
MODULI OF STABLE MAPS, GROMOV-WITTEN INVARIANTS AND

QUANTUM COHOMOLOGY

ALEX MASSARENTI

Abstract. We introduce moduli spaces of stable maps Mg,n(X,β) for a projective scheme
X. Then we de�ne Gromov-Witten invariants as integral on the virtual fundamental class of
Mg,n(X,β) and list their fundamental axioms. Finally we introduce big and small quantum
cohomology in relations to Gromov-Witten invariants, and study its properties such as the
associativity of the quantum product in relation to WDV V equations.
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Introduction

In symplectic topology and algebraic geometry, Gromov-Witten invariants are rational numbers
that, in certain situations, count holomorphic curves. The Gromov-Witten invariants may be pack-
aged as a homology or cohomology class, or as the deformed cup product of quantum cohomology.
These invariants have been used to distinguish symplectic manifolds that were previously indistin-
guishable. They also play a crucial role in string theory. They are named for Mikhail Gromov and
Edward Witten.
Gromov-Witten invariants are of interest in string theory. In this theory the elementary particles
are made of tiny strings. A string traces out a surface in the spacetime, called the worldsheet of the
string. The moduli space of such parametrized surfaces, at least a priori, is in�nite-dimensional;
no appropriate measure on this space is known, and thus the path integrals of the theory lack a
rigorous de�nition. However in a variation known as closed A model topological string theory there
are six spacetime dimensions, which constitute a symplectic manifold, and it turns out that the
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worldsheets are necessarily parametrized by pseudoholomorphic curves, whose moduli spaces are
only �nite-dimensional. Gromov-Witten invariants, as integrals over these moduli spaces, are then
path integrals of the theory.
The appropriate moduli spaces were introduced by M. Kontsevich in [Ko], these space are denoted
by Mg,n(X,β) where X is a projective scheme, and parametrizes holomorphic maps from a n-
pointed genus g curves to X whose image has homology class β. If X is a homogeneous variety
the M0,n(X,β) is a normal, projective variety of pure dimension. Furthermore if X = PN then

M0,n(PN , d) is irreducible. On the other hand when g > 1, and even when g = 0 for most schemes

X 6= PN the spaceMg,n(X,β) may have many components of dimension greater that the expected
dimension. To overcome this gap and give a rigorous de�nition of Gromov-Witten invariants J.
Li, G. Tian in [LT1], [LT2], and K. Behrend, B. Fantechi in [BF] introduce the notions of virtual
fundamental class and virtual dimension.
Recently F. Poma in [Po], using intersection theory on Artin stacks developed by A. Kresch in
[Ke], constructed a perfect obstruction theory leading to a virtual class and then to a rigorous
de�nition of Gromov-Witten invariants in positive and mixed characteristic, satisfying the axioms
of Gromov-Witten invariants given by M. Kontsevich and Y. Manin in [KM], and the WDV V
equations.
The Gromov-Witten potential, which as a function encoding the information carried by Gromov-
Witten invariants, satis�es WDV V equations. This is equivalent to the associativity of the quan-
tum product. As a consequence turns out that the quantum cohomology ring QH∗X to is a
supercommutative algebra, and the complex cohomology H∗(X,C) has a structure of Frobenius
manifold.

1. Moduli of Stable Maps

Let X be a projective variety, β ∈ H2(X,Z) be a homology class, and Z1, ..., Zn ⊂ X cycles in
general position. We want to study the following set of curves

(1.1) {C ⊂ X of genus g, homology β, and C ∩ Zi 6= ∅ for any i}.

In [Ko] M. Kontsevich observed that the curve C ⊂ X should be replaced by a pointed curve
(C, {x1, ..., xn}) and a holomorphic map f : C → X such that f(xi) ∈ Zi for any i = 1, ..., n. The
key idea, in order to give an algebraic de�nition of Gromov-Witten classes and invariants, is to
introduce a suitable compacti�cation done by stable maps of the space of curves 1.1.

De�nition 1.1. An n-pointed, genus g, quasi-stable curve [C, {x1, ..., xn}] is a projective, con-
nected, reduced, at most nodal curve of arithmetic genus g, with n distinct, and smooth marked
points.
A family of n-pointed genus g quasi-stable curve parametrized by a scheme S over C is a �at, projec-
tive morphism π : C → S, with n-sections x1, ..., xn : S → C, such that the �ber [Cs, {x1(s), ..., xn(s)}]
is a n-pointed, genus g, quasi-stable curve, for any geometric point s ∈ S.

Let X be a scheme over C. A family of maps over S to X is a collection

(π : C → S, {x1, ..., xn}, α : C → X)

such that

- (π : C → S, {x1, ..., xn}), is a family of n-pointed genus g quasi-stable curve parametrized
by S.

- α : C → X is a morphism.

The families (π : C → S, {x1, ..., xn}, α) and (π
′

: C′ → S, {x′1, ..., x
′

n}, α
′
) are isomorphic if there

is a isomorphism of schemes ϕ : C → C′ such that π = π
′ ◦ ϕ, x′i = ϕ ◦ xi for any i = 1, ..., n, and

α = α
′ ◦ ϕ.
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Let (C, {x1, ..., xn}, α) be a map from an n-pointed genus g curve to X, the special points of an

irreducible component E ⊆ C are the marked points of C on E and the points in E ∩ C \ E.

De�nition 1.2. A map (C, {x1, ..., xn}, α) from an n-pointed genus g quasi-stable curve to X is
stable if:

- any component E ∼= P1 of C contracted by α contains at least three special points,
- any component E ⊆ C of arithmetic genus 1 contracted by α contains at least one special
point.

A family (π : C → S, {x1, ..., xn}, α) is stable if each geometric �ber is stable.

Remark 1.3. In the case X = PN the map (π : C → S, {x1, ..., xn}, α) is stable if and only if
ωC/S(x1 + ...+ xn)⊗ α∗(OPN (3)) is π-ample.

Let X be a scheme over C, and let β ∈ A1X. To any scheme S over C we associate the set of
isomorphism classes of stable families (π : C → S, {x1, ..., xn}, α) parametrized by S of n-pointed
genus g curves to X such that α∗(Cs) = [β], where [β] denotes the fundamental class of β. In this
way we get a controvariant functor

Mg,n(X,β) : Schemes→ Sets.

If X is a projective scheme over C then there exists a projective scheme Mg,n(X,β) coarsely

representing the functorMg,n(X,β), [FP, Theorem 1]. The spaces Mg,n(X,β) are called moduli
spaces of stable maps, or Kontsevich moduli spaces.
Recall that a smooth variety X is said to be convex if H1(P1, α∗TX) = 0 for any morphism
α : P1 → X.

Remark 1.4. The tangent bundle of an homogeneous variety is generated by global section, so it
is convex. On the other hand to be convex for an uniruled variety is a strong condition, as instance
the blow-up of a convex variety is not convex.

Let X be a projective, nonsingular, convex variety, then M0,n(X,β) is a normal, projective
variety of pure dimension

dim(X) +

∫
β

c1(TX) + n− 3.

Furthermore M0,n(X,β) is locally a quotient of a nonsingular variety by a �nite group, that is

M0,n(X,β) has at most �nite quotient singularities, [FP, Theorem 2].

In the special case X = PN we have β ∼ d[line] for some integer d and the scheme M0,n(PN , d) is
irreducible.

Examples. In the following we give a list of examples in which moduli of stable maps have a clear
geometric description.

- The moduli space of stable maps to a point is isomorphic to the moduli space of curves

Mg,n(P0, 0) ∼= Mg,n.

For the space of degree zero stable maps we have

Mg,n(X, 0) ∼= Mg,n ×X.
- The moduli space of degree one maps to PN is the Grassmannian

M0,0(PN , 1) ∼= G(1, N),

and similarly the moduli space of degree one maps to a smooth quadric hypersurface
Q ⊂ PN , with N > 3, is the orthogonal Grassmannian

M0,0(Q, 1) ∼= OG(1, N).
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- The Kontsevich moduli space M0,0(P2, 2) is isomorphic to the space of complete conics
that is to the blow up of the P5 parametrizing conics in P2 along the Veronese surface V
of double lines

M0,0(P2, 2) ∼= BlV P5.

- Consider now M1,0(P2, 3). Smooth plane cubic are parametrized by an open subset of
P9 = P(k[x0, x1, x2]3). On the other hand we have maps from a reducible curve with
a component of genus zero and a component of genus one, contracting the genus one
component and of degree three on the genus zero component.

For any curve of genus one we have a 1-dimensional choice for the genus zero component,
namely the connecting node. So we get a component of dimension 10 of M1,0(P2, 3).
Finally we have curve with three component: an elliptic curve and two rational tails. The
map contracts the elliptic curve and maps the rational tails to a line and a conic.

