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Logic

Useful to model domains with complex relationships among
entities
Various forms:

First Order Logic
Logic Programming
Description Logics
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First Order Logic

Very expressive
Open World Assumption
Undecidable
∀x Intelligent(x)→ GoodMarks(x)
∀x , y Friends(x , y)→ (Intelligent(x)↔ Intelligent(y))
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Logic Programming

A subset of First Order Logic
Closed World Assumption
Turing complete
Prolog

flu(bob).
hay_fever(bob).
sneezing(X )← flu(X ).
sneezing(X )← hay_fever(X ).
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Description Logics

Subsets of First Order Logic
Open World Assumption
Decidable, efficient inference
Special syntax using concepts (unary predicates) and roles
(binary predicates)

fluffy : Cat
tom : Cat
Cat v Pet
∃hasAnimal .Pet v NatureLover
(kevin, fluffy) : hasAnimal
(kevin, tom) : hasAnimal
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Combining Logic and Probability

Logic does not handle well uncertainty
Graphical models do not handle well relationships among entities
Solution: combine the two
Many approaches proposed in the areas of Logic Programming,
Uncertainty in AI, Machine Learning, Databases, Knowledge
Representation

F. Riguzzi Probabilistic logics in machine learning 7 / 117



Probabilistic Logic Programming

Distribution Semantics [Sato ICLP95]
A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)
The distribution is extended to a joint distribution over worlds and
interpretations (or queries)
The probability of a query is obtained from this distribution
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Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

Probabilistic Logic Programs [Dantsin RCLP91]
Probabilistic Horn Abduction [Poole NGC93], Independent Choice
Logic (ICL) [Poole AI97]
PRISM [Sato ICLP95]
Logic Programs with Annotated Disjunctions (LPADs) [Vennekens
et al. ICLP04]
ProbLog [De Raedt et al. IJCAI07]
They differ in the way they define the distribution over logic
programs
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PRISM

sneezing(X )← flu(X ),msw(flu_sneezing(X ),1).
sneezing(X )← hay_fever(X ),msw(hay_fever_sneezing(X ),1).
flu(bob).
hay_fever(bob).

values(flu_sneezing(_X ), [1,0]).
values(hay_fever_sneezing(_X ), [1,0]).
: −set_sw(flu_sneezing(_X ), [0.7,0.3]).
: −set_sw(hay_fever_sneezing(_X ), [0.8,0.2]).

Distributions over msw facts (random switches)
Worlds obtained by selecting one value for every grounding of
each msw statement
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Logic Programs with Annotated Disjunctions

sneezing(X ) : 0.7 ∨ null : 0.3← flu(X ).
sneezing(X ) : 0.8 ∨ null : 0.2← hay_fever(X ).
flu(bob).
hay_fever(bob).

Distributions over the head of rules
null does not appear in the body of any rule
Worlds obtained by selecting one atom from the head of every
grounding of each clause
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ProbLog

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ),hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).
0.7 :: flu_sneezing(X ).
0.8 :: hay_fever_sneezing(X ).

Distributions over facts
Worlds obtained by selecting or not every grounding of each
probabilistic fact
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Distribution Semantics

Case of no function symbols: finite Herbrand universe, finite set of
groundings of each disjoint statement/switch/clause
Atomic choice: selection of the i-th atom for grounding Cθ of
switch/clause C

represented with the triple (C, θ, i)
a ProbLog fact p :: F is interpreted as F : p ∨ null : 1− p.

Example C1 = sneezing(X ) : 0.7 ∨ null : 0.3← flu(X ).,
(C1, {X/bob},1)
Composite choice κ: consistent set of atomic choices
The probability of composite choice κ is

P(κ) =
∏

(C,θ,i)∈κ

P0(C, i)
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Distribution Semantics

Selection σ: a total composite choice (one atomic choice for every
grounding of each clause)
A selection σ identifies a logic program wσ called world
The probability of wσ is P(wσ) = P(σ) =

∏
(C,θ,i)∈σ P0(C, i)

Finite set of worlds: WT = {w1, . . . ,wm}
P(w) distribution over worlds:

∑
w∈WT

P(w) = 1
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Distribution Semantics

Ground query Q
P(Q|w) = 1 if Q is true in w and 0 otherwise
P(Q) =

∑
w P(Q,w) =

∑
w P(Q|w)P(w) =

∑
w |=Q P(w)
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Example Program (LPAD) Worlds

sneezing(bob)← flu(bob). null ← flu(bob).
sneezing(bob)← hay_fever(bob). sneezing(bob)← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

sneezing(bob)← flu(bob). null ← flu(bob).
null ← hay_fever(bob). null ← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

P(Q) =
∑

w∈WT

P(Q,w) =
∑

w∈WT

P(Q|w)P(w) =
∑

w∈WT :w|=Q

P(w)

sneezing(bob) is true in 3 worlds
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Example Program (ProbLog) Worlds

4 worlds
sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).

flu_sneezing(bob).
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8
flu_sneezing(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Logic Programs with Annotated Disjunctions

strong_sneezing(X ) : 0.3 ∨moderate_sneezing(X ) : 0.5← flu(X ).
strong_sneezing(X ) : 0.2 ∨moderate_sneezing(X ) : 0.6← hay_fever(X ).
flu(bob).
hay_fever(bob).

