0.

On the other hand

a2
1E2

1 + 2a1a2E1E2 + a2
2E2

2 = a1E1(a1E1 + a2E2) + a2E2(a1E1 + a2E2) < 0.

Since a1, a2 > 0 the last inequality yields either E1(a1E1 + a2E2) < 0 or E2(a1E1 + a2E2) < 0.
Furthermore E2

j < 0. We conclude that there exists an Ej such that Ej · (∑i aiEi) < 0 and E2
j < 0.

By adjunction on the curve Ej we get

2g(Ej)− 2 = KY · Ej + E2
j < 0.

Therefore, g(Ej) = 0 and KY · Ej + E2
j = −2. This forces, KY · Ej = E2

j = −1. By Castelnuovo
contractibility criterion [Har, Theorem 5.7] we can contract Ej on a smooth surface. Proceeding
recursively we get that S is smooth. Therefore, a surface is terminal if and only if it is smooth.
Now, let S be a surface with canonical singularities, and let f : Y → S be a minimal resolution that
is there are no (−1)-curves contracted by f . We may write KY = f ∗KS + ∑i aiEi with ai ≥ 0. If S is
not smooth we have ai = 0, and

KY = f ∗KS.
If E is a curve contracted by f we get KY · E = 0 and E2 < 0. This imply 2g(E)− 2 = KY · E + E2 =
E2 < 0, which in turn yields g(E) = 0 and E2 = −2. Since the intersection matrix is negative
definite (Ei + Ej)

2 < 0, and hence Ei · Ej ≤ 1. Therefore, any contracted fiber of f is a tree of
rational curves corresponding to one of the Dynkin diagrams: An, Dn, E6, E7, and E8. Canonical
surface singularities are the so called Rational Double Points, also known as Du Val singularities
or ADE singularities.

1. Singularities of Pairs

Let us consider a Q-Weil divisor D = ∑i diDi on a normal variety X. We assume that the Di’s
are distinct. We want to give a reasonable notion of singularities of the pair (X, D). We require
that KX + D is Q-Cartier. Then for a resolution f : Y → X we have the formula

KY = f ∗(KX + D) + ∑
i

aiEi − D̃,

where D̃ is the strict transform. Even when X is smooth D could be very singular. A resolution of
X is meaningless for the pair (X, D).

DEFINITION 1.1. A divisor D = ∑i Di on a smooth variety X is simple normal crossing if D is
reduced, any component Di of D is smooth, and D is locally defined in a neighborhood of any point by an
equation in local analytic coordinates of the type

z1 · ... · zk = 0

with k ≤ dim(X).

Roughly speaking the singularities of D should locally look no worse that those of a union of
coordinate hyperplanes.

EXAMPLE 1.2. Let D = ∑i Di where the Di’s are hyperplanes in Pn, and let pi ∈ Pn∗ be the
point corresponding to Di. Then D is simple normal crossing if and only if the pi’s are in linear
general position.
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The following is a consequence of Hironaka’s theorem on resolution [Hi] of singularities.

THEOREM 1.3. Let X be an irreducible algebraic variety over C, and let D ⊂ X be an effective Cartier
divisor on X.

- There exists a projective birational morphism f : Y → X, where X is smooth and f−1D ∪ Exc( f )
is simple normal crossing. The morphism f is called a log resolution of the pair (X, D).

- The smooth variety Y can be constructed as a sequence of blow-ups along smooth centers supported
in the singular loci of D and X. In particular f is an isomorphism over X \ (Sing(X)∪ Sing(D)).

We will need many times the following result.

PROPOSITION 1.4. Let X be a smooth variety, Z ⊂ X a smooth subvariety with codimZ(Y) = c ≥ 2,
and π : Y → X the blow-up of X along Z with exceptional divisor E. Then

Pic(Y) ∼= Pic(X)⊕Z.

Furthermore,
KY = π∗KX + (c− 1)E.

PROOF. Let us consider the map

ψ : Z → Pic(Y)
n 7−→ nE

By [Har, Proposition 6.5] we have an exact sequence

Z→ Pic(Y)→ Pic(Y \ E) 7→ 0.

Let us assume that nE ∼ 0 for some n 6= 0. Then there exists f ∈ k(Y) with a zero of order n along
E. Since π is surjective and birational, the function f induces a function g ∈ k(X) having only a
zero of order n a long Z. A contradiction because c = codimZ(Y) ≥ 2. Therefore we have the
exact sequence

(1.1) 0 7→ Z→ Pic(Y)→ Pic(Y \ E) 7→ 0.

Since π is an isomorphism outside E we have Pic(Y \ E) ∼= Pic(X \ Z), furthermore c ≥ 2 yields
Pic(X \ Z) ∼= Pic(X), and

Pic(Y \ E) ∼= Pic(X \ Z) ∼= Pic(X).
Therefore, the pull-back map π∗ : Pic(X)→ Pic(Y) gives a section of the second map in the exact
sequence 1.1. This implies that the sequence 1.1 splits and Pic(Y) ∼= Pic(X)⊕Z.
Now, we may write KY = π∗D + qE for some D ∈ Pic(X). The isomorphism X \ Z ∼= Y \ E yields
KY|Y\E ∼= KX|X\Z. Since Pic(X \ Z) ∼= Pic(X) we get D = KX, and KY = π∗KX + qE.
Now, our aim is to determine the integer q. By adjunction and using OY(E)|E = OE(−1) we get

KE ∼= (KY + E)|E ∼= (π∗KX + (q + 1)E)|E = π∗KX − (q + 1)E.

Let F = z×Z E be the fiber over a point z ∈ Z. Then

ωF = π∗1 ωz ⊗ π∗2 ωE = π∗1 ωz ⊗ π∗2(π
∗ωX ⊗OE(−q− 1)) = π∗2(π

∗ωX ⊗OE(−q− 1)).

Now, a differential form on Y that is the pullback of a differential form on X must vanish on E. In
particular π∗2(π

∗ωX) is trivial, and

ωF ∼= π∗2(OE(−q− 1)) ∼= OF(−q− 1).

On the other hand F ∼= Pc−1. Therefore, ωF ∼= OF(−c) implies q = c− 1. �
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EXAMPLE 1.5. Let Z ⊂ Pn be a smooth variety of codimension c, π : Y → Pn the blow-up of
Z, H the pullback of the hyperplane class of Pn and E the exceptional divisor. Then

KY = (−n− 1)H + (c− 1)E.

Now, let us assume that X and D are both smooth and consider (1 + ε)D. The IdX : X → X is
a log resolution and

KX = Id∗X(KX + (1 + ε)D)− (1 + ε)D.
Let π1 : X1 → X be the blow-up of a codimension two smooth subvariety Z1 ⊂ D. Then

KX1 = π∗1(KX + (1 + ε)D)− εE1 − (1 + ε)D1

where D1 is the strict transform of D. Now, let f : X2 → X1 be the blow-up of D1 ∩ E1, and
π2 = f ◦ π1. Then

KX2 = π∗2(KX + (1 + ε)D)− 2εE2 − εE1 − (1 + ε)D2

Proceeding like this we see that starting with a discrepancy less than−1 we can produce arbitrarily
negative discrepancies. This motivates the following definition.

DEFINITION 1.6. Let X be a normal variety and D = ∑j djDj be a Q-Weil divisor. Assume that
KX + D is Q-Cartier. Let f : Y → X be a log resolution of the pair (X, D) and write

KY = f ∗(KX + D) + ∑
i

aiEi − D̃.

The pair (X, D) is
terminal if ai > 0 for any i,
canonical if ai ≥ 0 for any i,
klt if ai > −1 and dj < 1 for any i, j,
plt if ai > −1 for any i,
lc if ai ≥ −1 for any i.

Here klt, plt, lc stands for Kawamata log terminal, purely log terminal, and log canonical respectively.

EXAMPLE 1.7. Assume that D is a simple normal crossing divisor, and that X is smooth. Then
IdX is a log resolution. If 0 < ε < 1 is a rational number then we have KX = Id∗X(KX + εD)− εD.
The pair (X, εD) is Kawamata log terminal.
Let D ⊂ P2 an irreducible curve with one node, and let f : Y → P2 be the blow-up of the node.
Then f−1D∪ E is simple normal crossing. Furthermore KY = f ∗KP2 + E and f ∗D = D̃ + 2E where
D̃ is the strict transform of D, yield

KY = f ∗(KP2 + D)− D̃− E.

Therefore the pair (P2, D) is log canonical.
Now, let us consider a cusp D ⊂ P2 to have a log resolution we have to blow-up three times.

Let ε1 : X1 → P2 be the first blow-up. We have KX1 = ε∗1KP2 + E1 and C1 = ε∗1C − 2E1. If
ε2 : X2 → X1 is the second blow-up we have KX2 = ε∗2(ε

∗
1KP2 + E1) + E2 = ε∗2ε∗1KP2 + E1 + 2E2
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and C2 = ε∗2C1 − E2 = ε∗2ε∗1C − 2E1 − 3E2. Finally, let ε3 : X3 → X2 be the third blow-up.
Then KX3 = ε∗3ε∗2ε∗1KP2 + E1 + 2E2 + 4E3 and C3 = ε∗3C2 − E3 = ε∗3ε∗2ε∗1C − 2E1 − 3E2 − 6E3. Let
ε = ε1 ◦ ε2 ◦ ε3. Summing up we have

KX3 = ε∗KP2 + E1 + 2E2 + 4E3,
C3 = ε∗C− 2E1 − 3E2 − 6E3.

Therefore we get
KX3 = ε∗(KP2 + C)− C3 − E1 − E2 − 2E3.

In particular, ai(E3, P2, D) = −2 and (P2, D) is not log canonical.

Now, let us consider a slightly more complicated example.

EXAMPLE 1.8. Let us consider the cubic surface

S = {x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0} ⊂ P3.

known as the Cayley nodal cubic surface. By taking partial derivatives it is easy to see that the
singular locus of S consists of the four coordinates points of P3, and that each of them is a point
of multiplicity two for S. Let us consider the point p = [1 : 0 : 0 : 0]. In the chart U0 := {x0 6= 0}
the equation of S is given by {x1x2 + x1x3 + x2x3 + x1x2x3 = 0}. Therefore, the projective tangent
cone of S in p is the conic {x1x2 + x1x3 + x2x3 = 0} ⊂ P3. Since this conic is smooth p is an
ordinary double point. We conclude that the fundamental points of P3 are ordinary singularities
for S, and hence S can be resolved simply by blowing-up these four points. Now, let π : Y → P3

be the blow-up with exceptional divisors E1, ..., E4. Then we may write

KY = π∗KP3 + 2(E1 + E2 + E3 + E4),

and
εD̃ = π∗(εD)− 2ε(E1 + E2 + E3 + E4).

Therefore
KY = π∗(KP3 + εD) + (2− 2ε)(E1 + E2 + E3 + E4),

and since 2− 2ε > −1 if and only if ε < 3
2 we get that (P3, εS) is klt if and only if ε < 1.



CHAPTER 2

Secant Varieties

We recall some definitions and basic facts concerning secant varieties.

DEFINITION 0.1. Let X ⊂ PN be an irreducible and reduced non-degenerate variety. We will denote
by

Γh(X) ⊂ X× ...× X×G(h− 1, N),
the reduced closure of the graph of α : X× ...× X 99K G(h− 1, N), taking h general points to their linear
span 〈x1, ..., xh〉.

Therefore, Γh(X) is irreducible and reduced of dimension hn. Let us call π2 : Γh(X) → G(h−
1, N) the natural projection, and set Sh(X) := π2(Γh(X)) ⊂ G(h − 1, N). The variety Sh(X) is
irreducible and reduced of dimension hn as well. Finally, let us define Ih := {(x, Λ) | x ∈ Λ} ⊂
PN ×G(h− 1, N), with projections πh and ψh onto the factors.

DEFINITION 0.2. Let X ⊂ PN be an irreducible and reduced, non degenerate variety. We call the
abstract h-Secant variety the irreducible and reduced (hn + h− 1)-dimensional variety

Sech(X) := (ψh)
−1(Sh(X)) ⊂ Ih.

We call the h-Secant variety
Sech(X) := πh(Sech(X)) ⊂ PN .

The variety X is said to be h-defective if δh = nh + h − 1− dim Sech(X) > 0. In this case δh is
called the h-secant defect of X.

Let us consider some simple example.

EXAMPLE 0.3. Let C ⊆ P3 be the twisted cubic curve and let p ∈ P3 be a general point. There
exists a line L passing thorough p and secant to C. Indeed, if a such line does not exist then
the projection of C in P2 from p would be a smooth plane cubic C isomorphic to C. However,
g(C) = 0 and g(C) = 1, a contradiction. Let us assume that there are two distinct lines L, R
secant to C through p. Then for the plane H = 〈L, R〉 we have H · C ≥ 4, a contradiction because
deg(C) = 3 and C is not contained in a plane.
Hence, a general point p ∈ P3 lies on a unique secant line to C. We conclude that Sec2(C) is the
whole of P3.

EXAMPLE 0.4. Let X = ν(P2) ⊆ P5 be the Veronese surface. Let u ∈ P5 be a point lying on a
secant line to X. We write the secant line as 〈ν(p), ν(q)〉with p, q ∈ P2. The line L = 〈p, q〉 ⊆ P2 is
mapped via the Veronese embedding ν to a conic C ⊆ X. Since u ∈ 〈ν(p), ν(q)〉 and ν(p), ν(q) lie
in C the point u lies on the plane H spanned by C. All lines passing through u and contained in
H intersect C in two points and so are secant lines of X. We see that the general point of Sec2(X)
lies on a 1-dimensional family of secant lines. So dim(Sec2(X)) = 4. There is another way to see
this fact. The points of Sec2(X) represent conics which can be written as sum of two squares, that

12
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is conics of rank equal either 1 or 2. So we can describe Sec2(X) ⊆ P5 as the determinantal variety
defined by

det

 X0 X3 X4
X3 X1 X5
X4 X5 X2

 = 0

Therefore, Sec2(X) is a cubic hypersurface in P5.

EXAMPLE 0.5. Let G(1, n) ⊆ PN , with N = (n+1
2 ) − 1, be the Grassmannians of lines of Pn

and let p ∈ Sec2(G(1, n)) be a point, and let L = 〈u, v〉 be a secant line through p. The points
u, v represent two lines R1, R2 in Pn. Now, two general lines span a 3-plane H ⊂ Pn. The lines
contained in H are parametrized by the Grassmannian G(1, 3) ⊆ G(1, n).
Now dim(G(1, 3)) = 4, deg(G(1, 3)) = 4 and G(1, 3) spans a 5-plane E ⊆ PN . All the lines in E
and passing through p intersect G(1, 3) in two points because deg(G(1, 3)) = 2. We see that any
point p ∈ Sec2(G(1, n)) lies on a 4-dimensional family of secant lines. Therefore

dim(Sec2(G(1, n))) = 2 dim(G(1, n)) + 1− 4 = 4n− 7,

δ(G(1, n)) = 2 dim(G(1, n)) + 1− 4n + 7 = 4.

1. Terracini’s Lemma

Terracini’s Lemma [Te] is a fundamental result for the computation of the dimension of Sech(X).
The leading idea is quite simple: let p ∈ Sech(X) be a general points. assume p ∈ 〈x1, ..., xh〉. Then
a tangent vector to Sech(X) at p can be interpreted as an infinitesimal direction of Sech(X) in p.
This should correspond then to an infinitesimal movement of the xi’s in X, that is to a set of tangent
vectors to X at the xi’s.

THEOREM 1.1. (Terracini’s Lemma [Te]) Let X ⊂ PN be a non-degenerate variety over a field of
characteristic zero. Let p ∈ Sech(X) be a point, lying in the linear span of x1, ..., xh ∈ X. Then

TpSech(X) ⊇ 〈Tx1 X, ..., Txh X〉 .

Furthermore, if p ∈ Sech(X) is general we have

TpSech(X) = 〈Tx1 X, ..., Txh X〉 .

Alexander-Hirshowitz Theorem. A variation on the Waring problem (coming from a ques-
tion in number theory stated by E. Waring in 1770, see [Wa] (which states that every integer is
a sum of at most 9 positive cubes) asked which is the minimum positive integer h such that the
generic polynomial of degree d on Pn admits a decomposition as a sum of h d-powers of linear
forms:

PROBLEM 1.2. (Waring problem - first formulation) Given a general homogeneous polynomial F ∈
k[x0, ..., xn]d what is the minimum positive integer h such that F admits a decomposition as a sum of h
d-powers of linear forms ?

In 1995 J. Alexander and A. Hirshowitz solved completely this problem over an algebraically
closed base field k of characteristic zero, see [AH]. They proved that the minimum integer h is the
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expected one h = b 1
n+1 (

n+d
d )c, except in the following cases:

(1.1)

n d h
n 2 2 ≤ h ≤ n
2 4 5
3 4 9
4 3 7
4 4 14

Now, let ν : Pn → PN be the d-Veronese embedding, and let Vn
d = ν(Pn) be its image. The

minimum positive integer h such that the generic polynomial of degree d on Pn admits a decom-
position as a sum of h d-powers of linear forms is indeed the minimum positive integer h such
that Sech(Vn

d ) = PN . Therefore, Waring problem for the general homogeneous polynomial can be
restated as follows:

PROBLEM 1.3. (Waring problem - second formulation) Given a pair of positive integers n, d what is
the minimum positive integer h such that Sech(Vn

d ) = PN ?

Recall that the expect dimension of Sech(Vn
d ) is

expdim(Sech(Vn
d )) = min{hn + h− 1, N}.

Therefore, by Alexander-Hirshowitz Theorem the expected dimension of Sech(Vn
d ) is its actual di-

mension with the exceptions in Table 1.1.
Finally, by Theorem 1.1, we may give a third interpretation of the Waring problem. Let p ∈
Sech(Vn

d ) be a general point, and let s = dim(TpSech(Vn
d )) = dim(Sech(Vn

d )). Let H ⊆ OPN (1)
be the linear system of hyperplanes of PN containing TpSech(Vn

d ). By Theorem 1.1 a general
element of H correspond to an hypersurface of degree d in Pn having double points at p1 =
ν−1(x1), ..., ph = ν−1(xh). Note that any double point imposes at most n + 1 independent condi-
tions, namely the vanishing of the first partial derivatives of the polynomials defining the hyper-
surface of Pn. Therefore, the expected codimension of theH is:

expcodim(H) = min
{

h(n + 1),
(

n + d
d

)}
.

PROBLEM 1.4. (Waring problem - third formulation) Given a pair of positive integers n, d, letH be the
linear system of hypersurfaces of degree d in Pn having double points at h general points. In which cases
the expected codimension ofH coincides with is actual codimension ?

Indeed this third formulation is the one taken into account by Alexander and Hirshowitz.
Finally, by Alexander-Hirshowitz Theorem the expected codimension of H is the actual one with
the exception in Table 1.1.

2. Equations for secant varieties of Veronese varieties

Let ν : Pn → PNd be the d-Veronese embedding, and let Vn
d = ν(Pn) be its image. Let [F] ∈

PN = Proj(k[x0, ..., xn]d) be a degree d homogeneous polynomial. Fixed a positive integer h such
that Sech(Vn

d ) 6= PN we want to determine whether [F] ∈ Sech(Vn
d ). We begin with the following

simple observation:

REMARK 2.1. If F = ∑h
i=1 λiLd

i then its partial derivatives of order l lie in the linear space
〈Ld−l

1 , ..., Ld−l
h 〉 for any l = 1, ..., d− 1.
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The partial derivatives of order l are (n+l
l ) homogeneous polynomials of degree d− l, so the

previous observation is meaningful when h < (n+l
l ) and h < (d−l+n

n ). The latter condition ensures
that 〈Ld−l

1 , ..., Ld−l
h 〉 is a proper subspace of the projective space PNd−l parametrizing homogeneous

polynomials of degree d− l.
Consider the partial derivatives Fl

l0,...,ln := ∂l F
∂xl0

0 ,...,∂xln
n

and the incidence variety

Il,h = {(F, H) | ∈ Fl
l0,...,ln ∈ H, ∀ l0 + ... + ln = l} ⊂ PN ×G(h− 1, Nd−l)

PN G(h− 1, Nd−l)

π2π1

where ShVn
d−l ⊆ G(h − 1, Nd−l) is the abstract h-secant variety of Vn

d−l . Note that when h <

(n+l
l ) the map π1 is generically injective. Let Xl,h = π1(Il,h) ⊆ PN be its image, note that Xl,h

is irreducible. By remark 2.1 we get Sech(Vn
d ) ⊆ Xl,h. By construction Xl,h is not too difficult to

describe, so we want to find cases when the equality holds in order to get a simple criterion to
establish whether [F] ∈ Sech(Vn

d ).

REMARK 2.2. The equality holds trivially when d = 2. Let F ∈ k[x0, ..., xn]2 be a polynomial
and letMF the matrix of the quadratic symmetric form associated to F. Then F ∈ Sech(Vn

2 ) if and
only if rank(MF) ≤ h. But the rows ofMF are exactly the partial derivatives of F.

Consider the partial derivatives F1, ..., Fm ∈ k[x0, ..., xn]d−l of order l of F. Let φ : Pn ×PNd−l →
PM be the Segre-Veronese embedding induced by O

Pn×P
Nd−l (d− l, 1), and let Σd−l,1 be its image.

PROPOSITION 2.3. If the partial derivatives F1, ..., Fm lie in a (h − 1)-plane H ⊂ PNd−l which is
h-secant to the Veronese variety Vn

d−l ⊂ PNd−l , with h− 1 < Nd−l , then [F] ∈ Sech(Σd−l,1).

PROOF. By assumption Fl
l0,...,ln = ∑h

i=1 λl0,...,ln
i Ld−l

i . Recursively applying Euler formula we get
F = P1Ld−l

1 + ... + PhLd−l
h where Pi ∈ k[x0, ..., xn]l , and this means that [F] ∈ Sech(Σd−l,1). �

REMARK 2.4. Suppose that Fx0 , ..., Fxn ∈ k[x0, ..., xn]d−1 are the partial derivatives of a homoge-
neous polynomial F ∈ k[x0, ..., xn]d. Furthermore suppose that Fxi ∈ 〈Ld−1

1 , ..., Ld−1
h 〉 for any i. By

Euler formula we get
F = P1Ld−1

1 + ... + PhLd−1
h ,

where the Pi’s are linear forms, i.e. F ∈ Sech(Σd−1,1). Since F ∈ PN by hypothesis we have
F ∈ Sech(Σd−1,1) ∩PN . Consider the following two statements

(i) Sech(Σd−1,1) ∩PN = Sech(Vn
d );

(ii) Fxi ∈ 〈Ld−1
1 , ..., Ld−1

h 〉 for any i = 0, ..., n, implies [F] ∈ Sech(Vn
d ).

From the above discussion we deduce that (i) implies (ii).

The Case n = 1. We begin with the simplest case n = 1. We denote by Cd ⊂ Pd the degree d
rational normal curve, in this case Sech(Cd) 6= Pd if and only if h ≤ d

2 .

LEMMA 2.5. Let F = ∑i+j=d αi,jxi
0xj

1 ∈ k[x0, x1]d be a homogeneous polynomial, and let c = c(αi,j)

be the coefficient of xh
0 in the partial derivative ∂d−h F

∂xm
0 ∂xs

1
, with h ≥ 1. Then c = C · αd−s,s, where C is a

constant.
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PROOF. Since the only monomial of F producing c is xd−s
0 xs

1 the assertion follows. �

THEOREM 2.6. For any h ≤ d
2 we have Sech(Cd) = Xd−h,h. Consequently if the partial derivatives of

order d− h of a homogeneous polynomial F ∈ k[x0, x1]d lie in a hyperplane of Ph then [F] lies in Sech(Cd).

PROOF. The partial derivatives of order d− h of F are d− h + 1 homogeneous polynomials of
degree h. If F = ∑h

i=1 λiLd
i the partial derivatives lie in 〈Lh

1, ..., Lh
h〉 which is a hyperplane h-secant

to Ch, but deg(Ch) = h and the latter condition is irrelevant. Let H be a general hyperplane in Ph,
forcing the partial derivatives of a degree d polynomial G = ∑i+j=d αi,jxi

0xj
1 ∈ k[x0, x1]d to lie in H

gives d− h + 1 linear equations in the coefficients of G. Without loss of generality we can suppose
H to be the defined by the vanishing of the first homogeneous coordinate on Ph, then by 2.5 the
fiber of π2 is the linear subspace of PN defined by

π−1
2 (H) = {αd−s,s = 0, ∀ s = 0, ..., d− h}.

The equations of π−1
2 (H) are independent so

dim(π−1
2 (H)) = d− (d− h + 1) = h− 1,

and the dimension of Xd−h,h is

dim(Xd−h,h) = dim(Id−h,h) = h− 1 + h = 2h− 1.

Finally dim(Sech(Cd)) = h + h− 1 = 2h− 1 yields Sech(Cd) = Xd−h,h. �

REMARK 2.7. The partial derivatives of order d− h of a homogeneous polynomial F ∈ k[x0, x1]d
depend on d + 1 parameters. We consider the matrixMd,h whose lines are the partial derivatives.
From 2.6 we get equations for Sech(Cd) imposing rank(Md,h) ≤ h, that is the classical determi-
nantal description of Sech(Cd).

The Case h ≤ n. Now we consider the variety Xd−1,h. The partial derivatives of order d− 1
of F are linear forms i.e. points in (Pn)∗, so we restrict our attention on the case h ≤ n to have
significant constraints. First we compute the dimension of the general fiber of π2 : Id−1,h →
G(h− 1, n).

THEOREM 2.8. The fiber of π2 : Id−1,h → G(h− 1, n) on a general (h− 1)-plane H ∈ G(h− 1, n)
is a linear subspace of PN of dimension

dim(π−1
2 (H)) =

(
d + h− 1

d

)
− 1.

Furthermore the dimension of Xd−1 is given by

dim(Xd−1,h) = h(n− h + 1) +
(

d + h− 1
d

)
− 1.

PROOF. We can suppose H = {X0 = ... = Xn−h = 0}, where {X0, ..., Xn} are homogeneous
coordinates on Pn. We write a general polynomial [F] ∈ PN in the form

F = ∑
i0+...+in=d

αi0,...,in xi0
0 ...xin

n .

The fiber π−1
2 (H) is the linear subspace of PN defined by the vanishing of the coefficients of

x0, ..., xn−h in the derivatives of F. Many of these equations are redundant, the difficulty is in count-
ing the exact number of independent equations. We prove that this number is (d+n−1

d−1 ) + (d+n−1
d )−
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(d+h−1
d ) by induction on n − h. If n − h = 0 then H is an hyperplane and the condition on the

derivatives are all independent, so the number of conditions is exactly the number of derivatives
(d−1+n

d−1 ). Furthermore our formula for n− h = 0 gives (d+n−1
d−1 ) + (d+n−1

d )− (d+n−1
d ) = (d+n−1

d−1 ), and
the case n− h = 0 is verified. Consider now the general case, let H = {X0 = ... = Xn−h−1 = 0},
let Cn−h−1 the number of independent conditions obtained forcing the partial derivatives to lie in
H. Adding the condition {Xn−h = 0} gives new equations coming from the coefficients of the
form α0,...,0,in−h,in−h+1,...,in , with in−h 6= 0. These correspond to monomials of degree d in the variables
xn−h, ..., xn that contain the variable xn−h. Now the monomials of degree d not containing xn−h are
the monomials of degree d in xn−h+1, ..., xn. So in the final step we are adding(

d + h
d

)
−
(

d + h− 1
d

)
conditions. Then the number if independent equations is Cn−h = Cn−h−1 + (d+h

d ) − (d+h−1
d ), by

induction hypothesis

Cn−h−1 =

(
d + n− 1

d− 1

)
+

(
d + n− 1

d

)
−
(

d + n− (n− h− 1)− 1
d

)
.

So Cn−h = (d+n−1
d−1 ) + (d+n−1

d )− (d+n−(n−h−1)−1
d ) + (d+h

d )− (d+h−1
d ) = (d+n−1

d−1 ) + (d+n−1
d )− (d+h−1

d ).
Finally we have dim(Xd−1,h) = dim(G(h − 1, n)) + dim(π−1

2 (H)) = h(n − h + 1) + (d+h−1
d ) −

1. �

REMARK 2.9. Consider the case d = 2. By Alexander-Hirshowitz theorem [AH], Sech(Vn
2 ) 6=

PN if and only if h ≤ n. By Theorem 2.8 and Remark 2.2 we recover the effective dimension of
Sech(Vn

2 ),

dim(Sech(Vn
2 )) =

2nh− h2 + 3h− 2
2

,

and consequently the formula for the h-secant defect of Vn
2 ,

δh(Vn
2 ) =

h(h− 1)
2

.

At this point we have a complete description for polynomials of arbitrary degree in two vari-
ables and for polynomials of degree two in any number of variables. So we concentrate on the
case n ≥ 2 and d ≥ 3.

THEOREM 2.10. Let n ≥ 2, d ≥ 3, h ≤ n be positive integers. Then Sech(Vn
d ) is a subvariety of

Xd−1,h of codimension

codimSech(Vn
d )
(Xd−1,h) =

(
d + h− 1

d

)
− h2.

PROOF. Since n ≥ 2, d ≥ 3, and h ≤ n, by Alexander-Hirshowitz theorem the effective dimen-
sion of Sech(Vn

d ) is the expected one

dim(Sech(Vn
d )) = min{hn + (h− 1), Nd}.

Furthermore n ≥ 2, d ≥ 3, h ≤ n implies hn + (h− 1) < Nd. So

dim(Sech(Vn
d )) = hn + (h− 1).

Finally codimSech(Vn
d )
(Xd−1,h) = h(n− h + 1) + (d+h−1

d )− 1− hn− (h− 1) = (d+h−1
d )− h2. �
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COROLLARY 2.11. If d = 3 then Sec2(Vn
3 ) = X2,2 for any n ≥ 2. Consequently if the second partial

derivatives of a homogeneous polynomial F ∈ k[x0, ..., xn]3 lie in a line of Pn then [F] lies in Sec2(Vn
3 ).

PROOF. For h = 2, d = 3 we have (d+h−1
d )− h2 = 0. We conclude by theorem 2.10. �

2.1. The variety Xl,h. Let’s look closer at the variety Xl,h. This variety parametrizes polyno-
mials F ∈ k[x0, ..., xn]d whose partial derivatives of order l span a (h − 1)-plane. Let Ml,h be
the (n+l

l ) × (n+d−l
d−l ) matrix whose lines are the l-th derivatives of F = ∑i0+...+in=d αi0,...,in xi0

0 ...xin
n .

Then Xl,h is the determinantal variety defined in PN by rank(Ml,h) ≤ h, where the αi0,...,in are the
homogeneous coordinates on PN . Let PM be the projective space parametrizing (n+l

l ) × (n+d−l
d−l )

matrices, and let Mh ⊂ PM be the variety of matrices of rank less or equal than h. Then Mh is
an irreducible variety of dimension M−

(
(n+l

l )− h
)
·
(
(n+d−l

d−l )− h
)

. Clearly the variety Xl,h is a
special linear section of Mh.

LEMMA 2.12. The varieties Xl,h and Xd−l,h are isomorphic.

PROOF. The matrixMd−l,h whose lines are the (d− l)-th partial derivatives of F is the (n+d−l
d−l )×

(n+l
l ) matrix given by

Md−l,h =Mt
l,h,

whereMt
l,h is the transposed matrix ofMd−l,h. Then the assertion follows. �

PROPOSITION 2.13. Consider the case h ≤ n. The variety X1,h is irreducible.

PROOF. By Lemma 2.12 it is equivalent to prove that Xd−1,h is irreducible. Consider the map
π2 : Id−1,h → G(h − 1, n). By Theorem 2.8 the general fiber of π2 is a linear subspace of PN of
dimension dim(π−1

2 (H)) = (d+h−1
d )− 1 and π2 is surjective on G(h− 1, n), so Xd−1,h is irreducible.

�

In the cases d = 2 and d = 3, h = 2 we have that dim(X1,h) = dim(Sech(Vn
d )), since X1,h is

irreducible we get Sech(Vn
d ) = X1,h. So if the first partial derivatives of a polynomial F span a

linear space of dimension h− 1 then F can be decomposed into a sum of h powers of linear forms.

EXAMPLE 2.14. Consider a polynomial of degree three in three variables

F = a0x3 + a1x2y + a2x2z + a3xy2 + a4xyz + a5xz2 + a6y3 + a7y2z + a8yz2 + a9z3.

The variety X1,2 is defined by

rank

 Fx
Fy
Fz

 = rank

 3a0 2a1 2a2 a3 a4 a5
a1 2a3 a4 3a6 2a7 a8
a2 a4 2a5 a7 2a8 3a9

 ≤ 2.

Consider the projective space P17 of 3× 6 matrix with homogeneous coordinates

X0,0, ..., X0,5, X1,0, ..., X1,5, X2,0, ..., X2,5.

The determinantal variety M2 defined by

rank

 X0,0 X0,1 X0,2 X0,3 X0,4 X0,5
X1,0 X1,1 X1,2 X1,3 X1,4 X1,5
X2,0 X2,1 X2,2 X2,3 X2,4 X2,5

 ≤ 2
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is irreducible of dimension 17− 4 = 13. The linear space

H :=



2X1,0 − X0,1 = 0,
2X2,0 − X0,2 = 0,
2X0,3 − X1,1 = 0,
X0,4 − X1,2 = 0,
2X0,5 − X2,2 = 0,
2X2,3 − X1,4 = 0,
2X2,4 − X1,5 = 0,
X0,4 − X2,1 = 0.

cuts out on M2 the variety X1,2, which is irreducible of dimension 5 = dim(Sec(V2
3 )).

REMARK 2.15. Considering a polynomial F ∈ k[x, y, z]4 and proceeding as in example 2.14 one
gets dim(X1,2) = 6, so

Sec2(V2
4 ) $ X1,2.

PROPOSITION 2.16. Let d = 2k be an even integer such that (n+k
k ) ≥ Nd−k, where Nd−k = (d−k+n

n )−
1. The variety Xk,Nd−k is an irreducible hypersurface of degree (n+k

k ) in PN .

PROOF. The map π2 : Ik,Nd−k → G(Nd−k − 1, Nd−k) ∼= PNd−k is dominant, so Ik,Nd−k and Xk,Nd−k

are irreducible. The assertion follows observing that Xk,Nd−k is defined by the vanishing of the
determinant of a (n+k

k )× (n+k
k ) matrix. �

Let us look at some consequences of the previous proposition.

EXAMPLE 2.17. Consider a polynomial

F = a0x4 + a1x3y + a2x3z + a3x2y2 + a4x2yz + a5x2z2 + a6xy3 + a7xy2z + a8xyz2

+a9xz3 + a10y4 + a11y3z + a12y2z2 + a13yz3 + a14z4.

The map π2 : I2,4 → G(3, 5) is dominant, so X2,4 is irreducible. Let Z0, Z1, Z2, Z3, Z4, Z5 be ho-
mogeneous coordinates on P5 corresponding to x2, xy, xz, y2, yz, z2 respectively. To compute the
dimension of the general fiber of π2 we can take the 3− plane H = {Z0 = Z3 = 0}which intersect
V2

2 in a subscheme of dimension zero. Computing the second partial derivatives of F it turns out
that

π−1
2 (H) = {a0 = a1 = a2 = a3 = a4 = a5 = a6 = a7 = a10 = a11 = a12 = 0}.

So dim(π−1
2 (H)) = 14− 11 = 3 and dim(X2,4) = 3 + 8 = 11. Since dim(Sec4V2

4 ) = 11 we get

Sec4V2
4 = X2,4.

Consider now π2 : I2,5 → P5. This map is dominant, so X2,5 is irreducible. We have dim(π−1
2 (H)) =

14− 6 = 8, where H = {Z0 = 0}. So dim(X2,5) = 13 and

Sec5V2
4 = X2,5

is an hypersurface of degree 6 in P14.
Consider now the case d = 4, n = 3, h = 9 and the second partial derivatives. The map π2 :
I2,9 → P9 is dominant and X2,9 is irreducible. The general fiber of π2 has dimension 24. Then
dim(X2,9) = 24 + 9 = 33 and

Sec9V3
4 = X2,9
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is an hypersurface of degree 10 in P34.
Finally in the case d = 4, n = 4, h = 14 as before one can verify that X2,14 is irreducible of dimen-
sion 68, so

Sec14V4
4 = X2,14

is an hypersurface of degree 15 in P69.

EXAMPLE 2.18. Consider now a polynomial F ∈ k[x, y, z]6 and the partial derivative of order
3. For h = 8, 9 the map π2 is dominant, so X3,8 and X3,9 are irreducible. First let us take h = 8.
Proceeding as before we get dim(π−1

2 (H)) = 27− 19 = 8 and dim(X3,8) = 24. So Sec8V2
6 ⊂ X3,8

is a divisor.
In the case h = 9 we have dim(π−1

2 (H)) = 27− 10 = 17 and dim(X3,9) = 17 + 9 = 26. So

Sec9V2
6 = X3,9

is an hypersurface of degree 10 in P27.

2.2. The first secant variety of Vn
d . We focus on the case h = 2. Without any assumptions on

d and n we obtain set-theoretical equations for the first secant variety of Vn
d . In the proof we use

all the time the equality
n

∑
k=0

(
d− 1 + k

d− 1

)
=

(
d + n

d

)
,

which can be easily proved by induction on n. In [Kan] V. Kanev, adopting a different approach,
proved that the same equations cut out the ideal of Sec2(Vn

d ).

THEOREM 2.19. If h = 2 for the first secant variety of Vn
d we have

Sec2(Vn
d ) = X2,d−2

for any n and d ≥ 3.

PROOF. Consider the diagram

I2,d−2 = {(F, H) | ∈ Fl
l0,...,ln ∈ H, ∀ l0 + ... + ln = d− 2} ⊂ PN ×G(1, N2)

PN G(1, N2)

π2π1

clearly S2Vn
2 ⊆ Im(π2). Let F ∈ k[x0, ..., xn]d be a polynomial whose partial derivatives of order

d − 2 lie on a line H ⊂ PN2 . The derivatives of order d − 3 of F are cubic polynomials whose
first partial derivatives are collinear. By 2.11 X2,1 = X2,2 = Sec2Vn

3 , so if we denote by G a partial
derivative of order d− 3 of F we get a decomposition G = L3

1 + L3
2. Then Gx0 , ..., Gxn (which are

partial derivatives of order d− 2 of F) lie on the line 〈L2
1, L2

2〉, and so the line containing the partial
derivative of order d− 2 of F is exactly the secant line to Vn

2 given by 〈L2
1, L2

2〉. This means that

S2Vn
2 = Im(π2).

Since the fibers of π2 are linear spaces we conclude that I2,d−2 and X2,d−2 are irreducible.
We compute now the dimension of the fiber of π2. We fix on PN2 homogeneous coordinates
Z0, ..., ZN2 corresponding to the monomials in lexicographic order x2

0, x0x1, ..., x2
n, and consider the

line H = {Z0 = Z1 = ... = ZN2−2 = 0}.
First consider monomials containing x0. Forcing the derivatives to lie in {Z0 = 0} we get (d−2+n

n )
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conditions (the monomials containing x2
0, whose number is equal to the number of degree d− 2

monomials in x0, ..., xn). Imposing {Z1 = 0} we get (d−2+n−1
n−1 ) conditions (the monomials contain-

ing x0x1, whose number is equal to the number of degree d− 2 monomials in x1, ..., xn). Proceeding
in this way when we force {Zn = 0} we get (d−2+n−n

n−n ) = 1 condition (the monomials containing
x0xn, whose number is equal to the number of degree d− 2 monomials in xn). Up to now we have

n

∑
k=0

(
d− 2 + k

k

)
=

(
d− 1 + n

d− 1

)
conditions.
Consider now the monomials containing x1. Forcing {Zn+1 = 0} we get (d−2+n−1

n−1 ) conditions
(the monomials containing x2

1, whose number is equal to the number of degree d− 2 monomials
in x1, ..., xn). Imposing {Zn+2 = 0} we get (d−2+n−2

n−2 ) conditions (the monomials containing x1x2,
whose number is equal to the number of degree d− 2 monomials in x2, ..., xn). Proceeding in this
way we get

n−1

∑
k=0

(
d− 2 + k

k

)
=

(
d− 1 + n− 1

d− 1

)
conditions.
Proceeding in this way at the step xn−2 we have

2

∑
k=0

(
d− 2 + k

k

)
=

(
d− 1 + 2

d− 1

)
more conditions. At the step xn−1 we have only to force {ZN2−2 = 0}, and we get (d−1

1 ) = d− 1
conditions.
Summing up the fiber π−1

2 (H) is a linear subspace of PN defined by

n

∑
k=2

(
d− 1 + k

d− 1

)
+ d− 1 =

n

∑
k=0

(
d− 1 + k

d− 1

)
− 1− d + d− 1 =

(
d + n

d

)
− 2.