Here we have a 2-dimensional choice for the two nodes on the elliptic curve, a 2-dimensional
choice for the line, and a 5-dimensional choice for the conic. We conclude that M1,0(P2, 3)
has three irreducible component: two of dimension 9 and one of dimension 10.

- Let X ⊂ P7 be a smooth degree seven hypersurface containing a P3. Writing down an
explicit equation for X one can see that M0,0(X, 2) has two irreducible component: one
component is 5-dimensional and cover X, the second component parametrizes conics in
the P3 and so has dimension 5 + 3 = 8.
Generalizing this construction one can show that M0,0(X, 2) can have a component of
dimension arbitrary larger that the dimension of the main component even if X is a Fano
hypersurface in PN .

Natural maps. Kontsevich moduli spaces, as moduli spaces of curves, admits natural morphisms.

- Forgetful morphisms

πI : Mg,n(X,β)→Mg,n−||I|(X,β),

forgetting the the points marked by I = i1, ..., ij for h 6 n.
- Evaluation morphisms

evi : Mg,n(X,β)→ X,

mapping (C, {x1, ..., xn, α}) to α(xi).
- If 2g + n− 3 > 0 we have morphisms forgetting the map α,

ρ : Mg,n(X,β)→Mg,n.
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1.1. The stack Mg,n(X,β). In this section we follow the clear and detailed discussion worked
out by F. Poma in [Po]. The construction of the moduli of stable maps can be transposed into the
realm of algebraic stacks. Let k be a �eld. Consider the functor

F : Schemes/k → Groupoids,

associating to a scheme S the groupoids F(S) of �at projective families π : C → S of nodal curves
of genus g,

C X

S

α

πsi

where si are disjoint smooth sections of π, α∗[Cs] = β for any �ber Cs = π−1(s), and Aut(C,α, π, si)
is �nite over S.

Theorem 1.5. (Abramovich-Oort '01) There exists a proper algebraic stack Mg,n(X,β) of �nite
type over k which represents F .

Theorem 1.6. (Kontsevich '95, Behrend-Fantechi '97) If char k = 0, then Mg,n(X,β) is of
Deligne-Mumford type.

Recall that a Dedekind domain D is an integral domain which is not a �eld, satisfying one of
the following equivalent conditions:

- D is noetherian, and the localization at each maximal ideal is a Discrete Valuation Ring.
- D is an integrally closed, noetherian domain with Krull dimension one.
- Every nonzero proper ideal of D factors into primes ideals.
- Every fractional ideal of D is invertible.

Example 1.7. Let C be an a�ne smooth curve over a �eld k. The coordinate ring A(C) of C
is a �nitely generated k-algebra, and so noetherian, it has dimension one since C is a curve, one
and being C smooth and so normal means that A(C) is integrally closed. So A(C) is a Dedekind
domain.

Consider now the functor

FD : Schemes/D → Groupoids,

exactly de�ned as F but from the category of schemes over a Dedekind domain D.

Theorem 1.8. (Abramovich-Oort '01) There exists a proper algebraic stack Mg,n(X,β) of �nite
type over D which represents FD.

In the case char k = p, in generalMg,n(X,β) is a proper Artin stack. As instance consider the

element (P1, α) ∈M0,0(P1, p) given by

α : P1 → P1, [x0, x1] 7→ [xp0, x
p
1].

Then Aut(P1, α) = µp = Spec k[ξ]/(ξp − 1) = Spec k[ξ]/(ξ − 1)p, which is not reduced over Spec k.

However even in the characteristic p case the stackMg,n(X,β) is a global quotient stack and the
functor

θ :Mg,n(X,β)→Mg,n

is representable. This led A. Kresch to de�ne an intersection theory for Artin stacks over a �eld
[Kr].
Recall that a ring of mixed characteristic is a commutative ring R having characteristic zero,
having an ideal I such that R/I has positive characteristic. As instance the ring of integers Z have
characteristic zero, and for any prime number p, Z/(p) is a �nite �eld of characteristic p.
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Recently F. Poma in [Po] extended the construction of the virtual fundamental class ofMg,n(X,β)
in [BF] to schemes in positive and mixed characteristic. This lead to a rigorous de�nition of
Gromov-Witten invariants for these classes of schemes.

1.2. Virtual dimension of Mg,n(X,β). If X is a homogeneous variety then it is smooth and its

tangent bundle is generated by global sections, in particular X is convex. In this case M0,n(X,β)

is a normal, projective variety of pure dimension. Furthermore if X = PN then M0,n(PN , d) is
irreducible. On the other hand when g > 1, and even when g = 0 for most schemes X 6= PN the
space Mg,n(X,β) may have many components of dimension greater that the expected dimension.
To overcome this gap and to give a rigorous de�nition of Gromov-Witten invariants we have to
introduce the notions of virtual fundamental class and virtual dimension.

1.2.1. The normal cone. In this section we follow [BF]. Let E be a rank r vector bundle on a
smooth variety Y , s ∈ H0(E) a section, and Z = Z(s) ⊂ Y the zero scheme of s. As s varies Z can
become reducible or even of non pure dimension. Let I be the ideal sheaf of Z in Y , the normal
cone of Z in Y is the a�ne cone over Z de�ned by

CZY = Spec(

∞⊕
k=0

Ik/Ik+1).

Note that the CZY has pure dimension n = dimY . Multiplication by s induces a surjective map⊕
k

Symk(O(E∗/IO(E∗)))→
⊕
k

Ik/Ik+1,

and applying Spec we get an embedding

CZY → E|Z .

The normal cone gives a class [CZY ] ∈ An(E|Z), so we have s∗[CZY ] ∈ An−r(Z).
Let M be a Deligne-Mumford stack. Since M admits an étale open cover by schemes we can
consider a scheme U and take an embedding U ↪→ W , where W is a smooth scheme. Now,
consider the ideal sheaf I of U in W , and form the normal cone CUW . The di�erentiation map⊕

k

Ik → Ω1
W , f 7→ df

induces a map ⊕
k

Ik/Ik+1 →
⊕
k

Symk(Ω1
W /IΩ1

W ),

�nally applying Spec we get a map

TW |U = Spec(
⊕
k

Symk(Ω1
W /IΩ1

W ))→ CUW.

The intrinsic normal cone CU is de�ned as the stack quotient [CUW/TW |U ]. Now, given an étale
open cover {Ui} ofM the intrinsic normal cones CUi glue to give the intrinsic normal cone CM of
M.
If L•M is the cotangent complex ofM, an obstruction theory forM is a complex of sheaves E• on
M with a morphism E• → L•M, which is an isomorphism on h0 and a surjection on h−1.
Given an arbitrary complex E• we de�ne h1/h0(E•) to be the quotient stack of the kernel of
E1 → E2 by the cokernel of E−1 → E0.
By the de�nition of perfect obstruction theory the intrinsic normal cone CM embeds in h1/h0((E•)∗).
Let C be the �ber product of (E−1)∗ with CM over h1/h0((E•)∗), where O(E−1) = E−1. This is
a cone contained in the vector bundle (E−1)∗. The virtual fundamental class is de�ned to be the
intersection of C with the zero section of (E−1)∗.
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In this part we mainly follow [De] and [Po]. Let X be a smooth connected projective scheme,
Mg,n the Artin stack parametrizing pre-stable n-pointed genus g connected nodal curves, and C
its universal curve. We de�ne an algebraic stack Mor(C,X) as follows:

- for any scheme S objects in Mor(C,X)(S) are pre-stable curves (CS → S, si) over S with
a morphism fS : CS → X,

- for any scheme S a morphism from (CS → S, si) to (C
′

S → S, s
′

i) is an isomorphism α of

pre-stable curves such that f
′

S ◦ α = fS .

There is a natural functor θ : Mor(C,X)→Mg,n forgetting the map toX, furthermoreMg,n(X,β)

is an open substack of Mor(C,X). The �ber product C ×Mg,n Mor(C,X) is an universal family
for Mor(C,X) and we have the following commutative diagram

C C X

Mg,n(X,β) Mor(C,X)

πsi si

ψ

π

ψ

where C = C ×Mor(C,X)Mg,n(X,β) is the universal stable map.

It turns out that considering the complex F • = (Rπ∗ψ
∗
TX)∗ we get a vector bundle stack

h1/h0(F •). Similarly E• = (Rπ∗ψ
∗TX)∗ gives a perfect obstruction theory for θ, and so a virtual

fundamental class forMg,n(X,β).