9 worlds
P(strong_sneezing(bob)) =?
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Examples

Throwing coins

heads(Coin):1/2 ; tails(Coin):1/2 :-
toss(Coin),\+biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4 :-
toss(Coin),biased(Coin).

fair(Coin):0.9 ; biased(Coin):0.1.
toss(coin).

Russian roulette with two guns

death:1/6 :- pull_trigger(left_gun).
death:1/6 :- pull_trigger(right_gun).
pull_trigger(left_gun).
pull_trigger(right_gun).
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Examples

Mendel’s inheritance rules for pea plants

color(X,purple):-cg(X,_A,p).
color(X,white):-cg(X,1,w),cg(X,2,w).
cg(X,1,A):0.5 ; cg(X,1,B):0.5 :-

mother(Y,X),cg(Y,1,A),cg(Y,2,B).
cg(X,2,A):0.5 ; cg(X,2,B):0.5 :-
father(Y,X),cg(Y,1,A),cg(Y,2,B).

Probability of paths

path(X,X).
path(X,Y):-path(X,Z),edge(Z,Y).
edge(a,b):0.3.
edge(b,c):0.2.
edge(a,c):0.6.
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Encoding Bayesian Networks

Burglary Earthquake

Alarm

alarm t f
b=t,e=t 1.0 0.0
b=t,e=f 0.8 0.2
b=f,e=t 0.8 0.2
b=f,e=f 0.1 0.9

burg t f
0.1 0.9

earthq t f
0.2 0.8

burg(t):0.1 ; burg(f):0.9.
earthq(t):0.2 ; earthq(f):0.8.
alarm(t):-burg(t),earthq(t).
alarm(t):0.8 ; alarm(f):0.2:-burg(t),earthq(f).
alarm(t):0.8 ; alarm(f):0.2:-burg(f),earthq(t).
alarm(t):0.1 ; alarm(f):0.9:-burg(f),earthq(f).
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PLP Online

http://cplint.lamping.unife.it/
Inference (knwoledge compilation, Monte Carlo)
Parameter learning (EMBLEM)
Structure learning (SLIPCOVER)

https://dtai.cs.kuleuven.be/problog/
Inference (knwoledge compilation, Monte Carlo)
Parameter learning (LFI-ProbLog)
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Monty Hall Puzzle

A player is given the opportunity to select one of three closed
doors, behind one of which there is a prize.
Behind the other two doors are empty rooms.
Once the player has made a selection, Monty is obligated to open
one of the remaining closed doors which does not contain the
prize, showing that the room behind it is empty.
He then asks the player if he would like to switch his selection to
the other unopened door, or stay with his original choice.
Does it matter if he switches?
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Monty Hall Puzzle

:- use_module(library(pita)).
:- endif.
:- pita.
:- begin_lpad.
prize(1):1/3; prize(2):1/3; prize(3):1/3.
selected(1).
open_door(A):0.5; open_door(B):0.5:-
member(A,[1,2,3]), member(B,[1,2,3]),
A<B, \+ prize(A), \+ prize(B),
\+ selected(A), \+ selected(B).

open_door(A):-
member(A,[1,2,3]), \+ prize(A),
\+ selected(A), member(B,[1,2,3]),
prize(B), \+ selected(B).

win_keep:-
selected(A), prize(A).

win_switch:-
member(A,[1,2,3]),
\+ selected(A), prize(A),
\+ open_door(A).

:- end_lpad.
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Monty Hall Puzzle

Queries:

prob(win_keep,Prob).
prob(win_switch,Prob).
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Expressive Power

All languages under the distribution semantics have the same
expressive power
LPADs have the most general syntax
There are transformations that can convert each one into the
others
PRISM, ProbLog to LPAD: direct mapping
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LPADs to ProbLog

Clause Ci with variables X

H1 : p1 ∨ . . . ∨ Hn : pn ← B.

is translated into

H1 ← B, fi,1(X ).

H2 ← B,not(fi,1(X )), fi,2(X ).
...
Hn ← B,not(fi,1(X )), . . . ,not(fi,n−1(X )).

π1 :: fi,1(X ).
...
πn−1 :: fi,n−1(X ).

where π1 = p1, π2 = p2
1−π1

, π3 = p3
(1−π1)(1−π2)

, . . .

In general πi =
pi∏i−1

j=1 (1−πj )
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Conversion to Bayesian Networks

Each variable A corresponding to atom A has as parents all the
variables CHi of clauses Ci that have A in the head.
The CPT for A is:

at least one parent equal to A remaining columns
A = 1 1.0 0.0
A = 0 0.0 1.0
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Conversion to Bayesian Networks

C1 = x1 : 0.4 ∨ x2 : 0.6.
C2 = x2 : 0.1 ∨ x3 : 0.9.
C3 = x4 : 0.6 ∨ x5 : 0.4← x1.
C4 = x5 : 0.4← x2, x3.
C5 = x6 : 0.3 ∨ x7 : 0.2← x2, x5.

