
Probabilistic Declarative Process Mining

Elena Bellodi, Fabrizio Riguzzi, and Evelina Lamma

ENDIF – Università di Ferrara – Via Saragat, 1 – 44122 Ferrara, Italy.
{elena.bellodi,evelina.lamma,fabrizio.riguzzi}@unife.it

Abstract. The management of business processes is receiving much at-
tention, since it can support significant efficiency improvements in orga-
nizations. One of the most interesting problems is the representation of
process models in a language that allows to perform reasoning on it.
Various knowledge-based languages have been lately developed for such
a task and showed to have a high potential due to the advantages of
these languages with respect to traditional graph-based notations.
In this work we present an approach for the automatic discovery of
knolwedge-based process models expressed by means of a probabilistic
logic, starting from a set of process execution traces. The approach first
uses the DPML algorithm [16] to extract a set of integrity constraints
from a collection of traces. Then, the learned constraints are translated
into Markov Logic formulas and the weights of each formula are tuned
using the Alchemy system. The resulting theory allows to perform proba-
bilistic classification of traces. We tested the proposed approach on a real
database of university students’ careers. The experiments show that the
combination of DPML and Alchemy achieves better results than DPML
alone.

Keywords: Business Process Management, Knowledge-based Process Mod-
els, Process Mining, Statistical Relational Learning

1 Introduction

Organizations usually rely on a number of processes to achieve their mission.
These processes are typically complex and involve a large number of people. The
performance of the organization critically depends on the quality and accuracy
of its processes. Thus the processes form a very important asset of organizations
and are a fundamental part of their body of knowledge.

The area of Business Processes Management (see e.g. [13]) is devoted to
the study of ways for representing and reasoning with process models. Most
approaches use forms of graphs or Petri nets [4]. Recently, however, new modeling
languages have started to appear that are more knowledge-based and declarative,
in the sense that they express only constraints on process execution rather than
encoding them as paths in a graph. DecSerFlow [3], ConDec [2] and SCIFF [7,6]
are examples of such languages. In particular, SCIFF adopts first-order logic in
order to represent the constraints.

The problem of automatically mining a structured description of a busi-
ness process directly from real data has been studied by many authors (see e.g.
[5,1,14]). The input data consist of execution traces (or histories) of the process
and their collection is performed by information systems which log the activ-
ities performed by the users. This problem has been called Process Mining or
Workflow Mining.

The works [16,15,8] presented approaches for learning models in DecSer-
Flow/ConDec and SCIFF.

Starting from them, in this paper we present a knowledge-based system to
discover declarative logic-based knowledge in the form of business rules, from a
set of traces. Process traces are previously labeled as compliant or not: learning
a model from both compliant and non compliant traces is interesting if an orga-
nization has two or more sets of process executions and may want to understand
in what sense they differ.

Additionally the learned process model is able to encode probabilistic infor-
mation. In fact, the complexity and uncertainty of real world domains require
both the use of first-order logic and the use of probability. Recently, various
languages have been proposed in the field of Statistical Relational Learning that
combine the two. One of these is Markov Logic [19,12], that extends first-order
logic by attaching weights to formulas.

We propose to represent process models by means of Markov Logic. Moreover,
we present an approach for inducing these descriptions that involves first learning
a logical theory with DPML [16] and then attaching weights to the formulas by
means of the Alchemy system [19].

The effectiveness of the approach is illustrated by considering the careers
of real students at the University of Ferrara. The experiment showed that the
combined use of DPML and Alchemy for Process Mining outperforms the use of
DPML only.

The paper is organized as follows: we first discuss how we represent execu-
tion traces and process models using logic programming. Then we presents the
learning technique we have adopted for performing Process Mining. After hav-
ing evaluated the proposed approach on a real world dataset, we discuss related
works and conclude.

2 Process Mining

A trace t is a sequence of events. Each event is described by a number of at-
tributes. The only requirement is that one of the attributes describes the event
type. Other attributes may be the executor of the event or event specific infor-
mation.

An example of a trace is
〈a, b, c〉

where a, b and c are events executed in sequence.
A process model PM is a formula in a language for which an interpreter

exists that, when applied to a model PM and a trace t, returns answer yes if

2

the trace is compliant with the description and false otherwise. In the first case
we write t |= PM , in the second case t 6|= PM .

