
Probabilistic Inductive Logic Programming

Fabrizio Riguzzi

MCS Deparment– University of Ferrara, Italy, fabrizio.riguzzi@unife.it

F. Riguzzi (UNIFE) PILP 1 / 136

Outline

Probabilistic logic programming
Parameter learning

PRISM
EMBLEM
LeProbLog
LFI-Problog

Structure learning
SLIPCOVER
ProbFOIL+
LEMUR

DPHIL

F. Riguzzi (UNIFE) PILP 2 / 136

Probabilistic Logic Programming

Distribution Semantics [Sato ICLP95]
A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or simply
worlds)
The distribution is extended to a joint distribution over worlds and
interpretations (or queries)
The probability of a query is obtained from this distribution

F. Riguzzi (UNIFE) PILP 3 / 136

Probabilistic Logic Programming (PLP) Languages under
the Distribution Semantics

Probabilistic Logic Programs [Dantsin RCLP91]
Probabilistic Horn Abduction [Poole NGC93], Independent Choice
Logic (ICL) [Poole AI97]
PRISM [Sato ICLP95]
Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et
al. ICLP04]
ProbLog [De Raedt et al. IJCAI07]
They differ in the way they define the distribution over logic programs

F. Riguzzi (UNIFE) PILP 4 / 136

PLP Online

http://cplint.eu
Inference (knowledge compilation, Monte Carlo)
Parameter learning (EMBLEM)
Structure learning (SLIPCOVER, LEMUR)

https://dtai.cs.kuleuven.be/problog/
Inference (knwoledge compilation, Monte Carlo)
Parameter learning (LFI-ProbLog)

F. Riguzzi (UNIFE) PILP 5 / 136

http://cplint.eu
https://dtai.cs.kuleuven.be/problog/

Logic Programs with Annotated Disjunctions

http://cplint.eu/e/sneezing_simple.pl

sneezingpX q : 0.7 ; null : 0.3Ð flupX q.
sneezingpX q : 0.8 ; null : 0.2Ð hay_feverpX q.
flupbobq.
hay_feverpbobq.

Distributions over the head of rules
null does not appear in the body of any rule
Worlds obtained by selecting one atom from the head of every
grounding of each clause

F. Riguzzi (UNIFE) PILP 6 / 136

http://cplint.eu/e/sneezing_simple.pl

Reasoning Tasks

Inference: we want to compute the probability of a query given the
model and, possibly, some evidence
Weight learning: we know the structural part of the model (the logic
formulas) but not the numeric part (the weights) and we want to infer
the weights from data
Structure learning we want to infer both the structure and the weights
of the model from data

F. Riguzzi (UNIFE) PILP 7 / 136

Applications

Link prediction: given a (social) network, compute the probability of
the existence of a link between two entities (UWCSE)

advisedby(X, Y) :0.7 :-
publication(P, X),
publication(P, Y),
student(X).

F. Riguzzi (UNIFE) PILP 8 / 136

Applications

Classify web pages on the basis of the link structure (WebKB)

coursePage(Page1): 0.3 :- linkTo(Page2,Page1),coursePage(Page2).
coursePage(Page1): 0.6 :- linkTo(Page2,Page1),facultyPage(Page2).
...
coursePage(Page): 0.9 :- has(’syllabus’,Page).
...

F. Riguzzi (UNIFE) PILP 9 / 136

Applications

Entity resolution: identify identical entities in text or databases

samebib(A,B):0.9 :-
samebib(A,C), samebib(C,B).
sameauthor(A,B):0.6 :-

sameauthor(A,C), sameauthor(C,B).
sametitle(A,B):0.7 :-

sametitle(A,C), sametitle(C,B).
samevenue(A,B):0.65 :-

samevenue(A,C), samevenue(C,B).
samebib(B,C):0.5 :-

author(B,D),author(C,E),sameauthor(D,E).
samebib(B,C):0.7 :-

title(B,D),title(C,E),sametitle(D,E).
samebib(B,C):0.6 :-

venue(B,D),venue(C,E),samevenue(D,E).
samevenue(B,C):0.3 :-

haswordvenue(B,logic),
haswordvenue(C,logic).

...

F. Riguzzi (UNIFE) PILP 10 / 136

Applications

Chemistry: given the chemical composition of a substance, predict its
mutagenicity or its carcenogenicity

active(A):0.4 :-
atm(A,B,c,29,C),
gteq(C,-0.003),
ring_size_5(A,D).

active(A):0.6:-
lumo(A,B), lteq(B,-2.072).

active(A):0.3 :-
bond(A,B,C,2),
bond(A,C,D,1),
ring_size_5(A,E).

active(A):0.7 :-
carbon_6_ring(A,B).

active(A):0.8 :-
anthracene(A,B).

...
F. Riguzzi (UNIFE) PILP 11 / 136

Applications

Medicine: diagnose diseases on the basis of patient information
(Hepatitis), influence of genes on HIV, risk of falling of elderly people

F. Riguzzi (UNIFE) PILP 12 / 136

PRISM

Hidden Markov model: a dynamical system that, at each time point t,
is in a state S and emits one symbol O

PpO|Sq and PpNextS |Sq are independent of time.
The states are hidden: the task is to obtain information on them from
the sequence of output symbols.
Speech recognition.

F. Riguzzi (UNIFE) PILP 13 / 136

PRISM

valuesptrp_q, rs1, s2sq.
valuespoutp_q, ra, bsq.
Ð set_swptrps1q, r0.2, 0.8sq.
Ð set_swptrps2q, r0.8, 0.2sq.
Ð set_swpoutps0q, r0.5, 0.5sq.
Ð set_swpoutps1q, r0.6, 0.4sq.
hmmpOsq Ð hmmps1,Osq.
hmmp_S , rsq.
hmmpS , rO|Ossq Ð

mswpoutpSq,Oq,mswptrpSq,NextSq, hmmpNext,Osq.

PphmmpOsqq: probability that the sequence of symbols Os is emitted.
No memoing.

F. Riguzzi (UNIFE) PILP 14 / 136

PRISM

Definition (PRISM parameter learning problem)

Given a PRISM program P and a set of examples E “ te1, . . . , eT u which
are ground atoms, find the parameters Π of msw fact so that the likelihood
of the atoms

L “
T
ź

t“1

Ppetq

is maximized.
Equivalently, find the parameters of msw fact so that the log likelihood of
the atoms

LL “
T
ÿ

t“1

log Ppetq

is maximized.

F. Riguzzi (UNIFE) PILP 15 / 136

PRISM Assumpions

1 the probability of a conjunction pA,Bq is computed as the product of
the probabilities of A and B (independent-and assumption),

2 the probability of a disjunction pA; Bq is computed as the sum of the
probabilities of A and B (exclusive-or assumption).

F. Riguzzi (UNIFE) PILP 16 / 136

Example

valuesptrp_q, rs1, s2sq.
valuespoutp_q, ra, bsq.
Ð set_swptrps1q, r0.2, 0.8sq.
Ð set_swptrps2q, r0.8, 0.2sq.
Ð set_swpoutps0q, r0.5, 0.5sq.
Ð set_swpoutps1q, r0.6, 0.4sq.
hmmpOsq Ð hmmps1,Osq.
hmmp_S , rsq.
hmmpS , rO|Ossq Ð

mswpoutpSq,Oq,mswptrpSq,NextSq, hmmpNext,Osq.

PphmmpOsqq: probability that the sequence of symbols Os is emitted.

F. Riguzzi (UNIFE) PILP 17 / 136

Example

Query hmmpra, b, bsq

8 explanations

E1 “ mpoutps1q, aq,mptrps1q, s1q,mpoutps1q, bq,mptrps1q, s1q,
mpoutps1q, bq,mptrps1q, s1q,

E2 “ mpoutps1q, aq,mptrps1q, s1q,mpoutps1q, bq,mptrps1q, s1q,
mpoutps1q, bq,mptrps1q, s2q,

E3 “ mpoutps1q, aq,mptrps1q, s1q,mpoutps2q, bq,mptrps1q, s2q,
mpoutps2q, bq,mptrps2q, s1q,

. . .
E8 “ mpoutps1q, aq,mptrps1q, s2q,mpoutps2q, bq,mptrps2q, s2q,

mpoutps2q, bq,mptrps2q, s2q

F. Riguzzi (UNIFE) PILP 18 / 136

Example

If the query q has the explanations E1 . . . ,En:

q ô E1 _ . . ._ En

Ppqq “
řn

i“1 PpEi q

PpEi q is the product of the probability of each atom
Because of the assumptions

F. Riguzzi (UNIFE) PILP 19 / 136

Example

values(gene,[a,b,o]).
bloodtype(P) :-

genotype(X,Y),
(X=Y -> P=X
; X=o -> P=Y
; Y=o -> P=X
; P=ab
).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

How a person’s blood type is determined by his genotype, formed by a pair
of two genes (a, b or o).