CH1 CH2

X1 X2 X3

CH3 CH4

X4 X5

CH5

X4 X5
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Conversion to Bayesian Networks

CH1,CH2 x1, x2 x1, x3 x2, x2 x2, x3
x2 = 1 1.0 0.0 1.0 1.0
x2 = 0 0.0 1.0 0.0 0.0

x2, x5 t,t t,f f,t f,f
CH5 = x6 0.3 0.0 0.0 0.0
CH5 = x7 0.2 0.0 0.0 0.0
CH5 = null 0.5 1.0 1.0 1.0

CH1 CH2

X1 X2 X3

CH3 CH4

X4 X5

CH5

X4 X5
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Function Symbols

What if function symbols are present?
Infinite, countable Herbrand universe
Infinite, countable Herbrand base
Infinite, countable grounding of the program T
Uncountable WT

Each world infinite, countable
P(w) = 0
Semantics not well-defined
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Game of dice

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
on(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 :-

T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3).
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Hidden Markov Models

. . . X(t − 1) X(t) X(t + 1) . . .

Y (t − 1) Y (t) Y (t + 1)

hmm(S,O):-hmm(q1,[],S,O).
hmm(end,S,S,[]).
hmm(Q,S0,S,[L|O]):-
Q\= end,
next_state(Q,Q1,S0),
letter(Q,L,S0),
hmm(Q1,[Q|S0],S,O).

next_state(q1,q1,_S):1/3;next_state(q1,q2_,_S):1/3;
next_state(q1,end,_S):1/3.

next_state(q2,q1,_S):1/3;next_state(q2,q2,_S):1/3;
next_state(q2,end,_S):1/3.

letter(q1,a,_S):0.25;letter(q1,c,_S):0.25;
letter(q1,g,_S):0.25;letter(q1,t,_S):0.25.

letter(q2,a,_S):0.25;letter(q2,c,_S):0.25;
letter(q2,g,_S):0.25;letter(q2,t,_S):0.25.
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Description Logics

DISPONTE: “DIstribution Semantics for Probabilistic ONTologiEs”
[Riguzzi et al. SWJ15]
Probabilistic axioms:

p :: E
e.g., p :: C v D represents the fact that we believe in the truth of
C v D with probability p.

DISPONTE applies the distribution semantics of probabilistic logic
programming to description logics
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DISPONTE

World w : regular DL KB obtained by selecting or not the
probabilistic axioms
Probability of a query Q given a world w : P(Q|w) = 1 if w |= Q, 0
otherwise
Probability of Q
P(Q) =

∑
w P(Q,w) =

∑
w P(Q|w)P(w) =

∑
w :w |=Q P(w)
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Example

0.4 :: fluffy : Cat
0.3 :: tom : Cat
0.6 :: Cat v Pet
∃hasAnimal .Pet v NatureLover
(kevin, fluffy) : hasAnimal
(kevin, tom) : hasAnimal

P(kevin : NatureLover) =
0.4× 0.3× 0.6 + 0.4× 0.6× 0.7 + 0.6× 0.3× 0.6 = 0.348
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Knowledge-Based Model Construction

The probabilistic logic theory is used directly as a template for
generating an underlying complex graphical model [Breese et al.
TSMC94].
Languages: CLP(BN), Markov Logic
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CLP(BN) [Costa UAI02]

Variables in a CLP(BN) program can be random
Their values, parents and CPTs are defined with the program
To answer a query with uninstantiated random variables, CLP(BN)
builds a BN and performs inference
The answer will be a probability distribution for the variables
Probabilistic dependencies expressed by means of CLP
constraints

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }
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CLP(BN)

....
course_difficulty(Key, Dif) :-
{ Dif = difficulty(Key) with p([h,m,l],
[0.25, 0.50, 0.25]) }.
student_intelligence(Key, Int) :-
{ Int = intelligence(Key) with p([h, m, l],
[0.5,0.4,0.1]) }.
....
registration(r0,c16,s0).
registration(r1,c10,s0).
registration(r2,c57,s0).
registration(r3,c22,s1).
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CLP(BN)

....
registration_grade(Key, Grade):-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with
p([a,b,c,d],

%h h h m h l m h m m m l l h l m l l
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 ],
[Int,Dif]))

}.
.....
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CLP(BN)

?- [school_32].
?- registration_grade(r0,G).

p(G=a)=0.4115,
p(G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?
?- registration_grade(r0,G),

student_intelligence(s0,h).
p(G=a)=0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?
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Markov Networks

Undirected graphical models

Intelligent GoodMarks

CouDifficulty TeachAbility

Each clique in the graph is associated with a potential φi

P(x) =

∏
i φi(xi)

Z
Z =

∑
x

∏
i

φi(xi)

Intelligent GoodMarks φi(V ,T )
false false 4.5
false true 4.5
true false 1.0
true true 4.5
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Markov Networks