A bag of process traces L is called a log. The aim of Process Mining is to infer
a process model from a log. Usually, in Process Mining, only compliant traces
are used as input to the learning algorithm, see e.g. [5,1,14]. We consider instead
the case where we are given both compliant and non compliant traces, since non
compliant traces can provide valuable information. This is true in particulat in
the case under study.

2.1 Representing Process Traces and Models with Logic

A process trace can be represented as a logical interpretation (set of ground
atoms): each event is modeled with an atom whose predicate is the event type
and whose arguments store the attributes of the event. Moreover, the atom
contains an extra argument indicating the position in the sequence. For example,
the trace:
〈a, b, c〉

can be represented with the interpretation
{a(1), b(2), c(3)}.
Besides the trace, we may have some general knowledge that is valid for all

traces. This information will be called background knowledge and we assume
that it can be represented as a normal logic program B1. The rules of B allow
to complete the information present in a trace t: rather than simply t, we now
considerM(B∪t), the model of the programB∪t according to Clark’s completion
[10].

The process language we consider is a subset of the SCIFF language, orig-
inally defined in [6,7], for specifying and verifying interaction in open agent
societies.

A process model in our language is a set of Integrity Constraints (ICs). An
IC, C, is a logical formula of the form

Body → ∃ (ConjP1) ∨ . . . ∨ ∃ (ConjPn)

∨ ∀ ¬(ConjN1) ∨ . . . ∨ ∀ ¬(ConjNm)
(1)

where Body, ConjPi i = 1, . . . , n and ConjNj j = 1, . . . ,m are conjunctions of
literals built over event predicates or over predicates defined in the background
knowledge. **In particular Body is of the form b1 ∧ . . . ∧ bl where the bi are
literals; ConjPi is a formula of the form event(attr1, . . . , attrr) ∧ d1 ∧ . . . ∧ dk
where event() is an event predicate and di are literals; ConjNj is a formula
of the form ¬event(attr1, . . . , attrr) ∧ d1 ∧ . . . ∧ dk. The quantifiers in the head
apply to all the variables not appearing in the body. The variables of the body
are implicitly universally quantified with scope the entire formula.**

We will use Body(C) to indicate Body and Head(C) to indicate the formula
∃(ConjP1)∨ . . .∨∃(ConjPn)∨∀¬(ConjN1)∨ . . .∨∀¬(ConjNm) and call them

1 A normal logic program is a program containing clauses of the form H ← B1, . . . , Bn

where H is an atom and the Bis are literals, i.e., atoms or negations of atoms

3

respectively the body and the head of C. We will use HeadSet(C) to indicate
the set {ConjP1, . . . , ConjPn, ConjN1, . . . , ConjNm}.

Body(C), ConjPi i = 1, . . . , n and ConjNj j = 1, . . . ,m will be sometimes
interpreted as sets of literals, the intended meaning will be clear from the context.
All the formulas ConjPj in Head(C) will be called P disjuncts ; all the formulas
ConjNj in Head(C) will be called N disjuncts.

An example of an IC is

order(bob, camera, T), T < 10

→ ∃ T1 (ship(alice, camera, T1),

bill(alice, bob, 100, T1), T < T1

∨

∀ T1, V ¬bill(alice, bob, V, T1), T < T1

(2)

The meaning of the IC (2) is the following: if bob has ordered a camera at a
time T < 10, then alice must ship it and bill bob 100$ at a time T1 later than
T or alice must not bill bob any expense at a time T1 later than T .

An IC C is true in an interpretation M(B ∪ t), written M(B ∪ t) |= C, if,
for every substitution θ for which Body(C) is true in M(B ∪ t), there exists
a disjunct ∃(ConjPi) or ∀¬(ConjNj) in Head(C) that is true in M(B ∪ t). If
M(B ∪ t) |= C we say that the trace t is compliant with C. A process model H
is true in an interpretation M(B ∪ t) if every IC of H is true in it and we write
M(B ∪ t) |= H. We also say that trace t is compliant with H.

Similarly to what has been observed in [18] for disjunctive clauses, the truth
of an IC in an interpretation M(B ∪ t) can be tested by running the query:

?−Body,¬ConjP1, . . .¬ConjPn, ConjN1, . . . , ConjNm

against a Prolog database containing the clauses of B and the atoms of t as
facts. Here we assume that B is range-restricted, i.e., that all the variables that
appear in the head of clauses also appear in the body. If this holds, every answer
to a query Q against B ∪ t completely instantiate Q, i.e., it produces an element
of M(B ∪ t).