F. Riguzzi (UNIFE) PILP 20 / 136

Example

?- learn([count(bloodtype(a),40),count(bloodtype(b),20),
count(bloodtype(o),30),count(bloodtype(ab),10)]).

where count(At,N) denotes the repetition of atom At N times.

?- show_sw.
Switch gene: unfixed: a (0.292329558535712)
b (0.163020241540856)
o (0.544650199923432)

F. Riguzzi (UNIFE) PILP 21 / 136

PRISM

PRISM looks for the maximum likelihood parameters of the msw
atoms.
These are not observed in the dataset, which contains only derived
atoms.
Relative frequency cannot be used
Expectation Maximization

F. Riguzzi (UNIFE) PILP 22 / 136

PRISM

Associate a random variable Xi with values D “ txi1, . . . , xini u to the
ground switch name i of mswpi , xq with domain D

PRISM alternates between the two phases:
Expectation: compute Ercik |es for all examples e, switches mswpi , xq
and k P t1, . . . , niu, where cik is the number of times variable Xi takes
value xik

Ercik |es “ PpXi “ xik |eq.

Maximization: compute Πik for all mswpi , xq and k “ 1, . . . , ni ´ 1 as

Πik “

ř

ePE Ercik |es
ř

ePE

řni
k“1 Ercik |es

F. Riguzzi (UNIFE) PILP 23 / 136

PRISM

If the program satisfies the exclusive-or assumption, PpXi “ xik |eq can
be computed as

PpXi “ xik |eq “
PpXi “ xik , eq

Ppeq
“

ř

κPKe ,mswpi ,xik qPe
Ppκq

Ppeq

where Ke is the set of explanations of e

Each explanation κ is a set of msw atoms of the form mswpi , xikq.

F. Riguzzi (UNIFE) PILP 24 / 136

Naive PRISM

1: function PRISM-EM-Naive(E ,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: for all i , k do Ź Expectation step

6: Ercik s Ð
ř

ePE

ř

κPKe ,mswpi,xik qPe
Ppκq

Ppeq

7: end for
8: for all i , k do Ź Maximization step
9: Πik Ð

Ercik s
řni

k1“1 Ercik1 s

10: end for
11: LL Ð

ř

ePE log Ppeq
12: until LL´ LL0 ă ε
13: return LL,Πik for all i , k
14: end function

F. Riguzzi (UNIFE) PILP 25 / 136

PRISM

There can be exponential numbers of explanations
More efficient dynamic programming algorithm
Tabling is used to find formulas of the form

gi ô Si1 _ . . ._ Sisi

The gi s are subgoals that can be ordered as tg1, . . . , gmu such that
e “ g1 and each Sij contains only msw atoms and subgoals from
tgi`1, . . . , gmu.
Linear number of formulas rather than exponential
Acyclic support condition, true if tabling succeeds in evaluating q, i.e.,
if it doesn’t go into a loop.

F. Riguzzi (UNIFE) PILP 26 / 136

Example

For hmmpra, b, bsq, PRISM builds the formulas
hmmpra, b, bsq ô hmmps1, ra, b, bsq
hmmps1, ra, b, bsq ô mpoutps1q, aq,mptrps1q, s1q, hmmps1, rb, bsq_

mpoutps1q, aq,mptrps1q, s2q, hmmps2, rb, bsq
hmmps1, rb, bsq ô mpoutps1q, bq,mptrps1q, s1q, hmmps1, rbsq_

mpoutps1q, bq,mptrps1q, s2q, hmmps2, rbsq
hmmps2, rb, bsq ô mpoutps2q, bq,mptrps2q, s1q, hmmps1, rbsq_

mpoutps2q, bq,mptrps2q, s2q, hmmps2, rbsq
hmmps1, rbsq ô mpoutps1q, bq,mptrps1q, s1q, hmmps1, rsq_

mpoutps1q, bq,mptrps1q, s2q, hmmps2, rsq
hmmps2, rbsq ô mpoutps2q, bq,mptrps2q, s1q, hmmps1, rsq_

mpoutps2q, bq,mptrps2q, s2q, hmmps2, rsq
hmmps1, rsq ô true
hmmps2, rsq ô true

F. Riguzzi (UNIFE) PILP 27 / 136

Outside probabilities

We can divide the explanations for e into two sets, Ke1, that includes
the explanations containing mswpi , xkq, and Ke2, that includes the
other explanations.
Ppeq “ PpKe1q ` PpKe2q

PpXij “ xik , eq “ PpKe1q.
Each explanation in Ke1 takes the form ttgi ,W1u, . . . , tgi ,Wsuu and

PpKe1q “
ÿ

tgi ,W uPKe1

Ppgi qPpW q “ Ppgi q
ÿ

tgi ,W uPKe1

PpW q

F. Riguzzi (UNIFE) PILP 28 / 136

Outside probabilities

So we obtain

PpXij “ xik , eq “ Ppgi q
ÿ

tgi ,W uPKe1

PpW q “

BPpKeq

BPpgi q
Ppgi q “ (1)

BPpeq

BPpgi q
Ppgi q “ Qpgi qPpgi q

If gi “ mswpi , xkq, then

PpXi “ xik , eq “ Qpgi qPpgi q “ Qpgi qΠik .

F. Riguzzi (UNIFE) PILP 29 / 136

PRISM

Inside probability: Ppgi q

Outside probability: Qpgi q

PRISM generalizes the Inside-Outside algorithm for PCFG.
It also generalizes the forward-backward algorithm for parameter
learning in HMM by the Baum-Welch algorithm

F. Riguzzi (UNIFE) PILP 30 / 136

Get-Inside-Probs

1: procedure Get-Inside-Probs(q)
2: for all i , k do
3: Ppmswpi , vkqq Ð Πik

4: end for
5: for i Ð m Ñ 1 do
6: Ppgi q Ð 0
7: for j Ð 1Ñ si do
8: Let Sij be hij1, . . . , hijo

9: PpSijq Ð
śo

l“1 Pphijlq

10: Ppgi q Ð Ppgi q ` PpSijq

11: end for
12: end for
13: end procedure

F. Riguzzi (UNIFE) PILP 31 / 136

Outside probabilities

Defined as
Qpgi q “

BPpeq

BPpgi q

Suppose gi appears in the ground program as

b1 Ð gi ,W11 . . . b1 Ð gi ,W1i1
. . .

bK Ð gi ,WK1 . . . bK Ð gi ,WKiK

Then
Ppb1q “ Ppgi ,W11q ` . . .` Ppgi ,W1i1q

. . .
PpbK q “ Ppgi ,WK1q ` . . .` Ppgi ,WKiK q

F. Riguzzi (UNIFE) PILP 32 / 136

Outside probabilities

Qpg1q “ 1 as e “ g1.
For i “ 2, . . . ,m, Qpgi q by the chain rule knowing that Ppeq is a
function of Ppb1q, . . . ,PpbK q

Qpgi q “
BPpqq

BPpb1q

BPpb1q

BPpg1q
` . . .`

BPpqq

BPpbK q

BPpbK q

BPpg1q
“

BPpqq

BPpb1q

BPpgi ,W11q

BPpg1q
` . . .`

BPpqq

BPpbK q

BPpgi ,WKiK q

BPpg1q
“

Qpb1qPpgi ,W11q{Ppgi q ` . . .` Ppgi ,WKiK q{Ppgi q

Recursive formula

Qpg1q “ 1

Qpgi q “ Qpb1q
i1
ÿ

s“1

Ppgi ,W1sq

Ppgi q
` . . .` QpbK q

iK
ÿ

s“1

Ppgi ,WKsq

Ppgi q

To be evaluated top-down from q “ g1 down to gm.
F. Riguzzi (UNIFE) PILP 33 / 136

Get-Outside-Probs

1: procedure Get-Outside-Probs(q)
2: Qpg1q Ð 1.0
3: for i Ð 2Ñ m do
4: Qpgi q Ð 0.0
5: for j Ð 1Ñ si do
6: Let Sij be hij1, . . . , hijo

7: for l Ð 1Ñ o do
8: Qphijlq Ð Qphijlq ` Qpgi qPpSijq{Pphijlq

9: end for
10: end for
11: end for
12: end procedure

F. Riguzzi (UNIFE) PILP 34 / 136

PRISM-EM

1: function PRISM-EM(E ,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: LL “ Expectation(E)
6: for all i do
7: Sum Ð