Intelligent GoodMarks

CouDifficulty TeachAbility

If all the potential are strictly positive, we can use a log-linear
model (where the fis are features)

P(x) = exp(
∑

i wi fi (xi))
Z

Z =
∑

x exp(
∑

i wi fi(xi)))

fi(Intelligent ,GoodMarks) =
{

1 if ¬Intelligent∨GoodMarks
0 otherwise

wi = 1.5
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Markov Logic

A Markov Logic Network (MLN) [Richardson, Domingos ML06] is
a set of pairs (F ,w) where F is a formula in first-order logic w is a
real number
Together with a set of constants, it defines a Markov network with

One node for each grounding of each predicate in the MLN
One feature for each grounding of each formula F in the MLN, with
the corresponding weight w
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Markov Logic Example

1.5 ∀x Intelligent(x)→ GoodMarks(x)
1.1 ∀x , y Friends(x , y)→ (Intelligent(x)↔ Intelligent(y))

Constants Anna (A) and Bob (B)

Friends(A,B)

Friends(A,A) Friends(B,B)

Friends(B,A)

Int(A) Int(B)

GM(A) GM(B)
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Markov Networks

Probability of an interpretation x

P(x) =
exp(

∑
i wini(xi))

Z

ni(xi) = number of true groundings of formula Fi in x
Typed variables and constants greatly reduce size of ground
Markov net
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Reasoning Tasks

Inference: we want to compute the probability of a query given the
model and, possibly, some evidence
Weight learning: we know the structural part of the model (the
logic formulas) but not the numeric part (the weights) and we want
to infer the weights from data
Structure learning we want to infer both the structure and the
weights of the model from data
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Applications

Link prediction: given a (social) network, compute the probability
of the existence of a link between two entities (UWCSE)

advisedby(X, Y) :0.7 :-
publication(P, X),
publication(P, Y),
student(X).
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Applications

Classify web pages on the basis of the link structure (WebKB)

coursePage(Page1): 0.3 :- linkTo(Page2,Page1),coursePage(Page2).
coursePage(Page1): 0.6 :- linkTo(Page2,Page1),facultyPage(Page2).
...
coursePage(Page): 0.9 :- has(’syllabus’,Page).
...
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Applications

Entity resolution: identify identical entities in text or databases

samebib(A,B):0.9 :-
samebib(A,C), samebib(C,B).
sameauthor(A,B):0.6 :-

sameauthor(A,C), sameauthor(C,B).
sametitle(A,B):0.7 :-

sametitle(A,C), sametitle(C,B).
samevenue(A,B):0.65 :-

samevenue(A,C), samevenue(C,B).
samebib(B,C):0.5 :-

author(B,D),author(C,E),sameauthor(D,E).
samebib(B,C):0.7 :-

title(B,D),title(C,E),sametitle(D,E).
samebib(B,C):0.6 :-

venue(B,D),venue(C,E),samevenue(D,E).
samevenue(B,C):0.3 :-

haswordvenue(B,logic),
haswordvenue(C,logic).

...
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Applications

Chemistry: given the chemical composition of a substance,
predict its mutagenicity or its carcenogenicity

active(A):0.4 :-
atm(A,B,c,29,C),
gteq(C,-0.003),
ring_size_5(A,D).

active(A):0.6:-
lumo(A,B), lteq(B,-2.072).

active(A):0.3 :-
bond(A,B,C,2),
bond(A,C,D,1),
ring_size_5(A,E).

active(A):0.7 :-
carbon_6_ring(A,B).

active(A):0.8 :-
anthracene(A,B).

...
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Applications

Medicine: diagnose diseases on the basis of patient information
(Hepatitis), influence of genes on HIV, risk of falling of elderly
people
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Inference for PLP under DS

Computing the probability of a query (no evidence)
Knowledge compilation:

compile the program to an intermediate representation
Binary Decision Diagrams (ProbLog [De Raedt et al. IJCAI07],
cplint [Riguzzi AIIA07,Riguzzi LJIGPL09], PITA [Riguzzi & Swift
ICLP10])
deterministic, Decomposable Negation Normal Form circuit (d-DNNF)
(ProbLog2 [Fierens et al. TPLP15])
Sentential Decision Diagrams

compute the probability by weighted model counting
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Inference for PLP under DS

Bayesian Network based:
Convert to BN
Use BN inference algorithms (CVE [Meert et al. ILP09])

Lifted inference
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Knowledge Compilation

Assign Boolean random variables to the probabilistic rules
Given a query Q, compute its explanations, assignments to the
random variables that are sufficient for entailing the query
Let K be the set of all possible explanations
Build the formula

F (Q) =
∨
κ∈K

∧
X∈κ

X
∧

X∈κ

X

Build a BDD representing F (Q)
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ProbLog

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ),hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).
0.7 :: flu_sneezing(X ).
0.8 :: hay_fever_sneezing(X ).
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Definitions

Composite choice κ: consistent set of atomic choices (Ci , θj , l)
with l ∈ {1,2}
Set of worlds compatible with κ: ωκ = {wσ|κ ⊆ σ}
Explanation κ for a query Q: Q is true in every world of ωκ
A set of composite choices K is covering with respect to Q: every
world w in which Q is true is such that w ∈ ωK where
ωK =