In what follows we try to understand more concretely the tangent and the obstruction spaces to
Mor(Y,X), where X,Y are projective varieties over a �eld. The schemeMor(Y,X) of parametriz-
ing morphisms Y → X is a locally noetherian scheme having countably many components. However
�xing an ample divisor H on X we can consider the scheme Mor(P )(Y,X) parametrizing mor-
phism Y → X with �xed Hilbert polynomial P (m) = χ(Y,mf∗H). This is a quasi-projective
scheme.
The tangent space T[f ]Mor(Y,X) in a point [f ] ∈Mor(Y,X) parametrizes morphisms Spec k[ε]/(ε2)→
Mor(Y,X), and hence k[ε]/(ε2)-morphisms

fε : Y × Spec k[ε]/(ε2)→ X × Spec k[ε]/(ε2),

which should be interpreted as �rst order deformations of f .

Proposition 1.9. Let X,Y be projective varieties. The tangent space to Mor(Y,X) in a point [f ]
is given by

T[f ]Mor(Y,X) = H0(Y,Hom(f∗ΩX ,OY )).

Proof. Assume X = Spec(A), Y = Spec(B) to be a�ne, where A,B are �nitely generated k-
algebras. Let f ] : A → B be the morphism induced by f . We are looking for k[ε]/(ε2)-
algebras homomorphisms f ]ε : A[ε] → B[ε] of the type f ]ε (a) = f ](a) + εg(a). Notice that the

since f ]ε (aa
′
) = f ]ε (a)f ]ε (a

′
) we get εg(aa

′
) = (f ](a) + εg(a))(f ](a

′
) + εg(a

′
)) − f ](a)f ](a

′
) =

ε(f ](a)g(a
′
) + f ](a

′
)g(a)). Then f ]ε (aa

′
) = f ]ε (a)f ]ε (a

′
) is equivalent to

g(aa
′
) = f ](a)g(a

′
) + f ](a

′
)g(a),

that is g : A → B is a k-derivation of the A-module B and then it has to factorize as g : A →
ΩA → B. Such extensions are therefore parametrized by HomA(ΩA, B) = HomB(ΩA ⊗A B,B).
In general cover X by open a�ne Ui = Spec(Ai) and Y by open a�ne Vi = Spec(Bi) such that
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f(Vi) ⊆ Ui. By the previous part of the proof �rst order deformations of f|Vi are parametrized

by hi ∈ HomBi(ΩAi ⊗Ai Bi, Bi) = H0(Vi,Hom(f∗ΩX ,OY )). To glue these together we need the
compatibility condition hi|Vij = hj|Vij which means that the collection {hi} de�nes a global section
on Y . �

Notice that when X is smooth along the image of f we have

T[f ]Mor(Y,X) = H0(Y, f∗TX).

Furthermore when Y is smooth H0(Y, TY ) is the tangent space to the automorphisms group of Y
at the identity, its element are called in�nitesimal automorphisms. The images of the morphism
H0(Y, TY )→ H0(Y, f∗TX) parametrizes deformation of f by reparametrizations.

Let 0 7→ I → R → R/I 7→ 0 be a semi-small extension in the category of local artinian k-
algebras. That is I ⊆ M and IM = 0, where M is the maximal ideal of R. Let f : Y → X
be a morphism. Assume as before X,Y a�ne. Since X is smooth along the image of f and
I2 = 0 by the in�nitesimal lifting property [Ha, Exercise 8.6 - Chap 2], there exists a lifting of

f ]R/I : A ⊗k R/I → B ⊗k R/I to a morphism f ]R : A ⊗k R → B ⊗k R, and two di�erent liftings

di�er by an R-derivation A⊗k R→ B ⊗k I, that is by an element of H0(Y, f∗TX)⊗k I.
In the general case we need to glue two extensions hi, hj on each Vi ∩ Vj . These two extension
di�ers by an element νij ∈ H0(Vi ∩ Vj , f∗TX) ⊗k I. We have νijhi|Vij = hj|Vij . On the triple
intersection Vi ∩ Vj ∩ Vk we have νjkνijhi|Vijk = νjkhj|Vijk = hk|Vijk = νikhi|Vijk . So νik = νjkνij
and the collection {νij} ∈ C1({Vi}, f∗TX ⊗k I) is a cocycle. We have a global lifting if and only if
νij = 0, and the obstruction space is H1(Y, f∗TX)⊗ I.

Locally around a point [f ] ∈Mor(Y,X) the spaceMor(Y,X) can be de�ned by a set of polynomial
{Pi} is some a�ne space AN . The rank r of the Jacobian J(Pi) is the codimension of the Zariski
tangent space T[f ]Mor(Y,X) ⊆ kN . Let V be a variety de�ned by r equations among the Pi for
which the corresponding rows in the Jacobian have rank r, then V is smooth at [f ] and has the
same Zariski tangent space of Mor(Y,X). By 1.9 the variety V has dimension h0(Y, f∗TX) in [f ].
We want to show that in the regular local ring R = OV,[f ] the ideal I of regular functions vanishing

on Mor(Y,X) can be generated by h1(Y, f∗TX) elements.
Since the Zariski tangent spaces are the same the ideal I is contained in the square of the maximal
ideal M of R. Furthermore by Nakayama's lemma it is enough to show that the k-vector space
I/MI has dimension at most h1.
The morphism Spec(R/I) → Mor(Y,X) corresponds to an extension fR/I : Y × Spec(R/I) →
X × Spec(R/I) of f . We know that the obstruction to lift this extension to an extension fR/MI :
Y × Spec(R/MI)→ X × Spec(R/MI) lies in

H1(Y, f∗TX)⊗k I/MI.

Let
∑h1

i=1 ai ⊗ bi be the obstruction, where bi ∈ I. Since the obstruction vanishes modulo the
ideal (b1, ..., bh1) the morphism Spec(R/I) → Mor(Y,X) lifts to a morphism Spec(R/MI +
(b1, ..., bh1)) → Mor(Y,X). In other words the identity R/I → R/I factors through the pro-
jection as R/I → R/MI + (b1, ..., bh1) → R/I. Then I = MI + (b1, ..., bh1), which means that
I/MI is generated by the classes of b1, ..., bh1 .

Remark 1.10. Locally around [f ] the space Mor(Y,X) can be de�ned by at most h1(Y, f∗TX)
equations in a smooth variety of dimension h0(Y, f∗TX). In particular any irreducible component
of Mor(Y,X) through [f ] has dimension at least

h0(Y, f∗TX)− h1(Y, f∗TX).
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The equations de�ning Mor(Y,X) in a locally around [f ] can intersect badly so that the actual
dimension is not the expected one. My naive way of understanding the deformation to the normal
cone and the virtual fundamental class is to imagine a deformation of these equations that make
the intersection transverse. If there is such a deformation, which formally means that exists a
perfect obstruction theory, then the object we obtain would be a virtual fundamental class.

Spectral sequence of Ext functors. Let E ∈ Coh(X) be a coherent sheaf on a scheme X. Consider
the functor

Hom(E ,−) : Coh(X)→ Coh(X), Q 7→ Hom(E ,Q),

and the global section functor

ΓX : Coh(X)→ Ab, Q 7→ ΓX(Q).

Note that ΓX ◦ Hom(E ,−) = Hom(E ,−). By Grothendieck spectral sequence we have (RhΓX ◦
RkHom(E ,−))(Q) =⇒ Rh+k(Hom(E ,−)(Q) for any Q ∈ Coh(X), that is

Hh(X, Extk(E ,Q)) =⇒ Exth+k(E ,Q).

The corresponding sequence of low degrees is

0 7→ H1(X,Hom(E ,Q))→ Ext1(E ,Q)→ H0(X, Ext1(E ,Q))→ H2(X,Hom(E ,Q))→ Ext2(E ,Q).

Theorem 1.11. Let X be a smooth projective variety. The virtual dimension of the moduli space
Mg,n(X,β) is given by

virdim(Mg,n(X,β)) = (1− g)(dim(X)− 3)−
∫
β

ωX + n.

Proof. Consider the stable map (C, {x1, ..., xn}, α}) ∈Mg,n(X,β). Let Def(C, {x1, ..., xn}, α}) be
the space of �rst order deformations of (C, {x1, ..., xn}, α}), and let Defα(C, {x1, ..., xn}, α}) be
the space of �rst order deformations with C held rigid. There is an exact sequence

0 7→ Def(C, {x1, ..., xn})→ Def(C, {x1, ..., xn}, α})→ Defα(C, {x1, ..., xn}, α}) 7→ 0.

Note that since (C, {x1, ..., xn}, α}) is stable it does not have in�nitesimal automorphisms, and
this gives the injectivity of the map on the left.