So the fiber has dimension

dim(π−1
2 (H)) = N −

(
d + n

d

)
+ 2 = 1,

recalling that N = (d+n
d )− 1. Finally we look at the map π2 : I2,d−2 → S2Vn

2 , since π2 is dominant
we have

dim(X2,d−2) = dim(I2,d−2) = 2n + 1.

Since dim(Sec2Vn
d ) = 2n + 1 the assertion follows. �

2.3. The case n = 2, h = 4. In the same spirit of Theorem 2.19 we obtain the following result.

THEOREM 2.20. If n = 2, h = 4 for the variety of 4-secant 3-planes of V2
d we have

Sec4(V2
d ) = X4,b d

2 c

for any d positive integer.
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PROOF. The case d = 4 is the Example 2.17. Consider now the case d = 5. The map π2 : I4,3 →
G(3, 5) is dominant, so X4,3 and hence X4,2 are irreducible. Let F ∈ k[x, y, z]5 be a polynomial,
looking at the proof of theorem 2.19 we get that forcing the partial derivatives of order 3 of F to lie
in {Z0 = Z3 = 0} gives(

5− 2 + 2
2

)
+

(
5− 2 + 2

2

)
− ]{monomials containing x2y2} = 20− 3 = 17

conditions. Since dim(X4,2) = dim(X4,3) = 20− 17 + dim(G(3, 5)) = 11 we conclude

Sec4(V2
5 ) = X4,2.

Consider the case d = 6 and the partial derivative of order 3. If the 3-th derivatives of F lie
in a 3-plane then the first partial derivative of F are degree 5 polynomials whose second partial
derivatives lie in a 3-plane. By the same trick of Theorem 2.19 we prove that the 3-plane containing
the 3-th partial derivative has to be 4-secant to V2

3 . So X4,3 is irreducible, and as usual by counting
dimension we get the equality

Sec4(V2
6 ) = X4,3.

Now we treat the general case by induction on d. Let F ∈ k[x, y, z]d be a polynomial whose b d
2c-

th derivative lies in a 3-plane. Then the first partial derivative of F are polynomials of degree
d − 1 whose b d−1

2 c-th derivatives lie in a 3-plane. So Fx, Fy, Fz can be decomposed as sums of
four powers of linear forms. As before we conclude that the map π2 : I4,b d

2 c
→ G(3, Nd−b d

2 c
)

is dominant, so X4,b d
2 c

is irreducible. We conclude, by combinatorial computations similar to the

previous one, computing dim(X4,b d
2 c
) = dim(Sec4(V2

d )). �

REMARK 2.21. In a completely analogous way one can show that Sec5(V2
d ) is defined by size 6

minors of the matrix of partial derivatives of order b d
2c for d = 4 and d ≥ 6.

Finally, we report part of a table in [LO] summarizing the known cases in which a secant of
a Veronese variety coincides at least set theoretically with a catalecticant variety. Indeed in these
cases the equations of catalecticants cut scheme theoretically the secant variety and in some cases
even the ideal. We denote byMl the matrix whose lines are the partial derivatives of order l of a
homogeneous polynomial F ∈ k[x0, ..., xn]d.

Secant Catalecticant Reference
SechVn

2 h + 1 minors ofM1 Classical
SechV1

d h + 1 minors ofMd−h Iarrobino−Kanev and Th 2.6
Sec2Vn

d 3 minors ofMd−2 Kanev and Th 2.19
Sec4V2

d 5 minors ofMb d
2 c

Schreier and Th 2.20

Sec5V2
d , d = 4, d ≥ 6 6 minors ofMb d

2 c
Th 3.2.1 [BCS]

Sec6V2
d , d ≥ 6 7 minors ofMb d

2 c
Th 3.2.1 [CGLM]

Sec9V2
6 determinant ofM3 Ex 2.18

3. Sigularities of Secant Varieties

We are particularly interested in secant varieties of rational normal curves. Just to get ac-
quainted with describe in detail the variety of secant lines of the degree four rational normal
curve C ⊂ P4.
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EXAMPLE 3.1. Let C ⊂ P4 be a degree four rational normal curve. By [Harr, Proposition 9.7]
Sec2(C) ⊂ P4 is the cubic hypersurface given by the vanishing of the determinant of

M =

x0 x1 x2
x1 x2 x3
x2 x3 x4


that is

Sec2(C) = {F = x0x2x4 − x0x2
3 − x2

1x4 + 2x1x2x3 − x3
2 = 0}.

The partial derivatives of F are given by

∂F
∂x0

= x2x4 − x2
3,

∂F
∂x1

= 2(x2x3 − x1x4),
∂F
∂x2

= x0x4 − x2
2 − 2(x2

2 − x1x3),
∂F
∂x3

= 2(x1x2 − x0x3),
∂F
∂x4

= x0x2 − x2
1.

Note that all the derivatives are linear combination of 2× 2 minors of the matrix M and they vanish
simultaneously on C. Furthermore the second partial derivatives of F are 15 linear polynomials
that are never simultaneously zero. To see this, it is enough to notice that

∂2F
∂x0x3

= −2x3,
∂2F

∂x4x1
= −2x1,

∂2F
∂x2

2
= −6x2,

∂2F
∂x4x2

= x0,
∂2F

∂x0x2
= x4.

We conclude that deg(Sec2(C)) = 3, Sing(Sec2(C)) = C and multC Sec2(C) = 2.

PROPOSITION 3.2. Let C ⊂ Pn be a degree n rational normal curve, and let k be an integer such that
1 ≤ k ≤ n

2 . Then

dim(Seck(C)) = 2k− 1.

Furthermore

deg(Seck(C)) =
(

n− k + 1
k

)
, Sing(Seck(C)) = Seck−1(C).

Finally, if n = 2h is even then
multSech−t(C) Sech(C) = t + 1

for any 1 ≤ t ≤ h.

PROOF. Since C ⊂ Pn is non-degenerate we have dim(Seck(C)) = 2k− 1. By [EH, Theorem
12.16] we get deg(Seck(C)) = (n−k+1

k ).
The rational normal curve C ⊂ Pn is given by the Veronese embedding induced by the line bundle
L = OP1(n) on P1. Note that if k ≤ n

2 then n− 2k− 1 ≥ −1. This yields

h0(P1,OP1(n− 2k− 1)) = n− 2k = h0(P1,OP1(n))− (2k + 1).

Therefore, C ⊂ Pn is embedded by a (2k + 1)-very ample line bundle. By [Ve1, Theorem 1.1] we
have that Seck(C) is normal and Sing(Seck(C)) = Seck−1(C) for any k ≤ n

2 .
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Now, let n = 2h even. It is well know, see for instance [Harr, Proposition 9.7], that Sech(C) ⊂ P2h

is the degree h + 1 hypersurface given by the vanishing of the determinant of the matrix

Mh =


x0 x1 x2 . . . xh
x1 x2 x3 . . . xh+1
...

...
...

. . .
...

xh−1 xh xh+1 . . . x2h−1
xh xh+1 xh+2 . . . x2h


Let F = det(Mh). Then Sech(C) = {F = 0} ⊂ P2h. Let Mj

i be the h× h minors of Mh produces
by erasing in Mh a row and a column meeting in an entry of type xj, for j = 0, ..., 2h. Let ρj be the
number of such minors. Then

∂F
∂xj

=
ρj

∑
i=1

α
j
i det(Mj

i).

Now, proceeding recursively we see that for any 1 ≤ t ≤ h the partial derivatives of order t of F
are linear combinations of determinants of (h + 1− t)× (h + 1− t) minors of Mh. Again by [Harr,
Proposition 9.7] such minors define Sech−t(C). Furthermore, since Sing(Seck(C)) = Seck−1(C) for
any k ≤ n

2 , there is at least one partial derivative of order t + 1 of F not vanishing on Sech−t−1(C).
This means that multSech−t(C) Sech(C) = t + 1 for any 1 ≤ t ≤ h. �

REMARK 3.3. Let n = 2h be even. By Proposition 6.7 we have that Sech(C) ⊂ P2h is an
hypersurface of degree h + 1, and multC Sech(C) = h.

The following proposition is just a particular instance of [Be, Theorem 1]. The general state-
ment for smooth curves embedded via a 2h-very ample line bundle can be found in [Ve, Theorem
3.1] as well.

PROPOSITION 3.4. Let C ⊂ Pn be a degree n rational normal curve, and let h be the greatest integer
such that h ≤ n

2 . Consider the following sequence of blow-ups:
- π1 : X1 → Pn the blow-up of C,
- π2 : X2 → X1 the blow-up of the strict transform of Sec2(C),

...
- πh : Xh → Xh−1 the blow-up of the strict transform of Sech(C).

Let π : X → Pn be the composition of these blow-ups. Then, for any k ≤ h the strict transform of Seck(C)
in Xk−1 is smooth, irreducible and transverse to all exceptional divisors. In particular X is smooth and the
divisor in X given by the union of the exceptional divisors is simple normal crossing.

PROOF. Since h ≤ n
2 we have

h0(P1,OP1(n− 2h)) = n− 2h + 1 = h0(P1,OP1(n))− 2h.

This means that C ⊂ Pn is embedded by a 2h-very ample line bundle. To conclude it is enough to
apply [Be, Theorem 1]. �



CHAPTER 3

Weak Fano varieties, log Fano varieties and Mori Dream Spaces

Let X be a normal projective variety. We denote by N1(X) the real vector space of Cartier
divisors and by ρX = dim(N1(X)) the Picard number of X.

- The effective cone Eff(X) is the convex cone in N1(X) generated by classes of effective
divisors. In general it is not a closed cone.

- The nef cone Nef(X) is the convex cone in N1(X) generated by classes of divisors D such
that D · C ≥ 0 for any curve C ⊂ X. It is closed, but in general it is neither polyhedral nor
rational.

- A divisor D ⊂ X is called movable if its stable base locus is in codimension greater or equal
that two. The movable cone Mov(X) is the convex cone in N1(X) generated by classes of
movable divisors. In general, it is not closed.

A small Q-factorial transformation of X is a birational map f : X 99K Y to another normal Q-
factorial projective variety Y, such that f is an isomorphism in codimension one.
The exponential exact sequence

0 7→ Z→ OX → O∗X 7→ 0

induces the following exact sequence in cohomology

0 7→ H1(X, Z)→ H1(X,OX)→ H1(X,O∗X)→ H2(X, Z)→ H2(X,OX).

The complex torus H1(X,OX)/H1(X, Z) is the Picard variety of X. This variety Pic0(X) is the con-
nected component of the identity of Pic(X) ∼= H1(X,O∗X) and it is an abelian variety. The image of
Pic(X) inside H2(X, Z) is isomorphic to Pic(X)/ Pic0(X). The group NS(X) ∼= Pic(X)/ Pic0(X) is
a finitely generated abelian group called the Néron-Severi group. The group NS(X) parametrizes
divisor on X modulo numerical equivalence.

EXAMPLE 0.1. Let us consider a smooth projective curve X of genus g. That is X is a compact
Riemann surface with g handles. Then H0(X, Z) ∼= H2(X, Z) ∼= Z because X is connected, and
H1(X, Z) ∼= Z2g. Since H0(X,OX) ∼= Cg we have Pic0(X) ∼= Cg/Z2g ∼= Jac(X), the Jacobian
variety of X. In this case the degree gives an isomorphism NS(X) ∼= Z.

DEFINITION 0.2. A normal projective variety X is a Mori Dream Space if
(a) X is Q-factorial and Pic(X)Q

∼= N1(X)Q;
(b) Nef(X) is generated by finitely many semi-ample line bundles;
(c) there exist finitely many small Q-factorial modifications fi : X 99K Xi such that each Xi satisfies

(a), (b), and Mov(X) us the union of f ∗i Nef(Xi).

REMARK 0.3. Condition (a) is equivalent to the finite generation of Pic(X) which is equivalent
to h1(X,OX) = 0. Note that if X is a Mori Dream Space then the Xi are Mori Dream Spaces as
well.

25
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- A normal Q-factorial projective variety of Picard number is one is a Mori Dream Space if
and only if Pic(X) is finitely generated.

- Let X be a normal Q-factorial projective surface satisfying (a), (b), then Nef(X) = Mov(X)
and, by taking IdX, we see that (c) is satisfied as well.

- Any projective Q-factorial toric variety and any smooth Fano variety is a Mori Dream
Space.

- If X is a smooth rational surface and −KX is big the X is a Mori Dream Space.
- A smooth K3 surface is a Mori Dream Space if and only if its automorphism group is

finite.

EXAMPLE 0.4. Let X be the blow-up of P3 at two distinct points x1, x2. Let H be the pullback
of the hyperplane section and E1, E2 the two exceptional divisors. The anti-canonical divisor of X
is −KX = 4H − 2E1 − 2E2. If L is the strict transform of the line 〈x1, x2〉 we have −KX · L = 0.
Therefore X is not Fano. The Picard group of X is generated by H, E1, E1 and ρX = 3. Clearly X is
a toric variety. Therefore it is a Mori Dream Space. The following is the polyhedron of X in R3.

Let |Ix1,x2(2)| be the linear system of quadrics in P3 through x1, x2. The corresponding linear
system on X induces an morphism

X

P3 Y ⊂ P7

ε
f

contracting L. Since the normal bundle of L is OL(−1)⊕2 the singular point f (L) ∈ f (X) = Y is a
node. Furthermore f is a small contraction and f (X) is not Q-factorial. Let us blow-up the curve
L and let Z be the blow-up. The exceptional divisor is isomorphic two P1 × P1. By contracting
one ruling we get X. On the other hand by contracting the other ruling we find another smooth
variety X

′
. The birational map g : X 99K X

′
is the flip of f . The situation is summarized in the

following diagram.

Z

X X
′

Y
f

g
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The following is a section of Eff(X).

Let L be the strict transform of a general line and R1, R2 the classes of a line in the exceptional
divisors E1, E2. Then the strict transform of the line through x1, x2 is given by C = L− E1 − E2.
Now, let H1, H2, H12 be strict transforms of planes through x1, x2 and containing the line 〈x1, x2〉
respectively. Consider D = aH12 + bH1 + cH2. We have D · C = −a. Therefore D · C is always
less or equal that zero and its zero if and only if a = 0. On the other hand after the contraction of
C any divisor of this form becomes nef.
The variety X has exactly two small Q-factorial transformations: the identity and the flip g. Fur-
thermore we have Mov(X) = Nef(X) ∪ g∗Nef(X

′
). In the picture Nef(X) is the cone generated

by H, H1, H2, and Nef(X
′
) is the cone generated by H1,2, H1, H2.

We recall two important facts about Mori Dream Space.

PROPOSITION 0.5. Let X a be a Mori Dream Space.
- Any normal projective variety Y which is a small Q-factorial modification of X is a Mori Dream

Space. Furthermore the fi of Definition 0.2 are the only small Q-factorial transformations of X,
[HK, Proposition 1.11].

- If there is a surjective morphism X → Y on a normal Q-factorial projective variety Y, then Y is a
Mori Dream Space, [Ok, Theorem 1.1].

DEFINITION 0.6. Let Γ be a semigroup of Weil divisors on X. We can consider the Γ-graded ring:

RX(Γ) =
⊕
D∈Γ

H0(X,OX(D)).

If the divisor class group Cl(X) is finitely generated and Γ is a group of Weil divisors such that ΓQ
∼=

Cl(X)Q then the ring RX(Γ) is denoted by Cox(X), and called the Cox ring of X.

REMARK 0.7. Let X be a normal and Q-factorial projective variety with finitely generated and
free Picard group and Picard number ρX. Let D1, ..., DρX be a basis of Cartier divisors of Pic(X).
Then

Cox(X) =
⊕

m1,...,mρX∈Z

H0(X,
ρX

∑
i=1

miDi).

Different choices of divisors D1, ..., DρX yield isomorphic algebras.

For the details of the proof of the following Theorem we refer to [HK, Proposition 2.9].

THEOREM 0.8. A Q-factorial projective variety X with Pic(X)Q
∼= N1(X)Q is a Mori Dream Space

if and only if Cox(X) is finitely generated. In this case X is a GIT quotient of the affine variety Y =
Spec(Cox(X)) by a torus of dimension ρX.
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PROOF. Let X be a Mori Dream Space. Then the effective cone is rational and polyhedral and
we have a decomposition:

Eff(X) =
k⋃

i=1

Pi

where the Pi’s are rational polyhedra. Furthermore there are finitely many rational maps fi : X 99K
Xi such that if D ∈ Eff(X) then fD = fi for some i = 1, ..., k. Let us take D1, ..., Dh divisors gener-
ating the cone Pi. The cone RX(D1, ..., Dh) does not change by replacing X with Xi and D1, ..., Dh
by the corresponding divisors D1,i, ..., Dh,i on Xi. On Xi the divisors D1,i, ..., Dh,i are semi-ample.
Then RXi(D1,i, ..., Dh,i), and hence RX(D1, ..., Dh) are finitely generated.
Now, let us assume that Cox(X) is finitely generated. Then we have an equivariant embedding,
with respect a torus G, of Y = Spec(Cox(X)) is An. Taking the GIT quotient we have an embed-
ding Y ⊆ Q = An//G. Since G is a torus Q is a toric variety and hence a Mori Dream Space. Fur-
thermore if r : X 99K Y is a rational map then there is a rational map of toric varieties t : M 99K N
inducing r by restriction. Therefore X is a Mori Dream Space. �

1. Weak Fano and log Fano varieties

DEFINITION 1.1. Let X be a smooth projective variety. We say that X is:

- weak Fano if −KX is nef and big,
- log Fano if there exists an effective divisor D such that −(KX + D) is ample and the pair (X, D)

is Kawamata log terminal. In particular if D = 0 we have terminal Fano varieties,
- weak log Fano if there exists an effective divisor D such that −(KX + D) is neg and big, and the

pair (X, D) is Kawamata log terminal.

For instance, any toric variety is log Fano, a smooth hypersurface X ⊂ Pn of degree d is log
Fano if and only if d ≤ n.
If X is a normal Q projective variety with ρ(X) = 1 then X is a Mori Dream Space if and only if
Pic(X) is finitely generated. For instance, the only Mori Dream Space of dimension one is P1.
The bridge between Mori Dream Spaces and log Fano varieties is the content of the following
proposition.

PROPOSITION 1.2. [BCHM, Corollary 1.3.2] Let X be a smooth projective variety. If X is log Fano
then X is a Mori Dream Space .

REMARK 1.3. On the other hand a Mori Dream Space is not necessarily log Fano. Indeed, by
Grothendieck-Lefschetz theorem if X ⊂ Pn is a general hypersurface and n ≥ 4 then Pic(X) ∼= Z

is generated by X ∩ H where H is a general hyperplane in Pn. Therefore, X is a Mori Dream
Space. On the other hand, if d = deg(X) then X is not rationally connected as soon as d ≥ n + 1.
In particular if d ≥ n + 1 the hypersurface X is not log Fano.
By Noether-Lefschetz theorem we have Pic(Sd) ∼= Z and generated by the restriction of the hy-
perplane section of P3 for a general surface of degree d ≥ 4 in P3. These give other examples of
Mori Dream Spaces that are not log Fano.
Even when X is a Mori Dream Space with big and movable anti-canonical divisor it is not neces-
sarily log Fano. Indeed we have the following:
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PROPOSITION 1.4. [CG, Proposition 2.6] Let X be a projective Q-factorial variety which is a Mori
Dream Space, and let L1, ..., Lm be ample line bundles on X. Then

Y = P(
m⊕

i=1

Li)

is a Mori Dream Space.

Now, following [CG, Example 5.1] we consider a smooth projective variety X of general type
such that H1(X,OX) = 0 and ρ(X) = 1. Let E = L1 ⊕ L2 ⊕ (ω∨X ⊕ L∨1 ⊕ L∨2 ), and Y = P(E). Then
−KY is big and movable. On the other hand if Y would be rationally connected then X would
be rationally connected as well. A contradiction because X is of general type. Therefore Y is not
rationally connected and in particular it is not log Fano.

The following is an important result in order to achieve, among other things, an useful char-
acterization of big divisors.

LEMMA 1.5. (Kodaira’s Lemma) Let D and E be respectively a big and an effective Cartier divisor on
a projective variety X. Then

H0(X, mD− E) 6= 0

for m� 0.

PROOF. Since D is big there exists a constant c > 0 such that h0(X,OX(mD)) ≥ c ·mdim(X) for
m � 0. On the other hand dim(E) = dim(X)− 1 implies that h0(X,OE(mD)) grows at most like
mdim(X)−1, and h0(X,OX(mD)) > h0(X,OE(mD)) for m� 0.
Now, let us consider the following exact sequence:

0 7→ OX(mD− E)→ OX(mD)→ OE(mD) 7→ 0.

By taking cohomology we get

h0(X,OX(mD− E)) ≥ h0(X,OX(mD))− h0(X,OE(mD)) > 0

for m� 0. �

LEMMA 1.6. Let D be a divisor on an irreducible projective variety X then D is big if and only if for any
integer ample divisor A on X there exist an integer m and an effective divisor E such that mD ∼lin A + E.

PROOF. Assume that D is big and consider mD − rA with r � 0. Then rA and (r − 1)A are
both effective and by Lemma 1.5 we get H0(X, mD− rA) 6= 0. Therefore, there exists an effective
divisor E such that mD− rA ∼lin E. That is

mD ∼lin A + (r− 1)A + E = A + E
′

where E
′
= (r− 1)A + E is effective.

Now, let mD ∼lin A + E with A ample and E effective. Therefore, possibly passing to an higher
multiple, we have r ·mD ∼lin rA + rE with H = rA very ample, and rE effective. Then

kod(X, D) ≥ kod(X, H) = dim(X)

and D is big. �
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REMARK 1.7. Note that in the proof of Lemma we have to consider a multiple of A in order
to have an effective divisor. To see this for instance consider three general points p1, p2, p3 ∈ C
where C is a smooth curve of genus g = 2. The divisor D = p1 + p2 − p3 is ample, indeed
deg(5D) = 5 = 2g + 1 and by [Har, Corollary 3.2] 5D is very ample. Then D is ample. Now, let us
consider D

′
= p1 + p2. Then deg(KC − D

′
) = 0. If h0(KC − D

′
) 6= 0 then deg(KC − D

′
) = 0 yields

KC − D
′ ∼ 0 and h0(KC − D

′
) = 1. On the other hand h0(KC) = 2, and since p1, p2 are general

they impose independent conditions to the differential forms on C, that is h0(KC − D
′
) = 0. By

Riemann-Roch this gives h0(p1 + p2) = 1. Now, assume that h0(p1 + p2 − p3) 6= 0. The inclusion
H0(C, p1 + p2 − p3) ⊆ H0(C, p1 + p2) forces H0(C, p1 + p2 − p3) = H0(C, p1 + p2), that is any
global section s ∈ H0(C, p1 + p2) ∼= k vanishes at p3. Therefore s is zero because it is constant.
This implies h0(p1 + p2) = 0, a contradiction. We conclude that H0(C, p1 + p2 − p3) = 0, that is
there is no effective divisor on C linearly equivalent to p1 + p2 − p3.

LEMMA 1.8. Let D be a nef and big divisor on an irreducible projective variety X. Then there exist an
effective divisor E such that D− εE is ample for 0 < ε� 1.

PROOF. Let D be a nef and big divisor. Since D is big, by Lemma 1.7, there exist an ample
divisor A, an effective divisor E, and a positive integer k such that kD ≡ A + E. If h > k we can
write hD ≡ (h − k)D + A + E. The divisor D

′
= (h − k)D + A is a sum of a nef and an ample

divisor. Therefore D
′

is ample. If ε = 1
h we get that

D− εE ≡ εD
′

is ample. �

PROPOSITION 1.9. Let X be normal, irreducible, projective variety with at most klt singularities. If X
is weak Fano then X is log Fano.

PROOF. Since X is weak Fano −KX is nef and big. By Lemma 1.8 there exists an effective
divisor D and a rational number 0 < ε � 1 such that −KX − εD = −(KX + εD) is ample. The
pair (X, εD) is klt for ε� 1 because X has at most klt singularities. �

REMARK 1.10. The converse of Proposition 1.9 is false. For instance the Hirzebruch surface
Xe = P(OP1 ⊕ OP1(−e)) is a toric surface and hence log Fano. The anti-canonical divisor is
−KXe = 2C0 + (2+ e)F, where C0 is the section and F is the fiber. Therefore−KXe ·C0 = 2C2

0 + 2+
e = −e + 2, and −KXe is not nef for e > 2. We conclude that for any e > 2 the Hirzebruch surface
Xe is log Fano but not weak Fano.

It is quite easy to see that projective toric varieties are log Fano.

LEMMA 1.11. Let D = ∑i diDi be a Q-divisor on a normal projective variety X such that di < 1 and
the pair (X, dDe) is lc. Then (X, D) is klt.

PROOF. Let f : Y → X be a log resolution of the pair (X, dDe). We have

KY = f ∗KX + ∑
i

aiEi

and
dD̃e = f ∗dDe −∑

i
biEi
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where dD̃e is the strict transform of dDe. Therefore,

KY = f ∗(KX + dDe) + ∑
i
(ai − bi)− dD̃e

and since (X, dDe) is lc we have ai − b1 ≥ −1. On the other hand

D̃ = f ∗D−∑
i

tiEi

with ti < bi because di < 1 for any i. This yields ai − ti > ai − bi ≥ −1, and the pair (X, D) is
klt. �

PROPOSITION 1.12. Let X be a projective toric variety. Then X is log Fano.

PROOF. Let DX
1 , ..., DX

r be the irreducible toric invariant divisors on X. Then we have KX =
−∑i DX

i , see [Ful]. Now, let A = ∑i aiDX
i be an ample toric invariant divisor, and ε a rational

number 0 < ε� 1. Therefore
−KX − εA = ∑

i
(1− εai)DX

i

with 1− εai < 1. The divisor D = ∑i(1− εai)DX
i is such that εA = −KX − D is ample. Note that

dDe ∼ −KX. Let f : Y → X be a toric log resolution of (X, dDe), and let DY
1 , ..., DY

h be the invariant
toric divisors on Y. We have

KY = f ∗(KX + dDe) + ∑ aiEi − dD̃e = ∑ aiEi − dD̃e

because dDe ∼ −KX. On the other hand KY = −∑i DY
i yields

KY = ∑ aiEi − dD̃e = −∑
i

DY
i .

This forces ai = −1 for any i. Therefore, the pair (X, dDe) is lc. To conclude it is enough to apply
Lemma 1.11. �

It turns out that weak log Fano is equivalent to log Fano.

PROPOSITION 1.13. Let X be a projective variety with at most klt singularities. Then X is log Fano if
and only if X is weak log Fano.

PROOF. Clearly X log Fano implies X weak log Fano. Now, let X be weak log Fano. Then
there exists an effective divisor D such that −KX − D is big and nef and (X, D) is klt. By Lemma
1.8 there exists an effective divisor E such that −KX − D − εE = −KX − (D + εE) is ample for
0 < ε� 1.
Let D

′
= D + εE. Therefore, D

′
is effective and −KX − D

′
is ample. Furthermore, since X has at

most klt singularities and (X, D) is klt we get that (X, D
′
) is klt for 0 < ε� 1. �

Finally, we have two important facts about log Fano varieties. We will prove just the latter, for
the first one we refer to [GOST].

LEMMA 1.14. [GOST, Corollary 1.3] Let f : X → Y be a projective surjective morphism between
normal projective varieties over an algebraically closed field of characteristic zero. If X is log Fano then Y is
log Fano.

The second result says that being log Fano is preserved under small transformations.
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LEMMA 1.15. Let X and Y be normal varieties over a field of characteristic zero that are isomorphic in
codimension one. Then X is log Fano if and only if Y is so.

PROOF. There exists a small transformation f : X 99K Y. Such a small transformation can
be factored as f = fk ◦ ... ◦ f1 where any fi : Xi 99K Xi+1 is small, and fits in a diagram of the
following form

Xi Xi+1

Zi

gi ri

fi

where fi is a small projective birational contraction. To conclude, we have to prove that if X and
Y are normal varieties over a field of characteristic zero and f : X → Y is a small birational
morphism the X is log Fano if and only if Y is log Fano.
Assume that X is log Fano. Then there exists D effective such that−KX −D is ample and (X, D) is
klt. Let us take an ample divisor H on Y such that −KX − D− ε f ∗H is ample and (X, D + ε f ∗H)
is klt. Note that since f is small f∗(D + ε f ∗H) may not be Q-Cartier. To deal with this we need
the following trick. We take an ample divisor A on X such that (X, D + ε f ∗H + A) is klt and

KX + D + ε f ∗H + A ∼Q 0.

Therefore,
KY + f∗D + εH + f∗A = f∗(KX + D + ε f ∗H + A) ∼Q 0.

Now, since f is small we have

f ∗(KY + f ∗D + εH + f∗A) = KX + D + ε f ∗H + A.

We conclude that (Y, f∗D + f∗A) is klt and −(KY + f∗D + f∗A) ∼Q εH is ample.
Now, let us assume that Y is log Fano, and let D an effective divisor on Y such that −KY − D is
ample and (Y, D) is klt. Let D̃ be the strict transform of D in X. Since f is small we have

KX + D̃ = f ∗(KY + D).

Therefore, (X, D̃) is klt and −KX − D̃ is nef and big. This means that X is weak log Fano, and by
Proposition 1.13 it is log Fano. �



CHAPTER 4

Blow-ups of Pn in k general points

The aim of this chapter is to prove the following result:

THEOREM 0.1. Let Xn
k be a blow-up of Pn at k points in general position, with n ≥ 2 and k ≥ 0. Then

Xn
k is log Fano if and only if one of the following holds:

- n = 2 and k ≤ 8,
- n = 3 and k ≤ 7,
- n = 4 and k ≤ 8,
- n > 4 and k ≤ n + 3.

1. Root systems

Let V be an Euclidean space over a field k with inner product 〈−,−〉 : V × V → k. For any
non-zero vector w ∈ V we may consider its orthogonal hyperplane

Hw = w⊥ = {v ∈ V | 〈v, w〉 = 0}.
Let us consider the following map:

(1.1)
Rw : V −→ V

v 7→ v− 2 〈v,w〉
〈w,w〉w

Note that Rw(w) = −w and Rw(v) = v for any v ∈ Hw. Therefore, Rw is the reflection with respect
to the hyperplane Hw = w⊥.

DEFINITION 1.1. A root system in V is a finite set R of non-zero vectors of V such that:
- the vectors in R generate V,
- if v, λv ∈ R then λ = ±1,
- for any w ∈ R we have Rw(R) ⊆ R,
- for any v, w ∈ R the projection of w onto the line generated by v is a half-integer multiple of v,

that is 2 〈v,w〉
〈v,v〉 ∈ Z.

The vectors in R are the roots of the root system. The root lattice of a root system R is the Z-submodule of
V generated by the roots of R.

Let R = {r1, ..., rh} ⊂ V. The subgroup WR of the group of isometries of V generate by
Rr1 , ..., Rrh is the Weyl group of R.

DEFINITION 1.2. Let R ⊂ V be a root system. A subset S ⊆ R is a set of simple roots in R if
- the elements in S form a basis of V,
- any v ∈ R can be written as a linear combination of elements of S with integer coefficients all of

the same sing.

33
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The root v ∈ R is positive if all the coefficients are nonnegative. The set of positive root is denoted by R+.
The vectors in R− = R \R+ are called negative roots.

We can associate to a root system a graphs, called the Dynkin diagram of the root system. Given
a root system R, we choose a set S of simple roots. The vertices of the associated Dynkin diagram
correspond to vectors in S. Any non-orthogonal pair of vectors is connected by an edge. This
edge is an undirected single edge if they make an angle of 2

3 π radians, a directed double edge if
they make an angle of 3

4 π radians, and a directed triple edge if they make an angle of 5
6 π radians.

Where "directed edge" means that double and triple edges are marked with an angle sign pointing
toward the shorter vector.

EXAMPLE 1.3. The following is a representation of the rank two root system A2 = {α, β, α +
β,−α,−β,−α− β}

We may choose A+
2 = {α, β, α + β}. Since α and β are simple the Dynkin diagram associated to

A2 is the following:
◦ ◦

Note that the Dynking diagram A2 is exactly the dual graph of the cyclic quotient singularity of
type A2 given by {y2

0 + y2
1 + y3

2 = 0}.

1.1. Representations of semi-simple Lie algebras. A complex Lie algebra is a C-vector space
g with a binary operation [−,−] : g× g→ g called the Lie bracket such that:

- the Lie bracket is bilinear,
- [g, g] = 0 for any g ∈ g,
- the Lie bracket satisfies the Jacobi identity

[g1, [g2, g3]] + [g3, [g1, g2]] + [g2, [g3, g1]] = 0

for any g1, g2, g3 ∈ g.
A simple Lie algebra is a non-abelian Lie algebra that does not have non-trivial ideals. A direct
sum of simple Lie algebras is called a semi-simple Lie algebra.
Now, let g be a semi-simple Lie algebra and let h ⊆ g be a Cartan subalgebra that is a subalebra
which is maximal among abelian, diagonalizable subalgebras.
For any g ∈ g we may consider the endomorphism

adg : g −→ g
x 7→ [g, x]

The linear map
ad : g −→ End(g)

g 7−→ adg
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is called the adjoint representation of g.
Now, we consider the adjoint action of h on g. Since this action is diagonalizable we get a decom-
position

g = h⊕
⊕

r
gr

called Cartan decomposition. The elements r ∈ h∗ are the eigenvalues of the action and for any
H ∈ h, X ∈ gr we have ad(H)(X) = r(H)X. The eigenvalues r ∈ h∗ are called the roots of the Lie
algebra g, we denote by R(g) ⊂ h∗ the set of all roots of g. In the following we concentrate on the
adjoint representation of sl3(C). For details on the general theory see [FH, Lecture 14].
Adjoint representation of sl3(C). We consider the Lie algebra sl3(C) of traceless 3× 3 matrices:

sl3(C) = {X ∈ M3(C) | tr(X) = 0}.

We have dim(sl3(C)) = 8, and we consider the bases of sl3(C) given by:

H1 =

 1 0 0
0 −1 0
0 0 0

 , H2 =

 0 0 0
0 1 0
0 0 −1


and the matrices Ei,j for 1 ≤ i 6= j ≤ 3 having the entry (i, j) equal to 1 and all the other entries
equal to zero. Now, let

h = {X = {xi,j} ∈ sl3(C) | xi,j = 0, ∀ i 6= j}

be the Cartan subalgebra of diagonal traceless matrices. Note that dim(h) = 2 and h = 〈H1, H2〉.
The linear functionals Li : h→ C given by

Li

 a1 0 0
0 a2 0
0 0 a3

 = ai

for i = 1, 2, 3 form a basis of h∗. For any

H =

 a1 0 0
0 a2 0
0 0 a3

 ∈ h

we have

ad(H)(Ei,j) = adH(Ei,j) = [H, Ei,j] = (ai − aj)Ei,j.

Therefore, we have the six eigenvalues L1 − L2, L1 − L3, L2 − L3, L3 − L2, L3 − L1, L2 − L1 for the
adjoint action of h, and the eigenspace corresponding to Li − Lj is the 1-dimensional subspace
sl3(C)Li−Lj =

〈
Ei,j
〉
. Since dim(sl3(C)) we get

sl3(C) = h⊕
⊕

1≤i 6=j≤3

sl3(C)Li−Lj .
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The roots Li − Lj are represented as follows:

Note that the Li − Lj are exactly the roots of the root system A2 in Example 1.3. The Weyl group of
A2 acts as the symmetric group S3 on the generators L1, L2, L3 of h∗. The example of sl3(C) reflects
a general phenomenon. The classification of semi-simple Lie algebras proceeds by considering a
Cartan subalgebra and the adjoint action of the Lie algebra on this subalgebra. The root system of
the action determines the Lie algebra and the corresponding Dynkin diagram.

2. Intersection theory of a blow-up

Let X be a smooth projective variety, and let i : Z ↪→ X be a smooth subvariety. Let π :
Y = BlZX → X be the blow-up of X along Z with exceptional divisors j : E ↪→ Y. We have the
following commutative diagram:

E Y = BlZX

Z X

j

i
ππE

We have E = P(NZ/X), and let ξ = c1(OE(1)) ∈ A1(E). Furthermore, NE/Y = OE(−1), so that
c1(NE/Y) = −c1(OE(1)) = −ξ.

PROPOSITION 2.1. [EH, Proposition 15.10] The Chow ring A(Y) of Y = BlZX is generated by
π∗A(X) and j∗A(E) with the following multiplication rules:

π∗α · π∗β = π∗(α · β) f or α, β ∈ A(X),
π∗α · j∗γ = j∗(γ · π∗|Ei∗α) f or α ∈ A(X), γ ∈ A(E),
j∗γ · j∗δ = −j∗(γ · δ · ξ) f or γ, δ ∈ A(E).

EXAMPLE 2.2. Let us take X = Pn and Z = p ∈ Pn a point. The groups A0(Y) and An(Y)
are both isomorphic to Z, generated respectively by the fundamental class of Y and the class of a
point. The group A1(X) is generated by H̃ and E while An−1(Y) is generated by the pull-back L̃
of the class of a line of Pn, and by the class of a line R in the exceptional divisor E ∼= Pn−1.
In this case OE(1) = OPn−1(1) and ξ = H, where H is the hyperplane section of E ∼= Pn−1. For
instance, we get Ek = (−1)k−1Hk−1, and in particular:

En = (−1)n−1Hn−1 = (−1)n−1.
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EXAMPLE 2.3. Let us consider the case X = P3 and Z = C ⊂ P3 a smooth curve of degree
d and genus g. Let H ∈ A1(P3) be the class of an hyperplanes, and L = H2 ∈ A2(P3) the class
of a line. We denote by H̃ and L̃ their pull-backs in Y. For any divisor D ∈ Z1(C) let FD be the
corresponding linear combination of the fibers of π|E : E→ C.
Clearly, A0(Y) ∼= Z, and A3(Y) ∼= Z, generated by the fundamental class of Y and the class of
point respectively.
Now, A1(Y) is generated by H̃ and E. Furthermore, A2(Y) is generated by L̃, j∗ξ, and j∗FD for
D ∈ A1(C). Note that geometrically the class j∗ξ corresponds to a curve in E ∼= C × P1 that is
mapped by π isomorphically to C. By Proposition 2.1 in A1(Y) we have:

H̃2 = L̃2, , H̃ · E = j∗(E · FH) = j∗(FH), E2 = −j∗(E · E · ξ) = −j∗ξ

where H is the the hyperplane section of C. The pairing between A1(Y) and A2(Y) is given by

H̃ · L̃ = 1, H̃2 · j∗FD = 0, H̃ · j∗ξ = H · C = d.

Furthermore,

E · L̃ = 0, E · j∗FD = −j∗(E · FD · ξ) = −deg(D), E · j∗ξ = −j∗ξ = −c1(NC/P3).

Now, let us consider the exact sequence

0 7→ TC → TP3|C → NC/P3 7→ 0.

For the Chern polynomials we have ct(TP3|C) = ct(TC) · ct(NC/P3). Now, by the Euler’s sequence

0 7→ OP3 → OP3(1)⊕4 → TP3 7→ 0

we get
ct(TP3) = 1 + 4ht + 6h2t2 + 4h3t3 + h4t4.

Since ct(TC) = 1 + c1(TC)t = 1 + (2− 2g)t we have

(1 + (2− 2g)t) · (1 + c1(NC/P3)t + c2(NC/P3)t2) = 1 + 4h|Ct + 6h2
|Ct2 + 4h3

|Ct3 + h4
|Ct4 = 1 + 4h|Ct

and since h|C = deg(C) = d we get

1 + (c1(NC/P3) + 2− 2g)t + (c2(NC/P3) + c1(NC/P3)(2− 2g))t2 + c2(NC/P3)(2− 2g)t3 = 1 + 4dt.

This yields
E · j∗ξ = −c1(NC/P3) = −4d− 2g + 2.