⋃
κ∈K ωκ

Example:

K1 = {{(C1, {X/bob},1)}, {(C2, {X/bob},1)}} (1)

is covering for sneezing(bob).
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Finding Explanations

All explanations for the query are collected
ProbLog: source to source transformation for facts, use of
dynamic database
cplint (PITA): source to source transformation, addition of an
argument to predicates
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Explanation Based Inference Algorithm

K = set of explanations found for Q, the probability of Q is given
by the probability of the formula

fK (X) =
∨
κ∈K

∧
(Ci ,θj ,l)∈κ

(XCiθj = l)

where XCiθj is a random variable whose domain is 1,2 and
P(XCiθj = l) = P0(Ci , l)
Binary domain: we use a Boolean variable Xij to represent
(XCiθj = 1)
¬Xij represents (XCiθj = 2)
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Example

A set of covering explanations for sneezing(bob) is K = {κ1, κ2}
κ1 = {(C1, {X/bob},1)} κ2 = {(C2, {X/bob},1)}
K = {κ1, κ2}
fK (X) = (XC1{X/bob} = 1) ∨ (XC2{X/bob} = 1).
X11 = (XC1{X/bob} = 1) X21 = (XC2{X/bob} = 1)
fK (X) = X11 ∨ X21.
P(fK (X)) = P(X11 ∨ X21) = P(X11) + P(X21)− P(X11)P(X21)

In order to compute the probability, we must make the
explanations mutually exclusive
[De Raedt at. IJCAI07]: Binary Decision Diagram (BDD)
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Binary Decision Diagrams

A BDD for a function of Boolean variables is a rooted graph that
has one level for each Boolean variable
A node n in a BDD has two children: one corresponding to the 1
value of the variable associated with n and one corresponding the
0 value of the variable
The leaves store either 0 or 1.

X11

X21

1

0

X11 X21
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Binary Decision Diagrams

BDDs can be built by combining simpler BDDs using Boolean
operators
While building BDDs, simplification operations can be applied that
delete or merge nodes
Merging is performed when the diagram contains two identical
sub-diagrams
Deletion is performed when both arcs from a node point to the
same node
A reduced BDD often has a much smaller number of nodes with
respect to the original BDD
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Binary Decision Diagrams

X11

X21

1

0

X11 X21

fK (X) = X11 × f X11
K (X) + ¬X11 × f¬X11

K (X)

P(fK (X)) = P(X11)P(f X11
K (X)) + (1− P(X11))P(f¬X1

K (X))

P(fK (X)) = 0.7 · P(f X11
K (X)) + 0.3 · P(f¬X11

K (X))
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Probability from a BDD

Dynamic programming algorithm [De Raedt et al IJCAI07]
Initialize map p
Call Prob(root)
Function Prob(n)
if p(n) exists, return p(n)
if n is a terminal note

return value(n)
else

prob := Prob(child1(n)× p(v(n)) + Prob(child0(n))× (1− p(v(n)))
Add (n,prob) to p, return prob
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Logic Programs with Annotated Disjunctions

C1 = strong_sneezing(X ) : 0.3 ∨moderate_sneezing(X ) : 0.5 ← flu(X ).
C2 = strong_sneezing(X ) : 0.2 ∨moderate_sneezing(X ) : 0.6 ← hay_fever(X ).
C3 = flu(bob).
C4 = hay_fever(bob).

Distributions over the head of rules
More than two head atoms

F. Riguzzi Probabilistic logics in machine learning 65 / 117



Example

A set of covering explanations for strong_sneezing(bob) is
K = {κ1, κ2}
κ1 = {(C1, {X/bob},1)}
κ2 = {(C2, {X/bob},1)}
K = {κ1, κ2}
X11 = XC1{X/bob}
X21 = XC2{X/bob}
fK (X) = (X11 = 1) ∨ (X21 = 1).
P(fX ) = P(X11 = 1) + P(X21 = 1)− P(X11 = 1)P(X21 = 1)

To make the explanations mutually exclusive: Multivalued
Decision Diagram (MDD)

F. Riguzzi Probabilistic logics in machine learning 66 / 117



Multivalued Decision Diagrams

X11

X21

1

0

1

1
2

3
2

3

fK (X) =
∨

l∈|X11|

(X11 = l) ∧ f X11=l
K (X)

P(fK (X)) =
∑

l∈|X11|

P(X11 = l)P(f X11=l
K (X))

fK (X) = (X11 = 1) ∧ f X11=1
K (X) + (X11 = 2) ∧ f X11=2

K (X) + (X11 = 3) ∧ f X11=3
K (X)

fK (X) = 0.3 · P(f X11=1
K (X)) + 0.5 · P(f X11=2

K (X)) + 0.2 · P(f X11=3
K (X))
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Manipulating Multivalued Decision Diagrams

Use an MDD package
Convert to BDD, use a BDD package: BDD packages more
developed, more efficient
Conversion to BDD

Log encoding
Binary splits: more efficient
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Transformation to a Binary Decision Diagram

For a variable Xij having n values, we use n − 1 Boolean variables
Xij1, . . . ,Xijn−1

Xij = l for l = 1, . . .n − 1: Xij1 ∧ Xij2 ∧ . . . ∧ Xijl−1 ∧ Xijl ,

Xij = n: Xij1 ∧ Xij2 ∧ . . . ∧ Xijn−1.