řni
k“1 Ercik s

8: for k “ 1 to ni do
9: Πik “

Ercik s
Sum

10: end for
11: end for
12: until LL´ LL0 ă ε
13: return LL,Πik for all i , k
14: end function

F. Riguzzi (UNIFE) PILP 35 / 136

PRISM-Expectation

1: function PRISM-Expectation(E)
2: LL “ 0
3: for all e P E do
4: Get-Inside-Probs(e)
5: Get-Outside-Probs(e)
6: for all i do
7: for k “ 1 to ni do
8: Ercik s “ Ercik s ` Qpmswpi , xkqqΠik{Ppeq
9: end for

10: end for
11: LL “ LL` log Ppeq
12: end for
13: return LL
14: end function

F. Riguzzi (UNIFE) PILP 36 / 136

Complexity

PRISM has the same time complexity for programs encoding HMM
and PCFG as the specific parameter learning algorithms: the
Baum-Welch algorithm and the Inside-Outside algorithm

F. Riguzzi (UNIFE) PILP 37 / 136

Parameter Learning for ProbLog and LPADs

[Thon et al. ECML 2008] proposed an adaptation of EM for CPT-L, a
simplified version of LPADs
The algorithm computes the counts efficiently by repeatedly traversing
the BDDs representing the explanations
[Ishihata et al. ILP 2008] independently proposed a similar algorithm
LFI-ProbLog [Gutamnn et al. ECML 2011]: EM for ProbLog on BDDs
EMBLEM [Riguzzi & Bellodi IDA 2013] adapts [Ishihata et al. ILP
2008] to LPADs

F. Riguzzi (UNIFE) PILP 38 / 136

EMBLEM

Definition (EMBLEM learning problem)

Given an LPAD P with unknown parameters and two sets
E` “ te1, . . . , eT u and E´ “ teT`1, . . . , eQu of ground atoms (positive
and negative examples), find the value of the parameters Π of P that
maximize the likelihood of the examples, i.e., solve

arg max
Π

PpE`,„E´q “ arg max
Π

T
ź

t“1

Ppetq
Q
ź

t“T`1

Pp„etq.

Predicates for the atoms in E` and E´: target because the objective is to
be able to better predict the truth value of atoms for them.

F. Riguzzi (UNIFE) PILP 39 / 136

Parameter Learning

Typically, the LPAD P has two components:
a set of rules, annotated with parameters
a set of certain ground facts, representing background knowledge on
individual cases of a specific world

Useful to provide information on more than one world: a background
knowledge and sets of positive and negative examples for each world
Description of one world: mega-interpretation or mega-example
Positive examples encoded as ground facts of the mega-interpretation
and the negative examples as suitably annotated ground facts (such as
negpaq for negative example a)
The task then is maximizing the product of the likelihood of the
examples for all mega-interpretations.

F. Riguzzi (UNIFE) PILP 40 / 136

Example: Bongard Problems

Introduced by the Russian scientist M. Bongard
Pictures, some positive and some negative
Problem: discriminate between the two classes.
The pictures contain shapes with different properties, such as small,
large, pointing down, . . . and different relationships between them,
such as inside, above, . . .

F. Riguzzi (UNIFE) PILP 41 / 136

Data
Each mega-examle encodes a single picture

begin(model(2)).
pos.
triangle(o5).
config(o5,up).
square(o4).
in(o4,o5).
circle(o3).
triangle(o2).
config(o2,up).
in(o2,o3).
triangle(o1).
config(o1,up).
end(model(2)).

begin(model(3)).
neg(pos).
circle(o4).
circle(o3).
in(o3,o4).
....

F. Riguzzi (UNIFE) PILP 42 / 136

Program

Theory for parameter learning and background

pos:0.5 :-
circle(A),
in(B,A).

pos:0.5 :-
circle(A),
triangle(B).

The task is to tune the two parameters

F. Riguzzi (UNIFE) PILP 43 / 136

EMBLEM

The interpretations record the truth value of ground atoms, not of the
random variables
Unseen data: relative frequency can’t be used
Expectation-Maximization algorithm:

Expectation step: the distribution of the unseen variables in each
instance is computed given the observed data
Maximization step: new parameters are computed from the
distributions using relative frequency
End when likelihood does not improve anymore

F. Riguzzi (UNIFE) PILP 44 / 136

EMBLEM

EM over Bdds for probabilistic Logic programs Efficient Mining
[Bellodi and Riguzzi IDA 2013]
Input: an LPAD; logical interpretations (data); target predicate(s)
All ground atoms in the interpretations for the target predicate(s)
correspond to as many queries
BDDs encode the explanations for each query
Expectations computed with two passes over the BDDs

F. Riguzzi (UNIFE) PILP 45 / 136

EMBLEM

EMBLEM encodes multi-valued random variable with Boolean random
variables
Variable Xij associated with grounding θj of clause Ci having n values.
Encoding using n ´ 1 Boolean variables Xij1, . . . ,Xijn´1.
Equation Xij “ k for k “ 1, . . . n ´ 1 represented by

Xij1 ^ . . .^ Xijk´1 ^ Xijk

Equation Xij “ n represented by

Xij1 ^ . . .^ Xijn´1.

Parameters:

PpXij1q “ PpXij “ 1q
. . .

PpXijkq “
PpXij “ kq

śk´1
l“1 p1´ PpXijk´1qq

F. Riguzzi (UNIFE) PILP 46 / 136

EMBLEM

Let Xijk for k “ 1, . . . , ni ´ 1 and j P gpiq be the Boolean random
variables associated with grounding Ciθj of clause Ci of P where ni is
the number of head atoms of Ci and gpiq is the set of indices of
grounding substitutions of Ci .

F. Riguzzi (UNIFE) PILP 47 / 136

Example

C1 “ epidemic : 0.6 ; pandemic : 0.3Ð flupX q, cold .
C2 “ cold : 0.7.
C3 “ flupdavidq.
C4 “ fluprobertq.

Clause C1: two groundings, first: X111 and X112, latter: X121 and
X122.
C2: single grounding, random variable X211.

X111 n1

X121 n2

X211 n3

1 0

F. Riguzzi (UNIFE) PILP 48 / 136

EMBLEM

EMBLEM alternates between the two phases:
Expectation: compute Ercik0|es and Ercik1|es for all examples e, rules
Ci in P and k “ 1, . . . , ni ´ 1, where cikx is the number of times a
variable Xijk takes value x for x P t0, 1u, with j in gpiq.

Ercikx |es “
ÿ

jPgpiq

PpXijk “ x |eq.

Maximization: compute πik for all rules Ci and k “ 1, . . . , ni ´ 1.

πik “

ř

ePE Ercik1|es
ř

qPE Ercik0|es ` Ercik1|es

F. Riguzzi (UNIFE) PILP 49 / 136

EMBLEM

PpXijk “ x |eq is given by PpXijk “ x |eq “
PpXijk“x ,eq

Ppeq .

Consider a BDD for an example e built by applying only the merge rule

X111 n1

X121 n12 n2

X211 n3 n13

1 0

F. Riguzzi (UNIFE) PILP 50 / 136

EMBLEM

Ppeq is given by the sum of the probabilities of all the paths in the
BDD from the root to a 1 leaf
To compute PpXijk “ x , eq we need to consider only the paths passing
through the x-child of a node n associated with variable Xijk so

PpXijk “ x , eq “
ÿ

nPNpXijk q

πikxF pnqBpchildxpnqq “
ÿ

nPNpXijk q

expnq

F pnq is the forward probability, the probability mass of the paths from
the root to n,
Bpnq is the backward probability, the probability mass of paths from n
to the 1 leaf.

F. Riguzzi (UNIFE) PILP 51 / 136

EMBLEM

BDD obtained by also applying the deletion rule: paths where there is
no node associated with Xijk can also contribute to PpXijk “ x , eq.
Suppose the BDD was obtained deleting node m child of n associated
with variable Xijk

Outgoing edges of m both point to child0pnq.
The probability mass of the two paths that were merged was
e0pnqp1´ πikq and e0pnqπik for
The first quantity contributes to PpXijk “ 0, eq, the latter to
PpXijk “ 1, eq.