- First we compute the dimension of Def(C, {x1, ..., xn}). The curve C is a stable nodal
curve. By 1.2.1 we have a sequence

0 7→ H1(C,Hom(ΩC ,OC))→ Ext1(ΩC ,OC)→ H0(C, Ext1(ΩC ,OC)) 7→ 0,

there being no H2 on a curve. We denote by δ the number of nodes in C. Since the sheaf
ΩC is locally free on the smooth locus of C, the sheaf Ext1(ΩC ,OC)) is just k at each
node, then dim(H0(C, Ext1(ΩC ,OC))) = δ. The curve C is l.c.i, then the dualizing sheaf
ωC is an invertible sheaf, and since ωC ∼= ΩC on the open set of regular points, we have an
injective morphism ωˇ

C → Hom(ΩC ,OC), and an exact sequence

0 7→ ωˇ
C → Hom(ΩC ,OC)→ OZ 7→ 0,

where Z = Sing(C). Since C is stable h0(Hom(ΩC ,OC)) = 0, by the cohomology exact
sequence we get h0(ωˇ

C) = 0, and

0 7→ H0(C,OZ)→ H1(C,ωˇ
C)→ H1(Hom(ΩC ,OC)) 7→ 0.

By Riemann-Roch for singular curves we get h1(ωˇ
C) = 3g − 3, and since h0(OZ) = δ we

get h1(Hom(ΩC ,OC)) = 3g − 3− δ. Finally
dim(Ext1(ΩC ,OC)) = h1(TC) + h0(Ext1(ΩC ,OC)) = 3g − 3− δ + δ = 3g − 3.

and
dimDef(C, {x1, ..., xn}) = 3g − 3 + n.
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- By Remark 1.10 the expected dimension ofDefα(C, {x1, ..., xn}, α}) is h0(α∗TX)−h1(α∗TC).
By Riemann-Roch theorem we get

expdimDefα(C, {x1, ..., xn}, α}) = h0(α∗TX)−h1(α∗TC) = χ(α∗TC) = −KX ·α∗C+(1−g) dim(X).

We conclude that

expdimDef(C, {x1, ..., xn}, α}) > −KX · α∗C + (1− g) dim(X) + 3g − 3 + n,

and the virtual dimension of Mg,n(X,β) is given by

virdim(Mg,n(X,β)) = −KX ·α∗C+(1−g) dim(X)+3g−3+n = (1−g)(dim(X)−3)−
∫
β

ωX +n.

�

2. Gromov-Witten Invariants

Let X be a projective variety, β ∈ H2(X,Z) be a homology class, and Z1, ..., Zn ⊂ X cycles in
general position. We want to study the following set of curves

{C ⊂ X of genus g, homology β, and C ∩ Zi 6= ∅ for any i}.
In [Ko] M. Kontsevich observed that the curve C ⊂ X should be replaced by a pointed curve
(C, {x1, ..., xn}) and a holomorphic map f : C → X such that f(xi) ∈ Zi for any i = 1, ..., n. The
idea is that Gromov-Witten classes should give a subset of Mg,n which in turn gives a cohomology

class in H∗(Mg,n,Q). Here we use rational cohomology because Mg,n exists as a smooth Deligne-
Mumford stack that is as a smooth orbifold when 2g + n− 3 > 0.
Let α1, ..., αn ∈ H∗(X,Q) be the cohomology classes dual to Z1, ..., Zn. The Gromov-Witten class

Ig,n,β(α1, ..., αn) ∈ H∗(Mg,n,Q)

is supposed to be the cohomology class represented by the set of pointed curves

(2.1) {(C, {x1, ..., xn}) genus g, homology β, and f(xi) ∈ Zi for any i}.
From this point of view Gromov-Witten classes are a system of maps

Ig,n,β : H∗(X,Q)⊗n → H∗(Mg,n,Q).

When Ig,n,β(α1, ..., αn) has a component of top degree in H∗(Mg,n,Q) we de�ne a Gromov-Witten
invariant as

〈Ig,n,β〉 (α1, ..., αn) =

∫
Mg,n

Ig,n,β(α1, ..., αn).

Intuitively in this case 2.1 should consist of �nitely many curves and 〈Ig,n,β〉 (α1, ..., αn) would
be the number of such curves. Nevertheless Gromov-Witten invariants may be rational or even
negative, so their enumerative meaning is not always straightforward.

2.1. Rigorous de�nition of Gromov-Witten invariants. The are two construction of the vir-
tual fundamental class: one given by J. Li and G. Tian in [LT1], and the other by K. Behrend,
B. Fantechi in [BF]. Even in the algebraic setting there are two de�nitions of Gromov-Witten
invariants. However it turns out that these two construction are equivalent. In the symplectic case
these invariants were de�ned by J. Li and G. Tian in [LT2].
Now we have the virtual fundamental class ξ = [Mg,n(X,β)]vir, and we can give a rigorous de�ni-
tion of Gromov-Witten classes and invariants. Consider the following maps:

Mg,n(X,β) Xn ×Mg,n

Xn Mg,n

p2p1

π :=ev1×...×evn×ρ
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De�nition 2.1. Let β ∈ H2(X,Z) be a homology class and α1, ..., αn ∈ H∗(X,Q) be cohomology
classes.

- If 2g + n− 3 > 0, the Gromov-Witten class Ig,n,β(α1, ..., αn) ∈ H∗(Mg,n,Q) is de�ned by

Ig,n,β(α1, ..., αn) = PD−1p2∗(p
∗
1(α1 ⊗ ...⊗ α2) ∩ π∗(ξ)),

where PD is the Poincaré duality.
- If n, g > 0, the Gromov-Witten invariant 〈Ig,n,β〉 (α1, ..., αn) is the rational number de�ned
by

〈Ig,n,β〉 (α1, ..., αn) =

∫
ξ

ev∗1(α1) ∪ ... ∪ ev∗n(αn).

Remark 2.2. The number 〈Ig,n,β〉 (α1, ..., αn) would be zero when ev∗1(α1) ∪ ... ∪ ev∗n(αn) does
not have a component of top degree. If 2g + n− 3 > 0 one can show that

〈Ig,n,β〉 (α1, ..., αn) =

∫
Mg,n

Ig,n,β(α1, ..., αn).

So Gromov-Witten invariants are determined by the corresponding Gromov-Witten classes when
2g + n− 3 > 0.

2.2. Axioms of Gromov-Witten classes. M. Kontsevich and Y. Manin proposed in [KM] a
system of axioms for Gromov-Witten classes. It is known that Gromov-Witten classes satisfy these
axioms both in the algebraic and in the symplectic setting. In the algebraic case this is proved in
[BM], [LT1], [LT2], [BF], [Be]. A proof for the symplectic case can be found in [LT2].
If X is a smooth projective variety, g, n > 0 and 2g+n− 3 > 0 we de�ned Gromov-Witten classes
as maps

Ig,n,β : H∗(X,Q)⊗n → H∗(Mg,n,Q).

For g, n > 0 Gromov-Witten invariants are maps

〈Ig,n,β〉 : H∗(X,Q)⊗n → Q,

and when 2g + n− 3 > 0 these are related by

〈Ig,n,β〉 (α1, ..., αn) =

∫
Mg,n

Ig,n,β(α1, ..., αn).

The Gromov-Witten classes axioms are the following.

- Linearity axiom. The class Ig,n,β is linear in each variable. Intuitively this is because a
sum of cycles is their union.

- E�ectivity axiom. On a smooth projective variety X, Ig,n,β = 0 if β is not e�ective.
This is because f∗[C] is e�ective if f : C → X is a holomorphic map.

- Degree axiom. If α1, ..., αn ∈ H∗(X,Q) are homogeneous classes, the cohomology class
Ig,n,β(α1, ..., αn) ∈ H∗(Mg,n,Q) has degree

2(g − 1) dimX + 2

∫
β

ωX +

n∑
i=1

degαi.

Since the virtual fundamental class has the expected dimension this fact is a consequence
of the de�nition. Infact by Poincaré duality

PD : H∗(X,Q)→ H2 dimX−∗(X,Q)

the cohomology class αi corresponds to a cycle Zi of codimension degαi
2 . So we are cut-

ting the push-forward of the virtual fundamental class on Xn ×Mg,n with 1
2

∑n
i=1 degαi
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equations, and pushing-forward to Mg,n we get a cycle of dimension (1− g)(dimX − 3)−∫
β
ωX + n− 1

2

∑n
i=1 degαi. Now, by Poincaré duality on Mg,n

PD : H∗(Mg,n,Q)→ H2 dimMg,n−∗(Mg,n,Q)

we get

dimMg,n −
deg Ig,n,β

2
= (1− g) dimX −

∫
β

ωX −
1

2

n∑
i=1

degαi + dimMg,n,

that is

deg Ig,n,β = 2(g − 1) dimX + 2

∫
β

ωX +

n∑
i=1

degαi.

The degree axiom implies that Ig,n,β(α1, ..., αn) is a top degree class if and only if

(2.2)

n∑
i=1

degαi = 2(1− g) dimX − 2

∫
β

ωX + 2 dimMg,n.