Parameters: P(Xij1) = P(Xij = 1) . . .P(Xijl) =
P(Xij=l)∏l−1

m=1(1−P(Xijm))
.

X111

X211

1

0

X111 X211
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Approximate Inference

Inference problem is #P hard
For large models inference is intractable
Approximate inference

Monte Carlo: draw samples of the truth value of the query
Iterative deepening: gives a lower and an upper bound
Compute only the best k explanations: branch and bound, gives a
lower bound
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Monte Carlo

The disjunctive clause
Cr = H1 : α1 ∨ . . . ∨ Hn : αn ← L1, . . . ,Lm.
is transformed into the set of clauses MC(Cr )
MC(Cr ,1) = H1 ← L1, . . . ,Lm, sample_head(n, r ,VC,NH),NH = 1.
. . .
MC(Cr ,n) = Hn ← L1, . . . ,Lm, sample_head(n, r ,VC,NH),NH = n.

Sample truth value of query Q:

...
(call(Q)-> NT1 is NT+1 ; NT1 =NT),

...
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Inference in DISPONTE

The probability of a query Q can be computed according to the
distribution semantics by first finding the explanations for Q in the
knowledge base
Explanation: subset of axioms of the KB that is sufficient for
entailing Q
All the explanations for Q must be found, corresponding to all
ways of proving Q
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Inference in DISPONTE

Probability of Q → probability of the DNF formula

F (Q) =
∨

e∈EQ

(
∧

Fi∈e

Xi)

where EQ is the set of explanations and Xi is a Boolean random
variable associated to axiom Fi

Binary Decision Diagrams for efficiently computing the probability
of the DNF formula
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Example

E1 = 0.4 :: fluffy : Cat
E2 = 0.3 :: tom : Cat
E3 = 0.6 :: Cat v Pet
∃hasAnimal .Pet v NatureLover
(kevin, fluffy) : hasAnimal
(kevin, tom) : hasAnimal

Q = kevin : NatureLover has two explanations:

{ (E1), (E3) }
{ (E2), (E3) }

P(Q) = 0.4× 0.6× (1− 0.3) + 0.3× 0.6 = 0.348
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BUNDLE

Binary decision diagrams for Uncertain reasoNing on Description
Logic thEories [Riguzzi et al. SWJ15]
BUNDLE performs inference over DISPONTE knowledge bases.
It exploits an underlying ontology reasoner able to return all
explanations for a query, such as Pellet [Sirin et al, WS 2007]
Explanations for a query in the form of a set of sets of axioms.
Then DNF formula built and converted to BDDs for computing the
probability
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TRILL

Tableau Reasoner for descrIption Logics in proLog
TRILL implements the tableau algorithm using Prolog
It resolves the axiom pinpointing problem in which we are
interested in the set of explanations that entail a query
It returns the set of the explanations
It can build BDDs encoding the set of explanations and return the
probability
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TRILL

Available online at http://trill.lamping.unife.it/
Pets example http://trill.lamping.unife.it/trill_
on_swish/example/peoplePets.owl
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Parameter Learning

Problem: given a set of interpretations, a program, find the
parameters maximizing the likelihood of the interpretations (or of
instances of a target predicate)
The interpretations record the truth value of ground atoms, not of
the choice variables
Unseen data: relative frequency can’t be used
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Parameter Learning

An Expectation-Maximization algorithm must be used:
Expectation step: the distribution of the unseen variables in each
instance is computed given the observed data
Maximization step: new parameters are computed from the
distributions using relative frequency
End when likelihood does not improve anymore
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Parameter Learning

[Thon et al. ECML 2008] proposed an adaptation of EM for
CPT-L, a simplified version of LPADs
The algorithm computes the counts efficiently by repeatedly

traversing the BDDs representing the explanations
[Ishihata et al. ILP 2008] independently proposed a similar

algorithm
LFI-PROBLOG [Gutamnn et al. ECML 2011]: EM for ProbLog
EMBLEM [Riguzzi & Bellodi IDA 2013] adapts [Ishihata et al. ILP
2008] to LPADs
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EMBLEM

EM over Bdds for probabilistic Logic programs Efficient Mining
Input: an LPAD; logical interpretations (data); target predicate(s)
all ground atoms in the interpretations for the target predicate(s)
correspond to as many queries
BDDs encode the explanations for each query Q
Expectations computed with two passes over the BDDs

F. Riguzzi Probabilistic logics in machine learning 81 / 117



EDGE

Em over bDds for description loGics paramEter learning
EDGE is inspired to EMBLEM [Bellodi and Riguzzi, IDA 2013]
Takes as input a DL theory and a number of examples that
represent queries.
The queries are concept assertions and are divided into:

1 positive examples;
2 negative examples.

