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Logic

@ Useful to model domains with complex relationships among
entities
@ Various forms:

o First Order Logic
o Logic Programming
o Description Logics
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|
First Order Logic

@ Very expressive
@ Open World Assumption
@ Undecidable

Vx Intelligent(x) — GoodMarks(x)
Vx, y Friends(x,y) — (Intelligent(x) < Intelligent(y))

Probabilistic logics in machine learning 4/69



Logic Programming

@ A subset of First Order Logic
@ Closed World Assumption
@ Turing complete
@ Prolog
flu(bob).
hay_fever(bob).
sneezing(X) « flu(X).
sneezing(X) < hay_fever(X).
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Description Logics

@ Subsets of First Order Logic
@ Open World Assumption
@ Decidable, efficient inference

@ Special syntax using concepts (unary predicates) and roles
(binary predicates)

fluffy : Cat

tom: Cat

Cat C Pet

dhasAnimal.Pet C NaturelLover
(kevin, fluffy) : hasAnimal
(kevin, tom) : hasAnimal
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|
Combining Logic and Probability

@ Logic does not handle well uncertainty
@ Graphical models do not handle well relationships among entities
@ Solution: combine the two

@ Many approaches proposed in the areas of Logic Programming,
Uncertainty in Al, Machine Learning, Databases, Knowledge
Representation
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Probabilistic Logic Programming

@ Distribution Semantics [Sato ICLP95]

@ A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)

@ The distribution is extended to a joint distribution over worlds and
interpretations (or queries)

@ The probability of a query is obtained from this distribution
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Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

@ Probabilistic Logic Programs [Dantsin RCLP91]

@ Probabilistic Horn Abduction [Poole NGC93], Independent Choice
Logic (ICL) [Poole Al97]

e PRISM [Sato ICLP95]

@ Logic Programs with Annotated Disjunctions (LPADs) [Vennekens
et al. ICLP04]

@ ProbLog [De Raedt et al. IJCAIQ7]

@ They differ in the way they define the distribution over logic
programs
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.
Logic Programs with Annotated Disjunctions

sneezing(X) : 0.7 v null : 0.3 < flu(X).
sneezing(X) : 0.8 v null : 0.2 < hay_fever(X).
flu(bob).

hay_fever(bob).

@ Distributions over the head of rules
@ null does not appear in the body of any rule

@ Worlds obtained by selecting one atom from the head of every
grounding of each clause
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.
Example Program (LPAD) Worlds

sneezing(bob) + flu(bob). null + flu(bob).
sneezing(bob) < hay_fever(bob). sneezing(bob) «+ hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(wy) =0.7 x 0.8 P(wz) = 0.3 x 0.8
sneezing(bob) + flu(bob). null + flu(bob).
null < hay_fever(bob). null < hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(ws) = 0.7 x 0.2 P(ws) = 0.3 x 0.2

P@Q= Y P@Qw)= > PQWPw) = > Pw)

weWs weWs weWr:wE=Q

@ sneezing(bob) is true in 3 worlds
@ P(sneezing(bob)) =0.7 x 0.8+ 0.3 x0.8+0.7 x 0.2 =0.94
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|
ProblLog

sneezing(X) « flu(X), flu_sneezing(X).

sneezing(X) < hay_fever(X), hay_fever_sneezing(X).
flu(bob).

hay_fever(bob).

0.7 :: flu_sneezing(X).

0.8 :: hay_fever_sneezing(X).

@ Distributions over facts

@ Worlds obtained by selecting or not every grounding of each
probabilistic fact

Probabilistic logics in machine learning 12/69



|
Example Program (ProbLog) Worlds

@ 4 worlds
sneezing(X) < flu(X), flu_sneezing(X).
sneezing(X) < hay_fever(X), hay_fever_sneezing(X).
flu(bob).
hay_fever(bob).

flu_sneezing(bob).
hay_fever_sneezing(bob). hay_fever_sneezing(bob).

P(wy) =0.7 x 0.8 P(wz) = 0.3 x0.8
flu_sneezing(bob).
P(ws) =0.7 x 0.2 P(ws) = 0.3 x0.2

@ sneezing(bob) is true in 3 worlds
@ P(sneezing(bob)) =0.7 x 0.8 +0.3 x 0.8 +0.7 x 0.2 = 0.94
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N
Logic Programs with Annotated Disjunctions

strong_sneezing(X) : 0.3 V moderate_sneezing(X) : 0.4 + flu(X).
strong_sneezing(X) : 0.4 vV moderate_sneezing(X) : 0.2 < hay_fever(X).
flu(bob).

hay_fever(bob).