Finally,

H̃3 = 1, H̃2 · E = 0, H̃ · E2 = −H̃ · j∗ξ = −d, E3 = −j∗E · j∗ξ = j∗(E · ξ) = −4d− 2g + 2.

3. The standard Cremona transformation of Pn

Let p1, ..., pn+1 ∈ Pn be general points. We may assume

p1 = [1 : 0 : ... : 0], ..., pn+1 = [0 : ... : 0 : 1].

We consider the standard Cremona transformation:
ψ : Pn 99K Pn

[x0 : ... : xn] 7−→ [ 1
x0

: ... : 1
xn
]
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Note that ψ ◦ ψ = IdPn , and ψ−1 = ψ. Let H1, ..., Hn+1 be the coordinate hyperplanes of Pn. Then
ψ is not defined on the locus ⋃

1≤i<j≤n+1

Hi ∩ Hj.

Furthermore, ψ is an isomorphism off of the union⋃
1≤i≤n+1

Hi.

Now, ψ induces a birational transformation ψ̃ : Xn
n+1 99K Xn

n+1 and we have the following com-
mutative diagram:

Xn
n+1 Xn

n+1

Pn Pn

ψ̃

ψ

Note that, since ψ contracts the hyperplane Hi passing spanned by the n points p1, ..., p̂i, ..., pn+1 to
the point pi, the map ψ̃ maps the strict transform of Hi onto the exceptional divisor Ei. Therefore
ψ̃ is an isomorphism in codimension one. Indeed, it is a composition of flops. In particular ψ̃
induces an isomorphism Pic(Xn

n+1)→ Pic(Xn
n+1).

Now, the linear system on Pn associated to the standard Cremona ψ is

H = OPn(n)⊗ I(n−1)(p1+...+pn+1),

that is H is the linear system of hypersurfaces in Pn of degree n having points of multiplicity at
least n− 1 in p1, ..., pn+1. Therefore, the inverse image of a general hyperplane of Pn via ψ is an
hypersurface of degree n with points of multiplicity n− 1 in p1, ..., pn+1, and

ψ̃∗H = nH − (n− 1)(E1 + ... + En+1).

Furthermore, since ψ contracts the hyperplane Hi passing spanned by the n points p1, ..., p̂i, ..., pn+1
to the point pi we have

ψ̃∗Ei = H − E1 − ...− Êi − ...− En+1.

We conclude that the simple reflection Rαk with respect to αk = H − E1 − ...− En+1 is realized by
the small transformation ψ̃.

PROPOSITION 3.1. Let D ⊂ Pn be an hypersurface of degree d having points of multiplicities m1, ..., mn+1
in p1, ..., pn+1, and let ψ : Pn 99K Pn be the standard Cremona of Pn. Then

deg(ψ(D)) = dn−
n+1

∑
i=1

mi

and
multpi ψ(D) = d(n− 1)−∑

j 6=i
mj

for any i = 1, ..., n + 1.
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PROOF. Let Xn
n+1 = Blp1,...,pn+1Pn, and ψ̃ : Xn

n+1 99K Xn
n+1 be the birational map induced by ψ.

The strict transform of D in Xn
n+1 99K Xn

n+1 can be written as D̃ ∼= dH −∑n+1
i=1 miEi.

Now, since ψ̃∗H = nH −∑n+1
i=1 (n− 1)Ei, and ψ̃∗Ei = H −∑j 6=i Ei we get

ψ̃∗D = d(nH −∑n+1
i=1 Ei)−∑n+1

i=1 mi(H −∑j 6=i Ej) =

dnH − d ∑n+1
i=1 (n− 1)Ei −∑n+1

i=1 H + ∑n+1
i=1 mi ∑j 6=i Ej =

(dn−∑n+1
i=1 mi)H −∑n+1

i=1 (d(n− 1)−∑j 6=i mj)Ej.

�

Let p1, ..., pk ∈ Pn be general points with k > n, and let Xn
k = Blp1,...,pk P

n be the blow-up of Pn

in p1, ..., pk. The Picard group Pic(Xn
k ) is a free Z-module of rank k + 1. Let H be the pull-back of

the hyperplane class of Pn, and Ei be the class of the exceptional divisor over pi. Then

H, E1, ..., Ek,

is a basis of Pic(Xn
k ). The anti-canonical class of Xn

k is given by

−KXn
k
= (n + 1)H − (n− 1)(E1 + ... + Ek).

In [Mu1] S. Mukai defines the following symmetric bilinear form on Pic(Xn
k ):

(3.1) 〈H, Ei〉 = 0, 〈H, H〉 = n− 1,
〈

Ei, Ej
〉
= −δi,j.

A straightforward computation, see [Mu1], shows that Pic(Xn
k ) has another Z-basis α1, ..., αk, Ek,

where
α1 = E1 − E2,
...
αi = Ei − Ei+1,
...
αk−1 = Ek−1 − Ek,
αk = H − E1 − ...− En+1.

Furthermore, α1, ..., αk is a Z-basis of the orthogonal complement K⊥Xn
k

of KXn
k

with respect to (3.1).
For instance, we have〈

KXn
k
, αk

〉
= (n + 1) 〈H, H〉 − (n− 1)

n+1

∑
i=1
〈Ei, Ei〉 = (n + 1)(n− 1)− (n− 1)(n + 1) = 0.

Moreover, α1, ..., αk is a system of simple roots of a finite root system with Dynkin diagram T2,k−n−1,n+1:

◦α1 ◦α2 ◦αn+1 ◦αk−2 ◦αk−1

◦αk

Let W be the Weyl group of orthogonal reflection with respect to α1, ..., αk. Clearly KXn
k

is W-
invariant. Following Mukai [Mu1] we give the following definition.

DEFINITION 3.2. Let X be normal Q-factorial variety. A (−1)-divisor in X is a divisor D ⊂ X such
that there exists a small Q-factorial transformation f : X 99K Y and a morphism π : Y → Z where π is
the blow-up of a projective variety Z in a smooth point and D is the strict transform via f of the exceptional
divisor of π.
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Now, our aim is to prove that any transformation w ∈ W is induced by a small Q-factorial
transformation of Xn

k .

THEOREM 3.3. [Mu1, Theorem 1] For any transformation w : Pic(Xn
k ) → Pic(Xn

k ) in W there
exists a small Q-factorial transformation fw : Xn

k 99K X such that X is also a blow-up of Pn in k general
points, and the pull-back via fw of the tautological basis of X coincides with the transformation of the
tautological basis of Xn

k by w.

PROOF. It is enough to prove the theorem for simple reflection. Note that a simple reflection
with respect to αi = Ei − Ei+1 corresponds to a transposition of a pair of centers. Indeed by 1.1 we
have

Rαi(H) = H − 2
〈H, Ei − Ei+1〉

〈Ei − Ei+1, Ei − Ei+1〉
(Ei − Ei+1) = H,

for any k 6= i, i + 1 we have

Rαi(Ek) = Ek − 2
〈Ek, Ei − Ei+1〉

〈Ei − Ei+1, Ei − Ei+1〉
(Ei − Ei+1) = Ek,

furthermore

Rαi(Ei) = Ei − 2
〈Ei, Ei − Ei+1〉

〈Ei − Ei+1, Ei − Ei+1〉
(Ei − Ei+1) = Ei − (Ei − Ei+1) = Ei+1,

and finally

Rαi(Ei+1) = Ei+1 − 2
〈Ei+1, Ei − Ei+1〉

〈Ei − Ei+1, Ei − Ei+1〉
(Ei − Ei+1) = Ei+1 − (−Ei + Ei+1) = Ei.

Therefore, the simple reflection with respect to αi is realized by the lifting to Xn
k of an automor-

phism of Pn switching pi and pi+1, and fixing the pj’s with j 6= i, i + 1.
For any I ⊂ {1, ..., k} with |I| = n + 1 we have that αI = H − ∑i∈I Ei is a root. The reflection RI
with respect to αI is given by:

(3.2)

 H 7→ H + (n− 1)αI = nH − (n− 1)∑i∈I Ei,
Ei 7→ Ei + αI f or i ∈ I,
Ej 7→ Ej f or j /∈ I.

In particular the simple reflection Rαk with respect to αk = H − E1 − ...− En+1 on the tautological
basis of Pic(Xn

k ) is given by: H 7→ H + (n− 1)αI = nH − (n− 1)∑n+1
i=1 Ei,

Ei 7→ H − E1 − ...− Êi − ...− En+1 f or 1 ≤ i ≤ n + 1,
Ei 7→ Ei f or n + 2 ≤ i ≤ k.

Let p1, ..., pn+1 ∈ Pn be general points. We may assume

p1 = [1 : 0 : ... : 0], ..., pn+1 = [0 : ... : 0 : 1].

We consider the standard Cremona transformation:

ψ : Pn 99K Pn

[x0 : ... : xn] 7−→ [ 1
x0

: ... : 1
xn
]
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Note that ψ ◦ ψ = IdPn , and ψ−1 = ψ. Let H1, ..., Hn+1 be the coordinate hyperplanes of Pn. Then
ψ is not defined on the locus ⋃

1≤i<j≤n+1

Hi ∩ Hj.

Furthermore, ψ is an isomorphism off of the union⋃
1≤i≤n+1

Hi.

Now, ψ induces a birational transformation ψ̃ : Xn
n+1 99K Xn

n+1 and we have the following com-
mutative diagram:

Xn
n+1 Xn

n+1

Pn Pn

ψ̃

ψ

Note that, since ψ contracts the hyperplane Hi passing spanned by the n points p1, ..., p̂i, ..., pn+1 to
the point pi, the map ψ̃ maps the strict transform of Hi onto the exceptional divisor Ei. Therefore
ψ̃ is an isomorphism in codimension one. Indeed, it is a composition of flops. In particular ψ̃
induces an isomorphism Pic(Xn

n+1)→ Pic(Xn
n+1).

Now, the linear system on Pn associated to the standard Cremona ψ is

H = OPn(n)⊗ I(n−1)(p1+...+pn+1),

that is H is the linear system of hypersurfaces in Pn of degree n having points of multiplicity at
least n− 1 in p1, ..., pn+1. Therefore, the inverse image of a general hyperplane of Pn via ψ is an
hypersurface of degree n with points of multiplicity n− 1 in p1, ..., pn+1, and

ψ̃∗H = nH − (n− 1)(E1 + ... + En+1).

Furthermore, since ψ contracts the hyperplane Hi passing spanned by the n points p1, ..., p̂i, ..., pn+1
to the point pi we have

ψ̃∗Ei = H − E1 − ...− Êi − ...− En+1.

We conclude that the simple reflection Rαk with respect to αk = H − E1 − ...− En+1 is realized by
the small transformation ψ̃. �

4. Cox rings and the effective cone

Let X be a normal and Q-factorial projective variety with finitely generated and free Picard
group and Picard number ρX. Let D1, ..., DρX be a basis of Cartier divisors of Pic(X). Then

Cox(X) =
⊕

L∈Pic(X)

H0(X, L) =
⊕

m1,...,mρX∈Z

H0(X,
ρX

∑
i=1

miDi).

Note that Cox(X) is an integral domain graded by the free abelian group Pic(X). Now, let us
consider the following definition:
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DEFINITION 4.1. Let A be an integral domain graded by a free abelian group G,

A =
⊕
g∈G

Ag.

The support of A is the semi-group

Supp(A) = {g ∈ G | Ag 6= 0}.

LEMMA 4.2. Let e ∈ G be the identity element. If Supp(A) is not finitely generated as a semi-group
then A is not finitely generated as a ring over Ae.

PROOF. Assume that A is finitely generated. Then, there exist finitely many non-zero homoge-
neous elements ai ∈ Agi for i = 1, ..., h such that a1, ..., ah generate A. Therefore, g1, ..., gh generate
Supp(A). �

For instance the support of Cox(X) is the semi-group of linear equivalence classes of effective
divisors on X:

Eff(X) = {L ∈ Pic(X) | H0(X, L) 6= 0}.
When X = Xn

k = Blp1,...,pk P
n is the blow-up of Pn in p1, ..., pk we have

Cox(Xn
k ) =

⊕
L∈Pic(Xn

k )

H0(Xn
k , L) =

⊕
a,b1,...,bk∈Z

H0(Xn
k ,OXn

k
(aH − b1E1 − ...− bkEk)).

The following result is fundamental for our study of Eff(Xn
k ).

LEMMA 4.3. Let π : X → Y be the blow-up of a projective variety Y at a point y ∈ Y. Let E be
exceptional divisor of π. Then E belongs to any system of generators of the semi-group Eff(X).

PROOF. Let us assume that E is linearly equivalent to the sum D1 + D2 of two effective divi-
sors. Let A be the pull-back of an ample divisor on Y. Then

E · Adim(Y)−1 = 0.

Therefore
D1 · Adim(Y)−1 + D2 · Adim(Y)−1 = E · Adim(Y)−1 = 0

yields D1 · Adim(Y)−1 = D2 · Adim(Y)−1 = 0. Hence, both Supp(D1) and Supp(D2) are contained in
E. Then either D1 = 0 or D2 = 0. �

Now, let us consider the variety Xn
k .

DEFINITION 4.4. We define the H-degree of D = aH −∑k
i=1 biEi ∈ Pic(Xn

k ) as

deg(D) = a.

PROPOSITION 4.5. If the following inequality holds

1
2
+

1
n + 1

+
1

k− n− 1
≤ 1

then theW-orbit of Ek is infinite.
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PROOF. Let w ∈ W . Then there exists a subset I ⊂ {1, ..., k} with |I| = n + 1 such that

∑
i∈I

deg(w(Ei)) ≤
n + 1

k

k

∑
i=1

deg(w(Ei)).

Since −KXn
k

isW-invariant we have

w(−KXn
k
) = (n + 1)w(H)− (n− 1)

k

∑
i=1

w(Ei) = −KXn
k
,

and in particular

(n + 1)deg(w(H))− (n− 1)
k

∑
i=1

deg(w(Ei)) = deg(−KXn
k
) = n + 1.

Then

deg(w(H))−∑
i∈I

deg(w(Ei)) ≥ deg(w(H))− n + 1
k

k

∑
i=1

deg(w(Ei)).

Now, ∑k
i=1 deg(w(Ei)) =

1
n−1 ((n + 1)deg(w(H))− n− 1) yields

deg(w(H))−∑
i∈I

deg(w(Ei)) ≥ deg(w(H))− (n + 1)2

k(n− 1)
(deg(w(H))− 1).

Now, note that
1
2
+

1
n + 1

+
1

k− n− 1
≤ 1⇐⇒ (n + 1)2

k(n− 1)
≤ 1.

In particular, 1
2 +

1
n+1 +

1
k−n−1 ≤ 1 yields

deg(w(H))−∑
i∈I

deg(w(Ei)) > 0.

Now, consider the reflection RI with respect to αI in (3.2). We have:

RI(H)− H = nH − (n− 1)∑
i∈I

Ei − H = (n− 1)(H −∑
i∈I

Ei),

and
deg(w(RI(H)))− deg(w(H)) = (n− 1)(deg(w(H))−∑

i∈I
deg(w(Ei))) > 0.

Therefore, the degree of H is increased by the reflection RI , and theW-orbit of H is infinite. Finally,
since (n + 1)deg(w(H))− (n− 1)∑k

i=1 deg(w(Ei)) = deg(−KXn
k
) = n + 1, we see that the degree

of Ek is increased by Ri as well. Therefore, also theW-orbit of Ek is infinite. �

THEOREM 4.6. If the following inequality holds

1
2
+

1
n + 1

+
1

k− n− 1
≤ 1

then Cox(Xn
k ) is not finitely generated.
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PROOF. By Lemma 4.2 it is enough to prove that Eff(Xn
k ) is not finitely generated. In order to

to this, by Lemma 4.3 it is enough to prove that Xn
k contains infinitely many (−1)-divisors, in the

sense of Definition 3.2.
Let us begin with the (−1)-divisor Ek. By Proposition 4.5 we have that if 1

2 +
1

n+1 +
1

k−n−1 ≤ 1 the
the orbit of Ek under the action of the Weyl groupW is infinite. Let E be an element of this orbit.
By Theorem 3.3 there exists a small transformation which is a lifting of a suitable standard Cre-
mona centred in n + 1 points among p1, ..., pk such that D is linearly equivalent to the pull-back
of an exceptional divisor via the lifting of the Cremona. Therefore, we produce infinitely (−1)-
divisors in Xn

k and Eff(Xn
k ) can not be finitely generated. �

Explicitly, Theorem 4.6 can be rephrased as follows: if
- n = 2, k ≥ 9,
- n = 3, k ≥ 8,
- n = 4, k ≥ 9,
- n ≥ 5, k ≥ n + 4

then Cox(Xn
k ) is not finitely generated.

4.1. Blow-up of P2 in nine points. Let p1, ..., p9 be nine points in P2. First, let us assume
that {p1, ..., p9} is the complete intersection of two general cubics C = Z( f ), Γ = Z(g) in P2. Let
X = {p1, ..., p8}. Since C and Γ are irreducible X does not have either four points on a line or seven
points on a conic. Then the set X imposes independent conditions to the cubic, and C, Γ are a basis
of the cubics through X. Therefore, any other cubic D = Z(h) through X is such that h = α f + βg.
In particular h(p9) = 0. We conclude that the cubics through p1, ..., p9 are parametrized by P1.
Therefore the linear system of cubics through p1, ..., p9 induces a rational map φ : P2 99K P1,
which in turns induces a morphism φ̃ : X2

9 → P1:

X2
9

P2 P1
φ

φ̃

Now, the general fiber of φ̃ : X2
9 → P1 is an elliptic curve, and the nine exceptional divisors

E1, ..., E9 are sections of the fibration φ̃. The generic fiber C of φ̃ is an elliptic curve over C(P1) =
C(t). Now, by considering the orbits of the nine sections E1, ..., E9 via the group law of C we pro-
duce infinitely many (−1)-curves in X2

9 .

Now, we consider the case of nine general points. In this case we follow the general philosophy
of Theorem 3.3. Our aim is to produce infinitely many (−1)-curves in X2

9 by applying iteratively
the standard Cremona of P2, and by replacing the symmetries of the elliptic fibration φ̃ : X2

9 → P1

with the symmetries of Pic(X2
9) with respect to the Weyl group of the Dynkin diagram T2,6,3:

◦α1 ◦α2 ◦α3 ◦α4 ◦α5 ◦α6 ◦α7 ◦α8

◦α9

We begin with the line C2 = 〈p1, p2〉, and consider the standard Cremona f2 : P2 99K P2 centred
in p7, p8, p9. By Proposition 3.1 the curve C3 = f2(C2) is a conic through p1, ..., p5. We proceed
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recursively by taking at the step i the standard Cremona fi−1 : P2 99K P2 centred at the three
points among p1, ..., p9 of lowest multiplicity for the curve Ci = fi−1(Ci−1). We denote by d the
degree and by mi the degree and the multiplicity in pi of these curves. The following table displays
the step from i = 2 to i = 16 of the iteration.

i d m1 m2 m3 m4 m5 m6 m7 m8 m9
2 1 1 1 0 0 0 0 0 0 0
3 2 1 1 1 1 1 0 0 0 0
4 4 2 2 2 1 1 1 1 1 0
5 6 3 3 2 2 2 2 1 1 1
6 9 4 4 4 3 3 2 2 2 2
7 12 5 5 5 4 4 4 3 3 2
8 16 7 7 6 5 5 5 4 4 4
9 20 8 8 8 7 7 6 5 5 5
10 25 10 10 10 8 8 8 7 7 6
11 30 12 12 11 10 10 10 8 8 8
12 36 14 14 14 12 12 11 10 10 10
13 42 16 16 16 14 14 14 12 12 11
14 49 19 19 18 16 16 16 14 14 14
15 56 21 21 21 19 19 18 16 16 16
16 64 24 24 24 21 21 21 19 19 18

Now, we want to prove that:

deg(Ci) ∼
i2

4

and multpj Ci ∼ (i+2)2−2(i+2)−1
12 for j = 1, 2, 3, multpj Ci ∼ (i+1)2−2(i+1)−1

12 for j =, 4, 5, 6, multpj Ci ∼
i2−2i−1

12 for j = 7, 8, 9, where ∼ means that the values differs at most by a rational number −1 <
ε < 1. This is verified for all the steps in the table. Let us assume it is true at the step i. Then

deg(Ci+1) = 2 deg(Ci)−m7(Ci)−m8(Ci)−m9(Ci) ∼ 2
i2

4
− 3

i2 − 2i− 1
12

=
(i + 1)2

4
.

From the table we see that

mj(Ci+1) = mj−3(Ci) ∼
(i + 2)2 − 2(i + 2)− 1

12
for j = 4, 5, 6. Furthermore

mj(Ci+1) = mj−3(Ci) ∼
(i + 1)2 − 2(i + 1)− 1

12
for j = 7, 8, 9. Finally

mj(Ci+1) ∼
i2

4
− 2

i2 − 2i− 1
12

=
i2 + 4i + 2

12
=

(i + 3)2 − 2(i + 3)− 1
12

.

The line C2 = 〈p1, p2〉 is a (−1)-curve in X9
2 . Therefore, Ci is a (−1)-curve as well. Finally, since

deg(Ci) ∼ i2

4
∞

i 7→∞
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we get infinitely many (−1)-curves in X2
9 .

4.2. Blow-up of P2 in eight points. Now, let us apply the same procedure to X2
8 . In this case

we get the following table:

i d m1 m2 m3 m4 m5 m6 m7 m8
2 1 1 1 0 0 0 0 0 0
3 2 1 1 1 1 1 0 0 0
4 4 2 2 2 1 1 1 1 1
5 5 3 3 3 2 2 2 1 1
6 6 3 3 3 3 2 2 2 2
7 6 3 3 3 3 2 2 2 2

We see that deg(Ci) = 6 for any i ≥ 6.

4.3. The Mori cone of Xn
k . In this section we determine the cone of curves of Xn

k .

LEMMA 4.7. Let p1, ..., p8 ∈ P3 be general points, and C ⊂ P3 an irreducible curve of degree d having
multiplicity mi = multpi(C) at pi, 1 ≤ i ≤ 8. Then m1 + ... + m8 ≤ 2d.

PROOF. If C is degenerate, then mi 6= 0 for at most three points pi, and the conclusion follows
easily from Bézout. So from now on we assume that C is non degenerate. Let Λ be the pencil
of irreducible quadric surfaces passing through p1, . . . , p8. Suppose that m1 + ... + m8 > 2d. It
follows from Bézout that C is contained in every member of Λ. In particular, C is a non degenerate
irreducible curve contained in the intersection of two irreducible quadric surfaces. So d ∈ {3, 4}.
Suppose that d = 3. Then C must be a twisted cubic through at most 6 of the pi’s, and thus
m1 + ... + m8 ≤ 2d = 6, contradicting our assumptions. We conclude that d = 4, mi ≥ 1 for every
i, and mj ≥ 2 for some j. If follows from Bézout that mj = 2, and mi = 1 for i 6= j. Consider the
projection from pj

πpj : C 99K P2.

The image πp1(C) is a conic though the seven general points πpj(pi), i 6= j, which is impossible.
This shows that m1 + ... + m8 ≤ 2d. �

PROPOSITION 4.8. Let Xn
k be the blow-up of Pn at points in general position p1, . . . , pk, n ≥ 2.

Denote by Ri a line in the exceptional divisors over pi, and by Li,j the strict transforms of the line through
pi 6= pj. Suppose that either of the following holds:

- k ≤ 2n.
- n = 3 and k ≤ 8.

Then the Mori cone NE(Xn
k ) is generated by the classes of the Ri’s and Li,j’s.

PROOF. Let Xn
k be the blow-up of Pn, n ≥ 2, at points in general position p1, . . . , pk. First of

all, note that

(4.1) L ≡ Li,j + Ri + Rj and Li ≡ L− Ri ≡ Li,j + Rj.

Let C̃ ⊂ Xn
k be an irreducible curve not contained in any exceptional divisor Ei, and denote by C

the image of C̃ in Pn. It is an irreducible curve of degree d > 0 and multiplicity mi = multpi C ≥ 0
at pi, C̃ is the strict transform of C, and

(4.2) C̃ ≡ dL−m1R1 − ...−mkRk.
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We must show that the class of C̃ in N1(Xn
k ) lies in the cone generated by the Ri’s and Li,j’s. We

may assume that m1 ≤ m2 ≤ · · · ≤ mk.
First let us assume that k is even. We write

C̃ ≡ dL−m1(R1 + R2)− (m2 −m1)R2 −m3(R3 + R4)− (m4 −m3)R4−
...−mk−1(Rk−1 + Rk)− (mk −mk−1)Rk.

(4.3)

Note that m1 + (m2 −m1) + m3 + (m4 −m3) + ... + mk−1 + (mk −mk−1) = m2 + m4 + ... + mk. We
claim that m2 + m4 + ... + mk ≤ d . Indeed, since k ≤ 2n, the set {p2, p4, ..., pk} has cardinality at
most n. Consider the linear space P = 〈p2, p4, ..., pk〉 $ Pn. If m2 + m4 + ... + mk > d, then C ⊂ P
by Bézout . Since the pi’s are general, p1, p3, ..., pk−1 6∈ P, and so m1 = m3 = ... = mk−1 = 0. But
this implies that mi = 0 for i ≤ k− 1 and mk > d, which is impossible. This proves the claim. So
we can rewrite (4.3) as

C̃ ≡ m1L1,2 + (m2 −m1)L2 + m3L3,4 + (m4 −m3)L4−
... + mk−1Lk−1,k + (mk −mk−1)Lk + (d−m2 −m4 − ...−mk)L.

It follows from (4.1) that the class of C̃ in N1(Xn
k ) lies in the cone generated by the Ri’s and Li,j’s.

Now suppose that k is odd, and write

C̃ ≡ dL−m1(R1 + R2)− (m2 −m1)R2 −m3(R3 + R4)− (m4 −m3)R4−
...−mk−2(Rk−2 + Rk−1)− (mk−1 −mk−2)Rk−1 −mkRk.

(4.4)

In this case m1 + (m2−m1) +m3 + (m4−m3) + ...+mk−1 + (mk−mk−1) = m2 +m4 + ...+mk−1 +
mk. Just as in the even case, one shows that m2 + m4 + ... + mk−1 + mk ≤ d and rewrite (4.4) as an
effective linear combination of the Ri’s and Li,j’s.
From now on we suppose that n = 3 and k ≤ 8. Then mi ≤ d and m1 + ...+mk ≤ 2dby Lemma 4.7.
If mk−1 = 0, then C̃ ≡ mkLk + (d−mk)L. It follows from (4.1) that the class of C̃ in N1(Xn

k ) lies in
the cone generated by the Ri’s and Li,j’s. If mk−1 6= 0, then rewrite (4.2) as

C̃ ≡ (Lk−1,k)− d′L−m′1R1 − ...−m′kRk,

where d′ = d− 1, m′i = mi for i ≤ k− 2, and m′i = mi− 1 for i = k− 1 or k. Note that m′i ≤ d′. This is
clear for i = k− 1 or k. For i ≤ k− 2 it follows from the assumptions that m1 ≤ m2 ≤ · · · ≤ mk ≤ d
and m1 + ... + mk ≤ 2d. We also have m′1 + ... + m′k ≤ 2d′. So we can repeat the process and
conclude by induction that the class of C̃ in N1(Xn

k ) lies in the cone generated by the Ri’s and
Li,j’s. �

5. Proof of Theorem 0.1

By Theorem 4.6 we know that if the hypothesis of Theorem 0.1 are not satisfied then Xn
k is not

a Mori Dream Space. In particular by Proposition 1.2 it is not log Fano. In this section our aim it
to prove the other implication by producing explicitly an effective divisor D such that −KXn

k
− D

is ample and (Xn
k , D) is klt.

In order to clarify ideas let us consider the following example.

5.1. Blow-ups of P3. A version of the following result with more details on the postulation of
the points p1, ..., pk ∈ P3 has been proven in [BL, Proposition 2.9].

PROPOSITION 5.1. Let X3
k be the blow-up of P3 at k general points p1, ..., pk. Then X3

k is weak Fano if
and only if k ≤ 7.
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PROOF. The anti-canonical divisor of X3
k is given by

−KX3
k
= 4H − 2E1 − ...− 2Ek = 2(2H − E1 − ...− Ek).

If k > 7 then (−KX3
k
)3 ≤ 0 and X3

k can not be weak Fano. We have that −KX3
k
· Ri = 2, and

−KX3
k
· Li = 0. By Proposition 4.8 −KX3

k
is nef if k ≤ 7. Furthermore (−KXk)

3 > 0 for k ≤ 7, and by
[La, Theorem 2.2.14] −KXk is big. �

REMARK 5.2. Let X3
8 be the blow-up of P3 at eight general points p1, ..., p8. By Proposition 4.8,

−KX8 is nef. On the other hand (−KX8)
3 = 0, and so −KX8 is not big by [La, Theorem 2.2.14].

By Proposition 1.9 we have that X3
k is log Fano for any k ≤ 7. In the following we show how

to produce an explicit Q-divisor D such that −(KXk + D) is ample and the pair (Xk, D) is klt.
First of let us observe that if k ≤ 4 then X3

k is a toric variety. In this case it is enough to take D as
a suitable combination of toric invariant divisors. However, in the case k = 4 we may choose an
irreducible divisor D. For instance we may consider the cubic surface

∆ = {x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0} ⊂ P3,

that is the Cayley’s nodal cubic surface. Note that ∆ is an element of the linear system of the
standard Cremona transformation of P3. The surface ∆ has exactly four singularities in the fun-
damental points of P3 that are ordinary double points. We may write the strict transform D of ∆
as

D = 3H − 2(E1 + ... + E4).
Then

−KX3
4
− εD = (4− 3ε)H − (2− 2ε)(E1 + ... + E4).

We have (−KX3
4
− εD) · Ri = 2− 2ε and (−KX3

4
− εD) · Li,j = 4− 3ε− 2(2− 2ε) = 4ε. By Propo-

sition 4.8 we conclude that −(KX3
4
+ εD) is ample for any 0 < ε < 1.

Let us consider the other three cases. If k = 5 we consider all the planes Hi,j,k spanned by three of
the pi’s. We get a divisor ∆ = ∑i,j,k Hi,j,k, and any of the pi is a of multiplicity six for ∆. Therefore,
we may write the strict transform D of ∆, through the blow-up morphism, as

D = 10H − 6(E1 + ... + E5).

Then −KX3
5
− εD = (4− 10ε)H − (2− 6ε)(E1 + ... + E5). We have −(KX3

5
− εD) · Ri = 2− 6ε

and −(KX3
5
− εD) · Li,j = 2ε. Then, by Proposition 4.8 we have that −(KX3

5
+ εD) is ample for any

0 < ε < 1
3 . Furthermore we can take ε > 0 arbitrarily small in order to have have the pair (X5, εD)

klt.

If k = 6 we have to take care of the twisted cubic through the pi’s. Therefore linear subspaces
are not enough. Let Qi be the unique quadric cone with vertex pi and having a simple point in
pj for any j 6= i. We consider the divisor ∆ = Q1 + Q2 + Q3 + H4,5,6, where H4,5,6 is the plane
spanned by p4, p5, p6. Since any of the pi is a points of multiplicity four for ∆ we can write

D = 7H − 4(E1 + ... + E6).

Then −KX3
6
− εD = (4− 7ε)H− (2− 4ε)(E1 + ...+ E6). Therefore, −(KX3

6
+ εD) · Ri = 2− 4ε and

−(KX3
6
+ εD) · Ri = ε. By Proposition 4.8 we have that −(KX3

5
+ εD) is ample for any 0 < ε < 1

2 .
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If k = 7 we have to consider cubic surfaces. First, we claim that there exists an irreducible cubic
surface having nodes at p1, ..., p4 and simple points at p5, p6, p7. Cubic surfaces are parametrized
by P(k[x0, ..., x3]3) ∼= P19. Furthermore, any node imposes at most four conditions, and simple
point at most one condition. We have exactly at most 4 · 4 + 3 = 19 conditions. Therefore, there
exists a cubic surface S having nodes at p1, ..., p4 and simple points at p5, p6, p7. Now, we want
to prove that S is irreducible. Since the pi’s are general and S passes through all of them with
three planes we can construct a cubic having nodes at most at two of the pi’s. Similarly with an
irreducible quadric and a plane we can construct a cubic having nodes at most at three of the pi’s.
We conclude that S is irreducible. Let Si,j,k be a cubic surface having simple points at pi, pj, pk and
nodes at ph for any h 6=, i, j, k. Any of the pi is of multiplicity fifty-five for the surface ∆ = ∑i,j,k Si,j,k.
Since ∆ has (7

4) = 35 components of degree three we can write its strict transform as

D = 105H − 55(E1 + ... + E7).

Then −KX3
7
− εD = (4 − 105ε)H − (2 − 55ε)(E1 + ... + E7), −(KX3

7
+ εD) · Ri = 2 − 55ε and

−(KX3
7
+ εD) · Li,j = 5ε. By Proposition 4.8 −(KX3

5
+ εD) is ample for any 0 < ε < 2

55 .

6. Blow-ups of Pn, n ≥ 4

6.1. Blow-ups of Pn in n + 1 points. The variety Xn
n+1 is toric. Therefore it is log Fano. In this

section we show that for Xn
n+1 the divisor D in the definition of log Fano variety can be chosen

irreducible.
Let |H| ⊂ |OPn(n)| be the linear system of hypersurfaces of degree n and having multiplicity at
least n− 1 in p1, ..., pn+1. This linear system induces the standard Cremona transformation of Pn

given by:
φ|H| : Pn 99K Pn

[x0 : ... : xn] 7−→ [ 1
x0

: ... : 1
xn
]

LEMMA 6.1. Let ∆ ∈ |H| be a general element, Li1,...,ih =
〈

pi1 , ..., pih

〉
, and π : Y → Pn be the

blow-up of all the strict transforms of the linear subspaces Li1,...,ih for h = 1, ..., n− 1 in order of increasing
dimension. Then the strict transform D̃ of ∆ in Y is smooth and transversal to all the exceptional divisors
of π. Furthermore

multLi1,...,ih
∆ = n− h

for any h = 1, ..., n− 1.

PROOF. By [MM, Theorem 1] the Cremona φ|H| lifts to an automorphism of Y. In particular
this implies that the strict transform D̃ of ∆ via π is smooth and transversal to all the exceptional
divisors of π. Therefore, ∆ is smooth out of the union of the codimension two linear subspaces
Li1,...,in .
Now, let us consider the element of the linear system |H| given by:

∆0 := {x0x1...xn−1 + x0x1...xn−2xn + ... + x1x2...xn = 0}.

We may assume that the pi’s are the fundamental points of Pn, and consider L1,...,h = 〈p1, ..., ph〉.
Let x ∈ L1,...,h be a general point. Then x0 6= 0, ..., xh−1 6= 0. Substituting x0 = 1, ..., xh−1 = 1 in the
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equation of ∆0 and taking the monomials of lowest degree we get that the projective tangent cone
of ∆0 in x is the hypersurface T ⊂ Pn−1 given by:

T = {xhxh+1...xn−2xn−1 + xhxh+1...xn−2xn + ... + xh+1xh+2...xn−1xn = 0}.
Then multL1,...,h ∆0 = deg(T) = n− h. To conclude it is enough to observe that for any ∆ ∈ |H| we
have multLi1,...,ih

∆ ≥ n− h. �

PROPOSITION 6.2. Let ∆ be a general element in the linear system of the standard Cremona of Pn and
let D be its strict transform in Xn

n+1. For any n−3
n−2 < ε < 1 the divisor −(KXn

n+1
+ εD) is ample, and the

pair (Xn
n+1, εD) is klt.

PROOF. We have
D = nH − (n− 1)(E1 + ... + En−1)

and
−KXn

n+1
− εD = (n + 1− εn)H − (n− 1− ε(n− 1))(E1 + ... + En+1).

Therefore,−(KXn
n+1

+ εD) · Ri = n− 1− ε(n− 1) > 0 if and only if ε < 1. Furthermore,−(KXn
n+1

+

εD) · Li,j = (n + 1− εn)− 2(n− 1− ε(n− 1)) = (n− 1)ε− n + 3 > 0 if and only if ε < n−3
n−2 . By

Proposition 4.8 we conclude that for any n−3
n−2 < ε < 1 the divisor −KXn

n+1
− εD is ample. Now,

by Lemma 6.1 we have that the blow-up π : Y → Pn of all the strict transforms of the linear
subspaces Li1,...,ih for h = 1, ..., n − 1 in order of increasing dimension is a log resolution of the
pair (Xn

n+1, εD). Now, let ρh be the number of linear subspaces of dimension h− 1 that have been
blown-up, and let Eh−1

1 , ..., Eh−1
ρh

be the exceptional divisors over such linear subspaces. Then, we
may write

KY = π∗KXn
n+1

+
n−1

∑
h=2

(n− h)(Eh−1
1 + ... + Eh−1

ρh
).

Furthermore, by Lemma 6.1 we have

π∗(εD) = ε
n−1

∑
h=2

(n− h)(Eh−1
1 + ... + Eh−1

ρh
) + εD̃,

where we denote by D̃ the strict transform of D in Y. Therefore, we get

KY = π∗(Kn
n+1 + εD) +

n−1

∑
h=2

(n− h− ε(n− h))(Eh−1
1 + ... + Eh−1

ρh
)− εD̃.

We see that for ε < 1 all the discrepancies are greater than zero. Therefore the pair (Xn
n+1, εD) is

terminal and hence klt. �

REMARK 6.3. The toric variety Y used as a log resolution in the proof of Proposition 6.2, that
is is Pn blown-up at all the linear spaces of codimension at least two spanned by subsets of n + 1
points in linear general position, is the Losev-Manin’s moduli space Ln+1 introduced by A. Losev
and Y. Manin in [LM], see [Ha, Section 6.4]. The space Ln+1 parametrizes (n + 1)-pointed chains
of projective lines (C, x0, x∞, x1, ..., xn+1) where:

- C is a chain of smooth rational curves with two fixed points x0, x∞ on the extremal com-
ponents,

- x1, ..., xn+1 are smooth marked points different from x0, x∞ but non necessarily distinct,
- there is at least one marked point on each component.
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6.2. Hyperplane arrangements and the blow-ups of Pn in n + 2 points. Let p1, ..., pn+2 be
general points in Pn. We consider the hyperplane arrangement

H = {〈pi1 , ..., pin〉 | ij ∈ {1, ..., n + 2}}.

Note that H is supported on a reducible divisor H = ∑
ρn−1
i=1 Hi, where Hi is an hyperplane and

ρn−1 = (n+2
n ) = (n+2)(n+1)

2 . We keep denoting by H the strict transform of H in Xn
n+2. Although

any Hi is smooth the Hi’s intersects with hight multiplicity along the strict transforms of the linear
subspaces of Pn determined by the intersections of the Hi’s themselves. Therefore (Xn

n+2,H) is
not a log resolution of (Pn,H). Let us consider the set Hh = {

〈
pi1 , ..., pih+1

〉
| ij ∈ {1, ..., n + 2}}}

of all the h-planes spanned by the pi’s.

PROPOSITION 6.4. Let π : Y → Xn
n+2 be the blow-up of all the lines inH1, all the planes inH2,..., all

the (n− 2)-planes in Hn−2, in order of increasing dimension. Let us consider the pair (Xn
n+2, εH) where

ε ∈ Q is a rational number, and let H̃ be the strict transform of H through π. Then (Y, εH̃) is a log
resolution of (Xn

n+2, εH). Let Eh
j be the exceptional divisor over an h-plane, and let us write

KY = π∗(KXn
n+2

+ εH) + dn−1(H1 + ... + Hρn−1) +
n−2

∑
h=1

dh(Eh
1 + ... + Eh

ρh
).

Then ρn−1 = (n+2
n ), dn−1 = −ε, and

ρh =

(
n + 2
h + 1

)
, dh = (n− h− 1)− ε

(
n− h + 1
n− h− 1

)
.

PROOF. Clearly ρn−1 = (n+2
n ) = (n+2)(n+1)

2 . At each step, the spaces to be blown-up do not
intersect because their intersections have been blown-up at an earlier step. Clearly the divi-
sor Exc(π) ∪ H1 ∪ ... ∪ Hρn−1 is simple normal crossing. Therefore (Y, εH̃) is a log resolution of
(Xn

n+2, εH). Clearly, any element of Hh is determined by h + 1 points. Therefore ρh = (n+2
h+1) for

h = 1, ..., n− 1. Now, let us compute the discrepancies. First of all we have

(6.1) KY = π∗KXn
n+2

+
n−2

∑
h=1

(n− h− 1)(Eh
1 + ... + Eh

ρh
).