If the N disjuncts in the head share some variables, then the following query
must be issued

?−Body¬ConjP1, . . .¬ConjPn,¬¬ConjN1, . . . ,¬¬ConjNm

that ensures that the N disjuncts are tested separately without instantiating the
variables.

If the query finitely fails, the IC is true in the interpretation. If the query
succeeds, the IC is false in the interpretation. Otherwise nothing can be said.

2.2 Learning ICs Theories

In this section, we briefly describe the algorithm Declarative Process Model
Learner (DPML) proposed in [16].

DPML finds an IC theory solving the learning problem by searching the space
of ICs. The space is structured using a generality relation based on the following
definition of subsumption.

4

Definition 1 (Subsumption). An IC D subsumes an IC C, written D ≥ C,
iff it exists a substitution θ for the variables in the body of D or in the N disjuncts
of D such that

– Body(D)θ ⊆ Body(C) and
– ∀ConjP (D) ∈ HeadSet(D), ∃ConjP (C) ∈ HeadSet(C) : ConjP (C) ⊆

ConjP (D)θ and
– ∀ConjN(D) ∈ HeadSet(D), ∃ConjN(C) ∈ HeadSet(C) : ConjN(D)θ ⊆

ConjN(C)

If D subsumes C, then C is more general than D. For example, let us consider
the following clauses:

C = accept(X) ∨ refusal(X)← invitation(X)

D = accept(X) ∨ refusal(X)← true

E = accept(X)← invitation(X)

Then C is more general than D and E, while D and E are not comparable.
The search space is defined by the language bias that consists of a set of IC

templates, which define the literals that can be added to clauses. In particular,
each template specifies:

– a set of literals BS allowed in the body,
– a set of disjuncts HS allowed in the head. For each disjunct, the template

specifies:
• whether it is a P or an N disjunct,
• the set of literals allowed in the disjunct.

The search in the space of ICs is performed from specific to general: given an IC
D, the set of refinements ρ(D) of D is a set of ICs that are more general than D.
ICs in ρ(D) are obtained by adding a literal to the body, by adding a disjunct
to the head, by adding a literal to an N disjunct or by removing a literal from
a P disjunct.

The DPML algorithm solves the following learning problem:
Given

– a space of possible process models H
– a set I+ of positive traces;
– a set I− of negative traces;
– a definite clause background theory B.

Find: a process model H ∈ H such that

– for all i+ ∈ I+, M(B ∪ i+) |= H;
– for all i− ∈ I−, M(B ∪ i−) 6|= H;

If M(B ∪ i) |= C we say that IC C covers the trace i and if M(B ∪ i) 6|= C we
say that C rules out the trace i.

5

function DPML(I+, I−, B)
initialize H := ∅
do

C := FindBestIC(I+, I−, B)
if C 6= ∅ then

add C to H

remove from I− all interpretations that are false for C
while C 6= ∅ and I− is not empty
return H

function FindBestIC(I+, I−, B)
initialize Beam := {false← true}
initialize BestIC := ∅
while Beam is not empty do

initialize NewBeam := ∅
for each IC C in Beam do

for each refinement Ref of C do
if Ref is better than BestIC then

BestIC := Ref

if Ref is not to be pruned then
add Ref to NewBeam

if size of NewBeam > MaxBS then
remove worst clause from NewBeam

Beam := NewBeam

return BestIC

Fig. 1. DPML learning algorithm

Every IC in the learned theory is seen as a clause that must be true in all
the positive traces (compliant traces) and false in some negative traces (non
compliant traces). The theory composed of all the ICs must be such that all the
ICs are true when considering a compliant trace and at least one IC is false when
considering a non compliant one.

The DPML algorithm is an adaptation of ICL [11] and consists of two nested
loops: a covering loop (function DPML in Figure 1) and a generalization loop
(function FindBestIC in Figure 1). In the covering loop negative traces are pro-
gressively ruled out and removed from the set I−. At each iteration of the loop a
new IC C is added to the theory. Each IC rules out some negative interpretations.
The loop ends when I− is empty or when no IC is found.

The IC to be added in every iteration of the covering loop is returned by
function FindBestIC. It looks for an IC by using beam search with p(⊖|C) as
a heuristic function. The search starts from the IC false ← true that is the
most specific and rules out all the negative traces but also all the positive traces.
ICs in the beam are gradually generalized by using the refinement operator.
MaxBeamSize is a user-defined constant storing the maximum size of the beam.