@ 9 worlds
@ P(strong_sneezing(bob)) =7

Probabilistic logics in machine learning 14 /69



Expressive Power

@ All languages under the distribution semantics have the same
expressive power

@ LPADs have the most general syntax

@ There are transformations that can convert each one into the
others

@ ProblLog to LPAD: direct mapping
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|
LPADs to ProbLog

@ Clause C; with variables X
is translated into

H1 (—B f,1(7)
Hz « B, not(f; 1(X)), fi 2(X).

Hn — Ba£0t(fi,1 (7))a s nOt(fi,n—1 (7))
w1 fi1(X).

Tp—q = fi,n—1(X)-
where 71 = pq, o = 1’_327” , T3 = (1—#1’)):(31—7r2)’ e

@ Ingeneral m; = ﬁ%
j=1 j
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Reasoning Tasks

@ Inference: we want to compute the probability of a query given the
model and, possibly, some evidence

@ Weight learning: we know the structural part of the model (the
logic formulas) but not the numeric part (the weights) and we want
to infer the weights from data

@ Structure learning we want to infer both the structure and the
weights of the model from data
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N
Applications

@ Link prediction: given a (social) network, compute the probability
of the existence of a link between two entities (UWCSE)

advisedby (X, Y) :0.7 :-
publication (P, X),
publication (P, Y),
student (X) .
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N
Applications

o Classify web pages on the basis of the link structure (WebKB)

coursePage (Pagel): 0.3 :—- linkTo(Page2,Pagel),coursePa
coursePage (Pagel): 0.6 :— linkTo (Page2,Pagel), facultyF
coursePage (Page): 0.9 :- has(’syllabus’,Page).
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N
Applications

@ Entity resolution: identify identical entities in text or databases

samebib (A,B):0.9 :-
- samebib (A,C), samebib (C,B).
Real World Digital World sameauthor (A, B) :0.6 :—

Records /
Mentions

sameauthor (A,C), sameauthor (C,B).
sametitle(A,B):0.7 :—

sametitle(A,C), sametitle(C,B).
samevenue (A,B) :0.65 :—

samevenue (A,C), samevenue (C,B) .
samebib (B,C):0.5 :—

author (B,D),author (C,E), sameauthor (D,E) .
samebib (B,C):0.7 :-

title(B,D),title(C,E),sametitle(D,E).
samebib (B,C) :0.6 :—

venue (B, D) ,venue (C,E) , samevenue (D, E) .
samevenue (B,C) :0.3 :—

haswordvenue (B, logic),

haswordvenue (C, logic) .
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Applications

@ Chemistry: given the chemical composition of a substance,
predict its mutagenicity or its carcenogenicity

Y
ok A E

active(A) :0.4 :-
atm(A,B,c,29,C),
gteg(C,-0.003),
ring_size_5(A,D).
active(A) :0.6:—
lumo (A,B), lteg(B,-2.072).
active(A) :0.3 :—
bond(A,B,C,2),
bond(A,C,D,1),
ring_size_5(A,E).
active(A) :0.7 :—
carbon_6_ring(A,B) .
active(A) :0.8 :—
anthracene (A, B) .
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N
Applications

@ Medicine: diagnose diseases on the basis of patient information
(Hepatitis), influence of genes on HIV, risk of falling of elderly

people
5 e
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Inference for PLP under DS

@ Computing the probability of a query (no evidence)

@ Knowledge compilation:
o compile the program to an intermediate representation

@ Binary Decision Diagrams (ProbLog [De Raedt et al. IJCAIQ7],
cplint [Riguzzi AlIA07,Riguzzi LIIGPLO09], PITA [Riguzzi & Swift
ICLP10])

@ deterministic, Decomposable Negation Normal Form circuit (d-DNNF)
(ProbLog2 [Fierens et al. TPLP15])

@ Sentential Decision Diagrams

o compute the probability by weighted model counting
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Inference for PLP under DS

@ Bayesian Network based:

o Convert to BN
o Use BN inference algorithms (CVE [Meert et al. ILP09])

@ Lifted inference
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Knowledge Compilation

@ Assign Boolean random variables to the probabilistic rules

@ Given a query Q, compute its explanations, assignments to the
random variables that are sufficient for entailing the query