F. Riguzzi (UNIFE) PILP 52 / 136

GetForward

1: procedure GetForward(root)
2: F prootq “ 1
3: F pnq “ 0 for all nodes
4: for l “ 1 to levels do Ź levels is the number of levels of the BDD rooted at root
5: Nodesplq “ H
6: end for
7: Nodesp1q “ trootu
8: for l “ 1 to levels do
9: for all node P Nodesplq do
10: let Xijk be vpnodeq, the variable associated with node
11: if child0pnodeq is not terminal then
12: F pchild0pnodeqq “ F pchild0pnodeqq ` F pnodeq ¨ p1´ πik)
13: add child0pnodeq to Nodesplevelpchild0pnodeqqq
14: end if
15: if child1pnodeq is not terminal then
16: F pchild1pnodeqq “ F pchild1pnodeqq ` F pnodeq ¨ πik
17: add child1pnodeq to Nodesplevelpchild1pnodeqqq
18: end if
19: end for
20: end for
21: end procedure

F. Riguzzi (UNIFE) PILP 53 / 136

GetBackward

1: function GetBackward(node)
2: if node is a terminal then
3: return valuepnodeq
4: else
5: let Xijk be vpnodeq
6: Bpchild0pnodeqq “GetBackward(child0pnodeq)
7: Bpchild1pnodeqq “GetBackward(child1pnodeq)
8: e0pnodeq “ F pnodeq ¨ Bpchild0pnodeqq ¨ p1´ πik q
9: e1pnodeq “ F pnodeq ¨ Bpchild1pnodeqq ¨ πik
10: η0pi , kq “ η0

t pi , kq ` e0pnodeq
11: η1pi , kq “ η1

t pi , kq ` e1pnodeq
12: take into account deleted paths
13: return Bpchild0pnodeqq ¨ p1´ πik q ` Bpchild1pnodeqq ¨ πik
14: end if
15: end function

F. Riguzzi (UNIFE) PILP 54 / 136

Example

X111 n1
F=1

0.6

0.4

X121 n2

0.6

0.4X211 n3

0.7

0.3

1 0

F. Riguzzi (UNIFE) PILP 55 / 136

Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4

0.6

0.4X211 n3

0.7

0.3

1 0

F. Riguzzi (UNIFE) PILP 56 / 136

Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4

0.6

0.4X211 n3
F=0.84

0.7

0.3

1 0

F. Riguzzi (UNIFE) PILP 57 / 136

Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4

0.6

0.4X211 n3
F=0.84
B=0.7

0.7

0.3

1 0

F. Riguzzi (UNIFE) PILP 58 / 136

Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4
B=0.42

0.6

0.4X211 n3
F=0.84
B=0.7

0.7

0.3

1 0

F. Riguzzi (UNIFE) PILP 59 / 136

Example

X111 n1
F=1
B=0.588

0.6

0.4

X121 n2
F=0.4
B=0.42

0.6

0.4X211 n3
F=0.84
B=0.7

0.7

0.3

1 0

F. Riguzzi (UNIFE) PILP 60 / 136

LeProbLog

0.1 :: burglary .
0.2 :: earthquake.
0.7 :: hears_alarmpX q Ð personpX q.
alarm Ð burglary .
alarm Ð earthquake.
callspX q Ð alarm, hears_alarmpX q.
personpmaryq.
personpjohnq.

q “ burglary e “ callspjohnq

F. Riguzzi (UNIFE) PILP 61 / 136

LeProbLog

LeProbLog [Gutmann et al PKDD 2008]

Definition (LeProbLog parameter learning problem)

Given a ProbLog program P and a set of training examples
E “ tpe1, pi q, . . . , peT , pT qu where et is a ground atom and pt P r0, 1s for
t “ 1, . . . ,T , find the parameter of the program so that the mean squared
error

MSE “
1
T

T
ÿ

t“1

pPpetq ´ ptq
2

is minimized.

F. Riguzzi (UNIFE) PILP 62 / 136

LeProbLog

Gradient descent: it iteratively updates the parameters in the opposite
direction of the gradient.
Gradient

BMSE

BΠj
“

2
T

T
ÿ

t“1

pPpetq ´ ptq ¨
BPpetq

BΠj

LeProbLog compiles queries to BDDs
To compute BPpetq

BΠj
, it uses a dynamic programming algorithm that

traverses the BDD bottom up

F. Riguzzi (UNIFE) PILP 63 / 136

LeProbLog

If f pXq is the Boolean function represented by the BDD:

BPpetq

BΠj
“
BPpf pXqq
BΠj

f pXq “ Xk ¨ f Xk pXq ` Xk ¨ f Xk pXq

Ppf pXqq “ Πk ¨ Ppf Xk pXqq ` p1´ Πkq ¨ Ppf Xk pXqq
BPpf pXqq
BΠj

“ Ppf Xk pXqq ´ Ppf Xk pXqq

if k “ j , or

BPpf pXqq
BΠj

“ Πk ¨
BPpf Xk pXqq

BΠj
` p1´ Πkq ¨

Ppf Xk pXqq
BΠj

if k ‰ j .
If Xj does not appear in X BPpf pXqq

BΠj
“ 0

F. Riguzzi (UNIFE) PILP 64 / 136

LeProbLog

We have to ensure that the parameters remain in the r0, 1s interval.
Reparameterization by means of the sigmoid function σpxq “ 1

1`e´x

Each parameter is expressed as Πj “ σpajq and the ajs are used as the
parameters
Using the chain rule of derivatives

BPpetq

Baj
“ σpajq ¨ p1´ σpajqq

BPpf pXqq
BΠj

F. Riguzzi (UNIFE) PILP 65 / 136

ProbLog2

ProbLog2 includes LFI-ProbLog [Gutmann et al PKDD 2011] that
learns the parameters of ProbLog programs from partial
interpretations.
Partial interpretations specify the truth value of some but not
necessarily all ground atoms.
I “ xIT , IF y: the atoms in IT are true and those in IF are false.
I “ xIT , IF y can be associated with a conjunction
qpIq “

Ź

aPIT
a^

Ź

aPIF
„a.

F. Riguzzi (UNIFE) PILP 66 / 136

LFI-ProbLog

Definition (LFI-ProbLog learning problem)

Given a ProbLog program P with unknown parameters and a set
E “ tI1, . . . , IT u of partial interpretations (the examples), find the value
of the parameters Π of P that maximize the likelihood of the examples,
i.e., solve

arg max
Π

PpE q “ arg max
Π

T
ź

t“1

PpqpItqq

F. Riguzzi (UNIFE) PILP 67 / 136

LFI-ProbLog

EM algorithm
A d-DNNF circuit for each partial interpretation I “ xIT , IF y by using
the ProbLog2 inference algorithm with the evidence qpIq.
A Boolean random variable Xij is associated with each ground
probabilistic fact fiθj .
For each example I, variable Xij and x P t0, 1u, LFI-ProbLog
computes PpXij “ x |Iq.
LFI-ProbLog computes PpXij “ x |Iq by computing PpXij “ x , Iq
using Procedure CircP

F. Riguzzi (UNIFE) PILP 68 / 136

Example of a d-DNNF Formula

q “ burglary e “ callspjohnq
^

callspjohnq hears_alarnpjohnq alarm_

^ ^

 burglary _

earthqauke

burglary

 earthqauke

F. Riguzzi (UNIFE) PILP 69 / 136

Example of a d-DNNF Circuit

˚p0.196q

˚p1.0q

λpcallspjohnqq 1.0

˚p0.7q

λphears_alarnpjohnqq 0.7

˚p1.0q

λpalarmq 1.0

`p0.28q

˚p0.18q ˚p0.1q

˚p0.9q

λp burglaryq 0.9

`p1.0q

˚p0.2q

λpearthqaukeq 0.2

˚p0.1q

λpburglaryq 0.1 ˚p0.8q

λp earthqaukeq 0.8

F. Riguzzi (UNIFE) PILP 70 / 136

Computing Expectations

WMC pφq “
ÿ

ωPSAT pφq

ź

lPω

wplqλl “
ÿ

ωPSAT pφq

ź

lPω

wplq
ź

lPω

λl

Ppeq “
ÿ

ωPSAT pφq

ź

lPω

wplq

We want to compute Ppq|eq for all atoms q P Q.
Partial derivative Bf

Bλq
for an atom q:

Bf

Bλq
“

ÿ

ωPSAT pφq,qPω

ź

lPω

wplq
ź

lPω,l‰q

λl “

ÿ

ωPSAT pφq,qPω

ź

lPω

wplq “

Ppe, qq

F. Riguzzi (UNIFE) PILP 71 / 136

Computing Expectations

If we compute the partial derivatives of f for all indicator variables λq,
we get Ppq, eq for all atoms q.
vpnq: value of each node n

dpnq “ Bvprq
Bvpnq .

dprq “ 1
By the chain rule of calculus, for an arbitrary non-root node n with p
indicating its parents

dpnq “
ÿ

p

Bvprq

Bvppq

Bvppq

Bvpnq
“

ÿ

p

dppq
Bvppq

Bvpnq
.