Now, fix an h-plane, let us say 〈p1, ..., ph+1〉. In order to construct an hyperplane in H containing
〈p1, ..., ph+1〉we have to choose n− h− 1 points out of ph+2, ..., pn+2. Therefore we have (n−h+1

n−h−1) of
them, and

(6.2) π∗(εH) = ε
n−2

∑
h=1

(
n− h + 1
n− h− 1

)
(Eh

1 + ... + Eh
ρh
) + ε(H1 + ... + Hρn−1).

Finally, subtracting 6.2 from 6.1 we get

KY = π∗(KXn
n+2

+ εH)− ε
ρn−1

∑
i=1

Hi +
n−2

∑
h=1

(
(n− h− 1)− ε

(
n− h + 1
n− h− 1

))
(Eh

1 + ... + Eh
ρh
).

�

THEOREM 6.5. If p1, ..., pk ∈ Pn are general points then Xn
k is log Fano for any k ≤ n + 2.
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PROOF. If k ≤ n + 1 then Xn
k is toric and hence log Fano. Let us consider Xn

n+2 and the divisor
H of Proposition 6.4. Our aim is to prove that there exits a rational number ε such that −(KXn

n+2
+

εH) is ample and (Xn
k , εH) is klt. Let E1, ..., En+2 be the exceptional divisors over p1, ..., pn+2. Then

−KXn
n+2

= (n + 1)H − (n− 1)E1 − ...− (n− 1)En+2.

Furthermore, since we have (n+2
n ) = 1

2 (n + 2)(n + 1) hyperplanes inH, and thorough any pi there
are (n+1

n−1) =
1
2 (n + 1)n hyperplanes we have

H =
1
2
(n + 2)(n + 1)H − 1

2
(n + 1)nE1 − ...− 1

2
(n + 1)nEn+2.

Therefore

−(KXn
n+2

+ εH) = (n + 1− ε

2
(n + 2)(n + 1))H − (n− 1− ε

2
(n + 1)n)

n+2

∑
i=1

Ei.

Now, we have:
−(KXn

n+2
+ εH) · Ri = (n− 1− ε

2
(n + 1)n)

and
−(KXn

n+2
+ εH) · Li,j = (n + 1− ε

2
(n + 2)(n + 1))− 2(n− 1− ε

2
(n + 1)n).

By Proposition 4.8 we have that for any rational number ε such that

2(n− 3)
(n + 1)(n− 2)

< ε <
2(n− 1)
n(n + 1)

the divisor −(KXn
n+2

+ εH) is ample.
To conclude we have to show that (Xn

n+2, εH) is klt. By Proposition 6.4 the discrepancy of the
log resolution π : Y → Xn

n+2 with respect to the exceptional divisor Eh
j over an h-plane is given

by dh = (n − h − 1) − ε(n−h+1
n−h−1). Now, (n − h − 1) − ε(n−h+1

n−h−1) > −1 if and only if ε < 2
n−h+1 .

Therefore, if ε < 2
n then dh > −1 for any h = 1, ..., n− 2. To conclude, it is enough to observe that

2(n−1)
n(n+1) <

2
n . �

6.3. Blow-ups of Pn in n + 3 points.

6.6 (The effective cone of the blow-up of Pn at n + 3 points). Let X be the blow-up of Pn at n + 3
points pi in general position. By [CT2, Theorems 1.3], X is a Mori dream space. Next we describe the
1-dimensional faces of Eff(X) ([CT2, Theorem 1.2]). We denote by H the pullback to X of a hyperplane
in Pn, and by Ei the exceptional divisor over the point pi. For each subset I ⊂ {1, · · · , n + 3} whose
complement has odd cardinality |Ic | = 2k + 1, consider the divisor

EI := kH − k ∑
i∈I

Ei − (k− 1) ∑
i∈Ic

Ei.

There is a unique divisor in the linear system
∣∣EI
∣∣, which we also denote by EI . When k = 0 we have

E{i}c = Ei When k ≥ 1, EI can be described as follows. Let πI : Pn 99K P2k−2 be the projection from
the linear space 〈pi〉i∈I . Let CI ⊂ P2k−2 be the image of the unique rational normal curve through all the
p′is. The divisor EI is the cone with vertex 〈pi〉i∈I over Seck−1CI . Each EI generates a 1-dimensional face
of Eff(X), and all 1-dimensional faces are of this form.
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In this section we exhibit integral divisors D ⊂ Xn
n+3 and rational numbers ε > 0 such that

∆ = εD makes Xn
n+3 log Fano. In the previous cases, D was taken as sum of strict transforms

of hyperplanes through n of the n + 3 points. For Xn
n+3, we will also need to add other extremal

divisors EI ⊂ Xn
n+3 introduced in Paragraph 6.6. This will make the log resolution of (X, ∆) more

complicated, and we will need to understand well how the divisors EI ’s intersect. For this pur-
pose, we start this section with some preliminaries on secant varieties of rational normal curves.
Then we will consider separately the cases n = 2h + 1 odd, and n = 2h even.

6.4. Preliminaries on secant varieties of rational normal curves. Given an irreducible and
reduced non-degenerate variety X ⊂ Pn, and a positive integer h ≤ n we denote by Seck(X) the
k-secant variety of X. This is the subvariety of Pn obtained as the closure of the union of all (k− 1)-
planes 〈x1, ..., xk〉 spanned by k general points of X. We will be concerned with the case when
X = C is a rational normal curve of degree n in Pn. The following proposition gathers some of the
basic properties of the secant varieties Seck(C) in this case.

PROPOSITION 6.7. Let C ⊂ Pn be a rational normal curve of degree n, and let k be an integer such
that 1 ≤ k ≤ n

2 . Then the following hold.
(1) dim(Seck(C)) = 2k− 1 (see for instance [Har, Proposition 11.32]).
(2) deg(Seck(C)) = (n−k+1

k ) (see for instance [EH, Theorem 12.16]).
(3) Seck(C) is normal and Sing(Seck(C)) = Seck−1(C) (see for instance [Ve1, Theorem 1.1]).
(4) If n = 2h is even, then for any 1 ≤ t < h we have

multSech−t(C) Sech(C) = t + 1.

PROOF OF (4). Suppose that n = 2h is even, and consider the (h + 1)× (h + 1) matrix

(6.3) Mh =


x0 x1 . . . xh
x1 x2 . . . xh+1
...

...
. . .

...
xh xh+1 . . . x2h

 .

For any 1 ≤ k ≤ h, the secant variety Seck(C) can be described as the determinantal variety:

Seck(C) =
{

rank(Mh) ≤ k
}

.

(See for instance [Har, Proposition 9.7]). In particular, Sech(C) ⊂ P2h is the degree h + 1 hyper-
surface defined by the polynomial F := det(Mh). For each j ∈ {0, ..., 2h}, let {Mj

i} be the set of
h× h minors of Mh produced by erasing in Mh a row and a column meeting in an entry of type xj
Denote by ρj be the number of such minors. Then

∂F
∂xj

=
ρj

∑
i=1

α
j
i det(Mj

i),

for suitable α
j
i > 0. Inductively, we see that for any 1 ≤ t < h the partial derivatives of order t of F

are linear combinations of determinants of (h + 1− t)× (h + 1− t) minors of Mh. The vanishing
of such determinants defines Sech−t(C), while the vanishing of the of determinants of the (h −
t)× (h− t) minors of Mh defines Sech−t−1(C) ( Sech−t(C). Therefore, there is at least one partial
derivative of order t + 1 of F not vanishing on Sech−t(C). This means that multSech−t(C) Sech(C) =
t + 1 for any 1 ≤ t < h. �
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The following proposition is just a particular instance of [Be, Theorem 1]. The general state-
ment for smooth curves embedded via a 2h-very ample line bundle can be found in [Ve, Theorem
3.1] as well.

PROPOSITION 6.8. Let C ⊂ Pn be a rational normal curve of degree n, and set h :=
⌊ n

2

⌋
. Consider

the following sequence of blow-ups:
- π1 : X1 → Pn the blow-up of C,
- π2 : X2 → X1 the blow-up of the strict transform of Sec2(C),

...
- πh : Xh → Xh−1 the blow-up of the strict transform of Sech(C).

Let π : X → Pn be the composition of these blow-ups. Then, for any k ≤ h the strict transform of Seck(C)
in Xk−1 is smooth and transverse to all exceptional divisors. In particular X is smooth and the exceptional
locus of π is a simple normal crossing divisor.

NOTATION 6.9. Let p1, ..., pn+3 ∈ Pn be general points, and let C ⊂ Pn be the unique rational
normal curve of degree n through these points. Given 1 ≤ m ≤ n, I = {i1 < · · · < im} ⊂
{1, . . . , n + 3}, and a positive integer k such that 0 ≤ k ≤ n−m

2 , we consider the following variety
of dimension d = 2k− 1 + m:

Yd
I := Join

(
〈pi1 , . . . , pim〉 , Seck(C)

)
.

Alternatively, Yd
I can be defined as follows. Let πI : Pn 99K Pn−m be the projection from the linear

space 〈pi1 , . . . , pim〉. Let CI ⊂ Pn−m be the image of C under πI . It is the the unique rational normal
curve of degree n−m through the points π(pj), j 6∈ I. Then Yd

I is the cone with vertex 〈pi1 , . . . , pim〉
over Seck(CI).

By convent, when k = 0, we set Ym−1
I := 〈pi1 , . . . , pim〉.

Fix I = {i1 < · · · < im} ⊂ {1, . . . , n + 3}, with m ≤ n. Given k such that 0 ≤ k ≤ n−m
2 , set

d := 2k− 1 + m. By Proposition 6.7, we have

(6.4) deg(Yd
I ) =

(
n−m− k + 1

k

)
and Sing(Yd

I ) = Yd−2
I

Moreover, if n−m is even and d1 = 2k1 − 1 + m > 2k2 − 1 + m = d2, then Y
d2
I ⊂ Y

d1
I and

(6.5) mult
Y

d2
I

Y
d1
I =

d1 − d2

2
+ 1.

We also have analogs of Proposition 6.8 for sequences of blow-ups of Yd
I , for |I| − 1 ≤ d ≤

n− 1. More precisely:

PROPOSITION 6.10. Let C ⊂ Pn be a rational normal curve of degree n, p1, . . . , pm ∈ C distinct
points, with 1 ≤ m ≤ n, and set h :=

⌊ n−m
2

⌋
. Consider the following sequence of blow-ups:

- π1 : X1 → Pn the blow-up of Ym−1
I := 〈p1, . . . , pm〉,

- π2 : X2 → X1 the blow-up of the strict transform of Ym+1
I ,

...
- πh : Xh → Xh−1 the blow-up of the strict transform of Ym+2h−1

I .

Let π : X → Pn be the composition of these blow-ups. Then, for any k ≤ h the strict transform of Ym+2k−1
I

in Xk−1 is smooth and transverse to all exceptional divisors.



6 Blow-ups of Pn, n ≥ 4 55

Proposition 6.10 follows easily from Proposition 6.8. In the next sections, we will blow-up
varieties of type Yd

I for several subsets I ⊂ {1, . . . , n + 3}, in a suitable order. In order to show the
smoothness and transversality of the strict transforms of the Yd

I ’s in the intermediate blow-ups,
we will need the following result.

PROPOSITION 6.11. Let W ⊂ Z ⊂ X be smooth projective varieties, and let Y ⊂ X be a projective
variety such that Sing(Y) = Z and Y has ordinary singularities along Z. Let πW : XW → X be the blow-
up of W, and denote by ZW and YW the strict transforms of Z and Y, respectively. Then Sing(YW) = ZW
and YW has ordinary singularities along ZW .

PROOF. Denote by EW the exceptional divisor of πW . Then π−1
W (Z) = ZW ∪ EW . Let πZW :

XZW → XW be the blow-up of XW along ZW , with exceptional divisor EZW .
We claim that the composite morphism πW ◦ πZW : XZW → X is isomorphic to the blow-up

πZ : XZ → X of X along Z, followed by the blow-up of XZ along π−1
Z (W). Indeed, by the universal

property of the blow-up ([Har, Proposition 7.14]), there exits a unique morphism f : XZW → XZ
making the following diagram commute.

XZW XZ

XW X

f

πW

πZπZW

Note that all varieties in this diagram are smooth. Since Z and W are smooth, the intersection
ZW ∩ EW ⊂ XW is smooth. Thus, any normal direction of ZW in XW at a point p ∈ ZW ∩ EW
is the image of a normal direction at p of ZW ∩ EW in EW . In other words, the inverse image of
W in XZW consists of the strict transform ẼW of EW in XZW . Therefore, the inverse image of the
smooth variety π−1

Z (W) in XW is precisely ẼW . Using the the universal property of the blow-up,
and comparing the Picard number of these smooth varieties, we conclude that f : XZW → XZ is
the blow-up of XZ along π−1

Z (W), proving the claim.
Next we prove that Sing(YW) = ZW . Clearly ZW ⊂ Sing(YW). Suppose that this inclusion is

strict. Then the strict transform YZW of YW in XZW is singular. Since f : XZW → XZ is a smooth
blow-up, f (YZW ) ⊂ XZ is singular as well. But notice that f (YZW ) ⊂ XZ is the strict transform
of Y ⊂ X via πZ. Since Sing(Y) = Z and Y has ordinary singularities along Z, the blow-up πZ
resolves the singularities of Y. This contradiction shows that Sing(YW) = ZW . Moreover, since Y
has ordinary singularities along Z, the intersection of its strict transform YZ with the exceptional
divisor EZ of πZ is transverse. This implies that the intersection YZW ∩ EZW is also transverse, i.e.,
YW has ordinary singularities along ZW . �

We end this section by describing the intersection of some of the Yd
I ’s. This can be computed

using elementary projective geometry. In what follows we adopt the following notation. Given
two finite sets I and J, we define their distance to be

d(I, J) :=
∣∣(I ∪ J) \ (I ∩ J)

∣∣.
We start by intersecting varieties Yd

I ’s with the same dimension.

PROPOSITION 6.12. Let the assumptions and notation be as in Notation 6.9. Let I1, I2 ⊂ {1, . . . , n +
3} be subsets with cardinality m1 and m2, respectively, and suppose that I1 ∩ I2 = ∅. Let k1 and k2 be



56 4. BLOW-UPS OF Pn IN k GENERAL POINTS

integers such that 0 ≤ ki ≤ n−mi
2 , i = 1, 2, and m1 + 2k1 − 1 = m2 + 2k2 − 1 =: d. Set s = m1+m2

2 and
suppose that d ≤ n− s. Then

Yd
I1
∩ Yd

I2
=
⋃

J

Yd−s
J ,

where the union is taken over all subsets J ⊂ I1 ∪ I2 satisfying d(Ii, J) = s for i = 1, 2.
Moreover, for a general point in any irreducible component of the above intersections, the intersection

is transverse.

PROOF. We note that the assumptions of the theorem imply that d = k1 + k2 + s − 1 and
m1 −m2 = 2(k2 − k1).

Let J ⊂ I1 ∪ I2 be such that d(Ii, J) = s for i = 1, 2. We shall prove that Yd−s
J ⊂ Yd

I1
∩ Yd

I2
. Write

J = J1 ∪ J2, where Ji ⊂ Ii, i = 1, 2, set `i := |Ji| , i = 1, 2, and ` = |J| = `1 + `2. The assumption
that d(Ii, J) = s for i = 1, 2 implies that k2 − k1 = `1 − `2. We set k := k2 − `1 = k1 − `2, and note
that d− s = `+ 2k− 1.

Let x ∈ Yd−s
J . Then there exists a point q ∈ Seck(C) such that x ∈ 〈 q, pi | i ∈ J 〉 ∼= P`. The

following two linear subspaces of this P`

〈 x, pi | i ∈ I1 〉 ∼= P`1 and 〈 q, pi | i ∈ I2 〉 ∼= P`2

have complementary dimensions. Hence there exists a point

z ∈ 〈 x, pi | i ∈ J1 〉 ∩ 〈 q, pi | i ∈ J2 〉.

In particular, z ∈ Seck+`2(C). Since k + `2 = k1, we conclude that x ∈ Yd
I1

. Similarly we show that
x ∈ Yd

I2
.

Now assume that x is a general point of Yd−s
J . Keeping the same notation as above, we will

prove now that Yd
I1

and Yd
I2

intersect transversely at x. This amounts to proving that Tx
(
Yd

I1

)
∩

Tx
(
Yd

I2

)
= Tx

(
Yd−s

J
)
. By Terracini’s Lemma [Te], we have

Tx
(
Yd

I1

)
= 〈 〈pi | i ∈ I1 〉, 〈 Tqi C | 1 ≤ i ≤ k 〉, 〈 Tpi C | i ∈ J2 〉 〉,

Tx
(
Yd

I2

)
= 〈 〈pi | i ∈ I2 〉, 〈 Tqi C | 1 ≤ i ≤ k 〉, 〈 Tpi C | i ∈ J1 〉 〉,

Tx
(
Yd−s

J
)
= 〈 〈pi | i ∈ J 〉, 〈 Tqi C | 1 ≤ i ≤ k 〉 〉,

where q1, . . . , qk ∈ C are such that q ∈ 〈 qi | 1 ≤ i ≤ k 〉.
Consider the linear subspaces:

L1 := 〈 〈pi | i ∈ I1 〉, 〈 Tpi C | i ∈ J2 〉 〉,
L2 := 〈 〈pi | i ∈ I2 〉, 〈 Tpi C | i ∈ J1 〉 〉,
L := 〈 〈pi | i ∈ J 〉 〉 ⊂ L1 ∩ L2.

We have that dim(〈L1, L2〉) ≤ m1 + m2 + `− 1, and equality holds if and only if L1 ∩ L2 = L. On
the other hand, note that L intersects C in at least m1 + m2 + ` points, counted with multiplicity.
Therefore we must have dim(〈L1, L2〉) = m1 + m2 + `− 1, and L1 ∩ L2 = L. It follows from the
description of the tangent spaces above that Tx

(
Yd

I1

)
∩ Tx

(
Yd

I2

)
= Tx

(
Yd−s

J
)
.
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It remains to prove that Yd
I1
∩ Yd

I2
⊂ ⋃

J Yd−s
J . Write {pi | i ∈ I1} = {x1, . . . , xm1} and

{pi | i ∈ I2} = {y1, . . . , ym2}. Suppose that x ∈ Yd
I1
∩ Yd

I2
. This means that there exist points

z1, . . . , zk1 , w1, . . . , wk2 ∈ C such that:

〈x1, . . . , xm1〉 ∩ 〈z1, . . . , zk1〉 = ∅ = 〈y1, . . . , ym2〉 ∩ 〈w1, . . . , wk2〉, and

x ∈ 〈x1, . . . , xm1 , z1, . . . , zk1〉 ∩ 〈y1, . . . , ym2 , w1, . . . , wk2〉.
The assumption that d ≤ n− s implies that m1 + m2 + k1 + k2 ≤ n + 1, and thus

〈x1, . . . , xm1 , z1, . . . , zk1〉 ∩ 〈y1, . . . , ym2 , w1, . . . , wk2〉 =

〈 {x1, . . . , xm1 , z1, . . . , zk1} ∩ {y1, . . . , ym2 , w1, . . . , wk2} 〉.
By relabeling the points if necessary, we may write, for suitable integers s1, s2 and r:

{x1, . . . , xs1} = {x1, . . . , xm1} ∩ {w1, . . . , wk2}
{y1, . . . , ys2} = {y1, . . . , ym2} ∩ {z1, . . . , zk1}

{z1 = w1, . . . , zr = wr} = {z1, . . . , zk1} ∩ {w1, . . . , wk2}.

Note that si + r ≤ k j, {i, j} = {1, 2}, and we have

(6.6) x ∈ 〈 x1, . . . , xs1 , y1, . . . , ys2 , z1, . . . , zr 〉.
Let J0 ⊂ I1 ∪ I2 be the subset corresponding to the points {x1, . . . , xs1 , y1, . . . , ys2} ⊂ {p1, ..., pn+3}.
Note that d(J0, Ii) = mi − si + sj, for {i, j} = {1, 2}. In particular we have

d(J0, I1) + d(J0, I2) = 2s.

Suppose first that d(J0, I1) = d(J0, I2) = s. It follows from (6.6) that

x ∈ Join
(
〈pi | i ∈ J0 〉 , Secr(C)

)
.

Since si + r ≤ k j, {i, j} = {1, 2}, we get that

|J0|+ 2r− 1 = s1 + s2 + 2r− 1 ≤ k1 + k2 − 1 = d− s.

Hence x ∈ Yd−s
J0

.
From now on we consider the case when d(J0, I1) 6= d(J0, I2). Without lost of generality, we

assume that
d(J0, I1)− d(J0, I2) = m1 −m2 + 2s2 − 2s1 > 0.

We will modify the subset J0 ⊂ I1 ∪ I2 by adding points of I1 \ J0 or removing points of I2 ∩ J0
to obtain another subset J ⊂ I1 ∪ I2 satisfying d(Ii, J) = s for i = 1, 2. Note that if i ∈ I1 \ J0,
then d(J0 ∪ {i}, I1) = d(J0, I1)− 1 and d(J0 ∪ {i}, I2) = d(J0, I2) + 1. Similarly, if i ∈ I2 ∩ J0, then
d(J0 \ {i}, I1) = d(J0, I1)− 1 and d(J0 \ {i}, I2) = d(J0, I2) + 1. So we have to modify J0 by adding
or removing exactly m1−m2

2 + s2 − s1 points of the appropriate Ii.
Suppose first that

∣∣I1 \ J0
∣∣ = m1 − s1 ≥ m1−m2

2 + s2 − s1. This is equivalent to the inequality
s ≥ s2. We construct J1 ⊂ I1 ∪ I2 by adding to J0

m1−m2
2 + s2 − s1 points of I1 \ J0. Then d(Ii, J1) = s

for i = 1, 2, and it follows from (6.6) that

x ∈ Join
(
〈pi | i ∈ J1 〉 , Secr(C)

)
.

Since s2 + r ≤ k1, we get that

|J1|+ 2r− 1 = (k2 − k1 + 2s2) + 2r− 1 ≤ k1 + k2 − 1 = d− s.
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Hence x ∈ Yd−s
J1

.
Next we suppose that s < s2. Let I′2 ⊂ I2 be the subset corresponding to the points {y1, . . . , ys},

and set J2 := I1 ∪ I′2. Then d(Ii, J2) = s for i = 1, 2, and it follows from (6.6) that

x ∈ Join
(
〈pi | i ∈ J2 〉 , Secr+s2−s(C)

)
.

Since s2 + r ≤ k1, we get that

|J2|+ 2(r + s2 − s)− 1 = m1 + 2(r + s2)− s− 1 ≤ m1 + 2k1 − 1− s = d− s.

Hence x ∈ Yd−s
J2

.
�

6.5. The odd case n = 2h + 1. In this subsection we construct divisors ∆ making Xn
n+3 log

Fano when n = 2h + 1 is odd. In order to clarify the ideas we begin by developing an example.
The case n = 3 is in Section 5.1. Therefore, the first non trivial case is n = 5. Let πi : P5 99K P4 be
the projection from pi, and let Ci ⊂ P4 be the unique rational normal curve of degree four passing
through πi(pj) for j 6= i. By Proposition 6.7 the secant variety Sec2(Ci) ⊂ P4 is an hypersurface of
degree three, Sing(Sec2(Ci)) = Ci and multCi(Sec2(Ci)) = 2. Let ∆i be the cone over Sec2(Ci), and
Γ2

i be the cone over Ci with vertex pi, that is

∆i = Join(pi, Sec2(C)), Γ2
i = Join(pi, C).

We denote by Di the strict transform of ∆i in X5
8 .

LEMMA 6.13. For any i = 1, ..., 8 we have

deg(∆i) = 3, multpi ∆i = 3, multΓ2
i

∆i = 2.

Furthermore, let π : Y → X5
8 be the blow-up of X5

8 along the strict transform of Γ2
i . Then the strict

transform of Di in Y is smooth and transversal to the exceptional divisor of π over the strict transform of
Γ2

i .

PROOF. Since ∆i is a cone over Sec2(Ci) by Proposition 6.7 we have deg(∆i) = deg(Sec2(Ci)) =
3, multpi ∆i = deg(Sec2(Ci)) = 3, multΓ2

i
∆i = multCi Sec2(Ci) = 2.

Now, the projection πi : P5 99K P4 from pi lifts to a morphism Blpi P
5 → P4 and therefore induces

a morphism π̃i : X5
8 → P4. Let Z be the blow-up of P4 along Ci. Since π̃−1

i (Ci) is the strict
transform of Γ2

i , by [Har, Corollary 7.15] there exists a unique morphism fi : Y → Z such that the
following diagram

Y Z

X5
8 P4

fi

π̃i

is commutative. Therefore, if ˜Sec2(Ci) is the strict transform of Sec2(Ci) in Z we have f−1
i ( ˜Sec2(Ci)) =

Di. Now, to conclude it is enough to observe that by Proposition 6.8 ˜Sec2(Ci) is smooth and
transversal to the exceptional divisor over Ci. �

Now, let H4,...,8 ⊂ P5 be the hyperplane spanned by p4, ..., p8, and consider the divisor

∆ = ∆1 ∪ ∆2 ∪ ∆3 ∪ H4,...,8.
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Note that ∆i ∩ ∆j is a 3-fold of degree nine. Let C ⊂ P5 be the rational normal curve of degree five
through p1, ..., p8, Li,j the line spanned by pi and pj, and Ci,j = πi,j(C), where πi,j : P5 99K P3 is
the projection from Li,j. Let Y3

i,j = Join(Li,j, C) be the cone over Ci,j with vertex Li,j. Then Sec2(C)
and Y3

i,j are both contained in ∆i ∩ ∆j. Furthermore deg(Sec2(C)) = 6 and deg(Y3
i,j) = 3 yield

(6.7) ∆i ∩ ∆j = Sec2(C) ∪Y3
i,j

scheme-theoretically. We denote by D the strict transform of ∆ in X5
8 .

PROPOSITION 6.14. Let us consider the following chain of blow-ups:
- blow-up the strict transforms in X5

8 of the lines L1,2, L1,3, L2,3 and of the rational normal curve C,
- blow-up the strict transforms of Γ2

1, Γ2
2, Γ2

3,
- blow-up the strict transform of Sec2(C),

and let π : Y → X5
8 be the composition of these blow-ups. Then π is a log resolution of the pair (X5

8 , D).

PROOF. Let as assume that there exists a point p ∈ Γ2
i ∩ Γ2

j with p /∈ C ∪ Li,j. This means
that there are two lines Lpi ,q1 = 〈pi, q1〉, Lpj,q2 =

〈
pj, q2

〉
such that q1, q2 ∈ C and p ∈ Lpi ,q1 ∩

Lpj,q2 . Therefore, the plane spanned by Lpi ,q1 and Lpj,q2 intersects C in at least four points. A
contradiction because deg(C) = 5. Now, let p ∈ C be a general point and assume that TpΓ2

i =

TpΓ2
j . Then, pi, pj ∈ TpΓ2

i ∩ C and TpΓ2
i intersects C in p with multiplicity at least two. This

means that TpΓ2
i is a plane intersecting C in at least four points counted with multiplicity. Again

we find a contradiction. Now, since the strict transforms C̃ and L̃i,j of C and Li,j in X5
8 are smooth

and disjoint we conclude that the strict transforms of Γ2
i and Γ2

j in X5
8 are smooth and intersects

transversally along the disjoint union C̃ ∪ L̃i,j.
Next, we want to prove that Sec2(C)∩Y3

i,j = Γ2
i ∪ Γ2

j . Assume that there is a point p ∈ Sec2(C)∩Y3
i,j

with p /∈ Γ2
i ∪ Γ2

j . Then, there is are a secant line Lq,t = 〈q, t〉 with q, t ∈ C and a line Lr,s = 〈r, s〉
with r ∈ Li,j and s ∈ C such that p ∈ Lq,t ∩ Lr,s. The 3-plane spanned by Lq,t, Lr,s and Li,j intersects
C in at least five points. A contradiction. Now, let p ∈ Γ2

i ∪ Γ2
j be a general point and assume that

TpSec2(C) = TpY3
i,j. We may assume that p lies on a secant line Lpi ,q = 〈pi, q〉 with q ∈ C. Note

that pj ∈ Li,j ⊂ TpY3
i,j. By Terracini’s Lemma 1.1 we have that Tpi C, TqC ⊂ TpSec2(C). This means

that TpSec2(C) = TpY3
i,j is a 3-plane intersecting C in at least five points counted with multiplicity.

A contradiction.
Now, after blowing-up Li,j and C we know that the strict transforms Γ̃2

i , Γ̃2
j of Γ2

i and Γ2
j are smooth

and do not intersect. Furthermore,

S̃ec2(C) ∩ Ỹi,j = Γ̃2
i ∪ Γ̃2

j .

Now, we blow-up the Γ̃2
i ’s. By the previous part of the proof, Proposition 6.8 and Lemma 6.13

we know that now S̃ec2(C) and Ỹi,j, where we keep the same notations for the strict transforms
on this further blow-up, are smooth, disjoint and intersects transversally along all the exceptional
divisors. By equation 6.7 we get that ∆̃i and ∆̃j are smooth and intersects transversally along the

disjoint union S̃ec2(C) ∪ Ỹi,j.
Let us consider a third cone ∆k. Since the pi’s are general ∆k does not contain Y3

i,j. On the other
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hand Sec2(C) ⊂ ∆k. At the last step we blow-up Sec2(C). Clearly the hyperplane H4,...,8 intersects
transversally C in p4, ..., p8 and intersects transversally all the subvarieties that have been blown-
up. Finally, by Proposition 6.8, and Lemma 6.13 we conclude that the divisor

∆̃1 ∪ ∆̃2 ∪ ∆̃3 ∪ H̃4,...,8 ∪ Exc(π)

in Y is simple normal crossing. �

PROPOSITION 6.15. The variety X5
8 is log Fano.

PROOF. Let us consider the divisor D ⊂ X5
8 that is the strict transform of ∆ = ∆1 + ∆2 + ∆3 +

H4,...,8 in X5
8 . By Lemma 6.13 we have

deg(∆) = 10, multpi ∆ = 7.

Therefore, we have
D = 10H − 7(E1 + ... + E8)

and
−(KX5

8
+ εD) = (6− 10ε)H − (4− 7ε)(E1 + ... + E8).

By Proposition 4.8 in order two find a rational number ε such that −(KX5
8
+ εD) is ample we have

two consider its intersection with the curves of type Li,j and Ri. We have

−(KX5
8
+ εD) · Ri = 4− 7ε

and
−(KX5

8
+ εD) · Li,j = 6− 10ε− 2(4− 7ε) = 4ε− 2.

Therefore, for any 1
2 < ε < 4

7 the divisor −(KX5
8
+ εD) is ample.

Now, by Proposition 6.14 we know that π : Y → X5
8 is a log resolution of the pair (X5

8 , εD). We
denote by ELi,j , EC, EΓ2

i
, ESec2(C) the exceptional divisors over Li,j , C, Γ2

i and Sec2(C) respectively.
The canonical divisor of Y is given by

KY = π∗KX5
8
+ 3(EL1,2 + EL1,3 + EL2,3) + 3EC + 2(EΓ2

1
+ EΓ2

2
+ EΓ2

3
) + ESec2(C).

Now, Li,j has multiplicity two for ∆i, ∆j and one for ∆k with k 6= i, j. The curve C has multiplicity
two for any ∆i. The cone Γ2

i has multiplicity two for ∆i and one for ∆j with j 6= i. Finally Sec2(C)
has multiplicity one for any ∆i. Then we may write

π∗(εD) = εD̃ + 5ε(EL1,2 + EL1,3 + EL2,3) + 6εEC + 4ε(EΓ2
1
+ EΓ2

2
+ EΓ2

3
) + 3εESec2(C)

and

KY = π∗(KX5
8
+ εD) + (3− 5ε)∑

i,j
ELi,j + (3− 6ε)EC + (2− 4ε)∑

i
EΓ2

i
+ (1− 3ε)ESec2(C) − εD̃.

Therefore, for any ε < 2
3 all the discrepancies are greater than −1. We conclude that for any

1
2 < ε < 4

7 the divisor −(KX5
8
+ εD) is ample and the pair (X5

8 , εD) is klt. �

Let us move to the general case. We follow Notation 6.9. For each 1 ≤ i ≤ 3, let ∆i ⊂ Xn
n+3 be

the strict transform of the divisor Y2h
i ⊂ Pn, and denote by H4,...,n+3 ⊂ Xn

n+3 the strict transform of
the hyperplane 〈p4, ..., pn+3〉 ⊂ Pn+3.
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THEOREM 6.16. Let n = 2h + 1 ≥ 5 be an odd integer. Set

D := ∆1 ∪ ∆2 ∪ ∆3 ∪ H4,...,n+3 ⊂ Xn
n+3.

For any 2h−2
3h−2 < ε < 2h

3h+1 the divisor −(KXn
n+3

+ εD) is ample, and the pair (Xn
n+3, εD) is klt.

For the proof of Theorem 6.16, we will need the following.

PROPOSITION 6.17. Let the assumptions be as in Theorem 6.16, and follow Notation 6.9. For 0 ≤
m ≤ n− 3, we define a modification Xm of Xn

n+3 recursively as follows:
- X0 = Xn

n+3,
- X2k+1 is the blow-up of X2k along the strict transforms of Seck+1(C), and of the Y2k+1

i,j ’s (0 ≤ k ≤
h− 2),

- X2k is the blow-up of X2k−1 along the strict transforms of the Y2k
i ’s, and of Y2k

1,2,3 (1 ≤ k ≤ h− 1),
- Xn−2 is the blow-up of Xn−3 along the strict transform of Sech(C).

Then for any k the strict transforms of Seck+1(C) and of the Y2k+1
i,j ’s in X2k, and of the Y2k

i ’s and Y2k
1,2,3 in

X2k−1 are smooth, disjoint and intersect transversally all the exceptional divisors.
In particular, let π : Xn−2 → Xn

n+3 be the composition of these blow-ups. Then π is a log resolution of the
pair (Xn

n+3, D).

PROOF. We proceed by induction on Xm. The center of the blow-up Xm+1 → Xm is a disjoint
union of smooth subvarieties, all transverse to the exceptional divisors of Xm → X0. For simplicity
of notation we will denote by Z̃ the strict transform of a subvariety Z ⊂ Xn

n+3 in any Xm.
First of all note that by Proposition 6.11 the blow-up p1, ..., pn+3 resolves the vertex singularity
of the Yd

i and does not produce any effect on the singularities of the other Yd
I ’s involved in the

resolution. Since the pi’s have been blown-up the strict transforms of C and of the lines Y1
i,j do not

intersect in X0 and the statement is verified for m = 0. Now, by Proposition 6.12 in X0 we have

Ỹ2
i ∩ Ỹ2

j = C̃ ∪ Ỹ1
i,j, Ỹ2

i ∩ Ỹ2
1,2,3 = Ỹ1

i,r ∪ Ỹ1
i,s.

By blowing-up the Ỹ1
i,j’s and C̃ we separate the Ỹ2

i ’s and Ỹ2
1,2,3. In X1 the Ỹ2

i ’s and Ỹ2
1,2,3 are smooth

and disjoint. So the statement is verified for m = 1
Now, suppose that the statement is true m = 2k. We will show that it holds for X2k+1 and X2k+2.
By Propositions 6.8 and 6.10, we know that the subvarieties Ỹ2k+2

i ⊂ X2k+1, 1 ≤ i ≤ 3, and
˜Seck+2(C), Ỹ2k+3

i,j ⊂ X2k+2, 1 ≤ i < j ≤ 3, are all smooth and transverse to the exceptional divisors
over X0.
It remains to show that the the Ỹ2k+2

i ’s and Ỹ2k+2
1,2,3 are pairwise disjoint in X2k+1, and similarly for

˜Seck+2(C) and the Ỹ2k+3
i,j ’s in X2k+2.

Consider the blow-up X2k+1 → X2k. By Proposition 6.12, on X2k we have

Ỹ2k+2
i ∩ Ỹ2k+2

j = ˜Seck+1(C) ∪ Ỹ2k+1
i,j , Ỹ2k+2

i ∩ Ỹ2k+2
i,r,s = Ỹ2k+1

i,r ∪ Ỹ2k+1
i,s .

By the induction hypothesis, ˜Seck+1(C) and Ỹ2k+1
i,j are smooth and disjoint. So the intersection

is everywhere transverse. We conclude that on X2k+1, which is obtained from X2k by blowing-

up ˜Seck+1(C) and Ỹ2k+1
i,j , the Ỹ2k+2

i ’s and Ỹ2k+2
1,2,3 are pairwise disjoint. Note that the Ỹ2k+2

i ’s and
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Ỹ2k+2
1,2,3 are smooth because their singular loci have been blown-up in the preceding step. Further-

more, keeping in mind that Sing(Sect(C)) = Sect−1(C), Sing(Y2t+2
i ) = Y2t

i , Sing(Y2t+1
i,j ) = Y2t−1

i,j ,

Sing(Y2t+2
1,2,3 ) = Y2t

1,2,3, we have the following.

CLAIM 6.18. We have Seck+1(C) ⊂ Sect−1(C) for t ≥ k + 2, Seck+1(C) ⊂ Y2t+2
i for t ≥ k,

Seck+1(C) ⊂ Y2t+1
i,j for t ≥ k + 1, Seck+1(C) ⊂ Y2t+2

1,2,3 for t ≥ k + 1, and Seck+1 ∩ Y2k+2
1,2,3 =

Y2k
1 ∪Y2k

2 ∪Y2k
3 .

For any i, r, s ∈ {1, 2, 3} and t ≥ k + 1 we have Y2k+1
i,s ⊂ Y2t+1

r,s while Y2k+1
i,s ∩ Y2k+1

r,s = Y2k
s ∪ Y2k

i,r,s.
Furthermore, Y2k+1

i,j ⊂ Sing(Sect(C)) = Sect−1(C) for any t ≥ k+ 3, while Y2k+1
i,j ∩Sing(Seck+2(C)) =

Y2k
i ∪ Y2k

j , and Y2k+1
i,j ⊂ Y2t+2

1,2,3 for any t ≥ k. Finally, Y2k+1
i,j ⊂ Y2t+2

r for any i, j, r ∈ {1, 2, 3} and
t > k + 1, and for t = k + 1 we have

Y2k+1
i,j ∩ Sing(Y2k+4

r ) =

{
Y2k+1

i,j if r ∈ {i,j},
Y2k

i ∪Y2k
j ∪Y2k

i,j,r if r /∈ {i,j}.

Moreover, for a general point in any irreducible component of the above intersections, the inter-
section is transverse.

PROOF. Let us prove the last equality. The others can be proved by similar arguments. We
have Y2k+1

i,j ∩ Y2k+2
r = (Y2k+2

i,j,r ∩ Y2k+2
r ) ∩ Y2k+1

i,j . Now Y2k+2
i,j,r ∩ Y2k+2

r is the cone with vertex pr over

Y2k+1
i,j ∩ Seck+1(C), and by Proposition 6.12 the last intersection is given by Y2k

i ∪ Y2k
j . Therefore,

Y2k+2
i,j,r ∩ Y2k+2

r = Y2k+1
i,r ∪ Y2k+1

j,r and by Proposition 6.12 (Y2k+1
i,r ∪ Y2k+1

j,r ) ∩ Y2k+1
i,j = Y2k

i ∪ Y2k
j ∪

Y2k
i,j,r. �

This means that we blow-up either a smooth variety contained in in the singular loci of the
strict transforms of the cones that have not yet been blown-up or a smooth variety not intersecting

these strict transforms. Therefore, by Proposition 6.8 ˜Seck+2(C) is smooth and transversal to all
the exceptional divisors. By Proposition 6.10 the same is true for the Ỹ2k+3

i,j ’s. On the other hand,

by Proposition 6.11 the singularities of S̃ect(C) for t ≥ k + 3, of the Ỹ2t+1
i,j ’s for t ≥ k + 2, and of

the Ỹ2t+2
i ’s and Ỹ2t+2

1,2,3 for t ≥ k are not affected by these blow-ups, so that we can proceed with the
induction.
Now consider the blow-up X2k+2 → X2k+1. By Proposition 6.12, on X2k+1 we have

˜Seck+2(C) ∩ Ỹ2k+3
i,j = Ỹ2k+2

i ∪ Ỹ2k+2
j , Ỹ2k+3

i,j ∩ Ỹ2k+3
i,r = Ỹ2k+2

i ∪ Ỹ2k+2
i,j,r .