EDGE computes the explanations of each example using
BUNDLE, that builds the corresponding BDD.

For negative examples, EDGE computes the explanations of the
query, builds the BDD and then negates it.
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Structure Learning for LPADs

Given a trivial LPAD or an empty one, a set of interpretations
(data)
Find the model and the parameters that maximize the probability
of the data (log-likelihood)
SLIPCOVER: Structure LearnIng of Probabilistic logic program by
searching OVER the clause space EMBLEM [Riguzzi & Bellodi
TPLP 2015]

1 Beam search in the space of clauses to find the promising ones
2 Greedy search in the space of probabilistic programs guided by the

LL of the data.

Parameter learning by means of EMBLEM
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SLIPCOVER

Cycle on the set of predicates that can appear in the head of
clauses, either target or background
For each predicate, beam search in the space of clauses
The initial set of beams is generated by building a set of bottom
clauses as in Progol [Muggleton NGC 1995]
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Mode Declarations

Syntax

modeh(RecallNumber,PredicateMode).
modeb(RecallNumber,PredicateMode).

RecallNumber can be a number or *. Usually *. Maximum
number of answers to queries to include in the bottom clause
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Mode Declarations

PredicateMode template of the form:

p(ModeType, ModeType,...)

Some examples:

modeb(1,mem(+number,+list)).
modeb(1,dec(+integer,-integer)).
modeb(1,mult(+integer,+integer,-integer)).
modeb(1,plus(+integer,+integer,-integer)).
modeb(1,(+integer)=(#integer)).
modeb(*,has_car(+train,-car))
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Mode Declarations

ModeType can be:
Simple:

+T input variables of type T;
-T output variables of type T; or
#T, -#T constants of type T.

Structured: of the form f(..) where f is a function symbol and
every argument can be either simple or structured. For example:

modeb(1,mem(+number,[+number|+list])).
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Bottom Clause ⊥

Most specific clause covering an example e
Form: e← B
B: set of ground literals that are true regarding the example e
B obtained by considering the constants in e and querying the
predicates of the background for true atoms regarding these
constants
A map from types to lists of constants is kept, it is enlarged with
constants in the answers to the queries and the procedure is
iterated a user-defined number of times
Values for output arguments are used as input arguments for
other predicates
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Bottom Clause ⊥

Initialize to empty a map m from types to lists of values
Pick a modeh(r , s), an example e matching s, add to m(T ) the
values of +T arguments in e
For i = 1 to d

For each modeb(r , s)
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Bottom Clause ⊥

For each possible way of building a query q from s by replacing
+T and #T arguments with constants from m(T ) and all other
arguments with variables

Find all possible answers for q and put them in a list L
L′ := r elements sampled from L
For each l ∈ L′, add the values in l corresponding to −T or −#T to
m(T )
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Bottom Clause ⊥

Example:

e = father(john,mary)
B = {parent(john,mary),parent(david , steve),
parent(kathy ,mary), female(kathy),male(john),male(david)}
modeh(father(+person,+person)).
modeb(parent(+person,−person)).
modeb(parent(−#person,+person)).
modeb(male(+person)). modeb(female(#person)).
e← B = father(john,mary)← parent(john,mary),male(john),
parent(kathy ,mary), female(kathy).

F. Riguzzi Probabilistic logics in machine learning 91 / 117



Bottom Clause ⊥

The resulting ground clause ⊥ is then processed by replacing
each term in a + or - placemarker with a variable
An input variable (+T) must appear as an output variable with the
same type in a previous literal and a constant (#T or -#T) is not
replaced by a variable.

⊥ = father(X ,Y )←
parent(X ,Y ),male(X ),parent(kathy ,Y ), female(kathy).
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SLIPCOVER

The initial beam associated with predicate P/Ar of h will contain
the clause with the empty body h : 0.5. for each bottom clause
h :− b1, . . . ,bm In each iteration of the cycle over predicates, it
performs a beam search in the space of clauses for the predicate.
The beam contains couples (Cl ,LIterals) where
Literals = {b1, . . . ,bm}
For each clause Cl of the form Head :− Body , the refinements
are computed by adding a literal from Literals to the body.
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SLIPCOVER

The tuple (Cl ′, Literals′) indicates a refined clause Cl ′ together
with the new set Literals′

EMBLEM is then executed for a theory composed of the single
refined clause.
LL is used as the score of the updated clause (Cl ′′,Literals′).
(Cl ′′,Literals′) is then inserted into a list of promising clauses.
Two lists are used, TC for target predicates and BC for
background predicates.
These lists ave a maximum size
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SLIPCOVER

After the clause search phase, SLIPCOVER performs a greedy
search in the space of theories:

it starts with an empty theory and adds a target clause at a time
from the list TC.
After each addition, it runs EMBLEM and computes the LL of the
data as the score of the resulting theory.
If the score is better than the current best, the clause is kept in the
theory, otherwise it is discarded.