F. Riguzzi (UNIFE) PILP 72 / 136

Computing Expectations

If p is a multiplication node with n1 indicating its children

Bvppq

Bvpnq
“
Bvpnq

ś

n1‰n vpn1q

Bvpnq
“

ź

n1‰n

vpn1q.

If parent p is an addition node with n1 indicating its children

Bvppq

Bvpnq
“
Bvpnq `

ř

n1‰n vpn1q

Bvpnq
“ 1.

`p an addition parent of n and ˚p a multiplication parent of n:

dpnq “
ÿ

`p

dp`pq `
ÿ

˚p

dp˚pq
ź

n1‰n

vpn1q.

If vpnq ‰ 0.

dpnq “
ÿ

`p

dp`pq `
ÿ

˚p

dp˚pqvp˚pq{vpnq.

F. Riguzzi (UNIFE) PILP 73 / 136

CircP

1: procedure CircP(circuit)
2: assign values to leaves
3: for all non-leaf node n with children c (visit children before parents) do
4: if n is an addition node then
5: vpnq Ð

ř

c vpcq
6: else
7: vpnq Ð

ś

c vpcq
8: end if
9: end for
10: dprq Ð 1, dpnq “ 0 for all non-root nodes
11: for all non-root node n (visit parents before children) do
12: for all parents p of n do
13: if p is an addition parent then
14: dpnq “ dpnq ` dppq
15: else
16: dpnq Ð dpnq ` dppqvppq{vpnq
17: end if
18: end for
19: end for
20: end procedure

F. Riguzzi (UNIFE) PILP 74 / 136

Structure Learning for LPADs

Given a set of interpretations (data)
Find the model and the parameters that maximize the probability of
the data (log-likelihood)
SLIPCOVER: Structure LearnIng of Probabilistic logic program by
searching OVER the clause space [Riguzzi & Bellodi TPLP 2015]

1 Beam search in the space of clauses to find the promising ones
2 Greedy search in the space of probabilistic programs guided by the LL

of the data.

Parameter learning by means of EMBLEM

F. Riguzzi (UNIFE) PILP 75 / 136

SLIPCOVER

Cycle on the set of predicates that can appear in the head of clauses,
either target or background
For each predicate, beam search in the space of clauses
The initial set of beams is generated by building a set of bottom
clauses as in Progol [Muggleton NGC 1995]
Bottom clause: most specific clause covering an example

F. Riguzzi (UNIFE) PILP 76 / 136

Language Bias

Mode declarations as in Progol
Syntax

modeh(RecallNumber,PredicateMode).
modeb(RecallNumber,PredicateMode).

RecallNumber can be a number or *. Usually *. Maximum number of
answers to queries to include in the bottom clause

F. Riguzzi (UNIFE) PILP 77 / 136

Mode Declarations

PredicateMode template of the form:

p(ModeType, ModeType,...)

Some examples:

modeb(1,mem(+number,+list)).
modeb(1,dec(+integer,-integer)).
modeb(1,mult(+integer,+integer,-integer)).
modeb(1,plus(+integer,+integer,-integer)).
modeb(1,(+integer)=(#integer)).
modeb(*,has_car(+train,-car))

F. Riguzzi (UNIFE) PILP 78 / 136

Mode Declarations

ModeType can be:
Simple:

+T input variables of type T;
-T output variables of type T; or
#T, -#T constants of type T.

Structured: of the form f(..) where f is a function symbol and every
argument can be either simple or structured. For example:

modeb(1,mem(+number,[+number|+list])).

F. Riguzzi (UNIFE) PILP 79 / 136

Bottom Clause K

Most specific clause covering an example e

Form: e Ð B

B : set of ground literals that are true regarding the example e

B obtained by considering the constants in e and querying the data
for true atoms regarding these constants
Values for output arguments are used as input arguments for other
predicates
A map from types to lists of constants is kept, it is enlarged with
constants in the answers to the queries and the procedure is iterated a
user-defined number of times
#T arguments are instantiated in calls, -#T aren’t and the values after
the call are added to the list of constants
-#T arguments can be used to retrieve values for T, #T can’t

F. Riguzzi (UNIFE) PILP 80 / 136

Bottom Clause K

Initialize to empty a map m from types to lists of values
Pick a modehpr , sq, an example e matching s, add to mpT q the values
of `T arguments in e

For i “ 1 to d

For each modebpr , sq

F. Riguzzi (UNIFE) PILP 81 / 136

Bottom Clause K

For each possible way of building a query q from s by replacing `T
and #T arguments with constants from mpT q and all other
arguments with variables

Find all possible answers for q and put them in a list L
L1 :“ r elements sampled from L
For each l P L1, add the values in l corresponding to ´T or ´#T to
mpT q

F. Riguzzi (UNIFE) PILP 82 / 136

Bottom Clause K

Example:

e “ fatherpjohn,maryq
BG “ tparentpjohn,maryq, parentpdavid , steveq,
parentpkathy ,maryq, femalepkathyq,malepjohnq,malepdavidqu
modehpfatherp`person,`personqq.
modebpparentp`person,´personqq.
modebpparentp´#person,`personqq.
modebpmalep`personqq. modebpfemalep#personqq.
e Ð B “ fatherpjohn,maryq Ð parentpjohn,maryq,malepjohnq,
parentpkathy ,maryq, femalepkathyq.

F. Riguzzi (UNIFE) PILP 83 / 136

Bottom Clause K

The resulting ground clause K is then processed by replacing each
term in a + or - placemarker with a variable
An input variable (+T) must appear as an output variable with the
same type in a previous literal and a constant (#T or -#T) is not
replaced by a variable.

K “ fatherpX ,Y q Ð
parentpX ,Y q,malepX q, parentpkathy ,Y q, femalepkathyq.

F. Riguzzi (UNIFE) PILP 84 / 136

Determination

determination(pred1/n1,pred2/n2).

indicates that pred2/n2 can appear in the body of clauses for
predicate pred1/n1

As in Progol

F. Riguzzi (UNIFE) PILP 85 / 136

Head Declarations

To generate clauses with more than two head atoms, head
declarations of the form

modehpr , rs1, . . . , sns, ra1, . . . , ans, rP1{Ar1, . . . ,Pk{Ark sq

s1, . . . , sn are schemas
a1, . . . , an are atoms such that ai is obtained from si by replacing
placemarkers with variables
Pi{Ari are the predicates admitted in the body.
a1, . . . , an are used to indicate which variables should be shared by the
atoms in the head.
The generation of a bottom clause is the same except for the fact that
the goal to call is composed of more than one atom.

F. Riguzzi (UNIFE) PILP 86 / 136

Head Declarations

Goal a1, . . . , an is called and r answers that ground all ai s are kept
Resulting bottom clauses a1 ; . . . ; an :´ b1, . . . , bm

The initial beam contains clauses with an empty body of the form

a1 :
1

n ` 1
; . . . ; an :

1
n ` 1

.

F. Riguzzi (UNIFE) PILP 87 / 136

SLIPCOVER

The initial beam associated with predicate P{Ar of h will contain the
clause with the empty body h : 0.5. for each bottom clause
h :´ b1, . . . , bm

In each iteration of the cycle over predicates, it performs a beam
search in the space of clauses for the predicate.
The beam contains couples pCl , LIteralsq where
Literals “ tb1, . . . , bmu

For each clause Cl of the form Head :´ Body , the refinements are
computed by adding a literal from Literals to the body.

F. Riguzzi (UNIFE) PILP 88 / 136

SLIPCOVER

The tuple (Cl 1, Literals 1) indicates a refined clause Cl 1 together with
the new set Literals 1

EMBLEM is then executed for a theory composed of the single refined
clause.
LL is used as the score of the updated clause pCl2, Literals 1q.
pCl2, Literals 1q is then inserted into a list of promising clauses.
Two lists are used, TC for target predicates and BC for background
predicates.
These lists ave a maximum size

F. Riguzzi (UNIFE) PILP 89 / 136

SLIPCOVER

After the clause search phase, SLIPCOVER performs a greedy search
in the space of theories:

it starts with an empty theory and adds a target clause at a time from
the list TC .
After each addition, it runs EMBLEM and computes the LL of the data
as the score of the resulting theory.
If the score is better than the current best, the clause is kept in the
theory, otherwise it is discarded.

Finally, SLIPCOVER adds all the clauses in BC to the theory and
performs parameter learning on the resulting theory.