By the induction hypothesis, the Ỹ2k+2
i ’s and Ỹ2k+2

1,2,3 are smooth and pairwise disjoint. So the in-
tersection is everywhere transverse. We conclude that on X2k+2, which is obtained from X2k+1 by

blowing-up the Ỹ2k+2
i ’s and Ỹ2k+2

1,2,3 , the varieties ˜Seck+2(C) and the Ỹ2k+3
i,j ’s are pairwise disjoint.

Furthermore, arguing as in the proof of Claim 6.18 we have the following.

CLAIM 6.19. For any t ≥ k + 1 and i, j ∈ {1, 2, 3} we have Y2k+2
1,2,3 ⊂ Y2t+1

i,j and Y2k+2
1,2,3 ⊂ Y2t+2

i .
Moreover

Y2k+2
1,2,3 ∩ Sect(C) =

{
Y2k+2

1,2,3 if t ≥ k + 3,
Y2k+1

1,2 ∪Y2k+1
1,3 ∪Y2k+1

2,3 if t ≥ k + 2.
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For the Y2k+2
i ’s we have Yi ⊂ Sect(C) for t ≥ k + 1, Y2k+1

i ⊂ Y2t+2
1,2,3 for t ≥ k + 1. Moreover,

Y2k+2
i ⊂ Y2t+2

j for t ≥ k + 1, Y2k+2
i ⊂ Y2t+1

r,s for t ≥ k + 2 and i, j, r, s ∈ {1, 2, 3}. Finally

Y2k+2
i ∩Y2k+3

r,s =

{
Y2k+2

i if i ∈ {r,s},
Seck+1(C) ∪Y2k+1

i,r ∪Y2k+1
i,s if i /∈ {r,s}.

Moreover, for a general point in any irreducible component of the above intersections, the inter-
section is transverse.

By Proposition 6.10 the Ỹ2k+4
i ’s and Ỹ2k+4

1,2,3 are smooth and transverse to all the exceptional
divisors. By Claim 6.19 we blow-up either a smooth variety contained in in the singular loci of the
strict transforms of the cones that have not yet been blown-up or a smooth variety not intersecting
these strict transforms. Therefore, by Proposition 6.11 the singularity of the Ỹ2t+2

i ’s, Ỹ2t+2
1,2,3 and

S̃ect(C) for t ≥ k + 2, and of the Ỹ2t+1
i,j ’s for t ≥ k + 1 are not affected by these blow-ups.

On Xn+3, the divisors ∆̃1, ∆̃2 and ∆̃3 are smooth and transverse to the exceptional divisors over X0
by Propositions 6.10 and 6.11.
The same is clearly true for H̃4,...,n+3. Moreover, the same argument used above shows that their

intersection are pairwise smooth and everywhere transverse. At the last step we blow-up ˜Sech(C).
By Proposition 6.12 we have

∆̃1 ∩ ∆̃2 ∩ ∆̃3 = ˜Sech(C).

So, after the blow-up of ˜Sech(C) in the last step, we get a log resolution of (Xn
n+3, D). �

PROOF OF THEOREM 6.16. We have

D = ∆1 + ∆2 + ∆3 + H4,...,n+3 ∼ (3h + 4)H − (3h + 1)(E1 + ... + En+3).

Recall from Proposition 4.8 that the Mori cone of Xn
n+3 is generated by the classes Ri’s and Li,j’s.

One computes

−(KXn
n+3

+ εD) · Ri = 2h− ε(3h + 1) and − (KXn
n+3

+ εD) · Li,j = ε(3h− 2)− 2h + 2.

Therefore −KXn
n+3
− εD is ample provided that 2h−2

3h−2 < ε < 2h
3h+1 .

Next we check when the pair (Xn
n+3, εD) is klt. Let π : X̃ := Xn−2 → Xn

n+3 be the log resolution
of (Xn

n+3, εD) introduced in Proposition 6.17 above. We have

KX̃ = π∗KXn
n+3

+
h

∑
k=1

(n− 2k)ESeck(C) +
h−1

∑
k=1

(n− 2k)∑
i,j

EY2k−1
i,j

+
h−1

∑
k=1

(n− 2k− 1)(∑
i

EY2k
i
+ EY2k

1,2,3
).

Here we denote by EY the exceptional divisor with center Y ⊂ Pn. In order to compute discrep-
ancies, we will compute the the multiplicities of the Y2h

i ’s along the images in Pn of the subva-
rieties blown-up by π. By Proposition 6.7 we have multSeck(C) Sech(C) = h − k + 1. Moreover,
multSeck(C) Y2h

r = h− k + 1,

multY2k−1
i,j

Y2h
r =

{
multSeck(C) Sech(C) = h− k + 1 if r ∈ {i,j},
multSeck+1(C) Sech(C) = h− k if r /∈ {i,j},

multY2k
i

Y2h
r =

{
multSeck(C) Sech(C) = h− k + 1 if r = i,
multSeck+1(C) Sech(C) = h− k if r 6= i,
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and multY2k
1,2,3

Y2h
r = multSeck+1(C) Sech(C) = h− k for for k = 1, ..., h− 1. Let ∆ ⊂ Pn be the divisor

whose strict transform is D. We have

(6.8)

multSeck(C) ∆ = 3(h− k + 1),
multY2k−1

i,j
∆ = 2(h− k + 1) + h− k = 3(h− k) + 2,

multY2k
i,j,r

∆ = 3(h− k),
multY2k

i
∆ = h− k + 1 + 2(h− k) = 3h− 3k + 1.

Now, equalities 6.8 yield:

π∗(D) = D̃ + ∑h
k=1 3(h− k + 1)ESeck(C) + ∑h−1

k=1(3(h− k) + 2)∑i,j EY2k−1
i,j

+∑h−1
k=1(3h− 3k + 1)∑i EY2k

i
+ ∑h−1

k=1 3(h− k)EY2k
1,2,3

,

and hence
KX̃ = π∗(KXn

n+3
+ εD) +∑h

k=1(2h− 2k + 1− 3ε(h− k + 1))ESeck(C)

+∑h−1
k=1(2h− 2k + 1− ε(3(h− k) + 2))∑i,j EY2k−1

i,j

+∑h−1
k=1(2(h− k)− ε(3h− 3k + 1))∑i EY2k

i

+∑h−1
k=1(2(h− k)− ε(3h− 3k))EY2k

1,2,3
− εD̃.

Therefore the pair (Xn
n+3, εD) is klt for any 0 ≤ ε < 2

3 . �

6.6. The even case n = 2h. Let us begin with the case n = 4. For any i, j = 1, ..., 7 we consider
the projection πi,j : P4 99K P2 from the line Li,j =

〈
pi, pj

〉
. Let Ci,j be the unique conic through the

points πi,j(pk) for k 6= i, j, and ∆i,j = Join(Li,j, C) the cone over Ci,j with vertex Li,j. By Proposition
6.7 the secant variety Sec2(C) ⊂ P4 of the rational normal curve C through the pi’s is an hyper-
surface of degree three, Sing(Sec2(C)) = C and multC(Sec2(C)) = 2. Finally let H5,6,7 be a general
hyperplane through p5, p6, p7, and consider the divisor

∆ = ∆1,2 ∪ ∆3,4 ∪ Sec2(C) ∪ H5,6,7.

PROPOSITION 6.20. Let us consider the following chain of blow-ups:
- blow-up the strict transforms of the lines L1,2 and L3,4,
- blow-up the strict transform of the rational normal curve C,

and let π : Y → X4
7 be the composition of these blow-ups. Then π is a log resolution of the pair (X4

7 , D).

PROOF. First of all we want to prove that ∆1,2 ∩ ∆3,4 ∩ Sec2(C) = C ∪ L1,3 ∪ L1,4 ∪ L2,3 ∪ L2,4.
Assume that there is a point p ∈ ∆1,2 ∩ ∆3,4 ∩ Sec2(C) such that p /∈ C ∪ L1,3 ∪ L1,4 ∪ L2,3 ∪ L2,4.
Since p ∈ ∆1,2 ∩ Sec2(C) there is secant line Lq,r = 〈q, r〉 with q, r ∈ C, and a line Ls,t = 〈s, t〉
with s ∈ L1,2 and t ∈ C such that p ∈ Lq,r ∩ Ls,t. The lines L1,2, Lq,r, Ls,t generate an hyperplane
intersecting C in at least five points. On the other hand, deg(C) = 4 forces q = p1 = s and r = t.
That is p ∈ (∆1,2 ∩ Sec2(C)) \ (C ∪ L1,3 ∪ L1,4 ∪ L2,3 ∪ L2,4) implies that there exists a point r ∈ C
such that p ∈ L1,r = 〈p1, r〉.
The same argument shows that p ∈ (∆3,4 ∩ Sec2(C)) \ (C ∪ L1,3 ∪ L1,4 ∪ L2,3 ∪ L2,4) implies that
there is a point u ∈ C such that p ∈ L3,u = 〈p3, u〉. Since p /∈ C ∪ L1,3 ∪ L1,4 ∪ L2,3 ∪ L2,4 the lines
L1,r, L3,u, L1,2 span an hyperplane intersecting C in at least five points. A contradiction.
Now, note that deg(∆1,2 ∩ ∆3,4 ∩ Sec2(C)) = 12. Since multC(Sec2(C)) = 2 we get that

∆1,2 ∩ ∆3,4 ∩ Sec2(C) = C ∪ L1,3 ∪ L1,4 ∪ L2,3 ∪ L2,4
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scheme-theoretically. After blowing-up the Li,j’s the strict transform of the ∆i,j are smooth. Sim-
ilarly, by Proposition 6.8 blowing-up C we have that the strict transform of Sec2(C) is smooth.
Clearly the hyperplane H5,6,7 intersects transversally C in p5, p6, p7 and intersects transversally all
the subvarieties that have been blown-up. Again by Proposition 6.8 we conclude that the divisor

∆̃1,2 ∪ ∆̃3,4 ∪ S̃ec2(C) ∪ H̃5,6,7 ∪ Exc(π)

in Y is simple normal crossing. �

PROPOSITION 6.21. The variety X4
7 is log Fano.

PROOF. We consider the strict transform D ⊂ X5
8 of ∆ = ∆1 + ∆2 + ∆3 + H4,...,8 in X5

8 . By
Lemma 6.13 we have

deg(∆) = 8, multpi ∆ = 5.
Therefore, we have

D = 8H − 5(E1 + ... + E8)

and
−(KX4

7
+ εD) = (5− 8ε)H − (3− 5ε)(E1 + ... + E7).

Intersecting with the curves of type Li,j and Ri, by Proposition 4.8 we get that −(KX4
7
+ εD) is

ample for any 1
2 < ε < 3

5 .
Now, by Proposition 6.20 we have that π : Y → X4

7 is a log resolution. Furthermore we have

π∗(εD) = εD̃ + 3ε(EL1,2 + EL3,4) + 4εEC

and
KY = π∗(KX4

7
+ εD) + (2− 3ε)∑

i,j
ELi,j + (2− 4ε)EC − εD̃.

Then for any ε < 3
4 the pair (X4

7 , εD) is klt. We conclude that for any 1
2 < ε < 3

5 the divisor
−(KX4

7
+ εD) is ample and the pair (X4

7 , εD) is klt. �

Now, let H5,...,2h+3 be the strict transform in Xn
n+3 of a general hyperplane through p5, ..., p2h+3,

and ∆i,j the strict transform of Y2h−1
i,j according to Notation 6.9.

THEOREM 6.22. Let n = 2h ≥ 4 be an even integer. Set

D := ∆1,2 ∪ ∆3,4 ∪ ˜Sech(C) ∪ H5,...,2h+3 ⊂ Xn
n+3.

For any 2h−3
3h−4 < ε < 2h−1

3h−1 the divisor −(KXn
n+3

+ εD) is ample, and the pair (Xn
n+3, εD) is klt.

For the proof of Theorem 6.22, we will need the following results.

LEMMA 6.23. Any point of Y2h−1
1,2 ∩Y2h−1

3,4 which is smooth for both Y2h−1
1,2 and Y2h−1

3,4 is a smooth point
of Y2h−1

1,2 ∩Y2h−1
3,4 as well.

PROOF. Let x ∈ Y2h−1
1,2 ∩Y2h−1

3,4 be a point such that x /∈ Sing(Y2h−1
1,2 )∪ Sing(Y2h−1

3,4 ). It is enough
to prove that the intersection of Y2h−1

1,2 and Y2h−1
3,4 in x is transverse, that is TxY2h−1

1,2 6= TxY2h−1
3,4 .

Assume by contradiction that TxY2h−1
1,2 = TxY2h−1

3,4 = H2h−1. Since x ∈ Y2h−1
1,2 by Terracini’s Lemma

[Te] we have
H2h−1 =

〈
p1, p2, Tz1 C, ..., Tzh−1 C

〉
=
〈

p2, p3, Tw1 C, ..., Twh−1 C
〉
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for zi, wi ∈ C. Now, let s = |{z1, ..., zh−1} ∩ {w1, ..., wh−1}|, r = |{z1, ..., zh−1} ∩ {p3, p4}|, and
r = |{w1, ..., wh−1} ∩ {p1, p2}|. Note that since zi /∈ {p1, p2} and wi /∈ {p3, p4} for any i, we have
s ≤ h− 1−max(r, t). We may assume r ≥ t so that s ≤ h− 1− r. Therefore H2h−1 intersects C in
at least

2(2(h− 1)− s) + 2− r + 2− t ≥ 2h + 2 + r− t ≥ 2h + 2
points counted with multiplicity. A contradiction because the rational normal curve C has degree
2h. �

PROPOSITION 6.24. Let the assumptions be as in Theorem 6.22, and follow Notation 6.9. For 0 ≤
m ≤ n− 3, we define a modification Xm of Xn

n+3 recursively as follows:
- X0 = Xn

n+3,
- X2k+1 is the blow-up of X2k along the strict transforms of Seck+1(C), of the Y2k+1

i,j ’s, and of Y2k+1
1,2,3,4

(0 ≤ k ≤ h− 3), (note that for k = 0 we do not have Y2k+1
1,2,3,4),

- X2k is the blow-up of X2k−1 along the strict transforms of the Y2k
i ’s, and of the Y2k

i,j,r’s (1 ≤ k ≤
h− 2).

- Xn−3 is the blow-up of Xn−4 along the strict transforms of Sech−1(C), of Y2h−3
1,2 and of Y2h−3

3,4 .

Then for any k the strict transforms of Seck+1(C), of the Y2k+1
i,j ’s, and of Y2k+1

1,2,3,4 in X2k; of the Y2k
i ’s and of

the Y2k
i,j,r’s in X2k−1 are smooth, disjoint and intersect transversally all the exceptional divisors.

In particular, let π : Xn−3 → Xn
n+3 be the composition of these blow-ups. Then π is a log resolution of the

pair (Xn
n+3, D).

PROOF. Following the same notation of the proof of Proposition 6.17 we proceed by induction
on m. By Proposition 6.11 the blow-up of p1, ..., pn+3 does not affect the singularities of the Yd

I ’s
involved in the resolution. Since the pi’s have been blown-up the strict transforms of C and of the
lines Y1

i,j do not intersect in X0 and the statement is verified for m = 0. Now, by Proposition 6.12

in X0 we have: Ỹ2
i ∩ Ỹ2

j = C̃ ∪ Ỹ1
i,j, Y2

i ∩ Y2
j,r,s = {pj, pr, ps} if i /∈ {j, r, s}, Y2

i ∩ Y2
i,j,r = Y1

i,j ∪ Y1
i,r, and

Y2
i,j,r ∩ Y2

i,j,s = Y1
i,j. By blowing-up the Ỹ1

i,j’s and C̃ we separate the Ỹ2
i ’s and the Ỹ2

i,j,r’s which are
smooth and disjoint. So the statement is verified for m = 1.
Now, suppose that the statement is true m ≤ 2k− 1. We will show that it holds for X2k and X2k+1.
By Proposition 6.12 we have:

Y2k+1
i,j ∩Y2k+1

i,j,r,s = Y2k
i,j,r ∪Y2k

i,j,s,
Seck+1(C) ∩Y2k+1

i,j = Y2k
i ∪Y2k

j ,
Y2k+1

i,j ∩Y2k+1
i,r = Y2k

i ∪Y2k
i,j,r,

Y2k+1
i,j ∩Y2k+1

r,s = Seck(C) ∪Y2k−1
i,r ∪Y2k−1

i,s ∪Y2k−1
j,r ∪Y2k−1

j,s ∪Y2k−1
i,j,r,s ,

and finally
Seck+1(C) ∩Y2k+1

1,2,3,4 =
⋃

{i,j}⊂{1,2,3,4}
Y2k−1

i,j .

Since all the irreducible components of these intersections have been blown-up either at the step
m = 2k− 2 or at the step m = 2k− 1 we see that the strict transforms of Seck+1(C), of the Y2k+1

i,j ’s,

and of Y2k+1
1,2,3,4 in X2k are disjoint. Furthermore, by Propositions 6.8 and 6.10 these strict transforms

are smooth and transversal to all the exceptional divisors. Furthermore, as in Claims 6.18 and 6.19
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it is easy to check that the intersections of Y2k+1
1,2,3,4 with Sect+1(C), Y2t+1

i,j , and Y2t
i,j,r for t ≥ k are union

of cones of these four types and of dimension d < 2k + 1. This fact together with Claims 6.18 and
6.19 implies that we blow-up either a smooth variety contained in in the singular loci of the strict
transforms of the cones that have not yet been blown-up or a smooth variety not intersecting these
strict transforms. By Proposition 6.11 these blow-ups do not modify the singularities of the strict
transforms of the cones that we are going to blow-up in the following steps.
Now, let us consider X2k+1. By Proposition 6.12 we have:

Y2k+2
i,j,r ∩Y2k+2

i,j,s = Y2k+1
i,j ∪Y2k+1

i,j,r,s ,
Y2k+2

i ∩Y2k+2
j = Seck+1(C) ∪Y2k+1

i,j ,
Y2k+2

i ∩Y2k+2
i,j,r = Y2k+1

i,j ∪Y2k+1
i,r ,

Y2k+2
i ∩Y2k+2

j,r,s = Y2k
i,j,r ∪Y2k

i,j,s ∪Y2k
i,r,s ∪Y2k

j ∪Y2k
r ∪Y2k

s .

As before, all the irreducible components of these intersection have been blown-up either at the
step m = 2k or at the step m = 2k − 1. Therefore, by Proposition 6.10 the strict transforms of
the Y2k+2

i ’s, and of the Y2k+2
i,j,r ’s in X2k+1 are pairwise disjoint, smooth and transversal to all the

exceptional divisors. As in the previous step it is easy to check that the intersections of the Y2k+2
i,j,r

with Sect+1(C), Y2t+1
i,j , Y2t+2

i and Y2t+2
i,j,s for t ≥ k + 1 are union of cones of these four types and of

dimension d < 2k + 2. As before, this fact together with Claim 6.19 and Proposition 6.11 implies
that these blow-ups do not affect the singularities of the strict transforms of the cones that will be
blown-up in the next steps.
Now we have to take care of the last step. First of all we need to understand the intersection of
Y2h−1

i,j and Sing(Y2h−1
r,s ) = Y2h−3

r,s .

CLAIM 6.25. We have

Y2h−1
i,j ∩Y2h−3

r,s = Y2h−4
r ∪Y2h−4

s ∪Y2h−4
i,r,s ∪Y2h−4

j,r,s .

Moreover, for a general point in any irreducible component of the above intersections, the inter-
section is transverse.

PROOF. We write Y2h−1
i,j ∩Y2h−3

r,s = (Y2h−1
i,j ∩Y2h−1

i,j,r,s )∩Y2h−3
r,s . By Proposition 6.12 we get Y2h−1

i,j ∩
Y2h−1

i,j,r,s = Y2h−2
i,j,r ∪ Y2h−2

i,j,s . Now, Y2h−2
i,j,r ∩ Y2h−3

r,s = (Y2h−2
i,j,r ∩ Y2h−2

i,r,s ) ∩ Y2h−2
r,s which by Proposition 6.12

is equal to (Y2h−3
i,r ∪ Y2h−3

i,j,r,s ) ∩ Y2h−3
r,s which in turn by Proposition 6.12 is equal to Y2h−4

r ∪ Y2h−4
i,r,s ∪

Y2h−4
j,r,s . In the same way we have Y2h−2

i,j,s ∩Y2h−3
r,s = Y2h−4

s ∪Y2h−4
i,r,s ∪Y2h−4

j,r,s . �

The strict transforms Ỹ2h−1
1,2 and Ỹ2h−1

3,4 in Xn−4 are still singular along Ỹ2h−3
1,2 and Ỹ2h−3

3,4 respec-
tively. However, by Claim 6.25 we have

Ỹ2h−1
1,2 ∩ Sing(Ỹ2h−1

3,4 ) = Ỹ2h−1
3,4 ∩ Sing(Ỹ2h−1

1,2 ) = ∅.

Hence, Lemma 6.23 yields that Ỹ2h−1
1,2 ∩ Ỹ2h−1

3,4 is smooth. Therefore, after blowing-up the strict
transforms of Sech−1(C), of Y2h−3

1,2 and of Y2h−3
3,4 , by Proposition 6.10 in Xn−3 the strict transforms

˜Sech(C), Ỹ2h−1
1,2 Ỹ2h−1

3,4 are smooth and intersect transversally all the exceptional divisors. We al-
ready know that the intersection Ỹ2h−1

1,2 ∩ Ỹ2h−1
3,4 is transversal. On the other hand, by Proposition

6.12 in Xn−3 the intersection ˜Sech(C) ∩ Ỹ2h−1
i,j = Ỹ2h−2

i ∪ Ỹ2h−2
j is a union of two smooth, disjoint
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subvarieties. Therefore ˜Sech(C) ∩ Ỹ2h−1
i,j is transversal as well. To conclude it is enough to observe

that clearly in Xn−3 the strict transform H̃5,...,2h+3 is transversal to ˜Sech(C), Ỹ2h−1
1,2 , Ỹ2h−1

3,4 and to all
the exceptional divisors. �

PROOF OF THEOREM 6.22. We may write:

D ∼ (3h + 2)H − (3h− 1)(E1 + ... + E2h+3)

and
−KXn

n+3
− εD ∼ (2h + 1− ε(3h + 2))H − (2h− 1− ε(3h− 1))(E1 + ... + E2h+3).

Now, we have

(−KXn
n+3
− εD) · Ri = 2h− 1− ε(3h− 1) and (−KXn

n+3
− εD) · Li,j = ε(3h− 4)− 2h + 3.

By Proposition 4.8 the divisor −KXn
n+3
− εD is ample for 2h−3

3h−4 < ε < 2h−1
3h−1 .

Now, our aim is to compute the multiplicities of Sech(C), Y2h−1
1,2 , and Y2h−1

3,4 along the subvarieties
blown-up in the resolution π : X̃ := Xn−1 → Xn

n+3 of Proposition 6.24. First of all, we have:

multY2k−1
r,s

Y2h−1
i,j =


multSeck−1(C) Sech−1(C) = h− k + 1 if i,j ∈ {r,s},
multSeck(C) Sech−1(C) = h− k if either i ∈ {r, s} or j ∈ {r, s},
multSeck+1(C) Sech−1(C) = h− k− 1 if i,j /∈ {r, s},

multY2k
r,s,t

Y2h−1
i,j =


multSeck+2(C) Sech−1(C) = h− k− 2 if i, j /∈ {r,s,t},
multSeck+1(C) Sech−1(C) = h− k− 1 if either i ∈ {r, s, t} or j ∈ {r, s, t},
multSeck(C) Sech−1(C) = h− k if i, j ∈ {r, s, t},

multY2k
r

Y2h−1
i,j =

{
multSeck+1(C) Sech−1(C) = h− k− 1 if r /∈ {i,j},
multSeck(C) Sech−1(C) = h− k if r ∈ {i,j},

for k = 1, ..., h− 1. Finally,

multY2k−1
1,2,3,4

Y2h−1
i,j = multSeck(C) Y2h−1

i,j = multSeck(C) Sech−1(C) = h− k,

for k = 1, ..., h− 1. Now, let us consider the component Sech(C). We have:

multSeck(C) Sech(C) = h− k + 1,
multY2k−1

i,j
Sech(C) = multSeck+1(C) Sech(C) = h− k,

multY2k
i,j,r

Sech(C) = multSeck+2(C) Sech(C) = h− k− 1,

multY2k
i

Sech(C) = multSeck+1(C) Sech(C) = h− k,
multY2k−1

1,2,3,4
Sech(C) = multSeck+2(C) Sech(C) = h− k− 1.

Let ∆ ⊂ Pn be the divisor whose strict transform is D. We have:

(6.9)

multSeck(C) ∆ = 2(h− k) + (h− k + 1) = 3h− 3k + 1,
multY2k−1

i,j
∆ = 2(h− k) + (h− k) = (h− k + 1) + (h− k− 1) + (h− k) = 3h− 3k,

multY2k
i,j,r

∆ = (h− k− 1) + (h− k) + (h− k− 2) = 3h− 3k− 3,

multY2k
i

∆ = (h− k− 1) + (h− k) + (h− k) = 3h− 3k− 1,
multY2k−1

1,2,3,4
∆ = 2(h− k) + h− k− 1 = 3h− 3k− 1.
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Let π : X̃ := Xn−3 → Xn
n+3 be the log resolution of the pair (Xn

n+3, D) in Proposition 6.24. The
canonical divisor of X̃ is given by:

KX̃ = π∗KXn
n+3

+ ∑h−1
k=1(n− 2k)ESeck(C) + ∑h−1

k=1(n− 2k)∑i,j EY2k−1
i,j

+∑h−2
k=1(n− 2k− 1)(∑i EY2k

i
+ ∑i,j,r EY2k

i,j,r
) + ∑h−2

k=2(n− 2k)EY2k−1
1,2,3,4

.

The equalities (6.9) yield:

π∗(D) = D̃ + ∑h−1
k=1(3h− 3k + 1)ESeck(C) + ∑h−1

k=1(3h− 3k)∑i,j EY2k−1
i,j

+∑h−2
k=1(3h− 3k− 1)∑i EY2k

i
+ ∑h−2

k=1(3h− 3k− 3)∑i,j,r EY2k
i,j,r

+∑h−2
k=2(3h− 3k− 1)EY2k−1

1,2,3,4
.

and
KX̃ = π∗(KXn

n+3
+ εD) +∑h−1

k=1(2h− 2k− ε(3h− 3k + 1))ESeck(C)

+∑h−1
k=1(2h− 2k− ε(3h− 3k))∑i,j EY2k−1

i,j

+∑h−2
k=1(2h− 2k− 1− ε(3h− 3k− 1))∑i EY2k

i

+∑h−2
k=1(2h− 2k− 1− ε(3h− 3k− 3))∑i,j,r EY2k

i,j,r

+∑h−2
k=2(2h− 2k− ε(3h− 3k− 1))EY2k−1

1,2,3,4
− εD̃.

For ε < 2h−1
3h−2 all the discrepancies are greater than −1. Finally, for 2h−3

3h−4 < ε < 2h−1
3h−1 the divisor

−KXn
n+3
− εD is ample and the pair (Xn

n+3, εD) is klt. �



CHAPTER 5

Moduli of Curves

To fix the ideas, we work over an algebraically closed field k. Consider a class of objectsM
over k, for instance the class of closed subschemes of Pn with fixed Hilbert Polynomial, the class
of curves of genus g over k, the class of vector bundles of given rank and Chern classes over a
fixed scheme, and so on. We wish to classify the objects inM.
The first step is to give a rule to determine when two objects ofM are the same (usually isomor-
phic) and then to give the elements ofM up to isomorphism. This determinesM as a set. Now
we want to put a natural structure of variety or scheme on M. In other words we are looking
for a scheme M whose closed points are in a one-to-one correspondence with the elements ofM,
and whose scheme structure describes the variations of elements inM, more precisely how they
behave in families.

DEFINITION 0.1. A family of elements ofM, over the parameter scheme S of finite type over k, is a
scheme X → S flat over S, whose fibers at closed points are elements ofM.

The first request on M, to be a Moduli Space for the classM, is that for any family f : X → S
of objects ofM there exists a morphism φ : S→ M such that for any closed point s ∈ S, the image
f (s) ∈ M corresponds to the isomorphism class of the fiber Xs = f−1(s) inM.
Furthermore we want the assignment of the morphism φ to be functorial. To explain the last sen-
tence consider the functor F : Sch → Sets, that assigns to S the set F (S) of families X → S of
elements ofM parametrized by S. If S

′ → S is a morphism, for any family X → S we can consider
the fiber product X ×S S

′ → S
′
, that is a family over S

′
. In this way the morphism S

′ → S gives
rise to a map of set F (S)→ F (S′), and F becomes a controvariant functor.
In this language to assign a morphism φ : S → M to any family X → S with the required proper-
ties, means to give a functorial morphism α : F → Hom(−, M).
Finally we want to make M unique with the above properties. So we require that if N is any other
scheme, and β : F → Hom(−, N) is a functorial morphism, then there exists a unique morphism
e : M → N such that β = he ◦ α, where he : Hom(−, M) → Hom(−, N) is the induced map on
associated functors.

DEFINITION 0.2. We define a coarse moduli space for the familyM to be a scheme M over k, with a
morphism of functors α : F → Hom(−, M) such that

- the induced map F (Spec(k)) → Hom(Spec(k), M) is bijective i.e. there is a one-to-one corre-
spondence with isomorphism classes of elements ofM and closed points of M,

- α is universal in the sense explained above.

We define a tautological family for M to be a family X → M such that for each closed point m ∈ M,
the fiber Xm is the element ofM corresponding to m by the bijection F (Spec(k)) → Hom(Spec(k), M)
above.

70
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A jump phenomenon forM is a family X → S, where S is an integral scheme of dimension at
least one, such that all fibers Xs for s ∈ S are isomorphic except for one Xs0 that is different. In this
case the corresponding morphism S→ M have to map s0 to a point and all other closed points of
S to another point, but this is not possible for a morphism of schemes, so a coarse moduli space
forM fails to exist.

EXAMPLE 0.3. Consider the family y2 = x3 + t2x + t3 over the t-line. Then for any t 6= 0 we
get smooth elliptic curves all with the same j-invariant

j = 123 · 4t6

4t6 + 27t6 = 123 · 4
31

,

and hence all isomorphic. But for t = 0 we get the cusp y2 = x3. This is a jump phenomenon, so
the cuspidal curve cannot belong to a class having a coarse moduli space.

DEFINITION 0.4. Let F be the functor associated to the moduli problemM. If F is isomorphic to a
functor of the form Hom(−, M), then we say that F is representable, and we call M a fine moduli space for
M.

Let α : F → Hom(−, M) be an isomorphism. In particular F (M) → Hom(M, M) is an
isomorphism, and there is a unique family XU → M corresponding to the identity map IdM ∈
Hom(M, M). The family XU is called the universal family of the fine moduli space M. Note that for
any family X → S there exists an unique morphism S → M, such that X → S is obtained by base
extension from the universal family. Conversely, if there is a scheme M and a family XU with the
above properties then F is represented by M.

REMARK 0.5. If M is a fine moduli space forM then it is also a coarse moduli space, further-
more the universal family XU → M is a tautological family.

A benefit of having a fine moduli space is that we can study it using infinitesimal methods.

PROPOSITION 0.6. Let M be a fine moduli space for the moduli problemM, and let X0 ∈ M be an
element corresponding to a point x0 ∈ M. The Zariski tangent space Tx0 M is in one-to-one correspondence
with the set of families X → D over the dual numbers D = k[ε]/(ε2), whose closed fibers are isomorphic
to X0.

PROOF. We know that to give a morphism f : Spec(D) → M is equivalent to give a closed
point x0 ∈ M and a tangent direction v ∈ Tx0 M. But a morphism f : Spec(D) → M corresponds
to a unique family X → Spec(D) whose closed fibers are isomorphic to X0 ∈ M corresponding to
the point x0 ∈ M, where x0 = f ((Spec(D))red). �

Let F : Sch → Sets be the functor associated to the moduli problemM. Suppose that F is
representable, and let M be the corresponding fine moduli space. For any local Artin k-algebra
A we have that Spec(A) is a fat point and (Spec(A))red is a single point. For any x0 ∈ M we can
define the infinitesimal deformation functor of F as the functor Art → Sets that sends A in the
set of morphisms f : Spec(A)→ M such that f ((Spec(A))red) = x0. Clearly studying this functor
we get information on the geometry of M in a neighborhood of x0.
Recall that a pro-object is an inverse limit of objects in Art, the category of Artin local algebras
over a field k. If F : Art→ Sets is a deformation functor we say that F is pro-representable if it is
isomorphic to Hom(−, R) for some pro-object R.
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PROPOSITION 0.7. Let F be the functor associated to the moduli problemM, and X0 ∈ M. Consider
the functor F0 that to each local Artin ring A over k assigns the set of families ofM over Spec(A) whose
closed fiber is isomorphic to X0. IfM has a fine moduli space, then the functor F0 is pro-representable.

PROOF. Let M be a fine moduli scheme forM, and let x0 ∈ M corresponds to X0 ∈ M. Let
OM,x0 be the local ring of M at x0 and Mx0 its maximal ideal. The natural homomorphisms

...→ OM,x0 /M3
x0
→ OM,x0 /M2

x0
→ OM,x0 /Mx0 ,

make (OM,x0 /Mn
x0
) into an inverse system of rings. The inverse limit lim←−OM,x0 /Mn

x0
is denoted

by ÔM,x0 , and is called the completion of OM,x0 with respect to Mx0 or the Mx0-adic completion of
OM,x0 .
Since M is a fine moduli space, each element ofF0(A) corresponds to a unique morphism Spec(A)→
M that maps (Spec(A)red) = Spec(k) at x0. Such morphism corresponds to a ring homomorphism
ÔM,x0 → A. We conclude that the functor F0 is pro-representable and that it is represented by the
pro-object ÔM,x0 , Mx0-adic completion of OM,x0 . �

DEFINITION 0.8. A controvariant functor F : Sch → Sets is a sheaf for the Zariski topology, if for
every scheme S and every {Ui} open covering of S, the diagram

F (S)→∏F (Ui)⇒∏F (Ui ∩ Uj)

is exact. This means that:
- given x, y ∈ F (S) whose restriction to F (Ui) are equal for all i, then x = y,
- given a collection of elements xi ∈ F (Ui) for each i, such that for each i, j, the restrictions of xi, xj

to F (Ui ∩ Uj) are equal, then there exists an element x ∈ F (S) whose restriction to each F (Ui)
is xi.

PROPOSITION 0.9. If the moduli problemM has a fine moduli space, then the associated functor F is
a sheaf in the Zariski topology.

PROOF. Since M has a fine moduli space, for any scheme S we have F (S) = Hom(S, M).
Furthermore morphisms of schemes are determined locally, and can be glued if they are given
locally and are compatible on overlaps. �

REMARK 0.10. Using Grothendieck’s theory of descent one can show that a representable func-
tor is a sheaf for the faithfully flat quasi-compact topology, and hence also for the étale topology.

Examples of Moduli Spaces. We will give some examples of representable functors.

EXAMPLE 0.11. (Grassmannians) Let V be a k-vector space of dimension n, and let r ≤ n be a
fixed integer. Consider the controvariant functor Gr : Sch→ Sets defined as follows

- For any scheme S, Gr(S) is the set of rank r vector subbundle of the trivial bundle S×V.
- If f : S→ S

′
is a morphism of schemes, and ES′ is a rank r subbundle of S

′ ×V, we define

Gr( f )(ES′ ) = f ∗(ES′ ) = ( f × IdV)
−1(ES′ ).

Note that for S = Spec(k) we have that Gr(Spec(k)) is the set of rank r subbundle of Spec(k)×V =
V i.e. the set of r-dimensional subspace of V, that is the Grassmannian Gr(r, V).
If E ∈ Gr(S) is a rank r subbundle of S × V, we can construct a morphism fE : S → Gr(r, V)
defined by s 7→ Es, where Es is the fiber of E over s ∈ S. In this way we get a map

φ(S) : Gr(S)→ Hom(S, Gr(r, V)), E 7→ fE.
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The collection {φ(S)} gives a functorial isomorphism between Gr and Hom(−, Gr(r, V)). Then
the functor Gr is representable and the Grassmannian Gr(r, V) is the corresponding fine moduli
space. The universal family corresponding to the identity map IdGr(r,V) ∈ Hom(Gr(r, V), Gr(r, V))
is clearly the universal bundle on Gr(r, V) given by {(W, v) | v ∈W} ⊆ Gr(r, V)×V.

EXAMPLE 0.12. (Hilbert Scheme) Let P ∈ Q[z] be a fixed polynomial. For any S scheme over k
consider PN

S = PN ×k S, and the functor

HilbN
P : Sch→ Sets,

that maps S in the set of subschemes Y ⊆ PN
S such that the projection π : Y → S is flat, and for

any s ∈ S the fiber π−1(s) is a subscheme of PN with Hilbert polynomial P. The functor HilbN
P is

representable by a scheme HilbP(P
N) projective over k and called the Hilbert Scheme.

To any closed subscheme Y ⊆ PN we can associate its structure sheaf OY, its ideal sheaf IY,
and the structure sequence

0 7→ IY → OPN → OY 7→ 0.
Then we can regard the Hilbert scheme as the space parametrizing all the quotients OPN → OY,
with Hilbert polynomial P.

EXAMPLE 0.13. (Grothendieck’s Quot Scheme) As a generalization of the discussion above
consider a fixed coherent sheaf E on PN . The scheme parametrizing all the quotients E → F 7→ 0
with Hilbert polynomial P is called the Quot Scheme. Grothendieck showed that the local defor-
mation functor of the Quot functor is pro-representable and that the Quot functor is representable
by a projective scheme.

EXAMPLE 0.14. (Picard Scheme) Let X be a scheme of finite type over an algebraically closed
field k and let x ∈ X be a fixed point. Consider the functor

PicX,x : Sch→ Sets,

that associates to S the group of all invertible shaves L on X× S, with a fixed isomorphism L|x ×
S ∼= OS.
If X is integral and projective, then this functor is representable by a separated scheme, locally of
finite type over k, called the Picard Scheme of X.

EXAMPLE 0.15. (Hilbert-Flag Scheme) Consider a functor that associates to each scheme S a
flag Y1 ⊆ Y2 ⊆ ... ⊆ Yk ⊆ PN

S of closed subscheme, all flat over S and where the fibers if Yj
have a fixed Hilbert Polynomial Pj for any j = 1, ..., k. This functor is representable by a scheme,
projective over k, called the Hilbert-Flag Scheme.

1. GIT construction of Mg

The aim of Geometric invariant theory is to solve the problem of constructing quotient in the
framework of algebraic geometry. In this section we collect the main results of this theory, which
are fundamental for the construction of moduli spaces. For a detailed discussion see [MFK].
We concentrate on the special case of projective schemes and reductive groups. So let Z be a
projective scheme and let G be a reductive group acting on Z. Consider an embedding Z →
Projr = Proj(V) given by a line bundle L on Z, so that Z = Proj(S) for some graded ring S finitely
generated over k. When the action of G on Z can be lifted to an action on V we say that there exists
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a G-linearization of L, or that G acts linearly with respect to the given embedding. In this case G
acts on S and the subring

SG = {s ∈ S | gs = s ∀ g ∈ G} ⊆ S,

is called the ring of invariants of S with respect to the action of G. A fundamental theorem in
geometric invariant theory ensures that if G is reductive then SG is a graded algebra, finitely
generated over k. In particular for affine schemes we have the following.

THEOREM 1.1. (Nagata) Let G be a geometrically reductive algebraic group acting rationally on an
affine scheme Spec(A). Then AG is a finitely generated k-algebra.