At the end of the refinement cycle, the best IC found so far is returned.

6

2.3 Probabilistic Integrity Constraints

Markov Logic (ML) [19] is a language that extends first-order logic by attaching
weights to formulas. Semantically, weighted formulas are viewed as templates
for constructing Markov networks. In the infinite-weight limit, ML reduces to
standard first-order logic.

Definition 2 (Markov logic network). A Markov logic network (MLN) L is
a set of pairs (Fi, wi), where Fi is a formula in first-order logic and wi is a real
number. Together with a finite set of constants C = {c1, c2, . . . , cm}, it defines a
Markov network ML,C as follows:

1. ML,C contains one binary node for each possible grounding of each atom
appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. ML,C contains one feature (real-valued function) for each possible grounding
of each formula Fi in L. The value of this feature is 1 for a possible world if
the ground formula is true in the possible world, and 0 otherwise. The weight
of the feature associated to Fi is wi.

**For example, an MLN containing the formula ∀xSmokes(x) → Cancer(x)
(smoking causes cancer) applied to the set of constants C = {Anna,Bob} yields
the features Smokes(Anna) →Cancer(Anna) and Smokes(Bob) →Cancer(Bob),
and a ground Markov network with 4 nodes (Smokes(Anna), Cancer(Anna),
Smokes(Bob), Cancer(Bob)).**

A possible world x is an assignment of truth values to every ground atom.
The probability distribution specified by the ground Markov network ML,C over
possible worlds x is given by

P (x) =
1

Z
exp

(

F
∑

i=1

wini(x)

)

(3)

where F is the number of formulas in the MLN, ni(x) is the number of true

groundings of Fi in x, Z is a partition function given by
∑

x
exp

(

∑F

i=1
wini(x)

)

that ensures that P (x) sums to one.
A set of ICs can be seen as a “hard” first-order theory that constrains the

set of possible worlds: if a world violates even one formula, it is considered
impossible. The basic idea in Markov Logic is to soften these constraints, so that
when a world violates one of them it is just less probable, but not impossible.
The weight associated to each formula reflects how strong the constraint is: the
higher the weight, the greater the difference in probability between a world that
satisfies the formula and one that does not, other things being equal.

Once an IC theory has been learned from data, integrity constraints are
transformed into ML formulas and weights are learned for them using the dis-
criminative weight learning algorithm of [12] that is implemented in the Alchemy
system2.

2 http://alchemy.cs.washington.edu/

7

http://alchemy.cs.washington.edu/

Each IC of the form (1) is translated into the following ML formula:

Body ∧ ¬(ConjP1) ∧ . . . ∧ ¬(ConjPn)

∧(ConjN1) ∧ . . . ∧ (ConjNm)→ neg
(4)

where neg means that the trace is negative. In absence of disjuncts in the head,
the IC Body → false reduces to Body → neg. The head of all the formulas
always contains only the atom neg, while all disjuncts in the head are moved to
the body.

An example of IC referred to the analyzed domain is:

true

→ ∀ A ¬registration(A, 2005)

∨

∀ B,C ¬enrollment2(B,C, oc)).

This IC states that the students who graduated (positive traces) do not present
registration in the year 2005 or an enrollment in the second year as an out-of-
course student.

The translation into a formula in Markov logic is:

registration(A, 2005) ∧ enrollment2(B,C, oc)→ neg

**After weight learning the formula results:

1.08555 registration(A, 2005) ∧ enrollment2(B,C, oc)→ neg

with a real number (the weight) attached to the body. The resulting MLN,
composed of a set of such formulas, can then be used to infer the probability of
neg, that is the probability that the trace is negative, given a database consisting
of atoms representing the trace. **

3 Experiments

Our goal is to demonstrate that the combined use of DPML, for learning an IC
theory, and Alchemy, for learning weights for formulas, produces better results
than the sharp classification realized by the IC theory alone.

The experiments have been performed over a real dataset regarding university
students, where the careers of students that graduated are positive traces and the
careers of students who did not finish their studies are negative ones. We want
to predict whether a student graduates on the basis of her career. To perform
our experiments, we collected 813 careers of students enrolled at the Faculty of
Engineering of the University of Ferrara from 2004 to 2009. The traces have been
labeled as compliant or non compliant with respect to the classification specified
above. There are 327 positive and 486 negative traces.