F. Riguzzi (UNIFE) PILP 90 / 136

Execution Example

UW-CSE dataset: 22 different predicates, such as advisedby/2,
yearsinprogram/2 and taughtby/3.
The aim is to predict the predicate advisedby/2
The language bias includes
modeh(*,advisedby(+person,+person)).
modeh(*,[advisedby(+person,+person),tempadvisedby(+person,+person)],

[advisedby(A,B),tempadvisedby(A,B)],
[professor/1,student/1,hasposition/2,inphase/2,publication/2,
taughtby/3,ta/3,courselevel/2,yearsinprogram/2]).

modeh(*,[student(+person),professor(+person)],
[student(P),professor(P)],
[hasposition/2,inphase/2,taughtby/3,ta/3,courselevel/2,
yearsinprogram/2,advisedby/2,tempadvisedby/2]).

modeh(*,[inphase(+person,pre_quals),inphase(+person,post_quals),
inphase(+person,post_generals)],
[inphase(P,pre_quals),inphase(P,post_quals),inphase(P,post_generals)],
[professor/1,student/1,taughtby/3,ta/3,courselevel/2,
yearsinprogram/2,advisedby/2,tempadvisedby/2,hasposition/2]).

F. Riguzzi (UNIFE) PILP 91 / 136

Execution Example

modeb declarations such as
modeb(*,courselevel(+course, -level)).
modeb(*,courselevel(+course, #level)).

F. Riguzzi (UNIFE) PILP 92 / 136

Execution Example

Example of a two-head bottom clause generated from the first modeh
declaration

advisedby(A,B):0.5 :- professor(B),student(A),hasposition(B,C),
hasposition(B,faculty),inphase(A,D),inphase(A,pre_quals),
yearsinprogram(A,E),taughtby(F,B,G),taughtby(F,B,H),taughtby(I,B,J),
taughtby(I,B,J),taughtby(F,B,G),taughtby(F,B,H),
ta(I,K,L),ta(F,M,H),ta(F,M,H),ta(I,K,L),ta(N,K,O),ta(N,A,P),
ta(Q,A,P),ta(R,A,L),ta(S,A,T),ta(U,A,O),ta(U,A,O),ta(S,A,T),
ta(R,A,L),ta(Q,A,P),ta(N,K,O),ta(N,A,P),ta(I,K,L),ta(F,M,H).

F. Riguzzi (UNIFE) PILP 93 / 136

Execution Example

Example of a multi-head bottom clause generated from the second
modeh declaration
student(A):0.33; professor(A):0.33 :- inphase(A,B),

inphase(A,post_generals),
yearsinprogram(A,C).

F. Riguzzi (UNIFE) PILP 94 / 136

Execution Example

Example of a refinement from the first bottom clause is
advisedby(A,B):0.5 :- professor(B).

EMBLEM is applied to the theory, the only parameter is updated
obtaining:
advisedby(A,B):0.108939 :- professor(B).

The clause is further refined to
advisedby(A,B):0.108939 :- professor(B),hasposition(B,C).

F. Riguzzi (UNIFE) PILP 95 / 136

Execution Example

Example of a refinement that is generated from the second bottom
clause is
student(A):0.33; professor(A):0.33 :- inphase(A,B).

Updated refinement after EMBLEM
student(A):0.5869;professor(A):0.09832 :- inphase(A,B).

F. Riguzzi (UNIFE) PILP 96 / 136

Execution Example

When searching the space of theories for the target predicate
advisedby, SLIPCOVER generates the program:
advisedby(A,B):0.1198 :- professor(B),inphase(A,C).
advisedby(A,B):0.1198 :- professor(B),student(A).
with a LL of -350.01.
After EMBLEM we get:
advisedby(A,B):0.05465 :- professor(B),inphase(A,C).
advisedby(A,B):0.06893 :- professor(B),student(A).
with a LL of -318.17.
Since the LL increased, the last clause is retained and at the next
iteration a new clause is added:
advisedby(A,B):0.12032 :- hasposition(B,C),inphase(A,D).
advisedby(A,B):0.05465 :- professor(B),inphase(A,C).
advisedby(A,B):0.06893 :- professor(B),student(A).

F. Riguzzi (UNIFE) PILP 97 / 136

ProbFOIL+

ProbFOIL+ [De Raedt et al IJCAI 2015] learn rules from probabilistic
examples.

Definition (ProbFoil+ learning problem)

Given
1 a set of training examples E “ tpe1, p1q, . . . , peT , pT qu where each ei

is a ground fact for a target predicate
2 a background theory B containing information about the examples in

the form of a ProbLog program
3 a space of possible clauses L

find a hypothesis H Ď L so that the absolute error AE “
řT

i“1 |Ppei q ´ pi |

is minimized, i.e.,

arg min
HPL

T
ÿ

i“1

|Ppei q ´ pi |

F. Riguzzi (UNIFE) PILP 98 / 136

ProbFOIL+

Form of clauses: x :: h Ð B , with x P r0, 1s.
To be interpreted as
h Ð B, probpidq.
x :: probpidq.

Different from an LPAD h : x Ð B, as this stands for the union of
ground rules h1 : x Ð B 1. obtained by grounding h : x Ð B.

F. Riguzzi (UNIFE) PILP 99 / 136

ProbFOIL+

ProbFOIL+ generalizes mFOIL and FOIL
Covering loop: one rule is added to the theory at each iteration.
Clause search loop: builds the rule by iteratively adding literals to the
body.
The covering loop ends when a condition based on a global scoring
function is satisfied.
Clause search loop: beam search using a local scoring function as the
heuristic.

F. Riguzzi (UNIFE) PILP 100 / 136

ProbFOIL+

1: function ProbFOIL+(target)
2: H ÐH

3: while true do
4: clause Ð LearnRulepH, targetq
5: if GScorepHq ă GScorepH Y tclauseuq ^ SignificantpH, clauseq then
6: H Ð H Y tclauseu
7: else
8: return H
9: end if
10: end while
11: end function

F. Riguzzi (UNIFE) PILP 101 / 136

ProbFOIL+

1: function LearnRule(H, target)
2: candidates Ð tx :: target Ð trueu
3: best Ð px :: target Ð trueq
4: while candidates ‰ H do
5: next_cand ÐH

6: for all x :: target Ð body P candidates do
7: for all ptarget Ð bod , refinementq P ρptarget Ð bodyq do
8: if not RejectpH, best, px :: target Ð body , refinementqq then
9: next_cand Ð next_cand Y tpx :: target Ð body , refinementqu
10: if LScorepH, px :: target Ð body , refinementqq ą LScorepH, bestq then
11: best Ð px :: target Ð body , refinementq
12: end if
13: end if
14: end for
15: end for
16: candidates Ð next_cand
17: end while
18: return best
19: end function

F. Riguzzi (UNIFE) PILP 102 / 136

ProbFOIL+

Global scoring function: accuracy over the dataset, given by

accuracyH “
TPH ` TNH

T

where T is number of examples and TPH and TNH are, respectively,
the number of true positives and of true negatives
Local scoring function: an m-estimate of the precision

m-estimateH “
TPH `m P

P`N

TPH ` FPH `m

F. Riguzzi (UNIFE) PILP 103 / 136

ProbFOIL+

Each example ei is associated with a probability pi .
An example pei , pi q contributes a part pi to the positive part of
training set and 1´ pi to the negative part: P “

řT
i“1 pi and

N “
řT

i“1p1´ pi q.
Hypothesis H assigns a probability pH,i to each example ei

The contribution tpH,i of example ei to TPH will be pH,i if pi ą pH,i

and pi otherwise, because if pi ă pH,i the hypothesis is overestimating
ei .
The contribution fpH,i of example ei to FPH will be pH,i ´ pi if
pi ă pH,i and 0 otherwise, because if pi ą pH,i the hypothesis is
underestimating ei .
TPH “

řT
i“1 tpH,i , FPH “

řT
i“1 fpH,i , TNH “ N ´ FPH and

FNH “ P ´ TPH

F. Riguzzi (UNIFE) PILP 104 / 136

ProbFOIL+

LScorepH, x :: C q computes the local scoring function for the addition
of clause C pxq “ x :: C to H

The heuristic depends on the value of x P r0, 1s.
Find the value of x that maximizes the score

Mpxq “
TPHYCpxq `mP{T

TPHYCpxq ` FPHYCpxq `m
.

We need to compute TPHYCpxq and FPHYCpxq, tpHYCpxq,i and
fpHYCpxq,i as a function of x .