The inclusion SG ↪→ S induces a rational map

π : Proj(S) = Z 99K Q := Proj(SG), z 7→ ( f0(z), ..., fh(z)),

where the fi’s are generators of SG. The open subset

Zss := {z ∈ Z | f (z) 6= 0 for some homogeneous nonconstant f ∈ SG},

that is the locus where π is regular, is called the locus of semi-stable points with respect to the
action of G. Now it seems natural to view Q as the quotient of Zss modulo G. However the fibers
of π may fail to be equal to the orbits of G, indeed it may happen that there are non-closed orbits
and in this case the closed points of Q will not be in bijective correspondence with the orbits of G.
Let MG be the maximum among the dimensions of all G-orbits in Zss, this discussion leads us to
the following definition

Zs := {z ∈ Zss |OG(z) ∩ Zss = OG(z) and dim(OG(z)) = MG}.

The subset Zs is called the set of stable points with respect to the action of G. We expect that the
fibers of π|Zs are equal to orbits of G.

THEOREM 1.2. (Fundamental Theorem of GIT) Let G be a reductive group acting linearly on a projec-
tive scheme Z = Proj(S). The quotient Q := Proj(SG) is a projective scheme and the morphism

π : Zss → Q

satisfies the following properties:

- For every x, y ∈ Zss, π(x) = π(y) if and only if OG(x) ∩OG(y) ∩ Zss 6= ∅.
- (Universal property) If there exists a scheme Q

′
with a G-invariant morphism π

′
: Zss → Q

′
,

then there exists a unique morphism φ : Q→ Q
′

such that π
′
= ψ ◦ π.

- For every x, y ∈ Zs, π(x) = π(y) if and only if OG(x) = OG(y).

A quotient satisfying the first and the second properties of Theorem 1.2 is called a categorical
quotient and denoted by Z//G. If in addition the quotient satisfies the third property then it is
called a geometric quotient and denoted by Z/G.
The most efficient tool to check stability is probably the so called numerical criterion for stability.
This criterion reduces the study of the action of a reductive group G to the study of the action
of its one-parameter subgroups. Let G be a reductive group acting linearly on Proj(V) and let
Z ⊂ Proj(V) be a G-invariant subscheme. If Gm denotes k∗ with is multiplicative structure and

λ : Gm → G



1 GIT construction of Mg 75

is a one-parameter subgroup of G, there exist a basis {v0, ..., vr} of V and integers {w0, ..., wr} such
that the action of λ on V is given by

λ(t)vi = twi vi ∀ t ∈ Gm, 0 ≤ i ≤ r.

If v = ∑r
i=0 αivi the integers nj such that the αj do not vanish are called the λ-weights of v. We

denote by z ∈ Z the point corresponding to the vector vz ∈ V.

THEOREM 1.3. (Hilbert-Mumford) The point z ∈ Z is semi-stable if and only if for any one-parameter
subgroup λ of G the λ-weights of vz are not all positive.
The point z ∈ Z is stable if and only if for any one-parameter subgroup λ of G the vector vz has both positive
and negative λ-weights.
The point z ∈ Z is unstable if and only if there exists a one-parameter subgroup λ of G such that the
λ-weights of vz are all positive.

Construction of Mg. Fix integers d � 0, g ≥ 3 and N = d − g. Let HilbP(x)
N be the Hilbert

scheme finely parametrizing the close subschemes of PN with Hilbert polynomial P(x) = dx −
g + 1. There exists a universal familyH with a tautological polarization L

L → H π−→ HilbP(x)
N ,

such that the fiber Xh := π−1(h) is isomorphic to the subscheme of PN corresponding to h ∈
HilbP(x)

N , and Lh := L|Xh
is isomorphic to the line bundle giving the embedding of Xh in PN .

Let X ⊂ PN be a curve, we want to construct its Hilbert point in HilbP(x)
N , and consider the exact

sequence
0 7→ IX → OPN → OX 7→ 0.

By a theorem due to J. P. Serre, for m >> 0, we get the following exact sequence in cohomology

0 7→ H0(PN , IX(m))→ H0(PN ,OPN (m))→ H0(X,OX(m)) 7→ 0.

Furthermore it can be proven that there exists an integer m such that for any m ≥ m and for any
subscheme of PN having Hilbert polynomial P(x) the above sequence is exact. This means that the
degree m part of the ideal of X, that is H0(PN , IX(m)), uniquely determines X. We can associate
to X a point in the Grassmannian parametrizing P(m)-dimensional quotients of H0(PN ,OPN (m))
and this correspondence is injective. For any m ≥ m we get an embedding

φm : HilbP(x)
N → P(

P(m)∧
H0(PN ,OPN (m))).

We have an action of SL(N + 1) on P(
∧P(m) H0(PN ,OPN (m))) and any embedding φm determines

a linearization of the action of SL(N + 1) on HilbP(x)
N . Our aim is to construct Mg as a quotient of

a suitable subscheme of HilbP(x)
N .

Translating the Hilbert-Mumford criterion 1.3 in this setting one gets the following theorem:

THEOREM 1.4. If d ≥ 20(g− 1) then there are infinitely many linearizations of the action of SL(N +

1) on HilbP(x)
N such that

- (Mumford-Gieseker) if X ⊂ PN is a smooth, connected, non-degenerate curve of genus g and
degree d, then its Hilbert point is stable,
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- (Gieseker) if h ∈ HilbP(x)
N is a SL(N + 1)-semi-stable point then all connected component of Xh

are Deligne-Mumford semi-stable curves.

Consider now the case d = r(2g− 2) for an integer r and fix once and for all an integer m such
that Gieseker-Mumford theorem holds. Consider the following subset of Hilbp(m) ss

N

H = {h ∈ Hilbp(m) ss
N | L|Xh

∼= ω⊗r
Xh

and the curve is connected}.

The SL(N + 1)-invariant set H parametrizes only DM-stable curves by Gieseker’s theorem. In
fact, for r ≥ 3 the dualizing sheaf ω⊗r

X is very ample on DM-stable curves and it contracts exactly
the destabilizing components of a DM-semi-stable curve.
Finally one can prove that H consists only of SL(N + 1)-stable points, that it is a closed subscheme
of Hilbp(m) ss

N and that the r-th projective canonical model of any stable curve of genus g is an H. At
this point it is natural to construct the moduli space of genus g stable curves as the GIT quotient

Mg := H/SL(N + 1).

2. The moduli functor of smooth genus g curves is not representable

In this section we will see that the moduli functor of smooth genus g curves is not repre-
sentable and how the obstructions to its representability came from the automorphisms of the
curves.
A family π : C → S of genus g curves is called isotrivial if all its fibers are isomorphic to a fixed
curve C. Note that there are isotrivial but non-trivial families of curves, take for instance a ruled
surface that is not a product.
Now, assume that the moduli functor of smooth genus g curves is representable by a scheme
Mg, and let π : C → S be an isotrivial family. Then, such a family corresponds to a morphism
fπ : S→ Mg, and the family π : C → S is the pull-back of the universal curve Ug → Mg,

C Ug

S Mg

π πg
fπ

Now, since π : C → S is isotrivial fπ(S) is a point, and C ∼= S× π−1
g ( fπ(S)) is trivial. We conclude

that:
If the moduli functor of smooth genus g curves would be representable then any isotrivial family of curves
would be trivial. However, we know that there are isotrivial but non-trivial families of curves.
Therefore, moduli functor of smooth genus g curves can not be representable. Let us look at little
bit closer to some simple examples.

Curves of genus zero. There is only one smooth curve of genus g = 0 over an algebraically
closed field k, namely P1

k . A family of curves of genus zero over a scheme S is a scheme X, smooth
and projective over S, whose fibers are curves of genus zero.

PROPOSITION 2.1. The space M = Spec(k) is a coarse moduli scheme for curves of genus zero.
Furthermore it has a tautological family.
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PROOF. The set Hom(Spec(k), Spec(k)) consists of a single element and clearly is in a one-to-
one correspondence with the set of families over Spec(k) that consists of the family P1

k → Spec(k).
Clearly P1

k → Spec(k) is a tautological family. If X → S is a family there is a unique morphism
S→ M = Spec(k), in this way we get the functorial morphism α : F → Hom(−, M).
Now suppose that β : F → Hom(−, N) is another morphism of functors. In particular the family
P1

k → M determines a morphism e ∈ Hom(M, N). Let X → S a family over a scheme S of finite
type over k. For any closed point s ∈ S the fiber is Xs ∼= P1, then any closed point s goes to the
point n = e(M) ∈ N. Finally, since H1(P1, TP1) = 0, that is P1 is rigid, any family of curves
of genus zero parametrized by the spectrum of an Artin ring with residue field k is trivial. We
conclude that β factors through α. �

Clearly the tautological family is P1 → Spec(k), that is the unique family over M = Spec(k).
Suppose M = Spec(k) to be a fine moduli space for the curves of genus zero. Then the universal
family is P1 → Spec(k). Since any other family is obtained by base extension from the universal
family it must be trivial i.e. of the form P1 ×k S → S. But the ruled surfaces provide an example
of non trivial families of curves of genus zero.
Consider for instance the blow up BlpP2 of P2 is a point p. The projection π : BlpP2 → P1 makes
BlpP2 into a ruled surface, but it is not a product. Note that Pic(BlpP2) = Pic(P1 ×P1) ∼= Z⊕Z,
but on BlpP2 we have a (−1)-curve, the exceptional divisor. Suppose that there is a (−1)-curve
C = (a, b) on P1 ×P1. We have C2 = (aL + bR)(aL + bR) = 2ab = −1, a contradiction.

DEFINITION 2.2. A pointed curve of genus zero over k is a curve of genus zero with a choice of a
k-rational point. A family of pointed curves of genus zero is a flat family X π→ S, whose geometric fibers
are curves of genus zero, with a section σ : S→ X.

The fact that σ : S→ X is a section means that π ◦ σ = IdS. Then for any point s ∈ S the image
σ(s) is a point of the fiber Xs ∼= P1 over s. The section σ is sometimes called an S-point of X.
A way to obtain a fine moduli space for the curves of genus zero is to rigidify the curves by taking
three distinct points. We know that there is a unique automorphism of P1 that fixed three dis-
tinct points, namely the identity. Consider the families of curves of genus zero with three marked
points i.e. the families of X → S, whose fibers are curves of genus zero, with three sections
σ1, σ2, σ3 : S → X, such that on each fiber the sections have distinct support. Assume that X → S
is isotrivial. Then we may use the three sections to write an isomorphism between X → S and
P1 × S → S. Therefore, any isotrivial family of smooth genus zero curves endowed with three
sections is trivial, and the corresponding moduli functor is represented by Spec(k). This reflects
the fact that a curve X of genus zero with three marked points is rigid i.e. Aut(X) = {IdX}, the
corresponding functor is representable by M = Spec(k) and the universal family is P1 → Spec(k)
with three distinct points, say [0 : 1], [1 : 0], [1 : 1].

Now, we want to understand how to use the automorphisms of the curves in order to construct
isotrivial but non-trivial families. Let C be an hyperelliptic curve and let i : C → C be the hy-
perelliptic involution. Let X be a K3 surface (a smooth projective surface with trivial canonical
bundle ωX ∼= OX and irregularity q = dim H1(X,OX) = 0) with a fixed point free involu-
tion j such that Y = X/j is an Enriques surface (a smooth surface such that ω⊗2

Y
∼= OY and

q = dim H1(Y,OY) = 0). Then i× j is a fixed point free involution on C× X. Since the action of
j on X is free the morphism C× X → X induces a family (C× X)/(i× j) → Y with all the fibers
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isomorphic to C. We want to show that (C× X)/(i× j)→ Y is non-trivial.
Let S be a smooth surface, and consider the Hodge numbers hi,j = dim H j(S, Ωi

S). They can be
arranged in the Hodge diamond:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

The Hodge diamond of the Enriques surface Y is given by:

1
0 0

0 10 0
0 0

1

In particular h2,0 = dim H0(Y, Ω2
Y) = 0, and there are non-zero holomorphic 2-forms on Y. This

yields that the product C×Y does not have non-zero holomorphic 3-forms.
The Hodge diamond of the K3 surface X is given by:

1
0 0

1 20 1
0 0

1

and h2,0 = dim H0(X, Ω2
X) = 1. Let ω ∈ H0(X, Ω2

X) be a generator. Now, take γ ∈ H0(C, Ω1
C)

a non-zero holomorphic 1-form on the curve C. Any invariant 1-form on C would descend to a
1-form on C/i ∼= P1, but H0(P1, Ω1

P1) = 0. Therefore, there are not invariant 1-forms on C, and γ
is anti-invariant under the involution i. For the same reason, any invariant 2-form on X induces a
2-form on the Enriques surface Y, but H0(Y, Ω2

Y) = 0. Then, there are not invariant 2-forms on X.
This implies that ω is anti-invariant under j. Consider the product:

X× C

X C

π2π1

Since ω and γ and anti-invariant for j and i respectively the 3-form π1ω ∧ π2γ is a non-zero 3-
form on X × C invariant under i × j. Therefore, it induces a non-zero 3-form on the quotient
(C × X)/(i × j). On the other hand we saw that there are not non-zero 3-forms on the product
C × Y. Therefore, the family (C × X)/(i × j) → Y can not be isomorphic to the trivial family
C×Y → Y.

The above construction works in a more general context. Let X be a projective scheme such
that Aut(X) contains a non-trivial finite subgroup G. Let Y be a projective scheme admitting a
free G-action, and let Y = Y/G be the quotient. Then, G acts freely on X × Y and the quotient
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X = (X × Y)/G is a projective scheme. The projection X × Y → Y is G-equivariant and induces
a morphism π : X → Y. We have a commutative diagram

X×Y X

Y Y

f

π2 π
g

where f and g are étale morphisms and the any fiber of π over a closed point y ∈ Y is isomorphic
to X. Since there is a Y-isomorphism X × Y → Y ×Y X the above digram is cartesian. Therefore,
any section of π induces a section of π2 that is a morphisms Y → X × Y given by y 7→ (x, y) for
some x ∈ X. On the other hand the point x ∈ X has to be fixed under the action of G. Therefore,
since G is finite the morphism π : X → Y admits at most finitely many sections. In particular the
family π : X → Y can not be trivial.

3. The StackMg,n

The study of moduli problems introduces a new kind of objects: the so called moduli stacks.
We have seen that a moduli problem gives rise to a functor, if the functor is representable we have
a fine moduli space, that is a scheme. Sometimes, if it is not representable one can find a coarse
moduli space, which parametrizes the isomorphism classes of our objects over a field, but does
not describe all the possible families of objects. It happens that the functor related to a moduli
problem is not representable by a scheme. We search for a sort of generalized scheme.
A scheme is constructed out of affine schemes by gluing the isomorphism defined on Zariski open
subset. In the same spirit consider a collection of schemes {Xi}, and for each i, j étale morphisms
Yi,j → Xi, Yj,i → Xj and isomorphisms φi,j : Yi,j → Yj,i, satisfying a cocycle condition for each i, j, k.
We glue together the Xi along the φi,j. This quotient may not exist in the category of schemes, but
it is an algebraic space.
Instead of the functor F , which sends any scheme S in the set of isomorphism classes of families
X → S, consider a new object F , which to each scheme S assigns the category F (S) of families
and isomorphisms between such families. This object is called a fibered category over the category
of schemes. The sheaf axioms for the functor F are replaced by the stack axioms for the fibered
category F , which are the following. For any scheme S and any étale covering {Ui → S}, consider

F (S)→∏F (Ui)⇒∏F (Ui ×S Uj)⇒∏F (Ui ×S Uj ×S Uk).

- The fact that the first arrow is injective means that if a, b ∈ F (S) and if ai, bi are their
restriction on F (Ui), and there is an isomorphism φi : ai → bi such that for each i, j the
isomorphisms φi, φj restrict to the same isomorphism of ai,j and bi,j on Ui×S Uj, then there
is a unique isomorphism φ inducing φi on each Ui.

- The fact that the sequence is exact at the first middle term means that if we give objects
ai ∈ F (Ui) for each i and isomorphisms φi,j : ai → aj on Ui ×S Uj satisfying a cocycle
condition on each Ui ×S Uj ×S Uk, then there exists a unique object a ∈ F (S) restricting
to each ai on Ui.

A Deligne-Mumford stack is a fibered category F satisfying the stack axioms, and such that there
exists a scheme X and a surjective étale morphism Hom(−, X) → F . An Artin stack is a fibered
category F satisfying the stack axioms, and such that there exists a scheme X and a surjective
smooth morphism Hom(−, X)→ F .
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The moduli space of curvesMg is a Deligne-Mumford stack for any g ≥ 2. In the paper The irre-
ducibility of the space of curves of given genus [DM], Deligne and Mumford introduced stacks for the
first time, they compactified the stackMg adding stable curves, and they proved its irreducibility
in any characteristic.

We define a family of pointed curves of genus g parametrized by a scheme S as an object

C

S

π σ1,...,σn

where π is a flat and proper morphism, σi is a section of π for any i = 1, ..., n, Cs = π−1(s) is a
nodal connected curve of arithmetic genus g and σi(s) are distinct smooth points for any s ∈ S(k).
A morphism between two families C → S, C

′ → S over S is a morphism of schemes φ : C → C
′

such that the following diagrams

C C
′

S

φ

π
′π

C C
′

S

φ

σ
′
i

σi

commute. We consider the pseudofunctor

Mg,n : Sch −→ Groupoids

mapping a scheme S to the groupoid Mg,n(S) whose objects are the families parametrized by S
and whose morphisms are the isomorphisms between these families. A curve (C, x1, ..., xn) ∈
Obj(Mg,n(Spec(k))) is called a pre-stable genus g curve. We denote by Mg,n the stack associated to
this pseudofunctor.

REMARK 3.1. The stack Mg,n is never a DM-algebraic stack. It contains points representing
curves with automorphism groups of positive dimension. Take a smooth curve (C, x1, ..., xn) ∈
Obj(Mg,n(Spec(k))) and consider (C

′
, x
′
1, ..., x

′
n) where C

′
:= C ∪P1, x

′
i := xi for i < n and x

′
n :=

∞ ∈ P1. Then C
′

is a nodal connected curve of arithmetic genus pa(C
′
) = g, but dim(Aut(C

′
)) =

1.

DEFINITION 3.2. A pre-stable genus g curve (C, x1, ..., xn) with n marked points is called stable if one
of the following equivalent conditions are satisfied

- Aut(C, x1, ..., xn) is étale;
- Aut(C, x1, ..., xn) is finite;
- Let C̃ → C be the normalization of C. For any irreducible component C̃i of C̃ the inequality

2g(C̃i)− 2 + ni > 0 holds, where ni is the number of special points on C̃i, that are points mapped
to a node or to a marked point on C.

We define Mg,n in the same way of the stack Mg,n but adding the stability condition on the
fibers. Clearly we have a natural morphismMg,n → Mg,n and if 2g− 2 + n > 0 there is a mor-
phismMg,n →Mg,n. Both these morphisms are open embeddings.
On the other hand we can construct a category fibered in groupoids in the following way. Let
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g, n ∈ Z such that g, n ≥ 0 and 2g− 2 + n > 0. We define a category Mg,n over the category of
schemes in the following way. Obj(Mg,n) consists of families

C

S

π σ1,...,σn

where π is a flat and proper morphism, σi is a section of π for any i = 1, ..., n, Cs = π−1(s) is a
smooth connected curve of genus g and σi(s) are distinct smooth points for any s ∈ S(k).
A morphism between two objects C → S and C

′ → S
′

is a couple ( f , f ) where f : C → C
′

and
f : S→ S

′
are morphisms of schemes and the following diagrams

C C
′

S S
′

f

π π
′

f

C C
′

S S
′

f

f

σi σi
′

commute. This category is called the category of n-pointed genus g smooth curves. The category Mg,n
is a category fibered in groupoids over the category of schemes and this remains true even if the
inequality 2g − 2 + n > 0 does not hold. One can prove that in this category morphisms are a
sheaf and that every descend datum is effective.

THEOREM 3.3. The category fibered in groupoids Mg,n is a stack.

PROOF. Consider a scheme S and two families ξ and ξ
′

C C
′

S S
π
′π σ1,...,σn

σ
′
1,...,σ

′
n

parametrized by S. We define a functor

F : Sch/S −→ Sets

sending f : X → S to Mor( f ∗ξ, f ∗ξ
′
). By applying the universal property of the fiber product we

get the following diagrams

X

CX := C×S X C

X S

σi◦ f

IdX

σi,X

πX
f

π

X

C
′
X := C

′ ×S X C
′

X S

σ
′
i ◦ f

IdX

σ
′
i,X

π
′
X f

π
′

To give a morphism f ∗ξ → f ∗ξ
′

is equivalent to giving a morphism f̃ : CX → C
′
X such that

σi,X = σ
′
i,X ◦ f̃ , πX = π

′
X ◦ f̃ , and f̃ makes the diagram over the identity cartesian. That is f̃ is an

isomorphism. Now, let {Xi → X} be an étale cover, and consider isomorphisms f̃i : CXi → C
′
Xi
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such that f̃i|CXi,j
and f̃ j|CXi,j

are naturally isomorphic. Since {Cxi → CX} is an étale cover and

morphisms form a sheaf in the étale topology, the f̃i glue to a morphism f̃ : CX → C
′
X. The

morphism f̃ commutes with πX, σX,i, π
′
X, σ

′
X,i, since this is true for the f̃i and morphisms are a

sheaf in the étale topology. Furthermore we can define g̃−1 étale locally and then glue. This
proves that morphisms are a sheaf.
Now, let S be a scheme, {Si → S} an étale cover, ξi objects Ci → Si, and φi,j : Ci|Si,j

→ Cj|Si,j

isomorphisms. Using the φi,j we can glue the ξi to a global ξ over S, by descent theory we obtain
a morphism π : C → S. To construct the sections consider the composition

Si Ci C
σSi ,j

which agree locally and glue to define global sections σi,S : S → C. Since {Si → S} is an étale
cover, and the ground field is algebraically closed, any morphism Spec(K) → S factors through
at least one of the Si → S. Then the fibers of π are genus g connected curves. Finally, since
smoothness and properness are local in the target even in the Zariski topology the morphism π is
smooth and proper. This proves that every descent datum is effective. �

LEMMA 3.4. Let (C, {x1, ..., xn}) be a n-pointed genus g pre-stable curve. The sheaf ωC(x1 + ...+ xn)
is ample if and only if (C, {x1, ..., xn}) is stable.

PROOF. An invertible sheaf L on a proper curve C is ample if and only if it has positive de-
gree on every irreducible component of C. Let Ci be an irreducible component of C. We have
deg(ωC(x1 + ... + xn)|Ci |) = deg(ωC|Ci

) + mCi = deg(ωCi) + ](Ci ∩ Cc
i ) + mCi = 2pa(Ci) − 2 +

](Ci ∩ Cc
i ) + mCi = 2pa(Ci)− 2 + nCi , where mCi , nCi are respectively the number of marked and

special points on Ci. Now, deg(ωC(x1 + ...+ xn)|Ci |) > 0 for any i if and only if 2pa(Ci)− 2+ nCi >
0 for any i if only if (C, {x1, ..., xn}) is stable. �

DEFINITION 3.5. Let X be a scheme, and G be a group scheme acting on X. The quotient stack [X/G]
is defined as the category whose objects are of the type

P X

S

where P → S is a principal G-bundle, P → X is a G-equivariant morphism, and whose morphisms are
isomorphisms of principal G-bundle commuting with maps to X.

Let π : C → S be a family of stable curves of genus g. By Lemma 3.4 the relative dualizing
sheaf ωC/S is relatively ample. The r-th power ω⊗r

C/S is relatively ample, and π∗ω
⊗r
C/S is locally

free of rank N + 1 = h0(ω⊗r
C/S) = (2r − 1)(g − 1) on S. Therefore any genus g stable curve

can be embedded in PN using the sections of ω⊗r
C/S. The Hilbert polynomial of such a curve is

determined by deg(P) = 1, P(0) = 1− g, P(1) = χ(ω⊗r
C/S). We can write P(z) = Az + B, then

P(0) = B = 1− g, and P(1) = A = χ(ω⊗r
C/S). Then

P(z) = (2rz− 1)(g− 1).

Let HilbP(PN) be the Hilbert scheme parametrizing subschemes of PN with Hilbert polynomial
P. There is a closed subscheme H of HilbP(PN) parametrizing m-canonically embedded stable
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curves. To give a morphism S→ H is equivalent to give a closed subscheme i : C ↪→ PN × S such
that the projection π : C → S is a family of genus g stable curves, and there exists an isomorphism
φ : P(π∗ω

⊗r
C/S)→ PN × S making the diagram

C P(π∗ω
⊗r
C/S)

PN × S
i

φ

commutative. Finally there is a natural action of Aut(PN) = PGL(N + 1) on H given by

PGL(N + 1)× H → H, (σ, α : C ↪→ PN × S) 7→ (σ−1 ◦ α : C ↪→ PN × S).

THEOREM 3.6. For g ≥ 2 there is an equivalence of stacks

Mg ∼= [H/PGL(N + 1)].

PROOF. Let π : C → S be a family of genus g stable curves. We have a canonical projective
bundle Pπ := P(π∗ω

⊗r
C/S) → S. Let E := IsomS(Pπ, PN

S ) be the S-scheme parametrizing isomor-
phisms from Pπ to PN

S . The group PGL(N + 1) acts on E by

PGL(N + 1)× E→ E, (σ, φ) 7→ σ−1 ◦ φ.

and E is a PGL(N + 1)-principal bundle. Now, consider the pull-back

CE = C×S E E

C S

πE

π

since the projection E×S E→ E has a section ∆ : E→ E× E, the PN-bundle PπE := P(πE∗ω
⊗m
CE/E)

is trivial, and we have an isomorphism ξE : PπE → PN
S ×S E. Let iE : CE → PπE be the canonical

embedding, the composition ξE ◦ E : CE → PN
S ×S E gives a family of stable curves in PN , corre-

sponding to a morphism fπ : E→ H, which clearly is PGL(N + 1)-equivariant.
Now, consider a morphism

C
′ C

S
′ S

φ

ψ
ππ

′

inMg. We have a canonical isomorphism π
′
∗ωC′/S′

∼= φ∗π∗ωC/S and two cartesian squares

P(ω⊗m
C′/S′

) P(ω⊗m
C/S)

S
′ S

ψ

E
′ E

S
′ S

f
φ
′

φ

where fφ
′ is compatible with fπ and fπ

′ . Then we get the following:
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- an objects π : C → S to

E H

S

fπ

- a morphism

C
′ C

S
′ S

φ

ψ
ππ

′

to a morphism

E
′ E

S
′ S

f
φ
′

φ

This defines a morphism of stacks

F :Mg → [H/PGL(N + 1)].

On the other hand given a morphism S→ H we have a corresponding family πS : C → S of genus
g stable curves embedded in PN

S . By forgetting the embedding C ↪→ PN
S we obtain an object in

Mg, furthermore morphisms in the same PGL(N + 1)-orbit are sent to the same object ofMg. So
we get a morphism

G : [H/PGL(N + 1)]→Mg.

Take an object ξ := (E
′
/S → H) in [H/PGL(N + 1)], and let π̃E′ : C

′ → E
′

be the family induced
by the PGL(N + 1)-equivariant morphism E

′ → H. If H → H is the universal family then π̃E′ :
C
′ → E

′
is the pull-back of H → H by the morphism E

′ → H. Furthermore if E → E
′

we can
consider the pull-back C̃E → E and the following diagram

C̃E C̃ H

E E
′ H

S

π̃
E′

The scheme C̃E carries a natural PGL(N + 1)-action. By descent theory C = C̃E/PGL(N + 1) exists
as a scheme, and there is a morphism π : C → S such that the base extension πE′ : C×S E

′ → E
′

is exactly π̃E′ : C̃ → E
′
:

C̃ C×S E
′ C

E
′ S

˜
π

E′ π
π̃

E′
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The family π : C → S is exactly G(ξ) ∈ Mg. If E = IsomS(Pπ, PN
S ) where Pπ = P(π∗ω

⊗m
C/S) we

get that F ◦G(ξ) is isomorphic to ξ, that is F ◦G ∼= Id. Finally, from the construction it is clear that
G ◦ F ∼= Id. �

PROPOSITION 3.7. For any g ≥ 2 the stackMg is a Deligne-Mumford stack.

PROOF. Since a genus g ≥ 2 stable curve over an algebraically closed field has a finite and
reduced automorphism group the stabilizers of the geometric points ofMg are finite and reduced.
SoMg is a DM stack. �

4. Details on algebraic Curves

In this section we recall some well known results on algebraic curves and their automor-
phisms. Finally, using deformation theory we prove thatMg is as smooth stack.

Grothendieck Spectral Sequence. We begin recalling the notion of five terms exact sequence or
exact sequence of low degree terms associated to a spectral sequence. Let

Eh,k
2 =⇒ Hn(A)

be a spectral sequence whose terms are non trivial only for h, k ≥ 0. Then this is an exact sequence

0 7→ E1,0
2 → H1(A)→ E0,1

2 → E2,0
2 → H2(A).

The Grothendieck spectral sequence is an algebraic tool to express the derived functors of a composi-
tion of functors G ◦ F in terms of the derived functors of F and G.
Let F : C1 → C2 and G : C2 → C3 be two additive covariant functors between abelian categories.
Suppose that G is left exact and that F takes injective objects of C1 in G-acyclic objects of C2. Then
there exists a spectral sequence for any object A of C1

Eh,k
2 = (RhG ◦ RkF )(A) =⇒ Rh+k(G ◦ F )(A).

The corresponding exact sequence of low degrees is the following

0 7→ R1G(F (A))→ R1(GF (A))→ G(R1F (A))→ R2G(F (A))→ R2(GF )(A).

As a special case of the Grothendieck spectral sequence we get the Leray spectral sequence. Let
f : X → Y be a continuous map between topological spaces. We take C1 = Ab(X) and C2 = Ab(Y)
to be the categories of sheaves of abelian groups over X and Y respectively. Then we take F to be
the direct image functor f∗ : Ab(X) → Ab(Y) and G = ΓY : Ab(Y) → Ab to be the global section
functor, where Ab is the category of abelian groups. Note that

ΓY ◦ f∗ = ΓX : Ab(X)→ Ab

is the global section functor on X. By Grothendieck’s spectral sequence we know that (RhΓY ◦
Rk f∗)(E) =⇒ Rh+k(ΓY ◦ f∗)(E) = Rh+kΓX(E) for any E ∈ Ab(X), that is

Hh(Y, Rk f∗E) =⇒ Hh+k(X, E).
The exact sequence of low degrees looks like

0 7→ H1(Y, f∗E)→ H1(X, E)→ H0(Y, R1 f∗E)→ H2(Y, f∗E)→ H2(X, E).
Finally we work out the spectral sequence of Ext functors. Let E ∈ Coh(X) be a coherent sheaf on a
scheme X. Consider the functor

Hom(E ,−) : Coh(X)→ Coh(X), Q 7→ Hom(E ,Q),
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and the global section functor

ΓX : Coh(X)→ Ab, Q 7→ ΓX(Q).

Note that ΓX ◦ Hom(E ,−) = Hom(E ,−). By Grothendieck spectral sequence we have (RhΓX ◦
RkHom(E ,−))(Q) =⇒ Rh+k(Hom(E ,−)(Q) for any Q ∈ Coh(X), that is

Hh(X, Extk(E ,Q)) =⇒ Exth+k(E ,Q).

The corresponding sequence of low degrees is

0 7→ H1(X,Hom(E ,Q))→ Ext1(E ,Q)→ H0(X, Ext1(E ,Q))→ H2(X,Hom(E ,Q))→ Ext2(E ,Q).

Deformations of Schemes. Let X be a smooth scheme of finite type over k. We define the
deformation functor De fX : Art → Sets of X sending an Artin ring A to the set of couples
(XA

πA→ Spec(A), φ) modulo isomorphism, where πA is a smooth morphism, φ : X → X0 is
an isomorphism, X0 is defined by the cartesian diagram

X0 XA

Spec(k) Spec(A)

and (XA, φ), (X
′
A, φ

′
) are isomorphic if there is an isomorphism α : XA → X

′
A such that the

diagram

XA X
′
A

Spec(A)
πA π

′
A

α

commutes and φ
′
= α ◦ φ.

THEOREM 4.1. For any semi-small exact sequence 0 7→ I → A → B 7→ 0 in Art, let TiDe fX =
Hi(X, TX), then

(1) there exists a functorial exact sequence

T1De fX ⊗ I → De fX(A)→ De fX(B)→ T2De fX ⊗ I;

(2) for any (XA, πA, φ) ∈ De fX(A), let G = Stab(XA) ⊆ T1De fX ⊗ I, we have a functorial exact
sequence

0 7→ T0De fX ⊗ I → Aut(XA)→ Aut(XB)→ G 7→ 0.

Now let X be any scheme over k. Consider the exact sequence of low degree for Ext functors
with sheaves ΩX and OX. We have

0 7→ H1(X,Hom(ΩX,OX))→ Ext1(ΩX,OX)→ H0(X, Ext1(ΩX,OX))→ H2(X,Hom(ΩX,OX)).

The set of deformations of X over the dual numbers D = k[ε]
ε2 is in one-to-one correspondence with

the group Ext1(ΩX,OX). Then we get the sequence

0 7→ H1(X,Hom(ΩX,OX))→ De fX(D)→ H0(X, Ext1(ΩX,OX))→ H2(X,Hom(ΩX,OX)).
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Differentials and Ext groups. Let X be a smooth scheme and let Y be a closed subscheme
with ideal sheaf I . We have an exact sequence of sheaves

I/I2 → ΩX ⊗OY → ΩY 7→ 0,

where the first map is the differential. Furthermore Y is smooth if and only if
• ΩY is locally free,
• the sequence is also exact on the left

0 7→ I/I2 → ΩX ⊗OY → ΩY 7→ 0.

In this case the sheaf I is locally generated by Codim(Y, X) elements, and its is locally free of rank
Codim(Y, X) on Y.

REMARK 4.2. Let Y ⊆ X be an hypersurface not necessarily smooth. We can associate to Y
a Cartier divisor {(Ui, fi)}, and the ideal sheaf I is locally generated by fi on Ui. Furthermore
OX(Y) is the sheaf locally generated by f−1

i on Ui. We conclude that OX(−Y) ∼= I is locally free.
If Y ⊆ X is a reduced hypersurface, then I is locally free of rank one. We have the differential
d : I/I2 → ΩX ⊗OY, if f is a local generator of I then d f is a local generator of Im(d), since Y
is reduced then d f 6= 0, Im(d) is locally free of rank one, and the map d is injective. So we have
again an exact sequence

0 7→ I/I2 → ΩX ⊗OY → ΩY 7→ 0.

Let f = f (x1, ..., xn), with n = dim(X), be a local equation for Y in X. Then d f = ∂ f
∂x1

dx1 + ... +
∂ f
∂xn

. Since Y is reduced the differential is injective, furthermore I/I2 is locally free of rank one
and ΩX ⊗OY is locally free of rank n. Applying Hom(−,OY) to the sequence

0 7→ I/I2 → ΩX ⊗OY → ΩY 7→ 0,

we obtain

0 7→ Hom(ΩY,OY)→ Hom(ΩX|Y,OY)→ Hom(I/I2,OY)→ Ext1(ΩY,OY)→ Ext1(ΩX|Y,OY).

REMARK 4.3. Let X be a noetherian scheme such that any coherent sheaf on X is quotient of a
locally free sheaf i.e. Coh(X) has enough locally free objects. We define the homological dimension
of F ∈ Coh(X), denoted by hd(F ), to be the least length of a locally free resolution of F or ∞ if
there is no finite one. ClearlyF is locally free if and only if hd(F ) = 1 if and only if Ext1(F ,G) = 0
far any G ∈ Mod(X). Furthermore hd(F ) ≤ n if and only if Exti(F ,G) = 0 for any i > n and
G ∈ Mod(X). Finally hd(F ) = Supx∈X(pdOxFx), where pd is the projective dimension.

In our case ΩX|Y is locally free, and by the preceding remark Ext1(ΩX|Y,OY) = 0. Then we
get the exact sequence

0 7→ Hom(ΩY,OY)→ Hom(ΩX|Y,OY)→ Hom(I/I2,OY)→ Ext1(ΩY,OY) 7→ 0.

Consider now the special case X = An and Y = Spec(A), where A = k[x1, ..., xn]/( f ). The map
Hom(ΩAn|Y,OY) → Hom(I/I2,OY) is the transpose of the differential d : I/I2 → ΩAn|Y. Fur-
thermore Hom(ΩAn|Y,OY) ∼= An and Hom(I/I2) ∼= A. We can write the map Hom(ΩAn|Y,OY)→
Hom(I/I2,OY) as

φ : An → A, (α1, ..., αn) 7→ α1
∂ f
∂x1

+ ... + αn
∂ f
∂xn

.
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We rewrite our exact sequence as

0 7→ Hom(ΩY,OY)→ An → A→ Ext1(ΩY,OY) 7→ 0.

Then Im(φ) = ( ∂ f
∂x1

, ..., ∂ f
∂xn

) ⊆ A, and Ext1(ΩY,OY) ∼= A/( ∂ f
∂x1

, ..., ∂ f
∂xn

).
Now let Y = C ⊆ A2 be a nodal curve. In an étale neighborhood of the node we can assume
C = Spec(A), where A = k[x, y]/(xy). From the preceding discussion we get Ext1(ΩC,OC) ∼=
A/(x, y) ∼= k. So Ext1(ΩC,OC)p = 0 if p is a smooth point of C and Ext1(ΩC,OC)p = k if
p ∈ Sing(C). Furthermore

Ext1(ΩC,OX) ∼= ∑
p∈Sing(C)

Op.

Curves of Genus One. An elliptic curve over an algebraically closed field is a smooth projective
curve of genus one.
Let X be an elliptic curve and let P ∈ X be a point, consider the linear system |2P| on X. Since the
curve is not rational |2P| has no base points, and since deg(K − 2P) = 2g− 2− 2 = −2 < 0 the
divisor |2P| is non-special i.e. h0(K − 2P) = 0. By Riemann-Roch theorem h0(2P) = deg(2P)−
g + 1 = 2. Then the linear system |2P| defines a morphism f : X → P1 of degree 2 on P1. Now by
Riemann-Hurwitz theorem we have

2g− 2 = deg( f )(2gP1 − 2) + deg(R f ),

then deg(R f ) = 2 · deg( f ) = 4, and f is ramified in four points and clearly P is one of them. If
x1, x2, x3, ∞ are the four branch points in P1, then there is a unique automorphism of P1 sending
x1 to 0, x1 to 1, and leaving ∞ fixed, namely y = x−x1

x2−x1
. After this change of coordinates we can

assume that f is branched over 0, 1, λ, ∞ ∈ P1, whit λ ∈ k, λ 6= 0, 1.
We define the j-invariant of the elliptic curve X by

j = j(λ) = 28 (λ
2 − λ + 1)3

λ2(λ− 1)2 .

It is well known that over an algebraically closed field k with char(k) 6= 2 the scalar j(X) depends
only on X. Furthermore two elliptic curves X, X

′
are isomorphic if and only if j(X) = j(X

′
), and

every element of k is the j-invariant of some elliptic curve. Then there is a one-to-one correspon-
dence with the set of elliptic curves up to isomorphism and A1

k given by X 7→ j(X).

DEFINITION 4.4. A family of elliptic curves over a scheme S is a flat morphism of schemes X → S
whose fibers are smooth curves of genus one, with a section σ : S → X. In particular, an elliptic curve is a
smooth curve C of genus one with a rational point P ∈ C.

Consider the functor F : Sch → Sets where F (S) is the set of families of elliptic curves over
S modulo isomorphism. One can prove that F does not have a fine moduli space, but the affine
line A1

k is a coarse moduli space for F .
Now a natural question is how to compactify this coarse moduli space to obtain a complete moduli
space. In addition to elliptic curves we admit also irreducible nodal curve of arithmetic genus
pa = 1 with a fixed nonsingular point. We consider families X → S whose fibers are elliptic
curves or pointed nodal curve, then taking j(C) = ∞ for the nodal curve the projective line P1

becomes a coarse moduli space.
Let C be a reduced, irreducible curve with pa = 1 and such that Sing(C) is a node. Such a curve
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can be embedded in P2 as the nodal cubic C = Z(y2z− x3 + x2z). Consider the low degrees exact
sequence for Ext functors,

0 7→ H1(X,Hom(ΩC,OC))→ Ext1(ΩC,OC)→ H0(X, Ext1(ΩC,OC))→ H2(X,Hom(ΩC,OC)).

Since Ext1(ΩC,OC) is concentrated at the singular point of C we know that H0(X, Ext1(ΩC,OC))
is a 1-dimensional k-vector space. Now we consider the sheafHom(ΩC, C) = TC.
Recall that if X is a smooth variety and Y ⊆ X is a closed irreducible subscheme defined by the
sheaf of ideals I , then there is an exact sequence

I/I2 → ΩX ⊗OY → ΩY 7→ 0.