- Equivariance axiom. The symmetric group Sn acts on bothH
∗(X,Q)⊗n andH∗(Mg,n,Q),

where the latter action corresponds to permuting the marked points on the curves. This
axiom asserts that the map

Ig,n,β : H∗(X,Q)⊗n → H∗(Mg,n,Q)

is Sn equivariant.
- Fundamental class axiom. When 2g + n− 4 > 0 we have a forgetful map πn : Mg,n →
Mg,n−1. Let [X] ∈ H0(X,Q) be the fundamental class of X, the axiom asserts that

Ig,n,β(α1, ..., αn−1, [X]) = π∗nIg,n−1,β(α1, ..., αn−1).

This make sense because f(pn) ∈ X does not give any condition on pn.

Remark 2.3. This axiom implies that 〈Ig,n,β〉 (α1, ..., αn−1, [X]) = 0. Infact 〈Ig,n,β〉 (α1, ..., αn−1, [X])
is nonzero only if Ig,n,β(α1, ..., αn−1, [X]) is a class of top degree, but in this case Ig,n−1,β(α1, ..., αn−1)

is zero, since Mg,n−1 has smaller dimension.

- Divisor axiom. We consider again the case 2g + n − 4 > 0 and the forgetful map
πn : Mg,n →Mg,n−1. If αn ∈ H2(X,Q), then

πn∗Ig,n,β(α1, ..., αn−1, αn) =

(∫
β

αn

)
Ig,n−1,β(α1, ..., αn−1).

To understand the meaning of this axiom consider a stable map f : (C, {x1, ..., xn})→ X
such that f∗[C] = β and f(xi) ∈ Zi for any i = 1, ..., n − 1. The last point f(pn) must
lie in f(C) ∩ Zn = β ∩ Zn, and this means that there are

∫
β
αn possible choices for f(pn).

This formula re�ects on Gromov-Witten invariants giving the following:

πn∗ 〈Ig,n,β〉 (α1, ..., αn−1, αn) =

(∫
β

αn

)
〈Ig,n−1,β〉 (α1, ..., αn−1).

- Point mapping axiom. If β = 0 and g = 0, this axiom states that given α1, ...αn
homogeneous cohomology classes, then

I0,n,0(α1, ..., αn) =

{ (∫
X
α1 ∪ ... ∪ αn

)
[Mg,n] if

∑n
i=1 degαi = 2 dim X,

0 otherwise.

Notice that a map satisfying f∗[C] = 0 is constant. Then we have f(C) ∈ Z1 ∩ ... ∩ Zn.
By the degree axiom when

∑n
i=1 degαi = 2 dimX this class has degree zero and gives

the point mapping formula. Comparing the condition
∑n
i=1 degαi = 2 dimX to 2.2 we
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get g dimX = 2
∫
β
ωX + 3g − 3 + n and substituting g = β = 0 gives n = 3. So for the

Gromov-Witten invariants we have the following special behavior

〈I0,n,0〉 (α1, ..., αn) =

{ ∫
X
α1 ∪ α2 ∪ α3 if n = 3,

0 otherwise.

This reasoning works only when g = 0. The point is that the expected dimension of
Mg,n(X, 0) = Mg,n × X is (1 − g)(dimX − 3) + n, and it coincides with the actual
dimension 3g − 3 + n+ dimX if and only if g = 0.

- Splitting axiom. Consider two curves (C1, {x1, ..., xn1+1}) and (C2, {y1, ..., yn2+1}) of
genus g1, g2, such that g1 + g2 = g, n1 + n2 = n and 2gi + ni > 2 for any i. We obtain a
curve (C = C1 ∪ C2, {x1, ..., xn1 , y1, ..., yn2}) by identifying xn1+1 with yn2+1. This give a
map

ψ : Mg1,n1+1 ×Mg2,n2+1 →Mg,n.

The splitting axiom asserts that ψ∗Ig,n,β(α1, ..., αn) is given by∑
β=β1+β2

∑
i,j

gijIg1,n1+1,β1
(α1, ..., αn1

, Ti)⊗ Ig2,n2+1,β2
(Tj , αn1+1, ..., αn),

where Ti is a homogeneous basis of the cohomology H∗(X,Q) and (gij) is the inverse
of the matrix (gij) de�ned by gij =

∫
X
Ti ∪ Tj . Notice that thanks to the e�ectivity

axiom the above sum is �nite. The cohomology class of the diagonal in H∗(X ×X,Q) is∑
i,j g

ijTi ⊗ Tj .
The inverse image under ψ of a map f : C → X such that f(pi) ∈ Zi and f∗[C] = β
consists of maps

(f1, f2) : (C1 ∪ C2, {x1, ..., xn1 , x, xn1+1, ..., xn, y})→ X

such that f∗[C1] + f∗[C2] = β, f(xi) ∈ Zi and f(x) = f(y). The �rst condition correspond
to β = β1 + β2 in the formula, while the last means that (f(x), f(y)) must be in the
diagonal.

- Reduction axiom. Gluing together the last two marked points we get a map ϕ :
Mg−1,n+2 →Mg,n. In the same notations of the previous axiom we have

ϕ∗Ig,n,β(α1, ..., αn) =
∑
i,j

gijIg−1,n+2,β(α1, ..., αn, Ti, Tj).

The inverse image under ϕ of a map f : C → X such that f(pi) ∈ Zi and f∗[C] = β
consists of maps

g : (C̃, {x1, ..., xn+2})→ X

of genus g − 1 such that g∗[C̃] = β, g(xi) ∈ Zi and g(xn+1) = g(xn+2). The last means
that (g(xn+1), g(xn+2)) must be in the diagonal.

- Deformation axiom. Let π : X → S be a smooth proper morphism with connected
�bers, and let Xs = π−1(s). For any s ∈ S and βs ∈ H2(Xs,Z) we have a map

IXsg,n,βs : H∗(Xs,Q)⊗n → H∗(Mg,n,Q).

In this setting if βs is a locally constant section of H2(X,Z) and α1, ..., αn are locally

constant sections of H∗(Xs,Q), then IXsg,n,βs is constant.

The Splitting and the Reduction axioms are very important, they are fundamental to prove the
associativity of quantum product.
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2.3. Tree-Level Gromov-Witten classes. Stable curves of genus g = 0 are trees of P1's, because
of this the classes I0,nβ are called tree-level Gromov-Witten classes, and the invariants 〈I0,n,β〉 are
called tree-level Gromov-Witten invariants.

Theorem 2.4. (Kontsevich-Manin) Let X be a smooth projective variety. Assume that H∗(X,Q)
is generated by H2(X,Q), and that the Gromov-Witten invariants 〈I0,3,β〉 (α1, α2, α3) are known
for all β ∈ H2(X,Z) satisfying −

∫
β
ωX 6 dimX + 1 and degα3 = 2. Then we can determine all

tree-level Gromov-Witten classes I0,n,β(α1, ..., αn) for all β ∈ H2(X,Z).

Proof. We can assume n > 4. The image of the map

ψ : M0,n1+1 ×M0,n2+1 →M0,n,

is a divisor in M0,n. By permuting the markings {x1, ..., xn} we get other divisors, and by [Ke]

the cohomology H∗(M0,n,Q) is generated by the classes of these divisors.
We �rst want to show that tree-level Gromov-Witten classes can be reconstructed from Gromov-
Witten invariants. We proceed by induction on n > 4.
Let I0,n,β(α1, ..., αn) be a Gromov-Witten class. If it lies in top degree then it is 〈I0,nβ(α1, ..., αn)〉 [pt].
Otherwise it is determined by its intersection with the divisor described above. Intersecting the
given divisor with ψ∗I0,nβ(α1, ..., αn), by the Splitting axiom, we get Gromov-Witten classes with
smaller n. Furthermore the Equivariance axiom implies that the same is true for the intersec-
tion with the other divisors. Then I0,nβ(α1, ..., αn) is determined by Gromov-Witten classes with
smaller n, and by induction these are determined by Gromov-Witten invariants.
Quadratic relations among the Gromov-Witten invariants 〈I0,n,β〉 for di�erent n, β are given by
some linear relations among the divisors mentioned above. Thanks to the relations we can express
Gromov-Witten invariants in therms of those listed in the statement. To explain the inequality
appearing in the statement notice that given αi homogeneous classes, 〈I0,3,β〉 = 0 unless

n∑
i=1

degαi = 2 dim[M0,n(X,β)]vir = 2

(
−
∫
β

ωX + dimX

)
.

This equality combined with the trivial inequality
∑n
i=1 degαi 6 2 dimX+2, assuming degα3 = 3,

gives the inequality in the statement. �

2.3.1. Tree-Level invariants of P2. Consider β = d[l] where l ⊂ P2 is a line and d > 0. Clearly
〈I0,3,1〉 ([pt], [pt], [l]) = 1.