F. Riguzzi (UNIFE) PILP 105 / 136

ProbFOIL+

Mpxq is a piecewise function where each piece is of the form

Ax ` B

Cx ` D

with A,B,C and D constants.
The derivative of a piece is

dMpxq

dx
“

AD ´ BC

pCx ` Dq2

It is either 0 or different from 0 everywhere in each interval so the
maximum of Mpxq can only occur at the xi s values that are the
endpoints of the intervals.
Compute the value of Mpxq for each xi and pick the maximum.
Ordering the xi values

F. Riguzzi (UNIFE) PILP 106 / 136

ProbFOIL+

ProbFOIL+ prunes refinements when
they cannot lead to a local score higher than the current best,
they cannot lead to a global score higher than the current best or
they are not significant, i.e., when they provide only a limited
contribution.

By adding a literal to a clause, the true positives and false positives
can only decrease, so we can obtain an upper bound of the local score
by setting the false positives to 0 and computing the m-estimate.
By adding a clause to a theory, the true positives and false positives
can only increase, so if the number of true positives of H Y C pxq is
not larger than the true positives of H, the refinement C pxq can be
discarded.
significance test based on the likelihood ratio statistics.

F. Riguzzi (UNIFE) PILP 107 / 136

SLIPCASE: Structure LearnIng of ProbabilistiC logic progrAmS with Em over bdds

Input: simple initial Theory

Compute optimum parameters and log-likelihood LL of the data for Theory
with EMBLEM

best theory=Theory, best likelihood=LL

Beam Search
1 Beam: the N theories with the highest log-likelihood, initially Theory
2 Remove the 1st theory from beam Ñ theory refinements:

language bias with modeh/modeb declarations
+/- literal in a clause and +/- clause

3 Estimate LL for each refinement with Nmax iterations of EMBLEM
4 Update (best theory,best likelihood)
5 Insert the refinement in the beam, ordered by likelihood
6 Remove the refinements exceeding the size of the beam

Stop search after MaxSteps iterations or if empty Beam

EMBLEM over best theory

F. Riguzzi (UNIFE) PILP 108 / 136

Monte Carlo Tree Search

MCTS: take random samples in the decision
space and build a search tree in an incremental
and asymmetric manner
First a tree policy is used in order to find the
most urgent node of the tree to expand
Then a simulation phase is conducted from the
selected node, by adding a new child node and
using a default policy that suggests the
sequence of actions (“simulation”) to be chosen
from this new node.
Finally, the simulation result is backpropagated
upwards to update the statistics of the nodes.

F. Riguzzi (UNIFE) PILP 109 / 136

LEMUR: LEarning with a Monte carlo Upgrade of tRee search

We consider each logic theory as a bandit problem, where each legal
theory revision is an arm with unknown reward
Tree policy: LEMUR selects one move, corresponding to a possible
theory revision, according to a formula
LEMUR descends to the selected child node and selects a new move
until it reaches a leaf
Then LEMUR starts the Monte Carlo simulation phase to score the
theory at this leaf
One random sequence of revisions is applied starting from the leaf
theory until a finite unknown horizon is reached
LEMUR stops the simulation after k steps, where k is a uniformly
sampled random integer smaller than d , an input parameter.
Once the horizon is reached, LEMUR produces a reward value ∆.

F. Riguzzi (UNIFE) PILP 110 / 136

LEMUR: LEarning with a Monte carlo Upgrade of tRee search

The nodes visited in the tree policy are saved with their statistics: the
visit count nj , the average reward X j and the score Lj

In the simulation phase, all the visited nodes are scored by computing
their log-likelihood using EMBLEM as in the tree policy, and the
reward ∆ corresponds to the maximum score obtained in this random
descent.
∆ is backpropagated up the sequence of nodes selected for this
iteration to update the node statistics: for each node j , its visit count
is incremented and its average reward X j is updated according to ∆.

F. Riguzzi (UNIFE) PILP 111 / 136

Hierarchical PLP

Learning probabilistic logic programs is expensive due to the high cost
of inference.
A restriction of the language of Logic Programs with Annotated
Disjunctions called hierarchical PLP in which clauses and predicates
are hierarchically organized.
Inference is then much cheaper.

F. Riguzzi (UNIFE) PILP 112 / 136

Hierarchical PLP

We want to compute the probability of atoms for a predicate r : rp~tq,
where ~t is a vector of constants.
rp~tq can be an example in a learning problem and r a target predicate.
A specific form of an LPADs defining r in terms of the input
predicates.
The program defined r using a number of input and hidden predicates
disjoint from input and target predicates.
Each rule in the program has a single head atom annotated with a
probability.
The program is hierarchically defined so that it can be divided into
layers.

F. Riguzzi (UNIFE) PILP 113 / 136

Hierarchical PLP

Each layer contains a set of hidden predicates that are defined in
terms of predicates of the layer immediately below or in terms of input
predicates.
Extreme form of program stratification: stronger than acyclicity [Apt
NGC91] because it is imposed on the predicate dependency graph, and
is also stronger than stratification [Chandra, Harel JLP85] that allows
clauses with positive literals built on predicates in the same layer.
It prevents inductive definitions and recursion in general, thus making
the language not Turing-complete.

F. Riguzzi (UNIFE) PILP 114 / 136

Hierarchical PLP

Generic clause C :

C “ pp~X q : π :´ φp~X , ~Y q, b1p~X , ~Y q, . . . , bmp~X , ~Y q

where φp~X , ~Y q is a conjunction of literals for the input predicates
using variables ~X , ~Y .
bi p

~X , ~Y q for i “ 1, . . . ,m is a literal built on a hidden predicate.
~Y is a possibly empty vector of variables existentially quantified with
scope the body.
Literals for hidden predicates must use the whole set of variables ~X , ~Y .
The predicate of each bi p

~X , ~Y q does not appear elsewhere in the body
of C or in the body of any other clause.

F. Riguzzi (UNIFE) PILP 115 / 136

Hierarchical PLP

A generic program defining r is thus:

C1 “ rp~X q : π1 :´ φ1, b11, . . . , b1m1

. . .

Cn “ rp~X q : πn :´ φn, bn1, . . . , bnmn

C111 “ r11p~X q : π111 :´ φ111, b1111, . . . , b111m111

. . .

C11n11 “ r11p~X q : π11n11 :´ φ11n11 , b11n111, . . . , b11n11m11n11

. . .

Cn11 “ rn1p~X q : πn11 :´ φn11, bn111, . . . , bn11mn11

. . .

Cn1nn1 “ rn1p~X q : πn1nn1 :´ φn1nn1 , bn1nn11, . . . , bn1nn1mn1nn1

. . .

F. Riguzzi (UNIFE) PILP 116 / 136

Program Tree

r

C1

b11

C111 . . . C11n11

. . . b1m1

C1m11 . . . C1m1n1m1

. . . Cn

bn1

Cn11 . . . Cn1nn1

. . . bnmn

Cnmn1 . . . Cnmnnnmn

. . .

F. Riguzzi (UNIFE) PILP 117 / 136

Example

C1 “ advisedbypA,Bq : 0.3 :´
studentpAq, professorpBq, projectpC ,Aq, projectpC ,Bq,
r11pA,B,C q.

C2 “ advisedbypA,Bq : 0.6 :´
studentpAq, professorpBq, tapC ,Aq, taughtbypC ,Bq.

C111 “ r11pA,B,C q : 0.2 :´
publicationpD,A,C q, publicationpD,B,C q.

F. Riguzzi (UNIFE) PILP 118 / 136

Example

C1 “ advisedbypA,Bq : 0.3 :´
studentpAq, professorpBq, projectpC ,Aq, projectpC ,Bq,
r11pA,B,Cq.

C2 “ advisedbypA,Bq : 0.6 :´
studentpAq, professorpBq, tapC ,Aq, taughtbypC ,Bq.

C111 “ r11pA,B,Cq : 0.2 :´
publicationpD,A,Cq, publicationpD,B,Cq.

advisedbypA, Bq

C1

r11pA, B, Cq

C111

C2

F. Riguzzi (UNIFE) PILP 119 / 136

Hierarchical PLP

Writing programs in hierarchical PLP may be unintuitive for humans
because of the need of satisfying the constraints and because the
hidden predicates may not have a clear meaning.
The structure of the program should be learned by means of a
specialized algorithm
Hidden predicates generated by a form of predicate invention.

F. Riguzzi (UNIFE) PILP 120 / 136

Inference

Generate the grounding.
Each ground probabilistic clause is associated with a random variable
whose probability of being true is given by the parameter of the clause
and that is independent of all the other clause random variables.
Ground clause C~pi “ a~p : π~pi :´ b~pi1, . . . , b~pim~p . where ~p is a path in
the program tree
Ppb~pi1, . . . , b~pim~pq “

śm~p
i“k Ppb~pikq and Ppb~pikq “ 1´ Ppa~pikq if

b~pik “ a~pik .
If a is a literal for an input predicate, then Ppaq “ 1 if a belongs to
the example interpretation and Ppaq “ 0 otherwise.