Furthermore Y is smooth if and only if
- the sheaf ΩY is locally free, and
- the sequence above is also exact on the left

0 7→ I/I2 → ΩX ⊗OY → ΩY 7→ 0.

Consider the sequence for a general subscheme Y and apply the functorHom(−,OY). We obtain

0 7→ TY → TX|Y → NY/X → Ext1(ΩY,OY) 7→ 0.

For our nodal curve C in P2 we have

0 7→ TC → TP2|C → NC/P2 → Ext1(ΩC,OC) 7→ 0.

We know that NC/P2 = OC(C) = OC(3), let D be the divisor associated toOC(3). Since C is a local
complete intersection the dualizing sheaf ω◦ is an invertible sheaf. We define the canonical divisor
as the divisor corresponding to ω◦ with support in Creg. Since there are no regular differentials on
C we have deg(K− D) < 0. By Riemann-Roch theorem for singular curves we get

h0(NC/P2) = deg(D) + 1− pa = 9 + 1− 1 = 9.

Consider now the Euler sequence

0 7→ OP2 → OP2(1)⊕3 → TP2 7→ 0.

Tensorizing by OC we get
0 7→ OC → OC(1)⊕3 → TP2|C 7→ 0.

Using the dualizing sheaf ω◦C
∼= OC, and Serre duality we get h1(OC(1)) = h0(OC(−1)) = 0. The

cohomology sequence looks like

0 7→ H0(C,OC)→ H0(C,OC(1)⊕3)→ H0(C, TP2|C)→ H1(C,OC) 7→ 0,

so h0(TP2|C) = 9. Furthermore the map H0(C, NC/P2) → H0(C, Ext1(ΩC,OC)) is surjective
since the former parametrizes the embedded deformations of C as a subscheme of P2 and the
latter parametrizes the abstract deformations of the node. We conclude that h0(TC) > 0. Let
σ ∈ H0(C, TC) be a nonzero section, we have an exact sequence 0 7→ OC

σ→ TC → R 7→ 0. The
cokernel R is not zero, because TC is not locally free. Then T˘

C is a proper subsheaf of OC, using
the dualizing sheaf ω◦C

∼= OC and Serre duality we get h1(TC) = h0(T˘
C) = 0. We conclude that

De f (C) is one-dimensional.
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Automorphisms of Curves. The only curve of genus one is P1, and its automorphism group
is PGL(2) which is an open subset of P3. If we choose one or two marked points in P1 the auto-
morphism group remains infinite of dimension two and one respectively. However a well known
theorem in projective geometry asserts that if we fix three marked points the automorphism group
is trivial.
We will see that an elliptic curve has infinitely many automorphisms, but if we choose a marked
point then its automorphism group is finite. Finally we will prove that any curve X of genus g ≥ 2
has finitely many automorphisms, and we will give a bound on the cardinality on Aut(X).
Recall that an elliptic curve X has a group structure, more precisely if we fix a point on X then we
get a bijective correspondence between the points of X and the divisors of degree zero in Cl0(X),
so any translation X × X → X gives an automorphism of X. Clearly if we choose a marked point
p ∈ X, then the only possible translation is the identity, in this way the automorphism group
becomes finite.

PROPOSITION 4.5. Let E be an elliptic curve over k with a marked point. The automorphism group
Aut(E) is a finite group of order dividing 24. More precisely

- if j(E) 6= 0, 1728, then |Aut(E)| = 2,
- if j(E) = 1728 and char(k) 6= 2, 3, then |Aut(E)| = 4,
- if j(E) = 0 and char(k) 6= 2, 3, then |Aut(E)| = 6,
- if j(E) = 0, 1728 and char(k) = 3, then |Aut(E)| = 12,
- if j(E) = 0, 1728 and char(k) = 2, then |Aut(E)| = 24.

PROOF. We consider the case char(k) 6= 2, 3. Then E can be realized as a plane smooth cubic
and can be written in Weierstrass form

y2 = x3 + αx + β,

furthermore every automorphism of E is of the form

x = u2x
′
, y = u3y

′
,

for some u ∈ k∗. Such a substitution will give an automorphism if and only if

u−4α = α, u−6β = β.

If α · β = 0 then j(E) 6= 0, 1728, the only possibilities are u = ±1. If β = 0 then j(E) = 1728, and
u satisfies u4 = 1, so Aut(E) is cyclic of order 4. If α = 0 then j(E) = 0, and u satisfies u6 = 1, so
Aut(E) is cyclic of order 6. �

PROPOSITION 4.6. Any smooth curve X of genus g ≥ 2 has finitely many automorphisms.

Before proving the proposition we recall some general facts about canonically embedded va-
rieties.

REMARK 4.7. (Canonically Embedded Varieties) Let f : X → Y be a dominant morphism between
smooth varieties. The pullback f ∗ : f ∗ΩY → ΩX defines a canonical morphisms between the
cotangent sheaves, and since pullback commutes with maximal exterior powers we get a canoni-
cal morphism f ∗ : f ∗ωY → ωX of the canonical sheaves. In particular if X = Y and f ∈ Aut(X),
since f ∗ωX ∼= ωX, we get an automorphism f ∗ of ωX. Then an automorphism of X induces an au-
tomorphism of ωX, and an automorphism on the vector space of the its global section H0(X, ωX).
Suppose now that ωX is ample, then ω⊗n

X is very ample for some n ≥ 0. Any automorphism of
X induces also an automorphism of ω⊗n

X . Let φ : X → P(H0(X, ω⊗n
X )∗) be the corresponding



4 Details on algebraic Curves 91

embedding. Then we have an action of Aut(X) on P(H0(X, ω⊗n
X )∗), and any f ∈ Aut(X) induces

an automorphism of P(H0(X, ω⊗n
X )∗) = PN . We have seen that if X has ample canonical sheaf

then Aut(X) is a closed algebraic subgroup of PGL(N + 1). Clearly the same argument works if
X has ample anticanonical sheaf.

PROOF. Recall that if f : X → Y is a morphism of schemes, with X separated and Y smooth,
and De f f is the deformation functor of f , then T1De f f = H0(X, f ∗TY). In particular for f = IdX :
X → X we get T1

IdX
De f IdX = TIdX Aut(X) = H0(X, TX), and h0(X, TX) = 0 since X is a curve of

genus g ≥ 2. The curve X has canonical ample sheaf, and by the preceding remark we can embed
Aut(X) in PGL(N + 1) ⊆ P(N+1)2−1 as closed subscheme. Since the tangent space of Aut(X) has
dimension zero we conclude that Aut(X) is a finite set of points. �

In the following proposition we give a bound on the number of automorphisms of a curve of
genus g ≥ 2.

PROPOSITION 4.8. Let X be a projective curve of genus g ≥ 2, then the group Aut(X) is finite and
|Aut(X)| ≤ 84(g− 1).

PROOF. Let W(X) be the set of Weierstrass points of X, we know that W(X) is finite. If φ ∈
Aut(X) is a non trivial automorphism then φ has at most 2g + 2 fixed points. Since the set of
Weierstrass points is fixed by the group Aut(X) we have a morphism

F : Aut(X)→ Perm(W(X)),

where Perm(W(X)) is the group of permutations of W(X). If X is non hyperelliptic there are
more than 2g + 2 Weierstrass points on X and there is a unique automorphism that leaves more
that 2g + 2 points fixed, the identity. So ker(F) = {IdX}.
If X is hyperelliptic then any automorphism in the subgroup (J) generated by the involution
J : X → X fixes the Weierstrass points, but since J2 = IdX this subgroup is finite. We conclude
that F is a morphism of Aut(X) into a finite group and with finite kernel, then the group Aut(X)
is finite.
Let G = Aut(X) and |G| = n, consider the projection π : X → X/G. For any x ∈ X/G we
have π−1(x) = {x ∈ X | π(x) = x} = {x ∈ X | ∃ g ∈ G, g(x) = x} = {g−1(x), g ∈ G}, then
π is a morphism of degree n. The map π is branched only at fixed point of G. Let P1, ..., Ps be a
maximal sets of ramification points of X lying over distinct points of X/G, and let ri be the index
of ramification of Pi. Recall that if P ∈ X is a ramification point, and r is its ramification index,
then the fiber π−1(π(P)) consists of exactly n

r points, each having ramification index r, essentially
because X is a covering space for X/G. So in the fiber of any Pj there are n

rj
points each with

ramification index rj. Then the degree of the ramification divisor is

deg(Rπ) =
s

∑
j=1

(rj − 1)
n
rj

= n
s

∑
j=1

(1− 1
rj
).

By Riemann-Hurwitz formula we get 2g− 2 = n(2α− 2) + n ∑s
j=1(1− 1

rj
), where α is the genus of

X/G. Then
2g− 2

n
= 2α− 2 +

s

∑
j=1

(1− 1
rj
).
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Note that since rj ≥ 2 we have 1
2 ≤ 1− 1

rj
< 1. Since we may assume n > 1 it is clear that g > α.

Now we have to analyze the expression 2α− 2 + ∑s
j=1(1− 1

rj
).

- If α ≥ 2 we obtain 2α− 2 + ∑s
j=1(1− 1

rj
) ≥ 2−∑s

j=1(1− 1
rj
) ≥ 2, so 2g−2

n ≥ 2 and

n ≤ g− 1.

- If α = 1 then 2α− 2 + ∑s
j=1(1− 1

rj
) = ∑s

j=1(1− 1
rj
) ≥ 1

2 , so 2g−2
n ≥ 1

2 and

n ≤ 4(g− 1).

- If α = 0 then 2α− 2 + ∑s
j=1(1− 1

rj
) = ∑s

j=1(1− 1
rj
)− 2. Since ∑s

j=1(1− 1
rj
)− 2 > 0 and

1− 1
rj
< 1, we conclude that s ≥ 3.

- If s ≥ 5, then ∑s
j=1(1− 1

rj
)− 2 ≥ 1

2 , so 2g−2
n ≥ 1

2 and

n ≤ 4(g− 1).

- If r = 4 then the rj cannot be all equal to 2, otherwise we would have 2g−2
n = 0, so

g = 1. Then at least one is ≥ 3 and gives∑s
j=1(1− 1

rj
)− 2 ≥ 3(1− 1

2 ) + (1− 1
3 )− 2 =

1
6 , so 2g−2

n ≥ 1
6 and

n ≤ 12(g− 1).
- In the case s = 3 we can assume without loss of generality 2 ≤ r1 ≤ r2 ≤ r3. We have

r3 > 3 otherwise ∑s
j=1(1− 1

rj
)− 2 < 0. Then r2 ≥ 3.

If r3 ≥ 7 then n ≤ 84(g− 1).
If r3 = 6 and r1 = 2 then r2 ≥ 4 and n ≤ 24(g− 1).
If r3 = 6 and r1 ≥ 3 then n ≤ 12(g− 1).
If r3 = 5 and r1 = 2 then r2 ≥ 4 and n ≤ 40(g− 1).
If r3 = 5 and r1 ≥ 3 then n ≤ 15(g− 1).
If r3 = 4 then r1 ≥ 3 and n ≤ 24(g− 1).

�

To compactify the coarse moduli space Mg Deligne and Mumford introduces stable curves.
We have seen that TIdX Aut(X) = H0(X, TX), an element of this space is called an infinitesimal
automorphism.

DEFINITION 4.9. A reduced, connected, projective curve X, having at most nodes as singularities is
said to be stable if H0(X, TX) = 0, i.e. X has no infinitesimal automorphisms.

Clearly for a curve X of genus g ≥ 2 the following are equivalent,
- X has no infinitesimal automorphisms,
- H0(X, TX) = 0,
- Aut(X) is finite.

By the preceding discussion any smooth curve of genus g ≥ 2 is stable.
Consider the local infinitesimal deformation functor of F for a stable curve X of genus g ≥ 2,

De fX : Art→ Sets,

which associates to any Artin local algebra A the set of isomorphism classes Υ→ Spec(A) of fam-
ilies of curves of genus g over Spec(A), with a fixed isomorphism Υ0 → X, where Υ0 → Spec(k)
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is the central fiber of Υ. Note that the isomorphism Υ0 → X is not unique, indeed we can recover
any other isomorphism composing with an automorphism of X, and the set of such isomorphisms
is a principal homogeneous space under the action of Aut(X). The following remark will be im-
portant in order to prove thatMg is smooth.

REMARK 4.10. Let X be a proper scheme and let De fX be its deformation functor. Then Ti
De fX

=

Exti(L•X,OX), where L•X is the cotangent complex of X. If X has only local complete intersection
singularities the L•X coincides with ΩX in degree zero. Recall that from the spectral sequence of
Ext groups we have

Hq(X, Extp(ΩX,OX))⇒ Extp+q(ΩX,OX).

Consider the special case where X = C is a nodal curve and p + q = 2. Then

- H0(C, Ext2(ΩC,OC)) = 0 because ΩC admits a locally free resolution of length one. In-
deed take an embedding C → Y of Y in a smooth surface, then we have an exact sequence

0 7→ I/I2 → ΩY ⊗OC → ΩC 7→ 0.

- H1(C, Ext1(ΩC,OC)) = 0 because Ext1(ΩC,OC) is supported on Sing(C) which is zero
dimensional.

- H2(C,Hom(ΩC,OC)) = 0 because dim(C) = 1.
We conclude that Ext2(ΩC,OC) = T2De fC = 0.

Heuristically, Riemann computed that dim(Mg) = 3g− 3. By Riemann-Hurwitz formula to
any collection of 2d + 2g− 2 points on P1 corresponds a curve X with a finite morphism φ : X →
P1 of degree d. To give such a morphism is equivalent to choose a divisor D of degree d on X
(i.e. d distinct points on X) and a element in H0(X,OX(D)). If we consider divisors of degree
d > 2g− 2, by Riemann-Roch we get h0(D) = d− g + 1. Then we have to subtract dim(Aut(X))
but a curve of genus g ≥ 2 as only a finite number of automorphism. We conclude that

dim(Mg) = 2d + 2g− 2− (d + d− g + 1) = 3g− 3.

In what follows we rigorously prove this fact by arguments of deformation theory.

THEOREM 4.11. (Smoothness of Mg) Let X be a stable curve of arithmetic genus g ≥ 2. Then
the functor of local infinitesimal deformations De fX of X is pro-representable by a regular local ring of
dimension 3g− 3. In other wordsMg is a smooth Deligne-Mumford stack of dimension

dim(Mg) = 3g− 3.

PROOF. The functor De fX is pro-representable since X is projective and does not have infin-
itesimal automorphism. Furthermore T2De fX = H2(X, TX) = 0 since dim(X) = 1, then there
are no obstructions to deforming X and the local ring representing De fX is regular. Furthermore
from remark 4.10 we get Ext2(ΩX,OX) = T2De fX = 0 for a nodal curve. Then in any case the
deformation functor of X is unobstructed. So far we have proved thatMg is a smooth DM stack.
To compute its dimension we distinguish two cases.

- If X is a smooth curve, and 0 7→ I → A → B 7→ 0 is a semi-small exact sequence in Art,
then there is a functorial exact sequence

H1(X, TX)⊗ I → De fX(A)→ De fX(B)→ H2(X, TX)⊗ I.
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On a curve TX = ωX̌, where ωX is the canonical sheaf of X. Then deg(TX) = 2− 2g, and
since h0(TX) = 0, by Riemann-Roch theorem we get h0(TX)− h1(TX) = 2− 2g− g + 1 =
3− 3g, and h1(TX) = 3g− 3. We conclude that in a point x ∈ Mg corresponding to the
isomorphism class of a smooth curve X, the tangent space TxMg has dimension 3g− 3.

- Now consider the case where X is a stable nodal curve. We have a sequence
0 7→ H1(X,Hom(ΩX,OX))→ Ext1(ΩX,OX)→ H0(X, Ext1(ΩX,OX)) 7→ 0,

there being no H2 on a curve. We denote by δ the number of nodes in X. Since the sheaf
ΩX is locally free on the smooth locus of X, the sheaf Ext1(ΩX,OX)) is just k at each node,
then dim(H0(X, Ext1(ΩX,OX))) = δ. The curve X is l.c.i, then the dualizing sheaf ωX is
an invertible sheaf, and since ωX ∼= ΩX on the open set of regular points, we have an
injective morphism ωˇ

X → Hom(ΩX,OX), and an exact sequence

0 7→ ωˇ
X → Hom(ΩX,OX)→ OZ 7→ 0,

where Z = Sing(X). Since X is stable h0(Hom(ΩX,OX)) = 0, by the cohomology exact
sequence we get h0(ωˇ

X) = 0, and

0 7→ H0(X,OZ)→ H1(X, ωˇ
X)→ H1(Hom(ΩX,OX)) 7→ 0.

By Riemann-Roch for singular curves we get h1(ωˇ
X) = 3g− 3, and since h0(OZ) = δ we

get h1(Hom(ΩX,OX)) = 3g− 3− δ. Finally
dim(Ext1(ΩX,OX)) = h1(TX) + h0(Ext1(ΩX,OX)) = 3g− 3− δ + δ = 3g− 3.

We conclude that any point ofMg is smooth andMg is a smooth stack of dimension 3g− 3. �

REMARK 4.12. Theorems 3.6 and 4.11 hold also for n > 0. That isMg,n is a smooth DM-stack
of dimension 3g− 3 + n for any g, n such that 2g− 2 + n > 0. The notation is more convoluted
but the proofs work exactly in the same way.

Nodal curves. The arithmetic genus g of a connected curve C is defined as g = h1(C,OC).
Suppose that C has at most nodal singularities. Let C =

⋃γ
i=1 Ci be the irreducible components

decomposition of C, and set δ := ] Sing(C). Let

ν : C =
γ⊔

i=1

Ci → C

be the normalization of C. The associated morphism OC ↪→ OC on the structure sheaves yield the
following sequence in cohomology

0 7→ H0(C,OC)→ H0(C,OC)→ Cδ → H1(C,OC)→ H1(C,OC) 7→ 0.

We get a formula for the arithmetic genus g of C

g = h1(C,OC) + δ− γ + 1 =
γ

∑
i=1

gi + δ− γ + 1

where gi = h1(Ci,OCi
) is the geometric genus of Ci.

DEFINITION 4.13. A stable n-pointed curve is a complete connected curve C that has at most nodal
singularities, with an ordered collection x1, ..., xn ∈ C of distinct smooth points of C, such that the (n + 1)-
tuple (C, x1, ..., xn) has finitely many automorphisms.
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This finiteness condition is equivalent to say that every rational component of the normaliza-
tion of C has at least 3 points lying over singular or marked points of C.
Moduli spaces of smooth algebraic curves have been defined and then compactified adding sta-
ble curves by Deligne and Mumford in [DM]. Furthermore Deligne and Mumford proved that, if
2g − 2 + n > 0, there exists a coarse moduli space Mg,n parametrizing isomorphism classes of
n-pointed stable curves of arithmetic genus g, and this space is an irreducible projective variety of
dimension 3g− 3 + n.

Boundary of Mg,n and dual graphs. The points in the boundary ∂Mg,n of the moduli space
Mg,n represent isomorphisms classes of singular pointed stable curves. The geometry of such
curves is encoded in a graph, called the dual graph. The boundary has a stratification whose loci,
called strata, parametrize curves of a certain topological type and with a fixed configuration of the
marked points.
Each nodal curve has an associated graph. This allows to represent nodal curves in a very simple
way and translate some issues related to nodal curves in the language of graph theory.
Let C be a connected nodal curve with γ irreducible components and δ nodes. The dual graph
ΓC of C is the graph whose vertices represent the irreducible components of C and whose edges
represent nodes lying on two components.
More precisely, each irreducible component is represented by a vertex labeled by two numbers:
the genus and the number of marked points of the component. An edge connecting two vertices
means that the two corresponding components intersect in the node corresponding to the edge. A
loop on a vertex means that the corresponding component has a self-intersection.
Recently, S. Maggiolo and N. Pagani developed a software package, called boundary, that generates
all stable dual graphs for prescribed values of g, n whose detailed description can be found in
[MP]. We will use this package to generate graphs needed in this paper.
We denote by ∆irr the locus in Mg,n parametrizing irreducible nodal curves with n marked points,
and by ∆i,P the locus of curves with a node which divides the curve into a component of genus
i containing the points indexed by P and a component of genus g − i containing the remaining
points.
The closures of the loci ∆irr and ∆i,P are the irreducible components of the boundary ∂Mg,n, see
[HM, Chapter 2].

REMARK 4.14. The number of different classes in the boundary grows very fast with g and n.
For example, in M2,3 we have three different class of stable irreducible curves, whose graph are
the following: 1

(1,0)
23

(1,1)
13

(1,2)
03

1The couple of numbers before each graph are respectively the number of components of the curve and the codi-
mension of the corresponding stratum in M2,3.
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while the graphs of stable curves with two irreducible components are the following:

(2,3)
0003

(2,3)
0003

(2,3)
0003

(2,3)
0003

(2,3)
0102

(2,3)
0102

(2,3)
0102

(2,3)
0102

(2,3)
0102

(2,2)
0013

(2,2)
0112

(2,2)
0112

(2,2)
0211

(2,2)
0211

(2,2)
0211

(2,2)
0310

(2,2)
0310

(2,2)
0310

(2,1)
0221

(2,1)
0320

(2,1)
1013

(2,1)
1112

Furthermore there are 163 other graphs representing curves with 3, 4 or 5 irreducible components.

Forgetful morphisms and the universal curve. For any i = 1, ..., n there is a canonical forget-
ful morphism

πi : Mg,n → Mg,n−1

forgetting the i-th marked point. If g > 2 and [C, x1, ..., x̂i, ..., xn] ∈ Mg,n−1 is a general point the
fiber

π−1
i ([C, x1, ..., x̂i, ..., xn]) ∼= C

is isomorphic to C. However πi is not the universal curve. Indeed if (C, x1, ..., x̂i, ..., xn) has non
trivial automorphism group then π−1

i ([C, x1, ..., x̂i, ..., xn]) is not isomorphic to C but to the quotient
of C by the automorphism group of the pointed curve (C, x1, ..., x̂i, ..., xn). For example the moduli
space Mg,1 with the forgetful morphism π : Mg,1 → Mg at first glance seems to play the role of the
universal curve over Mg. However, on closer examination one realizes that π−1([C]) ∼= C if and

only if [C] ∈ M0
g, the locus of automorphism free curves. It is well known that the set-theoretic

fiber of π : Mg,1 → Mg over [C] ∈ Mg is the quotient C/ Aut(C). For example over an open subset
of M2 the fibration π : M2,1 → M2 is a P1-bundle and this is true even scheme-theoretically.
The situation is different if instead of considering the moduli space Mg,1 we consider the Deligne-
Mumford moduli stackMg,1. In fact, in this case the fiber π−1([C]) is isomorphic to C and via the
morphism π :Mg,1 →Mg the stackMg,1 is the universal curve overMg.
Note that if n ≥ 2 the fiber π−1

i ([C, x1, ..., x̂i, ..., xn]) always intersects the boundary of Mg,n. In
fact the points of the fiber corresponding to marked points represent singular curves with two
irreducible components: C itself and a P1 with two marked points and intersecting C in a point. In
the same way for any I ⊆ {1, ..., n}we have a forgetful map πI : Mg,n → Mg,n−|I|. The map πi has
sections si,j : Mg,n−1 → Mg,n defined by sending the point [C, x1, ..., x̂i, ..., xn] to the isomorphism
class of the n-pointed genus g curve obtained by attaching at xj ∈ C a P1 with two marked points
labeled by xi and xj.
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Divisor classes on Mg,n. Let us briefly recall the definitions of classes λ and ψi on Mg,n.
Consider the forgetful morphism π : Mg,n+1 → Mg,n forgetting one of the marked points and
its sections σ1, ..., σn : Mg,n →Mg,n+1. Let ωπ be the relative dualizing sheaf of the morphism π.
The Hodge class is defined as

λ := c1(π∗(ωπ)).
The classes ψi are defined as

ψi := σ∗i (c1(ωπ))

for any i = 1, ..., n. Finally we denote by δirr and δi,P the boundary classes onMg,n.

5. Cohomology classes on the moduli space of curves

Let π : Cg →Mg be the universal curve over the stackMg, and let

γ = c1(ω)

be the first Chern class of the relative dualizing sheaf ω := ωπ of π. We define the classes ki ∈
H2i(Mg) as

ki = π∗(γ
i+1).

The Hodge bundle overMg is defined as E = π∗ω and its Chern classes are usually denoted by
λi = ci(E). The fiber of E over a point [C] ∈ Mg is the space H0(C, ωC) of regular differential
forms on C. Therefore E has rank g. The difference TCg − TMg in K(Cg) is the relative tangent
bundle. Therefore

td(Cg)

π∗td(Mg)
= td(ω∨) = 1− γ

2
+

γ2

12
− γ4

720
+ ...

Furthermore we have

ch(ω) = 1 + γ +
γ2

2
+

γ3

6
+ ...

and by Grothendieck-Riemann-Roch we get

ch(π!ω) = π∗

(
ch(ω) · td(Cg)

π∗td(Mg)

)
= π∗

(
1 +

γ

2
+

γ2

12
+ ...

)
Now, π!(ω) = π∗ω− R1π∗ω and R1π∗ω = OMg . Therefore we have

ch(E)− 1 = rank(E)− 1 + c1(E) +
c1(E)2 − 2c2(E)

2
+ ... = π∗

(
γ

2
+

γ2

12
+ ...

)
Since γ has degree 2g− 2 on a fiber of π we find

rank(E) = π∗
(γ

2

)
+ 1 = g− 1 + 1 = g.

Furthermore

c1(E) = π∗

(
γ2

12

)
=

k1

12
.

Note that the degree three component of ch(ω)·td(Cg)

π∗td(Mg)
is γ3

6 −
γ3

4 + γ3

12 = 0. Therefore c1(E)2−2c2(E)
2 = 0

and

c2(E) =
c1(E)2

2
=

k2
1

288
.
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In general the Chern classes of the Hodge bundle can be expressed as polynomials in the tauto-
logical classes ki.
Now, we want to derive some relations on the compactificationMg. By [HM, Proposition 3.93]
a relation among divisor classes on Mg corresponds to the same relation among the associated
divisor classes on the base B of any family X → B of stable curves, where B and the general fiber
are smooth curves. Let f : X → B be such a family and let t be a local parameter on B. We consider
a minimal resolution r : Y → X of the singularities of X. The family g = f ◦ r : Y → B is a family
of semi-stable curves. We summarize the situation in the following diagram.

Y X

B
g f

r

Each note p of a fiber of X → B satisfying xy = tm has been replaced by a chain of m− 1 smooth,
rational curves. We conclude that g : Y → B is a family of semi-stable curves, with smooth total
space, and over a node of a fiber of X → B with equation xy = tm we have now m− 1 nodes.
Note that each exceptional component over a node of a fiber of X → B is a smooth rational
component intersecting the rest of the fiber on two points. Therefore the canonical bundle of such
a component is trivial and the relative dualizing sheaf of the family g : Y → B is trivial on the
exceptional divisor of the resolution r. Therefore

ωY/B = r∗ωX/B, g∗ωY/B = f∗ωX/B and g∗(c1(ωY/B)
2) = f∗(c1(ωX/B)

2).
Let p ∈ Y be a node of a fiber over o point [C] ∈ B. We have an injective morphism

OY 〈dt〉 −→ OY 〈dx, dy〉
dt 7−→ xdy + ydx

which is the injection π∗T∨B → T∨Y . The cokernel is the relative cotangent sheaf

ΩY/B =
OY 〈dx, dy〉
〈xdy + ydx〉 .

This sheaf is an invertible sheaf on Y \ Z, where Z is the locus of nodes of fibers of Y → B. The
relative dualizing sheaf is the unique invertible sheaf ω such that ω|Y\Z ∼= ΩY/B|Y\Z. We can

write ω = OY 〈α〉 with α = dx
x −

dy
y . Furthermore we have xα = 2dx and yα = −2dy. Therefore

Ω = ΩY/B = IZ ⊗ω. Let ξ be the class of the singular locus Z. The exact sequence

0 7→ IZ → OY → OZ 7→ 0

yields ch(IZ) = 1− ξ. We have

ch(Ω) = ch(ω) · ch(IZ) =

(
1 + γ +

γ2

2
+ ...

)
· (1− ξ)

that is

ch(Ω) = 1 + c1(Ω) +
c1(Ω)2 − 2c2(Ω)

2
+ ... = 1 + γ +

(
γ2

2
− ξ

)
+ ...

Therefore c1(Ω) = γ = c1(ω) and indeed Ω and ω differ on a codimension two locus. Further-
more c1(Ω)2−2c2(Ω)

2 = γ2

2 − ξ yields
c2(Ω) = ξ.
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We conclude that

td(Y/B) = 1− γ

2
+

γ2 + ξ

12
+ ...

and by Grothendieck-Riemann-Roch

c1(g∗ωY/B) = g∗

(
γ2 + ξ

12

)
= g∗

(
c1(ωY/B)

2 + ξ

12

)
.

Now, coming back to the family f : X → B we get

λ =
k1 + δ

12

where δ is the locus corresponding to Z. Finally on the moduli space Mg we have

12λ− k1 = ∆0 +
1
2

∆1 + ∆2 + ... + ∆b g
2 c

where 1
2 ∆1 is the divisor parametrizing elliptic tails and the rational coefficient 1

2 keeps trace of
the elliptic involution of the elliptic tail fixing the attachment point.

The canonical class. On the smooth locus of the moduli space Mg we can consider the bundle
Ω generated by regular differential forms of top degree 3g− 3. We define the canonical bundle of
Mg as the unique Q-line bundle restricting to Ω on the smooth locus.
The cotangent space to the stackMg at a point [C] is H0(C, ΩC⊗ωC). The canonical class ofMg is
given by associating to a family f : X → B of stable curves the class KMg

( f ) = f∗(ΩX/B ⊗ωX/B).
Note that the higher direct images of f∗(ΩX/B ⊗ωX/B) vanish. We have

ch(ΩX/B ⊗ωX/B) = 1 + 2γ +
4γ2 − 2ξ

2
= 1 + γ + 2γ2 − ξ

and by Grothendieck-Riemann-Roch we have

ch( f∗(ΩX/B ⊗ωX/B)) = f∗
((

1 + 2γ + 2γ2 − ξ
)
·
(

1− γ
2 + γ2+ξ

12

))
= f∗

(
1− γ

2 + γ2+ξ
12 + 2γ− γ2 + 2γ2 − ξ

)
= f∗

(
1 + 3

2 γ + 13
12 γ2 − 11

12 ξ
)

= 3
2 (2g− 2) +

( 13
12 k1 − 11

12 δ
)

.

Recalling that k1 = 12λ− δ we conclude

ch( f∗(ΩX/B ⊗ωX/B)) = 3
2 (2g− 2) +

( 13
12 k1 − 11

12 δ
)

= 3g− 3 + 13
12 (12λ− δ)− 11

12 δ
= 3g− 3 + 13λ− 2δ.

In particular the canonical class of the stackMg is

KMg
= 13λ− 2δ.

Let π :Mg → Mg be the canonical morphism between the stack an the coarse moduli space. The
morphism π is ramified along the divisor ∆1 ⊂ Mg parametrizing elliptic tails. We have

π∗KMg
= KMg

+ δ1
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and recalling that any point of ∆1 has automorphism group of order two we conclude that

KMg
= 13λ− 2∆ +

1
2

∆1.

6. Moduli spaces of weighted pointed curves and Kapranov’s construction of M0,n

In [Ha] B. Hassett introduced new compactifications Mg,A[n] of the moduli stack Mg,n and
Mg,A[n] for the coarse moduli space Mg,n, by assigning rational weights A = (a1, ..., an), 0 < ai ≤ 1
to the markings. In genus zero some of these spaces appear as intermediate steps of the blow-up
construction of M0,n developed by M. Kapranov in [Ka], while in higher genus they may be related
to the LMMP on Mg,n.
We work over an algebraically closed field of characteristic zero. Let S be a Noetherian scheme and
g, n two non-negative integers. A family of nodal curves of genus g with n marked points over S
consists of a flat proper morphism π : C → S whose geometric fibers are nodal connected curves
of arithmetic genus g, and sections s1, ..., sn of π. A collection of input data (g, A) := (g, a1, ..., an)
consists of an integer g ≥ 0 and the weight data: an element (a1, ..., an) ∈ Qn such that 0 < ai ≤ 1
for i = 1, ..., n, and

2g− 2 +
n

∑
i=1

ai > 0.

DEFINITION 6.1. A family of nodal curves with marked points π : (C, s1, ..., sn)→ S is stable of type
(g, A) if

- the sections s1, ..., sn lie in the smooth locus of π, and for any subset {si1 , ..., sir} with non-empty
intersection we have ai1 + ... + air ≤ 1,

- ωπ(∑n
i=1 aisi) is π-relatively ample, where ωπ is the relative dualizing sheaf.

B. Hassett in [Ha, Theorem 2.1] proved that given a collection (g, A) of input data, there exists
a connected Deligne-Mumford stackMg,A[n], smooth and proper over Z, representing the moduli
problem of pointed stable curves of type (g, A). The corresponding coarse moduli scheme Mg,A[n]
is projective over Z.
Furthermore, by [Ha, Theorem 3.8] a weighted pointed stable curve admits no infinitesimal au-
tomorphisms, and its infinitesimal deformation space is unobstructed of dimension 3g − 3 + n.
ThenMg,A[n] is a smooth Deligne-Mumford stack of dimension 3g− 3 + n.

REMARK 6.2. Since Mg,A[n] is smooth as a Deligne-Mumford stack the coarse moduli space
Mg,A[n] has finite quotient singularities, that is étale locally it is isomorphic to a quotient of a
smooth scheme by a finite group. In particular, Mg,A[n] is normal.

For fixed g, n, consider two collections of weight data A[n], B[n] such that ai ≥ bi for any
i = 1, ..., n. Then there exists a birational reduction morphism

ρB[n],A[n] : Mg,A[n] → Mg,B[n]

associating to a curve [C, s1, ..., sn] ∈ Mg,A[n] the curve ρB[n],A[n]([C, s1, ..., sn]) obtained by collaps-
ing components of C along which ωC(b1s1 + ... + bnsn) fails to be ample, where ωC denote the
dualizing sheaf of C.
Furthermore, for any g consider a collection of weight data A[n] = (a1, ..., an) and a subset
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A[r] := (ai1 , ..., air) ⊂ A[n] such that 2g − 2 + ai1 + ... + air > 0. Then there exists a forgetful
morphism

πA[n],A[r] : Mg,A[n] → Mg,A[r]

associating to a curve [C, s1, ..., sn] ∈ Mg,A[n] the curve πA[n],A[r]([C, s1, ..., sn]) obtained by collaps-
ing components of C along which ωC(ai1 si1 + ... + air sir) fails to be ample. For the details see [Ha,
Section 4].

In the following we will be especially interested in the boundary of Mg,A[n]. The boundary
of Mg,A[n], as for Mg,n, has a stratification whose loci, called strata, parametrize curves of a fixed
topological type and with a fixed configuration of the marked points.
We denote by ∆irr the locus in Mg,A[n] parametrizing irreducible nodal curves with n marked
points, and by ∆i,P the locus of curves with a node which divides the curve into a component
of genus i containing the points indexed by P and a component of genus g− i containing the re-
maining points. Note that in Mg,A[n] may appear boundary divisors parametrizing smooth curves.
For instance, as soon as there exist two indices i, j such that ai + aj ≤ 1 we get a boundary divi-
sor whose general point represents a smooth curve where the marked points labelled by i and j
collide.

Kapranov’s blow-up constructions. We follow [Ka]. Let (C, x1, ..., xn) be a genus zero n-
pointed stable curve. The dualizing sheaf ωC of C is invertible, see [Kn]. By [Kn, Corollaries 1.10
and 1.11] the sheaf ωC(x1 + ... + xn) is very ample and has n − 1 independent sections. Then it
defines an embedding φ : C → Pn−2. In particular, if C ∼= P1 then deg(ωC(x1 + ... + xn)) = n− 2,
ωC(x1 + ... + xn) ∼= φ∗OPn−2(1) ∼= OP1(n− 2), and φ(C) is a degree n− 2 rational normal curve
in Pn−2. By [Ka, Lemma 1.4] if (C, x1, ..., xn) is stable the points pi = φ(xi) are in linear general
position in Pn−2.
This fact combined with a careful analysis of limits in M0,n of 1-parameter families in M0,n led M.
Kapranov to prove the following theorem [Ka, Theorem 0.1]:

THEOREM 6.3. Let p1, ..., pn ∈ Pn−2 be points in linear general position, and let V0(p1, ..., pn) be the
scheme parametrizing rational normal curves through p1, ..., pn. Consider V0(p1, ..., pn) as a subscheme of
the Hilbert schemeH parametrizing subschemes of Pn−2. Then

- V0(p1, ..., pn) ∼= M0,n.
- Let V(p1, ..., pn) be the closure of V0(p1, ..., pn) inH. Then V(p1, ..., pn) ∼= M0,n.

Kapranov’s construction allows to translate many issues of M0,n into statements on linear
systems on Pn−3. Consider a general line Li ⊂ Pn−2 through pi. There is a unique rational normal
curve CLi through p1, ..., pn, and with tangent direction Li in pi. Let [C, x1, ..., xn] ∈ M0,n be a
stable curve, and let Γ ∈ V0(p1, ..., pn) be the corresponding curve. Since pi ∈ Γ is a smooth point
considering the tangent line Tpi Γ, with some work [Ka], we get a morphism

fi : M0,n → Pn−3, [C, x1, ..., xn] 7→ Tpi Γ.

Furthermore, fi is birational and it defines an isomorphism on M0,n. The birational maps f j ◦ f−1
i

M0,n

Pn−3 Pn−3
f j◦ f−1

i

f jfi
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are standard Cremona transformations of Pn−3 [Ka, Proposition 2.12]. For any i = 1, ..., n the class
Ψi is the line bundle on M0,n whose fiber on [C, x1, ..., xn] is the tangent line Tpi C. From the previous
description we see that the line bundle Ψi induces the birational morphism fi : M0,n → Pn−3, that
is Ψi = f ∗i OPn−3(1). In [Ka] Kapranov proved that Ψi is big and globally generated, and that the
birational morphism fi is an iterated blow-up of the projections from pi of the points p1, ..., p̂i, ...pn
and of all strict transforms of the linear spaces they generate, in order of increasing dimension.

CONSTRUCTION 6.4. [Ka] More precisely, fix (n− 1)-points p1, ..., pn−1 ∈ Pn−3 in linear gen-
eral position.

(1) Blow-up the points p1, ..., pn−2, the strict transforms of the lines
〈

pi, pj
〉

for i, j = 1, ..., n−
2, the strict transforms of the linear spaces spanned by the subsets of cardinality n− 4 of
{p1, ..., pn−2}.

(2) Blow-up pn−1, the strict transforms of the lines spanned by pairs of points including pn−1
but not pn−2,..., the strict transforms of the linear spaces spanned by the subsets of cardi-
nality (n− 4) of {p1, ..., pn−1} containing pn−1 but not pn−2.
...

(r) Blow-up the strict transforms of all the linear spaces spanned by subsets of the form
{pn−1, pn−2, ..., pn−r+1}, so that the order of the blow-ups in compatible by the partial
order on the subsets given by inclusion.
...

(n− 3) Blow-up the strict transforms of the codimension two linear space spanned by the subset
{pn−1, pn−2, ..., p4}.

The composition of these blow-ups is the morphism fn : M0,n → Pn−3 induced by the psi-class Ψn.
Identifying M0,n with V(p1, ..., pn), and fixing a general (n− 3)-plane H ⊂ Pn−2, the morphism fn
associates to a curve C ∈ V(p1, ..., pn) the point Tpn C ∩ H.

We denote by Wr,s[n], where s = 1, ..., n− r − 2, the variety obtained at the r-th step once we
finish blowing-up the subspaces spanned by subsets S with |S| ≤ s + r − 2, and by Wr[n] the
variety produced at the r-th step. In particular, W1,1[n] = Pn−3 and Wn−3[n] = M0,n.