By Theorem 2.4 this is the only invariant we need to compute. By the Point mapping axiom we
can assume d > 1. To compute 〈I0,n,d〉 (α1, ..., αn), we can assume αi is [P2], [l] or [pt]. Further-
more by the Degree axiom we have

∑n
i=1 degαi = 6d + 2n − 2. Notice that for n = 0, 1 there

are not solutions, and for n = 2, 3 the only Gromov-Witten invariants are 〈I0,3,1〉 ([pt], [pt], [l]) =
〈I0,2,1〉 ([pt], [pt]) = 1.
When n > 4 we have 〈I0,n,d〉 (α1, ..., αn) = 0 if αi = [P2] for some i, by the Fundamental
class axiom. When αn = [l], by the Divisor axiom we know that 〈I0,n,d〉 (α1, ..., αn−1, [l]) =
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d 〈I0,n−1,d〉 (α1, ..., αn−1), and then we proceed inductively. The invariants that remains to com-
pute are 〈I0,n,d〉 ([pt], ..., [pt]). Since deg[pt] = 4,

∑n
i=1 degαi = 6d+ 2n− 2 yields n = 3d− 1. So

we want to compute
Nd = 〈I0,3d−1,d〉 ([pt], ..., [pt])

for d > 1. The number Nd is the number of plane rational curves of degree d through 3d − 1
points in general position, or alternatively the degree of the Severi variety of degree d rational
plane curves. Interpreting Nd as a Gromov-Witten invariant one gets the following.

Theorem 2.5. The number Nd is given by the recursive formula

(2.3) Nd =
∑

d=d1+d2, d1,d2>0

Nd1Nd2

(
d2

1d
2
2

(
3d− 4

3d1 − 2

)
− d3

1d2

(
3d− 4

3d1 − 1

))
.

Since N1 = 〈I0,2,1〉 ([pt], [pt]) = 1, this formula implies

N2 = 1, N3 = 12, N4 = 620, N5 = 87304, ...

Proof. Consider the Gromov-Witten class

θ = I0,3d,d([pt], ..., [pt]︸ ︷︷ ︸
3d−2−times

, [l], [l]]) ∈ H∗(M0,3d,Q).

The Degree axiom implies that this is a class of degree 2 dimM0,3d − 2, and its intersection with
a divisor is a rational number. We index the marked points on stable curve by I = {1, ..., 3d −
4, p, q, r, s}, where α1 = ... = α3d−4 = αp = αq = [pt] and αr = αs = [l]. A partition of I into
disjoint subsets A,B gives a map

ϕA,B : M0,|A|+1 ×M0,|B|+1 →M0,3d.

The images of the maps ϕA,B are boundary divisors inM0,3d and since both are �bers on boundary

points on M0,4 of the forgetting morphism M0,3d →M0,4 we have the linear equivalence

(2.4)
∑

r,s∈A, p,q∈B
Im(ϕA,B) ∼=

∑
p,r∈A, q,s∈B

Im(ϕA,B).

Notice that the diagonal in P2 × P2 is given by [pt]⊗ [P2] + [l]⊗ [l] + [P2]⊗ [pt]. By the Splitting
and the Equivariance axiom one can compute that the intersection of θ with the left hand side of
2.4 is given by

Nd +
∑

d=d1+d2, d1,d2>0

Nd1Nd2d
3
1d2

(
3d− 4

3d1 − 1

)
.

Similarly the intersection with the right hand side of 2.4 is∑
d=d1+d2, d1,d2>0

Nd1Nd2d
2
1d

2
2

(
3d− 4

3d1 − 2

)
.

Since the last two numbers are equal this complete the proof. �

3. Quantum Cohomology

A quantum cohomology ring is an extension of the ordinary cohomology ring of a variety. While
the cup product of ordinary cohomology describes how varieties of the variety intersect each other,
the quantum cup product of quantum cohomology describes how subspaces intersect in a di�er-
ent way. More precisely, they intersect if they are connected via one or more pseudoholomorphic
curves. Gromov-Witten invariants, which count these curves, appear as coe�cients in expansions
of the quantum cup product. Quantum cohomology has important implications for enumerative
geometry, mathematical physics and mirror symmetry.
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Let α0 = 1 ∈ A0X, α1, ..., αp be a basis of A1X, and let αp+1, ..., αm be a basis for the other
cohomology groups. Consider the Gromov-Witten invariant

N(np+1, ..., nm;β) = 〈I0,n,β〉 (α
np+1

p+1 , ..., α
nm
m ),

for ni > 0. This invariant is nonzero only when
∑
ni(codim(α1)− 1) = dimX +

∫
β
c1(TX)− 3. In

this case the invariant gives the number of pointed rational maps meeting ni general representatives
of αi for each p+ 1 6 i 6 m. In this section, for simplicity, we use the following notation:

N(np+1, ..., nm;β) = 〈I0,n,β〉 (α
np+1

p+1 , ..., α
nm
m ) = Iβ(α

np+1

p+1 , ..., α
nm
m ).

De�ne

gij =

∫
X

αi ∪ αj ,

and let (gij) be the inverse matrix of (gij). That is the class of the diagonal in X ×X is given by
[∆] =

∑
e,f g

efαe ⊗ αf .

Remark 3.1. The class of Schubert varieties gives a natural basis for homogeneous varieties. In
this case for any Schubert class αi these is a unique j such that gij 6= 0 and for such a j we have
gij = 1.

In A∗(X ×X) = A∗X ⊗A∗X the following equality hold

(3.1) αi ∪ αj =
∑
e,f

(∫
X

αi ∪ αj ∪ αe
)
gefαf =

∑
e,f

〈I0〉 (αi, αj , αe)gefαf .

We want to de�ne a quantum deformation of the cup product 3.1 by allowing nonzero classes
β. The idea is to consider a potential function, called Gromov-Witten potential, encoding all the
enumerative informations. For a class γ ∈ A∗X we de�ne

(3.2) Φ(γ) =
∑
n>3

∑
β

1

n!
Iβ(γn).

If X is a homogeneous variety then any e�ective class in A1X is a nonnegative linear combination
of �nitely many nonzero e�ective classes β1, ...βp. Using this fact one can prove that for any integer
n there are only �nitely many e�ective classes β ∈ A1X, such that Iβ(γn) is nonzero [FP, Lemma
15]. Write γ =

∑
yiαi, by [FP, Lemma 15] the expression Φ(γ) = Φ(y0, ..., ym) is a formal power

series in Q[[y]] = Q[[y0, ..., ym]]

(3.3) Φ(y0, ..., ym) =
∑

n0+...+nm>3

∑
β

Iβ(αn0
0 , ..., αnmm )

yn0
0

n0!
...
ynmm
nm!

.

Now we consider the partial derivatives

Φijk =
∂3Φ

∂yi∂yj∂yk
, 0 6 i, j, k 6 m,

and de�ne the quantum product as:

(3.4) αi ∗ αj =
∑
e,f

Φijeg
efαf .

Extending Q[[y]]-linearly the quantum product 3.4 to the Q[[y]]-module A∗X⊗ZQ[[y]], makes this
into a Q[[y]]-algebra. Notice that since the partial derivatives are symmetric in i, j, k the quantum
product is commutative. Furthermore α0 = 1 is a unit for the ∗-product.

Theorem 3.2. [FP, Theorem 4] The Q[[y]]-algebra A∗X ⊗Z Q[[y]] endowed with the quantum
product ∗ is a commutative, associative Q[[y]]-algebra, with unit α0.
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Remark 3.3. Since

(αi ∗ αj) ∗ αk =
∑
e,f

Φijeg
efαf ∗ αk =

∑
e,f

∑
c,d

Φijeg
efΦfkeg

cdαd,

αi ∗ (αj ∗ αk) =
∑
e,f

Φjkeg
efαi ∗ αf =

∑
e,f

∑
c,d

Φjkeg
efΦifcg

cdαd,

and the matrix (gcd) is nonsingular, the equality (αi ∗αj) ∗αk = αi ∗ (αj) ∗αk is equivalent to the
equations

(3.5)
∑
e,f

Φijeg
efΦfkl =

∑
e,f

Φjkeg
efΦifl.

So the associativity of the quantum product ∗ is equivalent to the fact that the Gromov-Witten
potential 3.2 satis�es the third-order di�erential equations 3.5, known as the WDVV (Witten-
Dijkgraaf-Verlinde-Verlinde) equations.

The de�nition of quantum cohomology ring depends upon a choice of a basis α0, ..., αm of A∗X
the rings do not, in the sense that rings obtained form di�erent basis are canonically isomorphic.
Let V be the underlying free abelian group of A∗X, and let Q[[V ∗]] be the completion of the
graded polynomial ring

⊕∞
i=0 Sym

i(V ∗) ⊗ Q at its unique maximal graded ideal. In other words
reintroducing coordinates we are taking the completion of the ring

⊕∞
i=0 Z[y0, ..., ym]i ⊗Q at the

maximal ideal M = (y0, ..., ym), that is the ring Q[[y0, ..., ym]] of formal power series.
The quantum product de�nes a canonical ring structure on the free Q[[V ∗]]-module V ⊗Z Q[[V ∗]].
We denote by

QH∗X = (V ⊗Z Q[[V ∗]], ∗)
the quantum cohomology ring of X.