8

We first induce an IC theory from these data. Every trace was therefore
adapted to the format required by the DPML algorithm, transforming it into
an interpretation. We considered the main activities performed by a student to-
gether with parameters describing the activities. An example of an interpretation
for a student is the following:

{registration(par1, . . . , parn, 1),

exam(par1, . . . , parm, 2),

exam(par1, . . . , parm, 3),

. . .

}

where pari means the i-th parameter for a certain activity.
A ten-fold cross-validation was used, i.e., the dataset was divided into ten sets

(containing roughly the same proportion of positive and negative traces as the
whole dataset) and ten experiments were performed, where nine sets were used
for training and the remaining one for testing, i.e., for evaluating the accuracy
of the learned theory. In particular, test sets contain either 33 positive and 49
negative traces or 32 positive and 48 negative traces. The same language bias was
used in all ten experiments. The accuracy is defined as the number of compliant
traces that are correctly classified as compliant by the learned model plus the
number of non compliant traces that are correctly classified as not compliant
divided by the total number of traces.

An IC theory is learned for each fold, composed of a number of rules between
25 and 31. The accuracy of the theories on the test sets ranges from 54% to 86%,
with an average of 67.5%.

The second step was the assignment of weights to the ICs, by creating ten
MLNs containing the theories translated into ML. Each of the ten MLNs were
given as input to Alchemy for discriminative weight learning,** which takes
about 1.2 sec for every training set.**

Ten MLN were also generated from the learned IC theories by assigning the
pseudo-infinite weight 1010 to all the clauses, in order to approximate a purely
logical theory.

The Alchemy system performs also structure learning, able to learn a com-
plete MLN composed of both ML formulas and weigths, but in our experiments
it gave problems of memory lack so it could not be completed.

In the third step, we computed the probability of each test trace of being
negative. This was performed by running the belief propagation inference algo-
rithm of [21] (implemented in Alchemy) both on the MLNs with learned weights
and on the MLNs with pseudo-infinite weights. In practice, we computed the
marginal probabilities of the atoms of the form neg(i), with i representing the
identifier of a student in the test dataset.

Finally, we compared the sharp MLN with the weighted MLN using the
average area under the ROC curve (AUC) [17] that has been identified as a

9

better measure for evaluating the classification performances of algorithms with
respect to accuracy, because it also takes into account the different distribution
of positive and negative examples in the datasets. The sharp MLN achieved an
average AUC of 0.7107528, while the weighted MLN achieved and average AUC
of 0.7227286. We also applied a one-tailed paired t test: the null hypothesis that
the two algorithms are equivalent can be rejected with a probability of 90.58%.

4 Related Works

Most works on process mining deal with process models in the form of graphs
or Petri nets, that represent the allowed sequences of events as paths in the
diagram. [5] presented an approach for inducing a process representation in the
form of a directed graph encoding the precedence relationships. [4] proposed the
α-algorithm that induces Petri nets. The approach discovers binary relations in
the log, such as the “follows” relation. The α-algorithm is guaranteed to work
for a restricted class of models. In [14] the result of induction is a process model
in the form of a disjunction of special graphs called workflow schemes.

Recently, knowledge-based languages for the representation of process models
has appeared. In them, models are seen as sets of constraints over the executions
of the process. These models are more declarative because they state the condi-
tions that process executions must satisfy rather than encoding them as paths
in graphs.

Examples of declarative languages for representing process models are Dec-
SerFlow [3], ConDec [2] and SCIFF [7,6]. [9] describes the relationships be-
tween these languages and shows that ConDec/DecSerFlow can be translated
into SCIFF and a subset of SCIFF can be translated into ConDec/DecSerFlow.

[16] proposed the DPML algorithm that learns process models expressed
in a subset of SCIFF. [15,8] presented the DecMiner system that is able to
infer ConDec/DecSerFlow models by first inducing a SCIFF theory and then
translating it into ConDec/DecSerFlow.

This paper extends the works [16,15,8] by including a probabilistic compo-
nent in the process models. This allows to better model domains where the
relationships among events are uncertain.

Recently, [20] discussed mining of process models in the form of AND/OR
workflow graphs that are able to represent probabilistic information: each event
is considered as a binary random variable that indicates whether the event hap-
pened or not and techniques from the field of Bayesian networks are used to
build probability distribution over events. The paper presents a learning algo-
rithm that induces a model by identifying the probabilistic relationships among
the events from data. Thus the approach of [20] provides a probabilistic exten-
sion to traditional graph-based models, while we extend declarative modeling
languages by relying on a first-order probabilistic language.