@ Let K be the set of all possible explanations
@ Build the formula

F@Q=\ ANXNAX

rKEKXER  Xeg

@ Build a BDD representing F(Q)
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Binary Decision Diagrams

@ A BDD for a function of Boolean variables is a rooted graph that
has one level for each Boolean variable

@ A node nin a BDD has two children: one corresponding to the 1
value of the variable associated with n and one corresponding the
0 value of the variable

@ The leaves store either 0 or 1.
F(X11, X21) = X11 V X1
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Binary Decision Diagrams

fK(X) = X11 X f})<(11(X) —+ —|X11 X f;X”(X)

P(fi(X)) = P(X11)P(fe" (X)) + (1 = P(X11)) P(£¢* (X))
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|
Probability from a BDD

@ Dynamic programming algorithm [De Raedt et al 2007]
@ Function Prob(n)
@ if nis a terminal note
o return value(n)
@ else
@ return Prob(childi(n) x p(v(n)) + Prob(childy(n)) x (1 — p(v(n)))
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Approximate Inference

@ Inference problem is #P hard

@ For large models inference is intractable
@ Approximate inference

o Monte Carlo: draw samples of the truth value of the query

o lterative deepening: gives a lower and an upper bound

o Compute only the best k explanations: branch and bound, gives a
lower bound
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Monte Carlo

@ The disjunctive clause
Cr=Hi:a1V...VHy:ap< Ly,...,Lpn.
is transformed mto the set of clauses MC(Cy)
MC(Cr,1) = Hy « Ly, ...,Lm,sample_head(n,r, VC,NH), NH = 1.

MC(Cr,n) = Hy < Ly,...,Lm, sample_head(n,r, VC, NH), NH = n.
@ Sample truth value of query 0:

(call(Q)—-> NT1 is NT+1 ; NT1 =NT),
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Parameter Learning

@ Problem: given a set of interpretations, a program, find the
parameters maximizing the likelihood of the interpretations (or of
instances of a target predicate)

@ The interpretations record the truth value of ground atoms, not of
the choice variables

@ Unseen data: relative frequency can’t be used
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Parameter Learning

@ An Expectation-Maximization algorithm must be used:
o Expectation step: the distribution of the unseen variables in each
instance is computed given the observed data
o Maximization step: new parameters are computed from the
distributions using relative frequency
o End when likelihood does not improve anymore
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.
Parameter Learning

@ [Thon et al. ECML 2008] proposed an adaptation of EM for
CPT-L, a simplified version of LPADs

@ The algorithm computes the counts efficiently by repeatedly
traversing the BDDs representing the explanations

@ [Ishihata et al. ILP 2008] independently proposed a similar
algorithm

@ LFI-PROBLOG [Gutamnn et al. ECML 2011]: EM for ProbLog

@ EMBLEM [Riguzzi & Bellodi IDA 2013] adapts [Ishihata et al. ILP
2008] to LPADs
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e —
EMBLEM

EM over Bdds for probabilistic Logic programs Efficient Mining
Input: an LPAD; logical interpretations (data); target predicate(s)

all ground atoms in the interpretations for the target predicate(s)
correspond to as many queries

BDDs encode the explanations for each query Q
Expectations computed with two passes over the BDDs

e ©

® o

Probabilistic logics in machine learning 34 /69



Structure Learning for LPADs

@ Given a trivial LPAD or an empty one, a set of interpretations
(data)

@ Find the model and the parameters that maximize the probability
of the data (log-likelihood)

@ SLIPCOVER: Structure Learning of Probabilistic logic program by
searching OVER the clause space EMBLEM [Riguzzi & Bellodi
TPLP 2015]

@ Beam search in the space of clauses to find the promising ones
@ Greedy search in the space of probabilistic programs guided by the
LL of the data.

@ Parameter learning by means of EMBLEM
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e —
SLIPCOVER

@ Cycle on the set of predicates that can appear in the head of
clauses, either target or background

@ For each predicate, beam search in the space of clauses

@ The initial set of beams is generated by SLIPCOVER by building a
set of botffom clauses as in Progol [Muggleton NGC 1995]

@ To generate a bottom clause for a mode declaration
m = modeh(r, s), an input interpretation is selected and an
answer h for the goal schema(s) is selected, where schema(s) is
s variabilized

@ The resulting ground clause h:— by, ..., by is then processed by
replacing each term in a + or - placemarker with a variable
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e —
SLIPCOVER

@ The initial beam associated with predicate P/Ar of h will contain
the clause with the empty body A : 0.5. for each bottom clause
h:— by,...,bn In each iteration of the cycle over predicates, it
performs a beam search in the space of clauses for the predicate.