Remark 3.4. The canonical injection of abelian groups

i : A∗X ↪→ QH∗X, α 7→ α⊗ 1

is not compatible with the cup product ∪ and the quantum product ∗. The quantum cohomology
ring QH∗X is not in general a formal deformation of A∗X over the local ring Q[[V ∗]].

Example 3.5. For the details of this example see [FP, Section 9]. The potential function can be
write as a sum

Φ(y0, ..., ym) = Φc(y) + Φq(y),

where Φc is the classical part involving the terms with β = 0

Φc(y) =
∑

n0+...+nm=3

∫
X

(αn0
0 ∪ ... ∪ αnmm )

yn0
0

n0!
...
ynmm
nm!

,

and the quantum part Φq can be replaced by the function

Γ(y) =
∑

np1+1+...+nm>0

∑
β 6=0

N(np1+1, ..., nm;β)

p∏
i=1

e(
∫
β
αi)yi

m∏
i=1

ynii
ni!

,

where N(np1+1, ..., nm;β) = Iβ(α
np+1
p+1 , ..., αnmm ). Let us consider the case X = P2. Take α0 = 1,

α1 the class of a line, and α2 the class of a point. Note that

gij =

{
1 i+ j = 2,
0 otherwise.
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So αi ∗ αj = Φij0α2 + Φij1α1 + Φij2α0. As instance α1 ∗ α1 = α2 + Γ111α1 + Γ112α0.
In general the quantum product can be written as a deformation of the cup product as

αi ∗ αj = αi ∪ αj +

m∑
i=1

Γijlg
lkαk.

Remark 3.6. Thus the quantum product contains the ordinary cup product. In general, the
Poincaré dual of αi ∗αj corresponds to the space of curves of class β passing through the Poincaré
duals of αi and αj . So while the ordinary cohomology considers αi and αj to intersect only when
they meet at one or more points, the quantum cohomology records a nonzero intersection for αi
and αj whenever they are connected by one or more curves.

The quantum cohomology ring of P2 is given by

QH∗P2 ∼= Q[[y0, y1, y2]][α1]/(α3
1 − Γ111α

2
1 − 2Γ112α1 − Γ122).

Determining Γ one can show that

QH∗P2 ⊗Q[[V ∗]] Q[[V ∗]]/M = Q[α1]/(α3
1 − 1),

which does not specialize to the usual cohomology ring A∗QP2 = Q[α1]/α3
1.

3.1. Small quantum cohomology. The small quantum cohomology ring involves only 3-pointed
Gromov-Witten invariants. This ring QH∗sX is obtained by restricting the ∗-product to divisors
classes. The modi�ed quantum potential is de�ned as

Γijk =
∑
n>0

1

n!

∑
β 6=0

Iβ(γn, αi, αj , αk),

where γ = y1α1 + ...+ ypαp is a divisor class. By the Divisor axiom of Gromov-Witten classes we
have

(3.6) Γijk =
∑
β 6=0

Iβ(αi · αj · αk)q

∫
β
α1

1 ...q

∫
β
αp

p ,

where qi = eyi . Notice that only 3-pointed invariants occur. The product

αi ∗ αj =
∑
e,f

Φijeg
efαf = αi ∪ αj +

∑
e,f

Γijeg
efαf

where Φije = Φije(y0, ..., yp, 0, ..., 0), makes the Z[q]-module QH∗sX := A∗X ⊗Z Z[q] into a com-
mutative, associative Z[q]-algebra with unit α0. From 3.6 we see that setting the variables qi = 0
we recover the usual cohomology ring A∗X.

Small quantum cohomology of PN . Take X = PN . Let αi be the class of a linear subspace of codi-
mension i, and let β be d times the class of a line. By the Degree axiom the number Iβ(αi, αj , αk)
can be nonzero only if i+ j + k = N + (N + 1)d. This happens only for d = 0, 1, and in each case
Iβ(αi, αj , αk) = 1. Then the ∗-product is given by

- if i+ j 6 N , then αi ∗ αj = αi+j ,
- if N + 1 6 i+ j 6 2N , then αi ∗ αj = q1αi+j−N−1.

From this we get the relation αN+1
1 = q1 in QH∗sPN , and the small quantum cohomology ring of

PN is given by:

QH∗sPN = Z[α1, q1]/(αN+1
1 − q1).
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Example 3.7. To �x ideas take N = 3. We have i + j + k = 3 + 4d, so 4 divides i + j + k − 3,
and i+ j + k 6 9 forces i+ j + k = 7 and d = 1. There are only two possible cases:

i j k Iβ(αi, αj , αk)
1 3 3 1
2 2 3 1

Because give a general plane and two general points there is a unique line passing through the
points and intersecting the plane, and given two general lines and a general point there is a unique
line through the point an intersecting the two given lines. Furthermore

α4
1 = α2

1α2 = α1α3 = q1α0 = q1,

and the small quantum cohomology ring of P3 is

QH∗sP3 = Z[α1, q1]/(α4
1 − q1).

4. Dubrovin connection

We begin giving the de�nitions of superalgebra, supermanifold and Frobenius manifold.

4.0.1. Superalgebas. Let R be a commutative ring. A superalgebra over R is a R-module A with a
direct sum decomposition

A = A0 ⊕A1

together with a bilinear multiplication A×A→ A such that

AiAj ⊆ Ai+j ,
where the subscripts are modulo 2. A superring, or Z2-graded ring, is a superalgebra over the
ring of integers Z. The elements of Ai are said to be homogeneous. The parity of a homogeneous
element a is 0 or 1 according to whether it is in A0 or A1, the parity of an element is denoted by |a|.
An associative superalgebra is one whose multiplication is associative and a unital superalgebra
is one with a multiplicative identity element. The identity element in a unital superalgebra is
necessarily even.
A commutative superalgebra is one which satis�es a graded version of commutativity, that is A is
commutative if

a1a2 = (−1)|a1||a2|a1a2,

for any a1, a2 ∈ A.

Example 4.1. Any exterior algebra over R is an example of supercommutative algebra.

4.0.2. Supermanifolds. We �rst introduce the local model for supermanifolds. A superdomain
Up,q is the ringed space (Up, C∞p|q), where Up is an open subset of Rp and C∞p|q is the sheaf of
suppercommutative rings de�ned by

C∞p|q(V ) = C∞(V )[ξ1, ..., ξp]

for any open subset V ⊆ U , where the ξi are anticommuting indeterminates such that

ξ2
i = 0, ξiξj = −ξjξi (i 6= j)⇐⇒ ξiξj = ξjξi (1 6 i, j 6 q).

The dimension of the superdomain is de�ned to be p|q. A supermanifold of dimension p|q is a
superringed space which is locally isomorphic to Rp|q. The coordinates xi on Rp are called even
coordinates, while the ξi are called odd coordinates.

Remark 4.2. We de�ned supermanifolds in the smooth category. The same de�nition can be
rephrased in the complex analytic category. Actually one can de�ne more general object like
superanalytic spaces and superschemes.
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4.1. Frobenius manifolds. A complex Frobenius manifold F consists of four structures:

- a complex m-dimensional manifold M ,
- a holomorphic, symmetric, non-degenerate quadratic form g on the complex tangent bundle
TM ,

- a holomorphic symmetric 3-tensor

A : TM ⊗ TM ⊗ TM → OM ,
- a holomorphic vector �eld 1 on M .

A and g de�ne a commutative product ∗ on TM by:

g(X ∗ Y,Z) = A(X,Y, Z),

where X,Y, Z are holomorphic vector �elds.

De�nition 4.3. A complex Frobenius manifold F is a quadruple (M, g,A,1) satisfying the fol-
lowing conditions:

- Flatness: g is a �at holomorphic metric.
- Potential : M is covered by open subsets U each equipped with a commuting basis of g-�at
holomorphic vector �elds:

X1, ..., Xm ∈ Γ(U, TM),

and a holomorphic potential function Φ ∈ Γ(U,OU ) such that

A(Xi, Xj , Xk) = XiXjXk(Φ).

- Associativity : ∗ is an associative product.
- Unit : 1 is a g-�at unit vector �eld.

The associativity condition is equivalent to the WDV V equations:

g((Xi ∗Xj) ∗Xk, Xh) = g(Xi ∗ (Xj ∗Xk), Xh)

fro any i, j, k, h. Let ∇ be the holomorphic Levi-Civita connection induces by the metric g. For
any λ ∈ C∗ de�ne the Dubrovin connection ∇λ by

∇λ,XY = ∇XY −
1

λ
X ∗ Y.

The WDV V equations are equivalent to the �atness of ∇λ for any λ ∈ C∗.