In [Ha, Section 6.1], Hassett interprets the intermediate steps of Construction 6.4 as moduli
spaces of weighted rational curves. Consider the weight data

Ar,s[n] := (1/(n− r− 1), ..., 1/(n− r− 1)︸ ︷︷ ︸
(n−r−1)−times

, s/(n− r− 1), 1, ..., 1︸ ︷︷ ︸
r−times

)

for r = 1, ..., n − 3 and s = 1, ..., n − r − 2. Then Wr,s[n] ∼= M0,Ar,s[n], and the Kapranov’s map
fn : M0,n → Pn−3 factorizes as a composition of reduction morphisms

ρAr,s−1[n],Ar,s[n] : M0,Ar,s[n] → M0,Ar,s−1[n], s = 2, ..., n− r− 2,
ρAr,n−r−2[n],Ar+1,1[n] : M0,Ar+1,1[n] → M0,Ar,n−r−2[n].

REMARK 6.5. The Hassett’s space M0,A1,n−3[n], that is Pn−3 blown-up at all the linear spaces
of codimension at least two spanned by subsets of n− 2 points in linear general position, is the
Losev-Manin’s moduli space Ln−2 introduced by A. Losev and Y. Manin in [LM], see [Ha, Section
6.4]. The space Ln−2 parametrizes (n− 2)-pointed chains of projective lines (C, x0, x∞, x1, ..., xn−2)
where:
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- C is a chain of smooth rational curves with two fixed points x0, x∞ on the extremal com-
ponents,

- x1, ..., xn−2 are smooth marked points different from x0, x∞ but non necessarily distinct,
- there is at least one marked point on each component.

By [LM, Theorem 2.2] there exists a smooth, separated, irreducible, proper scheme representing
this moduli problem. Note that after the choice of two marked points in M0,n playing the role of
x0, x∞ we get a birational morphism M0,n → Ln−2 which is nothing but a reduction morphism.
For example, L1 is a point parametrizing a P1 with two fixed points and a free point, L2 ∼= P1, and
L3 is P2 blown-up at three points in general position, that is a Del Pezzo surface of degree six, see
[Ha, Section 6.4] for further generalizations.
For example consider Del Pezzo surface of degree six M0,A1,2[5]

∼= L3 ∼= S6. Let us say that S6 is
the blow-up of P2 at the coordinate points p1, p2, p3 with exceptional divisors e1, e2, e3 and let us
denote by li =

〈
pj, pk

〉
, i 6= j, k, i = 1, 2, 3 the three lines generated by p1, p2, p3.

Such surface can be realized as the complete intersection in P2 × P2 cut out by the equations
x0y0 = x1y1 = x2y2. The six lines are given by ei = {xj = xk = 0}, li = {yj = yk = 0} for i 6= j, k,
i = 1, 2, 3. The torus T = (C∗)3/C∗ acts on P2 ×P2 by

(λ0, λ1, λ2) · ([x0 : x1 : x2], [y0 : y1 : y2]) = ([λ0x0 : λ1x1 : λ2x2], [λ−1
0 y0 : λ−1

1 y1 : λ−1
2 y2]).

This torus action stabilizes S6. Furthermore S2 acts on S6 by the transpositions xi ↔ yi, and S3
acts on S6 by permuting the two sets of homogeneous coordinates separately. The action of S3
corresponds to the permutations of the three points of P2 we are blowing-up, while the S2-action
is the switch of roles of exceptional divisors between the sets of lines {e1, e2, e3} and {l1, l2, l3}.
These six lines are arranged in a hexagon inside S6

which is stabilized by the action of S3 × S2. The fan of S6 is the following

where the six 1-dimensional cones correspond to the toric divisors e1, l3, e2, l1, e3 and l2. It is clear
from the picture that the fan has many symmetries given by permuting {e1, e2, e3}, {l1, l2, l3} and
switching ei with li for i = 1, 2, 3.



104 5. MODULI OF CURVES

EXAMPLE 6.6. Let n = 5, and fix p1, ..., p4 ∈ P2 points in general position. Kapranov’s map f5
is as follows: blow-up p1, p2, p3 and then blow-up p4.
At the step r = 1, s = 1 we get M0,A1,1[n] = P2 and the weights are

A1,1[5] := (1/3, 1/3, 1/3, 1/3, 1).

While for r = 2, s = 1 we get M0,A2,1[n]
∼= M0,5, indeed in this case the weight data are

A2,1[5] := (1/2, 1/2, 1/2, 1, 1).

Note that as long as all the weights are strictly greater than 1/3, Hassett’s space is isomorphic
to M0,n because at most two points can collide, so the only components that get contracted are
rational tail components with exactly two marked points. Since these have exactly three special
points they have no moduli and contracting them does not affect the coarse moduli space even
though it does change the universal curve, see also [Ha, Corollary 4.7]. In our case M0,A2,1[5]

∼=
M0,5.
We have only one intermediate step, namely r = 1, s = 2. The moduli space M0,A1,2[5] parametrizes
weighted pointed curves with weight data

A1,2[5] := (1/3, 1/3, 1/3, 2/3, 1).

Since a4 + ai = 1 for i = 1, 2, 3 and a4 + a5 > 1 the point p4 is allowed to collide with p1, p2, p3 but
not with p5 which has not yet been blown-up. Kapranov’s map f5 : M0,5 → P2 factorizes as

M0,5 ∼= M0,A2,1[5]

M0,A1,2[5]

P2 ∼= M0,A1,1[5]

ρ2

f5

ρ1

where ρ1, ρ2 are the corresponding reduction morphisms. Let us analyze these two morphisms.
- Given (C, s1, ..., s5) ∈ M0,A2,1[5] the curve ρ1(C, s1, ..., s5) is obtained by collapsing compo-

nents of C along which KC + 1
3 s1 +

1
3 s2 +

1
3 s3 +

2
3 s4 + s5 fails to be ample. So it contracts

the 2-pointed components of the following curves:

along which KC + 1
3 s1 +

1
3 s2 +

1
3 s3 +

2
3 s4 + s5 is anti-ample, and the 2-pointed components

of the following curves:
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along which KC + 1
3 s1 +

1
3 s2 +

1
3 s3 +

2
3 s4 + s5 is nef but not ample. However all the con-

tracted components have exactly three special points, and therefore they do not have
moduli. This affects only the universal curve but not the coarse moduli space.
Finally KC + 1

3 s1 +
1
3 s2 +

1
3 s3 +

2
3 s4 + s5 is nef but not ample on the 3-pointed component

of the curve

In fact this corresponds to the contraction of the divisor E5,4 = f−1
5 (p4).

- The morphism ρ2 contracts the 3-pointed components of the curves

along which KC + 1
3 s1 +

1
3 s2 +

1
3 s3 +

1
3 s4 + s5 has degree zero. This corresponds to the

contractions of the divisors E5,3 = f−1
5 (p3), E5,2 = f−1

5 (p2) and E5,1 = f−1
5 (p1).

EXAMPLE 6.7. Now, let us consider the case n = 6. Construction 6.4 is as follows:

- r = 1, s = 1, gives P3,
- r = 1, s = 2, we blow-up the points p1, ..., p4 ∈ P3 and get the Hassett’s space with

weights A1,2[6] := (1/4, 1/4, 1/4, 1/4, 1/2, 1),
- r = 1, s = 3, we blow-up the strict transforms of the lines

〈
pi, pj

〉
, i, j = 1, ..., 4, and get

the Hassett’s space with weights A1,3[6] := (1/4, 1/4, 1/4, 1/4, 3/4, 1),
- r = 2, s = 1, we blow-up the point p5, and get the Hassett’s space with weights A2,1[6] :=
(1/3, 1/3, 1/3, 1/3, 1, 1),

- r = 2, s = 2, we blow-up the strict transforms of the lines 〈pi, p5〉, i, j = 1, ..., 3, and get
the Hassett’s space with weights A2,2[6] := (1/3, 1/3, 1/3, 2/3, 1, 1),

- r = 3, s = 1, we blow-up the strict transform of the line 〈p4, p5〉 and get the Hassett’s
space with weights A3,1[6] := (1/2, 1/2, 1/2, 1, 1, 1), that is M0,6.

7. M0,n is not a Mori Dream Space for n > 133 (following Castravet and Tevelev)

In [HK, Question 3.2] Y. Hu and S. Keel asked if M0,n is a Mori Dream Space. If n = 4, 5 this
is well known because M0,4

∼= P1 and M0,5 is a Del Pezzo surface of degree five. By [HK] M0,n is
log Fano if and only if n ≤ 6. In particular M0,6 is a Mori Dream Space. For g ≥ 1 it is know that:

- in characteristic zero Mg,n is not a Mori Dream Space for g ≥ 3, n ≥ 1. This was proven
in [Ke] by providing a nef but not semiample divisor on Mg,n;

- in [CC] D. Chen and I. Coskun proved that M1,n is not a Mori Dream Space for n ≥ 3
because it has infinitely many extremal effective divisors.

REMARK 7.1. The step r = 1, s = n− 3 of Construction 6.4 is the Losev-Manin’s space Ln−2
[Ha, Section 6.4]. This space is a toric variety of dimension n − 3. It is the last toric variety in
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Construction 6.4. For instance L3 is a Del Pezzo surface of degree six. The following picture
represents the corresponding polyhedron.

The space L4 is the blow-up of P3 at four general points and along the strict transform of the six
lines joining them. The corresponding polyhedron is the following.

Note that both the polyhedra are very symmetric.

In a way M0,n is very close to a toric variety. This is one of the reasons that led to conjecture
that M0,n is a Mori Dream Space.

THEOREM 7.2. [CT1, Theorem 1.3] Let n = a + b + c + 8 where a, b, c are positive coprime integers.
If BleLn−3 is a Mori Dream Space then BleP(a, b, c) is a Mori Dream Space.

PROOF. Let e1, ..., en−2 be vectors in Rn−3 such that e1 + ... + en−2 = 0. Let N be the lattice
generated by e1, ..., en−2, and consider the fan Σn−2 spanned by the primitive lattice vectors ∑i∈I ei
for each subset I ⊂ S = {1, ..., n− 2} with 1 ≤ |I| ≤ n− 3. The toric variety associated to this fan
is the Losev-Manin space Ln−2 = X(Σn−2).
Let us consider a partition S = S1 ∪ S2 ∪ S3 into subsets of order a + 2, b + 2, c + 2. Then n =
a + b + c + 8. We fix ni ∈ Si for i = 1, 2, 3, and consider the sublattice spanned by the vectors

(7.1) eni + er, for r ∈ Si \ {ni}, i = 1, 2, 3.

Let N
′
= N/N

′′
be the quotient and let π : N → N

′
be the projection. Then N

′
is a lattice, it is

spanned by the vectors π(eni) for i = 1, 2, 3, and aπ(en1) + bπ(en2) + cπ(en3) = 0.

EXAMPLE 7.3. Take a = 1, b = 2, c = 3, and S1 = {e1, e2, e3}, S2 = {e4, e5, e6, e7}, S3 =
{e8, e9, e10, e11, e12}. The we take en1 = e1, en2 = e4, en3 = e8. Clearly N

′
= N/N

′′
is generated

by π(e1), π(e4), π(e8). Since π(e1) = −π(ei) for i = 2, 3, π(e4) = −π(ei) for i = 5, 6, 7, and
π(e8) = −π(ei) for i = 9, 10, 11, 12, the relation ∑12

i=1 ei = 0 gives π(e1)− π(e1)− π(e1) + π(e4)−
π(e4)− 2π(e4) + π(e8)− π(e8)− 3π(e8) = −(π(e1) + 2π(e4) + 3π(e8)) = 0. Therefore

π(e1) + 2π(e4) + 3π(e8) = 0.
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It follows that the toric surface with lattice N
′

and rays spanned by π(eni) for i = 1, 2, 3 is the
weighted projective plane P(a, b, c). For instance the following is the fan of P(1, 2, 3).

Let Nj, for j = 1, ..., n − 4, be the lattice obtained by taking the quotient of N by a sublattice
spanned by the first j− 1 vectors of the sequence 7.1. Let Γj be a sets of rays obtained by projecting
the rays of the fan of Ln−2, and Xj = X(Γj). Mote that Nn−4 = N

′
and we have a regular map

Xn−4 → P(a, b, c) obtained forgetting all vector of Γn−4 except the π(eni) for i = 1, 2, 3. Since this
map is an isomorphism on the torus it induces a birational morphism BleXn−4 → BleP(a, b, c),
where e is the identity of the torus. In this way we get a sequence of toric morphism

X1 → X2 → ...→ Xn−4 → P(a, b, c).

Note that X1 has the same rays of Ln−2 and therefore is a small modification of Ln−2 which is an
isomorphism on the torus. Then BleX1 is a small modification of BleLn−2. �

Next we consider the following theorem.

THEOREM 7.4. [CT1, Theorem 1.1] There exists a small Q- factorial projective modification L̃n−2 of
BleLn−2, and surjective morphisms

L̃n−2 → M0,n → BleLn−3.

In particular, by Proposition 0.5, if M0,n is a Mori Dream Space then BleLn−3 is a Mori Dream Space, if
BleLn−2 is a Mori Dream Space then M0,n is a Mori Dream Space.

In particular, if M0,n is a Mori Dream Space then BleLn−2 is a Mori Dream Space, and by
Theorem 7.2 BleP(a, b, c) is a Mori Dream Space. Now, the key ingredient is the following result
due to S. Goto, K. Nishida, and K. Watanabe.

THEOREM 7.5. [GNW] Assume char(k) = 0. If (a, b, c) = (7h− 3, 5h2 − 2h, 8h− 3), with h ≥ 4
and 3 - h, then BleP(a, b, c) is not a Mori Dream Space.

An immediate consequence of Theorems 7.2, 7.4 and 7.5 is the following.

THEOREM 7.6. [CT1, Corollary 1.4] Assume char(k) = 0. Then M0,n is not a Mori Dream Space
for n > 133.

PROOF. We have n(h) = a + b + c + 8 = 7h− 3 + 5h2 − 2h + 8h− 3 + 8 = 5h2 + 13h + 2. So
n(4) = 134. Therefore M0,134 is not a Mori Dream Space. If n > 135 we have a surjective forgetful
morphism πi : M0,n → M0,134. Therefore, by Proposition 0.5, M0,n is not a Mori Dream Space for
n ≥ 134. �
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7.1. A problem by Hassett. Let S be a Noetherian scheme and g, n two non-negative integers.
A family of nodal curves of genus g with n marked points over S consists of a flat proper mor-
phism π : C → S whose geometric fibers are nodal connected curves of arithmetic genus g, and
sections s1, ..., sn of π. A collection of input data (g, A) := (g, a1, ..., an) consists of an integer g ≥ 0
and the weight data: an element (a1, ..., an) ∈ Qn such that 0 < ai ≤ 1 for i = 1, ..., n, and

2g− 2 +
n

∑
i=1

ai > 0.

DEFINITION 7.7. A family of nodal curves with marked points π : (C, s1, ..., sn)→ S is stable of type
(g, A) if

- the sections s1, ..., sn lie in the smooth locus of π, and for any subset {si1 , ..., sir} with non-empty
intersection we have ai1 + ... + air ≤ 1,

- ωπ(∑n
i=1 aisi) is π-relatively ample, where ωπ is the relative dualizing sheaf.

B. Hassett in [Ha, Theorem 2.1] proved that given a collection (g, A) of input data, there exists
a connected Deligne-Mumford stackMg,A[n], smooth and proper over Z, representing the moduli
problem of pointed stable curves of type (g, A). The corresponding coarse moduli scheme Mg,A[n]
is projective over Z.
For fixed g, n, consider two collections of weight data A[n], B[n] such that ai ≥ bi for any i = 1, ..., n.
Then there exists a birational reduction morphism

ρB[n],A[n] : Mg,A[n] → Mg,B[n]

associating to a curve [C, s1, ..., sn] ∈ Mg,A[n] the curve ρB[n],A[n]([C, s1, ..., sn]) obtained by collaps-
ing components of C along which ωC(b1s1 + ... + bnsn) fails to be ample, where ωC denote the
dualizing sheaf of C. For the details see [Ha, Section 4].
In the following we will be especially interested in the boundary of M0,A[n]. We consider a par-
tition I ∪ J = {1, ..., n}, such that |I|, |J| ≥ 2 and ai1 + ... + air > 1, aj1 + ... + ajn−r > 1 where
I = {i1, ..., ir}, J = {j1, ..., jn−r}. We denote by DI,J(A) the divisor in M0,A[n] whose general point
corresponds to a nodal curve with two irreducible components with marked points xi1 , ..., xir on
one component and xj1 , ..., xjn−r on the other.
Furthermore, for any partition with I = {i1, i2} and i1 + i2 ≤ 1 corresponds to a divisor DI,J(A)
as well. Such a divisor parametrizes curves where the marked points xi1 , xi2 coincides. Note that
these curves are note necessarily nodal. In [Ha] Hassett proposed the following problem:

PROBLEM 7.8. [Ha, Problem 7.1] Let A[n] be a vector of weights and consider the moduli space
M0,A[n]. Do there exist rational numbers αI,J such that

KM0,A[n]
+ ∑

I,J
αI,J DI,J(A)

is ample and the pair (M0,A[n], ∑I,J αI,J DI,J(A)) is log canonical?

In [Ha, Sections 7.1, 7.2, 7.3, Remark 8.5] Hassett provides examples in which Problem 7.8
admits a positive answer. By taking advantage of Proposition 4.8 we are able to provide two new
classes of examples. Let us recall the following construction due to M. Kapranov [Ka].

CONSTRUCTION 7.9. Fixed (n− 1)-points p1, ..., pn−1 ∈ Pn−3 in linear general position:
(1) Blow-up the points p1, ..., pn−1,
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(2) Blow-up the strict transforms of the lines 〈pi1 , pi2〉, i1, i2 = 1, ..., n− 1,
...

(k) Blow-up the strict transforms of the (k− 1)-planes 〈pi1 , ..., pik〉, i1, ..., ik = 1, ..., n− 1,
...

(n− 4) Blow-up the strict transforms of the (n− 5)-planes 〈pi1 , ..., pin−4〉, i1, ..., in−4 = 1, ..., n− 1.

Now, consider Hassett’s spaces Xk[n] := M0,Ak [n] for k = 1, ..., n− 4, such that
- ai + an > 1 for i = 1, ..., n− 1,
- ai1 + ... + air ≤ 1 for each {i1, ..., ir} ⊂ {1, ..., n− 1} with r ≤ n− k− 2,
- ai1 + ... + air > 1 for each {i1, ..., ir} ⊂ {1, ..., n− 1} with r > n− k− 2.

Then Xk[n] is isomorphic to the variety obtained at the step k of the blow-up construction. There-
fore the variety Y appearing in Proposition 6.4 is isomorphic to M0,n+3 and the boundary divisor
of the log resolution π : Y → Xn

n+2 is nothing but the total boundary divisor of M0,n+3. Fur-
thermore Xn

n+2 is isomorphic to the Hassett’s space X1[n + 3]. Therefore, by Proposition 6.5 the
Hassett’s space X1[n + 3] is log Fano.
Now, let us consider the space M0,A1[n] = X1[n] obtained at the first step of Construction 7.9. In
our notations this is Xn−3

n−1 = Blp1,...,pn−1Pn−3. This fix ideas M0,A1[n] can be realized taking

A1[n] = (1/(n− 3), ..., 1/(n− 3), 1).

PROPOSITION 7.10. For the moduli spaces M0,A1[n] Problem 7.8 admits a positive answer.

PROOF. The blow-up morphism M0,A1[n] → Pn−3 is nothing but the reduction morphism
ρ : M0,A1[n] → Pn−3 given by (1/(n − 3), ..., 1/(n − 3), 1) 7→ (1/(n − 2), ..., 1/(n − 2), 1). We
have n − 1 partitions of the type I = (ı̂, n), J = (1, ..., ı̂, ..., n − 1). The (n − 1) divisors DI,J cor-
responding to these partitions are contracted to a point by ρ and are nothing but the n − 1 ex-
ceptional divisors of the blow-up. Furthermore, we have (n−1

2 ) divisors DI,J(A) with I = {ı̂1, ı̂2},
J = {j1, ..., ı̂1, ..., ı̂2, ..., jn−3, n}, and therefore xı1 = xı2 . These divisors are mapped by ρ to the (n−1

2 )
hyperplanes spanned subsets of cardinality n− 3 of {p1, ..., pn−1}. As usual we denote by H the
pullback of the hyperplane class of Pn−3 and by E1, ..., En−1 the exceptional divisors. Then we
have

KM0,A1 [n]
= −(n− 2)H + (n− 4)(E1 + ... + En−1).

Let Hi1,...,in−3 be the strict transform of the hyperplane
〈

pi1 , ..., pin−3

〉
. Using the same notations of

Problem 7.8 we take αI,J = α for any DI,J(A) of type

I = {ı̂1, ı̂2}, J = {j1, ..., ı̂1, ..., ı̂2, ..., jn−3, n}
and αI,J = β for any DI,J(A) of type

I = (ı̂, n), J = (1, ..., ı̂, ..., n− 1).

Then
∑
I,J

αI,J DI,J(A) = α(H1,...,n−3 + ... + H3,...,n−1) + β(E1 + ... + En−1)

and since Hi1,...,in−3 = H − Ei1 − ...− Ein−3 we get

KM0,A1 [n]
+ ∑

I,J
αI,J DI,J(A) =

(
α

(
n− 1

2

)
− n + 2

)
H −

(
α

(
n− 2

2

)
− n− β + 4

) n−1

∑
i=1

Ei.
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Now, in the notations of Section 4.3 we have

(7.2) (KM0,A1 [n]
+ ∑

I,J
αI,J DI,J(A)) · Ri =

α

2
(n− 2)(n− 3)− n− β + 4,

and

(7.3) (KM0,A1 [n]
+ ∑

I,J
αI,J DI,J(A)) · Li,j =

α

2
(n− 2)(5− n) + 2β + n− 6.

In particular for α = 2
n−2 and β = 2

3 we have that both (7.2) and (7.3) are strictly positive. There-
fore, by Proposition 4.8 for α = 2

n−2 and β = 2
3 the divisor (KM0,A1 [n]

+ ∑I,J αI,J DI,J(A) is ample.

Let ρ : M0,n → M0,A1[n] be the reduction morphism obtained by composition of the blow-ups in
Construction 7.9. By Proposition 6.4 the morphism ρ is a log resolution of the pair (M0,A1[n], D),
where D = α ∑i1,...,in−3

Hi1,...,in−3 + β ∑i Ei.
We have ρh = (n−1

h+1) h-planes spanned by subsets of cardinality h + 1 of {p1, ..., pn−1}. Let Eh
j for

j = 1, ..., ρh be the exceptional divisors over them. Then we have

KM0,n
= ρ∗KM0,A1 [n]

+
n−5

∑
h=1

(n− h− 4)(Eh
1 + ... + Eh

ρh
).

Furthermore, through any such an h-plane there are (n−h−2
n−h−4) of the Hi1,...,in−3 ’s. Proceeding as in the

proof of Proposition 6.4 we may write:

ρ∗(D) =
n−5

∑
h=1

α

(
n− h− 2

2

)
(Eh

1 + ... + Eh
ρh
) + α ∑

i1,...,in−3

H̃i1,...,in−3 + β ∑
i

Ẽi

where H̃i1,...,in−3 and Ẽi are respectively the strict transforms in M0,n of Hi1,...,in−3 and Ei. Finally

KM0,n
= ρ∗(KM0,A1 [n]

+ D) + ∑n−5
h=1

(
n− h− 4− α(n−h−2

2 )
)
(Eh

1 + ... + Eh
ρh
)

−α ∑i1,...,in−3
H̃i1,...,in−3 − β ∑i Ẽi.

To conclude it is enough to observe that for α = 2
n−2 and β = 2

3 all the discrepancies are greater
than −1. Therefore the pair (M0,A1[n], D) is klt and in particular log canonical. �

Now, let us consider Construction 6.4. The moduli space M0,A1,2[n] with weights

A1,2[n] = (1/(n− 2), ..., 1/(n− 2), 2/(n− 2), 1)

is the blow-up Xn−3
n−2 = Blp1,...,pn−2Pn−3.

PROPOSITION 7.11. Problem 7.8 admits a positive answer for the moduli spaces M0,A1,2[n] as well.

PROOF. In this case the divisors DI,J are the following:
- the n− 2 exceptional divisors E1, ..., En−2,
- the strict transforms Hi1,...,in−3 of the n− 2 hyperplanes spanned by subsets of cardinality

n− 3 of {p1, ..., pn−2},
- the strict transforms Λj1,...,jn−4 of the (n−2

2 ) hyperplanes spanned by subsets of cardinality
n− 4 of {p1, ..., pn−2} and pn−1.
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We consider the divisor

D = ∑
I,J

αI,J DI,J(A) =
2

n− 2 ∑
i1,...,in−3

Hi1,...,in−3 +
2

n− 2 ∑
j1,...,jn−4

Λj1,...,jn−4 +
2
3

n−2

∑
i=1

Ei.

We proceed as in the proof of Proposition 7.10. Now, Hi1,...,in−3 = H−Ei1− ...−Ein−3 and Λj1,...,jn−4 =

H − Ej1 − ... − Ejn−4 , through each of the pi’s for i = 1, ..., n − 2 there are (n−3
n−4) = n − 3 of the

Hi1,...,in−3 ’s and (n−3
2 ) of the Λi1,...,in−3 ’s. Therefore, we may write:

D = (n− 1)H +

(
2
3
− 2(n− 3)

n− 2
− 2

n− 2

(
n− 3

2

)) n−2

∑
i=1

Ei = (n− 1)H − 3n− 11
3

n−2

∑
i=1

Ei

and

KM0,A1,2 [n]
+ D = (−n + 2 + n− 1)H +

(
n− 4 +

11− 3n
3

) n−2

∑
i=1

Ei = H − 1
3

n−2

∑
i=1

Ei.

Now, (KM0,A1,2 [n]
+D) ·Ri = (KM0,A1,2 [n]

+D) · Li,j =
1
3 and by Proposition 4.8 the divisor (KM0,A1,2 [n]

+

D) is ample.
Now, let πn−1 : Xn−3

n−1 → Xn−3
n−2 be the blow-up of pn−1 and consider the composition

M0,n Xn−3
n−1 = M0,A1[n] Xn−3

n−2 = M0,A1,2[n]
ρ πn−1

ρ̃

where ρ is the log resolution used in the proof of Proposition 7.10. Then ρ̃ is a log resolution
of the pair (M0,A1,2[n], D). Let En−1 be the exceptional divisor over pn−1, Eh

j be the γh = (n−2
h+1)

exceptional divisors over the h-planes spanned by subsets of cardinality h + 1 of {p1, ..., pn−2},
and Eh

j be the γh = (n−2
h ) exceptional divisors over the h-planes spanned by subsets of cardinality

h of {p1, ..., pn−2} and pn−1. Now, note that

- the point pn−1 is contained in any Λj1,...,jn−4 and we have (n−2
2 ) of them,

- any h-plane spanned by subsets of cardinality h + 1 of {p1, ..., pn−2} is contained in n−
h− 3 of the Hi1,...,in−3 ’s and in (n−h−3

2 ) of the Λj1,...,jn−4 ’s,
- any h-plane spanned by subsets of cardinality h of {p1, ..., pn−2} and pn−1 is contained in
(n−h−2

2 ) of the Λj1,...,jn−4 ’s.

Therefore, we have

ρ̃∗D = 2
n−2 (

n−2
2 )En−1 +

2
n−2 ∑n−5

h=1

(
n− h− 3 + (n−h−3

2 )
)
(Eh

1 + ... + Eh
γh
)+

2
n−2 ∑n−5

h=1 (
n−h−2

2 )(Eh
1 + ... + Eh

γh
) + D̃.

Now, since

KM0,n
= ρ̃∗KM0,A1,2 [n]

+ (n− 4)En−1 +
n−5

∑
h=1

(n− h− 4)(Eh
1 + ... + Eh

γh
+ Eh

1 + ... + Eh
γh
)
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we get

KM0,n
= ρ̃∗(KM0,A1,2 [n]

+ D) +
(

n− 4− 2
n−2 (

n−2
2 )
)

En−1+

∑n−5
h=1

(
n− h− 4− 2

n−2

(
n− h− 3 + (n−h−3

2 )
))

(Eh
1 + ... + Eh

γh
)+

∑n−5
h=1

(
n− h− 4− 2

n−2 (
n−h−2

2 )
)
(Eh

1 + ... + Eh
γh
)− D̃

where D̃ is the strict transform of D in M0,n. The discrepancies are all greater or equal than −1
hence the pair (M0,A1,2[n], D) is log canonical. �

Finally, we observe that for 3-fold Hassett’s spaces a little improvement is at hand. The moduli
space M0,6 is a log Fano 3-fold, see [HK]. By Proposition 1.2 it is a Mori Dream Space. See [?] for
a direct proof of this last fact and the detailed description of Cox(M0,6).

PROPOSITION 7.12. Any 3-fold Hassett’s space M0,A[6] is log Fano.

PROOF. By [Ha, Theorem 4.1] there exists a birational reduction morphism ρ : M0,6 → M0,A[6].
Now, it is enough to recall that by [HK] M0,6 is log Fano, and to apply [GOST, Corollary 1.3] to
the morphism ρ. �

An immediate consequence of Proposition 7.12 is that the following varieties are log Fano.
- The blow-up of P3 in four general points, along the strict transforms of the lines spanned

by them, and in a fifth general point. Indeed, by Construction 6.4 this variety con be
realized by taking A[6] = (1/3, 1/3, 1/3, 1/3, 1, 1).

- The blow-up of P3 in five general points, and along the strict transforms of the lines
spanned by them. By Construction 7.9 this is M0,6 itself.

- The blow-up X1 of P1
1×P1

2×P1
3 in p1 = ([0 : 1], [0 : 1], [0 : 1]), p2 = ([1 : 0], [1 : 0], [1 : 0]),

and p3 = ([1 : 1], [1 : 1], [1 : 1]). By [Ha, Section 6.3], X1 is isomorphic to M0,A2[6] with
A1[6] = (2/3, 2/3, 2/3, 1/6, 1/6, 1/6).

- Consider the projections πi : P1
1 × P1

2 × P1
3 → P1

i , and define F0 =
⋃3

i=1 π−1
i ([0 : 1]),

F1 =
⋃3

i=1 π−1
i ([1 : 0]), F∞ =

⋃3
i=1 π−1

i ([1 : 1]). Let ∆2 be the union of the 2-dimensional
diagonals of P1

1 × P1
2 × P1

3. Then we have X2 the blow-up of X1 along the strict trans-
form of ∆2 ∩ (F0 ∪ F1 ∪ F∞). By [Ha, Section 6.3], X2 can be realized taking A2[6] =
(2/3, 2/3, 2/3, 1/3, 1/3, 1/3).

- Finally, the blow-up X3 of X2 along the strict transform of the 1-dimension diagonal ∆1 of
P1

1 ×P1
2 ×P1

3. Again by [Ha, Section 6.3] this is M0,6.

PROPOSITION 7.13. Let us consider the points q1 = ([1 : 0], ..., [1 : 0]), q2 = ([0 : 1], ..., [0 : 1]),
q3 = ([1 : 1], ..., [1 : 1]) ∈ (P1)n−3. There exits a small transformation

f : Xn−3
n−1 99K Yn−3

3 = Blq1,q2,q3(P
1)n−3.

In particular, Yn−3
3 is log Fano.

PROOF. First of all, note that ρ(Xn−3
n−1) = ρ(Yn−3

3 ) = n. We may assume p1 = [1 : 0 : ... :
0], p2 = [0 : 1 : ... : 0],..., pn−2 = [0 : ... : 0 : 1], pn−1 = [1 : 1 : ... : 1]. Let us consider
Xn−3

n−2 = Blp1,...,pn−2Pn−3 and Yn−3
2 = Blq1,q2(P

1)n−3. These are both toric varieties. Let e1, ..., en−3

be the standard basis vectors of the co-character lattice of (k∗)n−3. The rays of the fan of Pn−3
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are e1, ..., en−3 and −e1 − ...− en−3. By blowing-up p1, ..., pn−2 we add the rays −e1, ...,−en−3 and
e1 + ...+ en−3. On the other hand the rays of (P1)n−3 are e1, ..., en−3,−e1, ...,−en−3, and the blow-up
of q1, q2 corresponds to introduce the two rays e1 + ... + en−3 and −e1 − ...− en−3. We see that the
toric fans of Xn−3

n−2 and Yn−3
2 are the same. Therefore, Xn−3

n−2 and Yn−3
2 are isomorphic in codimension

one.
Now, consider the points p1, ..., pn−3. We have n− 3 codimension two linear subspaces Hn−5

i1,...,in−4
=〈

pi1 , ..., pin−4

〉
. For any choice of i1, ..., in−4 we define {j1, j2} = {0, ..., n− 3} \ {i1 − 1, ..., in−4 − 1}.

Then, the projection from Hn−5
i1,...,in−4

is the rational map

πi1,...,in−4 : Pn−3 99K P1

[x0 : ... : xn−3] 7→ [xj1 : xj2 ]

We get a rational map

g : Pn−3 99K (P1)n−3

x = [x0 : ... : xn−3] 7→ (π1,...,n−4(x), ..., π2,...,n−3(x))

Note that the hyperplane W = 〈p1, ..., pn−3〉 = {xn−3 = 0} is mapped by g to the point q1 =
([1 : 0], ..., [1 : 0]) ∈ (P1)n−3. Furthermore, this is the only divisor contracted by g. Therefore,
blowing-up q1 ∈ (P1)n−3 we get a small transformation g1 : Xn−3

n−3 = Blp1,...,pn−3Pn−3 99K Yn−3
1 =

Blq1(P
1)n−3 fitting in the following diagram:

Xn−3
n−3 Yn−3

1

Pn−3 (P1)n−3

g1

g
ψ1φn−3

Note that g1 maps the strict transform W̃ of W to the exceptional divisor Eq1 , while the exceptional
divisors Ep1 , ..., Epn−3 are mapped to the strict transforms of the n− 3 divisors in (P1)n−3 obtained
by fixing one the factors.
Furthermore, g([0 : ... : 0 : 1]) = ([0 : 1], ..., [0 : 1]) and g([1 : ... : 1]) = ([1 : 1], ..., [1 : 1]).
Let U ⊂ Xn−3

n−3 and V ⊂ Yn−3
1 be the two open subsets on which g1 is an isomorphism. Now,

by applying the universal property of the blow-up [Har, Corollary 7.15] we get that g1|U lifts to
an isomorphism f : Blpn−2,pn−1U → Blq2,q3V . Since g1 is an isomorphism in codimension one we
conclude that f induces a small transformation f : Xn−3

n−1 99K Yn−3
3 mapping Epn−2 to Eq2 , and Epn−3

to Eq3 .
To conclude that Yn−3

3 is log Fano it is enough to recall that by Theorem 6.5 Xn−3
n−1 is log Fano, and

to apply Lemma 1.15 to the small map f : Xn−3
n−1 99K Yn−3

3 . �

Finally, we observe that by [Ha, Section 6.3] the variety Yn−3
3 = Blq1,q2,q3(P

1)n−3 can be inter-
preted as an Hassett’s space M0,A[n] with A[n] = ( 2

3 , 2
3 , 2

3 , 1
3(n−4) , ..., 1

3(n−4) ).

8. M0,6 is weak Fano

In order to understand the intersection numbers appearing in this section it is useful to keep
in mind Section 2. Let us recall the Krapranov’s blow-up construction of M0,6.

CONSTRUCTION 8.1. Let p1, ..., p5 ∈ P3 be points in linear general position. We consider:
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- π1 : X → P3 the blow-up of p1, ..., p5,
- π2 : Y → X the blow-up of the strict transforms of the lines

〈
pi, pj

〉
, i, j = 1, ..., 5,

Then Y ∼= M0,6, and the morphism f6 = π1 ◦ π2 : M0,6 → P3 is induced by the psi-call Ψ6 on M0,6.

By [KMc, Theorem 1.2] the Mori Cone NE(M0,6) of M0,6 is generated by classes of vital curves.
Let us denote by Ei and Ei,j the exceptional divisors over pi and the strict transform of

〈
pi, pj

〉
respectively.
In the first blow-up X the strict transforms of the lines

〈
pi, pj

〉
intersects the exceptional divisor

Ei over pi in four points qj for j 6= i. Therefore, after blowing-up all the strict transforms of the
lines the divisor Ei in M0,6 is isomorphic to the blow-up of P2 in four points. We denote by Li

h,k
the strict transform in Ei of the line spanned by qh and qk, and by Ri

h the exceptional divisor over
qh. So, in any exceptional divisor, we get 10 vital curves: 6 of type Li

h,k and 4 of type Ri
h.

Now, for any line
〈

pi, pj
〉
⊂ P3 we have three planes

〈
pi, pj, pk

〉
for k 6= i, j containing this line.

The strict transforms of the three planes intersects the exceptional divisor Ei,j in three vital curves
σk

i,j. Therefore, we have (5
2) · 3 = 30 of them.

Note that Ri
j is numerically equivalent to Rj

i for any i, j because the are fibers of the same ruling
of Ei,j. Furthermore, the σk

i,j’s for k 6= i, j are all numerical equivalent because they are fibers of
the other ruling of Ei,j. We conclude that NE(M0,6) is a polyhedral cone generated by 50 extremal
rays.

LEMMA 8.2. For any i we have:

H2 · Ei = H · E2
i = 0, E3

i = 1.

Furthermore H · E2
i,j = −1, H2 · Ei,j = 0 for any i, j, and

Ei · E2
h,k =

{
−1 i f i ∈ {h, k},
0 i f i /∈ {h, k}.

Finally E2
i · Eh,k = 0 for any i, h, k.

PROOF. We will denote by Ei both the exceptional divisor over pi in X and its strict transform
in Y. Let Hi be the strict transform of a general plane through pi. Then Hi = H − Ei and H3

i =
H3 − 3H2 · Ei + 3H · E2

i − E3
i , H3

i = H2 · Ei = H · E2
i = 0 yield E3

i = H3 = 1.
Now, let us consider the following diagram:

Ei,j Y

Li,j X

j

i
ππE

where πE = π|Ei,j
. We have (H − Ei,j)

2 = H3 − H2 · (H − Ei,j) = 0. Therefore,

H · E2
i,j = π∗H · j∗E2

i,j = j∗(E2
i,j · π∗Ei∗H) = −1,

H2 · Ei,j = π∗H2 · j∗Ei,j = j∗(Ei,j · π∗Ei∗H2) = 0,
Ei · E2

i,j = π∗Ei · E2
i,j = j∗(E2

i,j · π∗Ei∗Ei) = −1,
E2

i · Ei,j = π∗E2
i · Ei,j = j∗(Ei,j · π∗Ei∗E2

i ) = 0.
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Finally (H − Ei,j)
3 = H3 − 3H2 · Ei,j + 3H · Ei,j − E3

i,j = H3
i,j = 0 yields E3

i,j = −2. �

PROPOSITION 8.3. The moduli space M0,6 is weak Fano.

PROOF. The anti-canonical bundle is given by

−KM0,6
= 4H − 2

5

∑
i=1

Ei −
5

∑
i,j=1

Ei,j.

First we consider the curves of type Li
h,k. We have

Li
h,k · Et =

{
−1 i f i = t,
0 i f i 6= t.

Furthermore,

Li
h,k · Es,t =

{
1 if s=i and t ∈ {h,k},
0 otherwise.

Finally, Li
h,k · H = 0, and

−KM0,6
· Li

h,k = −2(−1)− (1 + 1) = 0.

Now, let us consider a curve of type Ri
j. Then Ri

j · H = Ri
j · Ek = 0 for any i, j, k, and

Ri
j · Eh,k =

{
−1 if {i,j} = {h,k},
0 otherwise.

This yields
−KM0,6

· Ri
j = 1.

Finally, we consider a curve of type σi,j. Note that the normal bundle of the strict transform of
a line Li,j =

〈
pi, pj

〉
is NLi,j = OP1(−1) ⊕OP1(−1). Therefore, OEi,j(Ei,j) = OEi,j(−1,−1). This

yields

σi,j · Eh,k =

{
−1 if {i,j} = {h,k},
0 otherwise.

Furthermore σi,j · H = 1 and

σi,j · Eh =

{
1 if h ∈ {i,j},
0 otherwise.

Therefore
−KM0,6

· σi,j = 4− 2(1 + 1)− (−1) = 1.

This means that −KM0,6
is nef. Now, by the formulas in Lemma 8.2 we get that (−KM0,6

)3 > 0
which implies that −KM0,6

is big. �
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