@ The beam contains couples (ClI, Literals) where
Literals = {by,...,bn}

@ For each clause CI of the form Head : — Body, the refinements
are computed by adding a literal from Literals to the body.
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e —
SLIPCOVER

@ The tuple (CI', Literals’) indicates a refined clause CI’ together
with the new set Literals’

@ EMBLEM is then executed for a theory composed of the single
refined clause.

@ LL is used as the score of the updated clause (C/”, Literals’).
@ (CI", Literals’) is then inserted into a list of promising clauses.

@ Two lists are used, TC for target predicates and BC for
background predicates.

@ These lists ave a maximum size
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e —
SLIPCOVER

@ After the clause search phase, SLIPCOVER performs a greedy
search in the space of theories:

o it starts with an empty theory and adds a target clause at a time
from the list TC.

o After each addition, it runs EMBLEM and computes the LL of the
data as the score of the resulting theory.

o If the score is better than the current best, the clause is kept in the
theory, otherwise it is discarded.

@ Finally, SLIPCOVER adds all the clauses in BC to the theory and
performs parameter learning on the resulting theory.
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Experiments - Area Under the PR Curve

System HIV UW-CSE Mondial
SLIPCOVER 0.82+0.05 0.11+0.08 0.86+0.07
SLIPCASE  0.78 +£0.05 0.03+0.01 0.65+0.06
LSM 0.37+£0.03 0.07+0.02 -
ALEPH++ - 0.054+0.01 0.87 +0.07
RDN-B 0.28+0.06 0.28+0.06 0.77+0.07
MLN-BT 0.29+0.04 0.18+0.07 0.74+0.10
MLN-BC 0.51 +£0.04 0.06+0.01 0.59+0.09
BUSL 0.38+0.03 0.01+0.01 -

Probabilistic logics in machine learning
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Experiments - Area Under the PR Curve

System Carcinogenesis Mutagenesis  Hepatitis
SLIPCOVER 0.60 0.95+0.01 0.80+0.01
SLIPCASE 0.63 0.92+0.08 0.71+0.05
LSM - - 0.53+0.04
ALEPH++ 0.74 0.95 + 0.01 -
RDN-B 0.55 0.97 +£0.03 0.88+0.01
MLN-BT 0.50 0.92+0.09 0.78+0.02
MLN-BC 0.62 0.69+0.20 0.79+0.02
BUSL - - 0.51 +£0.03

Probabilistic logics in machine learning
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PLP Online

@ http://cplint.lamping.unife.it/
o Inference (knwoledge compilation, Monte Carlo)
o Parameter learning (EMBLEM)
o Structure learning (SLIPCOVER)

@ www.cs.kuleuven.be/~dtai/problog/

o Inference (knwoledge compilation, Monte Carlo)
o Parameter learning (LFI-ProbLog)
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Examples

Throwing coins

heads (Coin) :1/2 ; tails(Coin):1/2 :-
toss (Coin), \+biased (Coin) .

heads (Coin) :0.6 ; tails(Coin) :0.4 :-—
toss (Coin),biased (Coin) .

fair (Coin) :0.9 ; biased(Coin):0.1.

toss (coin) .

Russian roulette with two guns

death:1/6 :- pull_trigger (left_gun).
death:1/6 :—- pull_trigger (right_gun).
pull_trigger (left_gun).
pull_trigger (right_gun) .
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Examples
Mendel’s inheritance rules for pea plants

color (X,purple) :—cg(X,_A,p) .

color (X,white) :—cg(X,1,w),cg(X,2,w) .

cg(X,1,A):0.5 ; cg(X,1,B):0.5 :—
mother (Y, X),cg(Y¥,1,A),cg(Y,2,B).

cg(X,2,A):0.5 ; cg(X,2,B):0.5 :—
father(Y,X),cg(¥,1,A),cg(Y¥,2,B).

Probability of paths

path
path

(X, X) .