Remark 4.4. A C∞ Frobenius manifold is de�ned by requiring all the structures to be de�ned in
the C∞ category.

In the rest of the section we mainly follows the treatment of B. Dubrovin [Du1], [Du2]. Let
T0 = 1, ..., Tm be a basis of H∗(X,C), and let t0, ..., tm be the corresponding supercommutative
variables:

titj = (−1)deg ti deg tj tjti,

by the supercommutativity of the quantum product

TiTj = (−1)deg Ti deg TjTjTi.

We want to consider an arbitrary potential function F : H∗(X,C) → C instead of the Gromov-
Witten potential Φ. Then F is an even formal power series in the ti, we de�ne the tensor Aijk
by

Aijk =
∂3F

∂ti∂tj∂tk
.

Then we set
Akij =

∑
l

Aijlg
lk.
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We de�ne two operations

- Ti ∗ Tj =
∑
k Aijlg

lk,
- The Dubrovin connection

∇λ∂
∂ti

= λ
∑
k

Akij
∂

∂tk
,

where λ ∈ C∗.
The properties of the operation ∗ and of the connection ∇λ are closely related.

Torsion and Commutativity. We have the equality Akij = (−1)deg ti deg tjAkji. This forces ∗ to be

supercommutative and ∇λ to have zero torsion.

Curvature and Associativity. The connection ∇λ is �at if and only if F satis�es the WDV V
equation, which is equivalent to the associativity of ∗.

Identity. The class T0 is the identity for ∗ if and only if A0ij = gij for any i, j, and this is equivalent

to ∇λ∂
∂t0

( ∂
∂ti

) = λ ∂
∂ti

for all i.

Proposition 4.5. If F satis�es WDV V equation and A0ij = gij for all i, j then H∗(X,C) is a
Frobenius algebra under ∗ with identity T0.

Proof. Under this hyphotesis H∗(X,C) is a supercommutative algebra with identity T0. Since F
is an even function in the ti we have g(Ti ∗ Tj , Tk) = g(Ti, Tj ∗ Tk). So H∗(X,C) is a Frobenius
algebra under ∗. �

The supermanifold H∗(X,C) with the metric g and the even potential function F satisfying
WDV V equation is a an example of Frobenius manifold.

5. GW - Invariants, DT - Invariants and counting boxes

From the inaugural lecture given by Rahul Pandharipande at the ETH of Zürich on Tuesday March 20, 2012.

Let n ∈ N be a natural number, and let p(n) be the number of partitions of n, that is the
number of ways that we have to write n as a sum of positive natural numbers. As instance:

- For n = 3 we have 3, 2 + 1 and 1 + 1 + 1. Then p(3) = 3.
- For n = 4 we have 4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1. Then p(4) = 5.

There is no direct formula for p(n), however there is a formula for the generating series:
∞∑
n=0

p(n)qn =

∞∏
k=1

(
1

1− qk

)
.

Expanding the right hand side as geometric series 1
1−qk =

∑∞
h=0 q

kh, we get
∏∞
k=1

(
1

1−qk

)
=∏∞

k=1

(∑∞
h=0 q

kh
)

= (1 + q + q2 + q3 + ...)(1 + q2 + q4 + q6 + ...)(1 + q3 + q6 + q9 + ...)... =

1 + q + 2q2 + 3q3 + 5q4 + 7q5 + ... and
∞∑
n=0

p(n)qn =

∞∏
k=1

(
1

1− qk

)
= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + ...

This formula was found by Leonhard Euler (1707−1783). Partitions can be expressed as diagrams.
As instance the partition 10 = 5 + 4 + 1 can be pictured as
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Such a diagram may be viewed as stacking squares in a 2-dimensional corner. Now We would like
to stack boxes in a 3-dimensional corner.

Let P (n) be the number of 3-dimensional partitions of n, that is the number of ways of stacking
n boxes in a 3-dimensional corner. As instance P (1) = 1, P (2) = 3 and P (3) = 6. Again, there is
no direct formula for P (n), but there is a formula for the generating series:

∞∑
n=0

P (n)qn =

∞∏
k=1

(
1

1− qk

)k
.

The formula is due to Percy MacMahon (1854− 1929). Before his mathematical career, he was a
Lieutenant in the British army. He was said to be at least partially inspired by stacking cannon
balls. MacMahon proposed

∞∏
k=1

(
1

1− qk

)(k+1
2 )

for the generating series of 4-dimensional partitions. But he was wrong, formulas for dimensions 4
and higher are still unknown.

In quantum �eld theories (and string theory), path integrals arise: integrals over the spaces of
functions. Sometimes, in the presence of supersymmetry and further constraints, such path inte-
grals are related to integration over �nite-dimensional moduli spaces in algebraic geometry. As
instance in gauge theory and topological string theory. In 1990's, there was an e�ort made in
algebraic geometry to de�ne the integration on algebraic moduli spaces predicted by path integral
techniques [Ko], [LT1], [LT2], [BF]. The idea is to use deformation theory in algebraic geometry.
The outcome is a virtual fundamental class and a well-de�ned theory of integration on many al-
gebraic moduli spaces including the Hilbert scheme of C3. Let Hilb(C3) be the Hilbert scheme of
C3. We consider the components of Hilb(C3) where

dimC

(
C[x, y, z]

I

)
<∞.

Basically this means that we consider 0-dimensional subschemes of C3.
In [MP1] and [MP2] D. Maulik, N. Nekrasov, A. Okounkov, R. Pandharipande proved the following
formula

(5.1)

∫
Hilb(C3)

(−q)dimC( C[x,y,z]
I ) =

∞∏
k=1

(
1

1− qk

)k
which is MacMahon's series for counting 3-dimensional partitions. The study of such integra-
tion over Hilb(C3) is called Donaldson-Thomas theory, viewed as a counting theory of sheaves.
Donaldson-Thomas theory can be studied for any nonsingular 3-dimensional space, not just C3.
For example the Calabi-Yau quintic X = Z(x5 +y5 +z5 +w5−1) ⊂ C4 the outcome is a completely
non-linear generalization of the box counting of MacMahon.
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Donaldson-Thomas Theory. Let X be a nonsingular, projective, Calabi-Yau 3-fold.An ideal sheaf
is a torsion-free sheaf of rank 1 with trivial determinant. Since each ideal sheaf I injects into its
double dual, and I∗∗ is re�exive of rank 1 with trivial determinant, we have I∗∗ ∼= OX and a short
exact sequence

0 7→ I → OX → OY 7→ 0,

where Y ⊂ X is a subscheme. The maximal dimensional components of Y determines an element
[Y ] ∈ H∗(X,Z). Let In(X,β) be the moduli space parametrizing ideal sheaves I such that χ(OY ) =
n and [Y ] = β ∈ H2(X,Z). Where χ denotes the holomorphic Euler characteristic. The moduli
space In(X,β) is isomorphic to the Hilbert scheme of curves in X.
The Donaldson-Thomas invariant is de�ned via integration against the zero-dimensional virtual
class

Ñn,β =

∫
[In(X,β)]vir

1.

We denote by

ZDT (q, v) =
∑

β∈H2(X,Z)

∑
n∈Z

Ñn,βq
nvβ

the partition function of the Donaldson-Thomas theory of X. One can show that for �xed β, the
invariant Ñn,β vanishes for su�ciently negative n since the corresponding moduli spaces of ideal
sheaves are empty. The degree zero moduli space In(X, 0) is isomorphic to the Hilbert scheme of
n points on X. The degree zero partition function,

ZDT (q, 0) =
∑
n>0

Ñn,βq
n

plays a special role in the theory because by 5.1 it is related to MacMahon's series for counting
3-dimensional partitions.

Another counting question began in the 19th century: the counting of algebraic curves. There
was a long classical development of curve enumeration. But the subject has now been recast as
Gromov-Witten theory, which is the study of integration over the moduli spaces of stable maps.
Let

Ng =

∫
[Mg(X,β)]vir

1,

be the Gromov-Witten invariant virtually counting genus g curves in a projective variety X. We
weight Ng with u

2g−2 where u is a formal parameter, and form the series:

ZGW (u) =
∑
g

Ngu
2g−2.

Let X be any nonsingular 3-fold. Let ZDT (q) be the generating series for the Hilbert scheme
integrals of Donaldson-Thomas theory. Let ZGW (u) be the generating series for the moduli space
of map integrals of Gromov-Witten theory. The main conjectured correspondence is the following:

Conjecture 5.1. (Maulik, Nekrasov, Okounkov, Pandharipande) After the change of variables

−q = eiu we have

ZDT (q) = ZGW (u).

This conjecture is proven for many geometries and is still open for many others [MP1], [MP2].
This correspondence togheter with equality 5.1 tells us that boxes and curves counting questions
in 3-dimensions are equivalent.
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