10

5 Conclusions

We propose a methodology, based on Statistical Relational Learning, for an-
alyzing a log containing several traces of a process, labeled as compliant or
non-compliant. From them we learn a set of declarative constraints expressed as
ICs. Then we represent ICs in Markov Logic, a language extending first-order
logic, to obtain a probabilistic classification of traces, by using the Alchemy sys-
tem. Finally we evaluate the performances of the two models concluding that
probabilistic ICs are more accurate than the pure logical ones. The experiments
have been performed on process traces belonging to a real dataset of university
students’ careers.

Supplementary material, including the code of the systems and an example
dataset, can be found at http://sites.google.com/a/unife.it/ml/pdpm/.

6 Acknowledgements

This work was possible thanks to the Audit Office of the University of Ferrara, in
particular Alberto Domenicali and Susanna Nanetti, that supplied the university
dataset for experiments.

References

1. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003)

2. van der Aalst, W.M.P., Pesic, M.: A declarative approach for flexible business
processes management. In: Business Process Management Workshops, BPM 2006
International Workshops, Vienna, Austria, September 4-7, 2006. LNCS, vol. 4103,
pp. 169–180. Springer (2006)

3. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) Proceedings of
the Third International Workshop on Web Services and Formal Methods (WS-FM
2006). LNCS, vol. 4184. Springer (2006)

4. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

5. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Proceedings of the 6th International Conference on Extending Database
Technology, EDBT’98. LNCS, vol. 1377, pp. 469–483. Springer (1998)

6. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., P.Torroni: Verifiable
agent interaction in abductive logic programming: The SCIFF framework. ACM
Trans. Comput. Log. 9(4) (2008)

7. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive in-
terpretation for open societies. In: Cappelli, A., Turini, F. (eds.) Proceedings of
the 8th Congress of the Italian Association for Artificial Intelligence (AI*IA 2003).
LNAI, vol. 2829. Springer Verlag (2003)

11

http://sites.google.com/a/unife.it/ml/pdpm/

8. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploit-
ing inductive logic programming techniques for declarative process mining. LNCS
Transactions on Petri Nets and Other Models of Concurrency, ToPNoC II 5460,
278–295 (2009), http://www.springerlink.com/content/c4j2k38675588759/

9. Chesani, F., Mello, P., Montali, M., Storari, S.: Towards a decserflow declarative se-
mantics based on computational logic. Technical Report DEIS-LIA-07-002, DEIS,
Bologna, Italy (2007)

10. Clark, K.L.: Negation as failure. In: Logic and Databases. Plenum Press (1978)
11. De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Proceedings of the

6th Conference on Algorithmic Learning Theory. LNAI, vol. 997. Springer Verlag
(1995)

12. Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., Singla, P.: Markov
logic. In: Probabilistic Inductive Logic Programming. Lecture Notes in Computer
Science, vol. 4911, pp. 92–117. Springer (2008)

13. Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases 3(2), 119–153 (1995)

14. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

15. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative
logic-based models from labeled traces. In: Proceedings of the 5th International
Conference on Business Process Management, BPM 2007. pp. 344–359. No. 4714
in Lecture Notes in Computer Science, Springer, Heidelberg, Germany (2007)

16. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic pro-
gramming to process mining. In: Proceedings of the 17th International Con-
ference on Inductive Logic Programming, ILP 2007. pp. 132–146. No. 4894 in
Lecture Notes in Artificial Intelligence, Springer, Heidelberg, Germany (2008),
http://dx.doi.org/10.1007/978-3-540-78469-2_16

17. Provost, F.J., Fawcett, T.: Robust classification for imprecise environments. Ma-
chine Learning 42(3), 203–231 (2001)

18. Raedt, L.D., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146
(1997)

19. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

20. Silva, R., Zhang, J., Shanahan, J.G.: Probabilistic workflow mining. In: Grossman,
R., Bayardo, R.J., Bennett, K.P. (eds.) Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp. 275–284.
ACM (2005)

21. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008. pp.
1094–1099. AAAI Press (2008)

12

http://www.springerlink.com/content/c4j2k38675588759/
http://dx.doi.org/10.1007/978-3-540-78469-2_16

	Probabilistic Declarative Process Mining