(
edge (

(

(

X
X,Y):-path(X,Z2),edge(Z,Y) .
a,b):0.3.

c):0.2.

c):0.6.

edge (b,
edge (a,

Probabilistic logics in machine learning
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Encoding Bayesian Networks

alarm t f
b=t,e=t | 1.0 | 0.0
b=t,e=f | 0.8 | 0.2
b=f,e=t | 0.8 | 0.2
b=f,e=f | 0.1 | 0.9
burg | t f earthg | t f
0.1]0.9 0.2]0.8

Burglary Earthquake

burg(t):0.1 ; burg(f):0.9.

earthg(t) :0.2 ; earthqg(f):0.8.

alarm(t) :-burg(t),earthg(t) .

alarm(t):0.8 ; alarm(f):0.2:-burg(t),earthg(f).
alarm(t) :0.8 ; alarm(f):0.2:-burg(f),earthg(t).
alarm(t):0.1 ; alarm(f):0.9:-burg(f),earthg(f).
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.
Monty Hall Puzzle

@ A player is given the opportunity to select one of three closed
doors, behind one of which there is a prize.

@ Behind the other two doors are empty rooms.

@ Once the player has made a selection, Monty is obligated to open
one of the remaining closed doors which does not contain the
prize, showing that the room behind it is empty.

@ He then asks the player if he would like to switch his selection to
the other unopened door, or stay with his original choice.

@ Does it matter if he switches?
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Monty Hall Puzzle

:— use_module (library (pita)) .
:— endif.
:— pita.
:— begin_lpad.
prize(1l):1/3; prize(2):1/3; prize(3):1/3.
selected (1) .
open_door (A) :0.5; open_door (B):0.5:—
member (A, [1,2,3]), member (B, [1,2,3]),
A<B, \+ prize(A), \+ prize(B),
\+ selected(A), \+ selected(B).
open_door (A) : -
member (A, [1,2,3]), \+ prize(d),
\+ selected(A), member (B, [1,2,3]),
prize(B), \+ selected(B).
win_keep:—
selected(A), prize(A).
win_switch:-
member (A, [1,2,3]1),
\+ selected(d), prize(d),
\+ open_door (A) .
:— end_lpad.
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.
Monty Hall Puzzle

@ Queries:

prob (win_keep, Prob) .
prob (win_switch, Prob) .
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Bongard Problems

@ Introduced by the Russian scientist M. Bongard
@ Pictures, some positive and some negative
@ Problem: discriminate between the two classes.

@ The pictures contain shapes with different properties, such as
small, large, pointing down, ... and different relationships
between them, such as inside, above, ...

Probabilistic logics in machine learning 49 /69



Bongard Problems in cplint

:—use_module (library (slipcover)) .
:— if (current_predicate (use_rendering/1)) .
:— use_rendering(c3) .
:— use_rendering (lpad) .
:— endif.
:—-sc.
:— set_sc(megaex_bottom, 20) .
:— set_sc(max_iter,3).
:— set_sc(max_iter_structure, 10).
:— set_sc (maxdepth_var, 4) .
:— set_sc(verbosity,1).
bg([]1) .
in([
(pos:0.5 :—
circle (R),
in(B,A)),
(pos:0.5 :-
circle(d),
triangle(B))1]) .
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Bongard Problems in cplint

fold(train, [2,3,5,...]).

fold (test, [490,491,494,...1).
output (pos/0) .
input_cw(triangle/1) .
input_cw(square/1) .
input_cw(circle/1).
input_cw(in/2) .
input_cw(config/2) .
determination (pos/0,triangle/1) .
determination (pos/0, square/1) .
determination (pos/0,circle/1) .
determination (pos/0,in/2) .
determination (pos/0,config/2) .
modeh (x,pos) .

modeb (*, triangle (-obj)) .

modeb (*, square (-ob7j)) .

modeb (%, circle (-obJj)) .

modeb (%, in (+obj, —obj)) .

modeb (%, in (-obj, +tobj)) .

modeb (x, config (+obj, —#dir)) .
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Bongard Problems (Models Encoding)

begin (model (2)) .
pos.
triangle (05) .
config(o5,up) .
square (04) .
in(o4,05).
circle (03).
triangle (02) .
config(o2,up) .
in(o02,03).
triangle (ol) .
config(ol,up) .
end (model (2)) .

begin (model (3)) .
neg (pos) .
circle(o4) .
circle(o03) .
in(o3,04).

Probabilistic logics in machine learning
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N
Bongard Problems (Keys Encoding)

pos(2) .
triangle(2,05).
config(2,05,up).
square (2,04) .
in(2,04,05).
circle(2,03).
triangle(2,02).
config(2,02,up) .
in(2,02,03).
triangle(2,01).
config(2,0l,up).

neg (pos(3)) .
circle(3,04).
circle(3,03).
in(3,03,04).
square (3,02) .
circle(3,01).
in(3,01,02).
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Bongard Problems

@ Parameter learning

induce_par ([train],P),
test (P, [test], LL,AUCROC, ROC, AUCPR, PR) .