F. Riguzzi (UNIFE) PILP 121 / 136

Inference

Hidden predicates: to compute Ppa~pq we need to take into account
the contribution of every ground clause for the predicate of a~p.
Suppose these clauses are tC~p1, . . . ,C~po~pu.
If we have two clauses,
Ppa~pi q “ 1´ p1´ π~p1 ¨ PpbodypC~p1qq ¨ p1´ π~p2 ¨ PpbodypC~p2qqq

p ‘ q fi 1´ p1´ pq ¨ p1´ qq.
This operator is commutative and associative:

à

i

pi “ 1´
ź

i

p1´ pi q

The operators ˆ and ‘ are respectively the t-norm and t-conorm of
the product fuzzy logic [Hajek 98]: product t-norm and probabilistic
sum.

F. Riguzzi (UNIFE) PILP 122 / 136

Inference

If the probabilistic program is ground, the probability of the example
atom can be computed with the arithmetic circuit:

‘

ˆ

‘

ˆ

π111

. . . ˆ

π11n11

p11
. . . ‘

ˆ

π1m11

. . . ˆ

π1m1n1m1

p1m1

π1
q1

. . . ˆ

‘

ˆ

πn11

. . . ˆ

πn1nn1

pn1
. . . ‘

ˆ

πnmn1

. . . ˆ

πnmnnnmn

pnmn

πn

qn

p

. . .

The arithmetic circuit can be interpreted as a deep neural network
where nodes have the activation functions ˆ and ‘

F. Riguzzi (UNIFE) PILP 123 / 136

Example

G1 “ advisedbypharry , benq : 0.3 :´
studentpharryq, professorpbenq, projectppr1, harryq,
projectppr1, benq, r11pharry , ben, pr1q.

G2 “ advisedbypharry , benq : 0.3 :´
studentpharryq, professorpbenq, projectppr2, harryq,
projectppr2, benq, r11pharry , ben, pr2q.

G3 “ advisedbypharry , benq : 0.6 :´
studentpharryq, professorpbenq, tapc1, harryq, taughtbypc1, benq.

G4 “ advisedbypharry , benq : 0.6 :´
studentpharryq, professorpbenq, tapc2, harryq, taughtbypc2, benq.

G111 “ r11pharry , ben, pr1q : 0.2 :´
publicationpp1, harry , pr1q, publicationpp1, ben, pr1q.

G112 “ r11pharry , ben, pr1q : 0.2 :´
publicationpp2, harry , pr1q, publicationpp2, ben, pr1q.

G211 “ r11pharry , ben, pr2q : 0.2 :´
publicationpp3, harry , pr2q, publicationpp3, ben, pr2q.

G212 “ r11pharry , ben, pr2q : 0.2 :´
publicationpp4, harry , pr2q, publicationpp4, ben, pr2q.

F. Riguzzi (UNIFE) PILP 124 / 136

Example

adivsedbypharry, benq

G1

r11pharry, ben, pr1q

G111 G112

G2

r11pharry, ben, pr2q

G211 G212

G2 G3

‘

ˆ

‘

1

0.2

1

0.2

0.36

0.3

0.36
ˆ

‘

1

0.2

1

0.2

0.36

0.3
0.36

ˆ

1

0.6
1

ˆ

1

0.6

1

0.873

F. Riguzzi (UNIFE) PILP 125 / 136

Building the Network

The network can be built by performing inference using tabling and
answer subsumption
PITA(IND,IND) [Riguzzi CJ14] is a program transformation that adds
an extra argument to each subgoal of the program and of the query to
store the probability of answers to the subgoal
When a subgoal returns, the extra argument will be instantiated to the
probability of the ground atom that corresponds to the subgoal
without the extra argument.
In programs of hierarchical PLP, when a subgoal returns the original
arguments are guaranteed to be instantiated.
PITA(IND,IND) adds literals to bodies that combine the extra
arguments of the subgoals

F. Riguzzi (UNIFE) PILP 126 / 136

Building the Network

The contributions of multiple groundings of multiple clauses are
combined by means of tabling with answer subsumption.
Tabling: keep a store of the subgoals encountered in a derivation
together with answers to these subgoals.
If one of the subgoals is encountered again, its answers are retrieved
from the store rather than recomputing them.
Tabling reduces computation time and ensures termination for a large
class of programs [Swift TPLP12].
Answer subsumption [Swift TPLP12] is a tabling feature that, when a
new answer for a tabled subgoal is found, combines old answers with
the new one.
In PITA(IND, IND) the combination operator is probabilistic sum.

F. Riguzzi (UNIFE) PILP 127 / 136

Parameter Learning

Parameter learning by backpropagation or EM
Inference has to be performed repeatedly on the same program with
different values of the parameters.
PITA(IND,IND) can build a representation of the arithmetic circuit,
instead of just computing the probability.
Extra argument used to store a term representing the circuit

F. Riguzzi (UNIFE) PILP 128 / 136

Parameter Learning by Gradient Descent

Deep Parameter learning for HIerarchical probabilistic Logic programs
(DPHIL)
Back-propagation.
Build a representation of arithmetic circuits sharing parameters (using
PITA(IND,IND)).
Each AC is transformed as follows:

Parameters, πi , labeling arcs from ‘ to ˆ nodes, are set as children
leaves of ˆ nodes.
Shared parameters are considered as individual leaves with many ˆ
parents.
Negative literals are represented by nodes of the form notpaq with the
single child a.

F. Riguzzi (UNIFE) PILP 129 / 136

Parameter Learning

r

À

ˆ ˆ ˆ ˆ

À

0.3
À

0.6

ˆ ˆ ˆ ˆ

0.2

F. Riguzzi (UNIFE) PILP 130 / 136

Parameter Learning

Given a Hierarchical PLP T with parameters Π, an interpretation I
defining input predicates and a training set
E “ te1, . . . , eM ,„eM`1, . . . ,„eNu find the values of Π that
maximize the log likelihood:

arg max
Π

M
ÿ

i“1

log Ppei q `
N
ÿ

i“M`1

logp1´ Ppei qq (2)

where Ppei q is the probability assigned to ei by T Y I .
Maximizing the log likelihood can be equivalently seen as minimizing
the sum of cross entropy errors erri for all the examples

erri “ ´yi logppi q ´ p1´ yi q logp1´ pi q (3)

where yi “ 1 for positive example, yi “ 0 otherwise and pi the
probability that the atom is true.

F. Riguzzi (UNIFE) PILP 131 / 136

Parameter Learning

Partial derivative of the error with respect to each node vpnq:

Berr

Bvpnq
“

#

´ 1
vprqdpnq if e is positive,
1

1´vprqdpnq if e negative.

where

dpnq “

$

’

’

’

’

&

’

’

’

’

%

dppq vppqvpnq if n is a
À

node,

dppq1´vppq1´vpnq if n is a ˆ node
ř

p dppqvppqp1´ Πi q if n is a leaf node Πi

´dppq p “ notpnq

(4)

and vpnq, p are respectively the value and the parent of the node n.

F. Riguzzi (UNIFE) PILP 132 / 136

Parameter Learning

Build the ACs and initialize the parameters and the gradients.
Perform the forward pass by computing the output of each node
(vpnq) in the AC.
Compute the gradient of the error w.r.t the output and
back-propagate.
Update the parameters using Adam optimizer.
Until convergence or a certain condition is satisfied.

F. Riguzzi (UNIFE) PILP 133 / 136

Parameter Learning by EM

Two passes over the AC, one bottom-up and one top-down, using
message passing
Bottom-up: compute vpnq, message to a node n from below
Top-down: compute tpnq, message to node n from above

tpnq “

$

’

’

’

&

’

’

’

%

tppq
tppq`vppqavpnqtppq`p1´vppqavpnqqp1´tppqq if p is a ‘ node

tppq vppq
vppq

`p1´tppqq
´

1´ vppq
vpnq

¯

tppq vppq
vpnq

`p1´tppqq
´

1´ vppq
vpnq

¯

`p1´tppqq
if p is a ˆ node

1´ tppq p “ notpnq

vppq a vpnq “ 1´
1´ vppq

1´ vpnq

F. Riguzzi (UNIFE) PILP 134 / 136

Conclusions

Exciting field!
Much is left to do:

Structure learning search strategies
Learning programs with continuous
variables
Combining Deep Learning with PILP

F. Riguzzi (UNIFE) PILP 135 / 136

F. Riguzzi (UNIFE) PILP 136 / 136