Finally, SLIPCOVER adds all the clauses in BC to the theory and
performs parameter learning on the resulting theory.
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Experiments - Area Under the PR Curve

System HIV UW-CSE Mondial
SLIPCOVER 0.82± 0.05 0.11± 0.08 0.86± 0.07
SLIPCASE 0.78± 0.05 0.03± 0.01 0.65± 0.06
LSM 0.37± 0.03 0.07± 0.02 -
ALEPH++ - 0.05± 0.01 0.87± 0.07
RDN-B 0.28± 0.06 0.28± 0.06 0.77± 0.07
MLN-BT 0.29± 0.04 0.18± 0.07 0.74± 0.10
MLN-BC 0.51± 0.04 0.06± 0.01 0.59± 0.09
BUSL 0.38± 0.03 0.01± 0.01 -
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Experiments - Area Under the PR Curve

System Carcinogenesis Mutagenesis Hepatitis
SLIPCOVER 0.60 0.95± 0.01 0.80± 0.01
SLIPCASE 0.63 0.92± 0.08 0.71± 0.05
LSM - - 0.53± 0.04
ALEPH++ 0.74 0.95± 0.01 -
RDN-B 0.55 0.97± 0.03 0.88± 0.01
MLN-BT 0.50 0.92± 0.09 0.78± 0.02
MLN-BC 0.62 0.69± 0.20 0.79± 0.02
BUSL - - 0.51± 0.03
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Bongard Problems

Introduced by the Russian scientist M. Bongard
Pictures, some positive and some negative
Problem: discriminate between the two classes.
The pictures contain shapes with different properties, such as
small, large, pointing down, . . . and different relationships
between them, such as inside, above, . . .
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Input File

Preamble

:-use_module(library(slipcover)).
:- if(current_predicate(use_rendering/1)).
:- use_rendering(c3).
:- use_rendering(lpad).
:- endif.
:-sc.
:- set_sc(megaex_bottom,20).
:- set_sc(max_iter,3).
:- set_sc(max_iter_structure,10).
:- set_sc(maxdepth_var,4).
:- set_sc(verbosity,1).

See
http://cplint.lamping.unife.it/help/help-cplint.html
for a list of options
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Input File

Theory for parameter learning and background

bg([]).
in([
(pos:0.5 :-
circle(A),
in(B,A)),

(pos:0.5 :-
circle(A),
triangle(B))]).
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Input File
Data: two formats, models

begin(model(2)).
pos.
triangle(o5).
config(o5,up).
square(o4).
in(o4,o5).
circle(o3).
triangle(o2).
config(o2,up).
in(o2,o3).
triangle(o1).
config(o1,up).
end(model(2)).

begin(model(3)).
neg(pos).
circle(o4).
circle(o3).
in(o3,o4).
....
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Input File
Data: two formats, keys (internal representation)

pos(2).
triangle(2,o5).
config(2,o5,up).
square(2,o4).
in(2,o4,o5).
circle(2,o3).
triangle(2,o2).
config(2,o2,up).
in(2,o2,o3).
triangle(2,o1).
config(2,o1,up).

neg(pos(3)).
circle(3,o4).
circle(3,o3).
in(3,o3,o4).
square(3,o2).
circle(3,o1).
in(3,o1,o2).
....
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Input File

Folds
Target predicates output(<predicate>)
Input predicates are those whose atoms you are not interested in
predicting
input_cw(<predicate>/<arity>).

True atoms are those in the interpretations and those derivable
from them using the background knowledge
Open world input predicates are declared with
input(<predicate>/<arity>).

the facts in the interpretations, the background clauses and the
clauses of the input program are used to derive atoms
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Input File

fold(train,[2,3,5,...]).
fold(test,[490,491,494,...]).
output(pos/0).
input_cw(triangle/1).
input_cw(square/1).
input_cw(circle/1).
input_cw(in/2).
input_cw(config/2).
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Input File

Language bias

determination(pos/0,triangle/1).
determination(pos/0,square/1).
determination(pos/0,circle/1).
determination(pos/0,in/2).
determination(pos/0,config/2).
modeh(*,pos).
modeb(*,triangle(-obj)).
modeb(*,square(-obj)).
modeb(*,circle(-obj)).
modeb(*,in(+obj,-obj)).
modeb(*,in(-obj,+obj)).
modeb(*,config(+obj,-#dir)).
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Input File

Search bias

lookahead(logp(B),[(B=_C)]).
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Bongard Problems

Parameter learning

induce_par([train],P),
test(P,[test],LL,AUCROC,ROC,AUCPR,PR).

Structure learning

induce([train],P),
test(P,[test],LL,AUCROC,ROC,AUCPR,PR).
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Exercise

Write SLIPCOVER input file for
University Database
http://www.cs.sfu.ca/~oschulte/jbn/dataset.html
Data university.pl

Mutagenesis
http://www.doc.ic.ac.uk/~shm/mutagenesis.html
Data muta.pl
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Conclusions

Exciting field!
Much is left to do:

Lifted inference
Continuous variables
Structure learning search strategies
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