@ Structure learning

induce ([train],P),
test (P, [test], LL,AUCROC, ROC, AUCPR, PR) .
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Mutagenesis in cplint

:— use_module (library(slipcover)) .
:— if (current_predicate (use_rendering/1)) .
:— use_rendering(c3) .
:— use_rendering (lpad) .
:— endif.
:—-sc.
:—set_sc (megaex_bottom, 4) .
:—set_sc (neg_ex,given) .
bg ([1) .
in ([
(active:0.5 :-
lumo (A) ,
bond (B, C,2),
atm(C,n,32,D)),
(active:0.5 :-
lumo (A),
atm(B,0,40,C),
atm(D,n,32,C)),
L)
fold (1, [d18,...]1).

fold (10, [d48,...]).
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Mutagenesis

output (active/0) .

input_cw (lumo/1) .

input_cw(logp/2) .

input_cw (bond/3) .

input_cw(atm/4) .

input_cw (benzene/1) .

input_cw (carbon_5_aromatic_ring/1).
input_cw (carbon_6_ring/1) .

input_cw (hetero_aromatic_6_ring/1).
input_cw (hetero_aromatic_5_ring/1) .
input_cw(ring_size_6/1).
input_cw(ring_size_5/1).
input_cw(nitro/1).

input_cw (methyl/1).

input_cw (anthracene/1) .

input_cw (phenanthrene/1) .
input_cw(ball3/1).
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Mutagenesis

modeh (1, active) .

modeb (1, lumo (-energy)) .

modeb (1, logp (~hydrophob) ) .

modeb (%, atm(-atomid, —#element, -#int, -charge)) .

modeb (*,bond (-atomid, —atomid, —#int)) .

modeb (1, (+charge) >= (#charge)).

modeb (1, (+charge) =< (#charge)).

modeb (1 ,(+charge)— #charge) .
(1
(1
(
(
(
(

modeb (1, (+thydrophob) >= (#hydrophob)) .
modeb ,(+hydrophob) =< (#hydrophob)) .
modeb (1, (+hydrophob)= #hydrophob) .
modeb (1, (+tenergy) >= (#energy)).

modeb (1, (+energy) =< (f#fenergy)) .

modeb (1, (+energy)= #energy) .
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Mutagenesis

modeb (*,benzene (-ring)) .

modeb (*, carbon_5_aromatic_ring(-ring)) .
modeb (*, carbon_6_ring(-ring)) .

modeb (%, hetero_aromatic_6_ring(-ring)) .
modeb (*, hetero_aromatic_5_ring(-ring)) .
modeb (%, ring_size_6(-ring)) .

modeb (*, ring_size_5(-ring)) .

modeb (*,nitro(-ring)) .

modeb (*,methyl (-ring)) .

modeb (*, anthracene (-ringlist)) .

modeb (%, phenanthrene (-ringlist)) .

modeb (*,ball3 (-ringlist)) .

modeb (%, member (-ring, +ringlist)) .

modeb (1, member (+ring, +ringlist)) .
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Mutagenesis

lookahead (logp(B), [ (B=_C)]).
lookahead (logp(B), [>=(B,_C)]) .
lookahead (logp (B), [=<(B,_C)]) .
lookahead (lumo (B), [ (B=_C)]) .
lookahead (lumo (B), [>=(B,_C) 1) .
lookahead (lumo (B), [=<(B,_C) 1) .

determination (active/0, lumo/1) .

determination (active/0,logp/2) .

determination (active/0,bond/3) .

determination (active/0,atm/4) .

determination (active/0,benzene/1) .

determination (active/0,carbon_5_aromatic_ring/1).
determination (active/0,carbon_6_ring/1) .
determination (active/0, hetero_aromatic_6_ring/1) .
determination (active/0,hetero_aromatic_5_ring/1).
determination (active/0,ring_size_6/1) .
determination (active/0,ring_size_5/1).
determination (active/0,nitro/1) .

determination (active/0,methyl/1) .
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Mutagenesis (Keys)

% fold 1

active (d18).
active (d26) .
active (d28) .

neg(active (d38)) .
neg (active (d84)) .
neg (active (d100)) .
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Conclusions

@ Exciting field!
@ Much is left to do:

o Lifted inference
o Continuous variables
o Structure learning search strategies
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