
Approximate Inference for Logic Programs with

Annotated Disjunctions

Stefano Bragaglia and Fabrizio Riguzzi

DEIS – University of Bologna, ENDIF – University of Ferrara.
{stefano.bragaglia@unibo.it, fabrizio.riguzzi@unife.it}

Abstract. Logic Programs with Annotated Disjunctions (LPADs) are
a promising language for Probabilistic Inductive Logic Programming. In
order to develop efficient learning systems for LPADs, it is fundamental
to have high-performing inference algorithms. The existing approaches
take too long or fail for large problems. In this paper we adapt to LPAD
the approaches for approximate inference that have been developed for
ProbLog, namely k-best and Monte Carlo.

k-Best finds a lower bound of the probability of a query by identifying
the k most probable explanations while Monte Carlo estimates the prob-
ability by smartly sampling the space of programs. The two techniques
have been implemented in the cplint suite and have been tested on real
and artificial datasets representing graphs. The results show that both
algorithms are able to solve larger problems often in less time than the
exact algorithm.

Keywords: Probabilistic Inductive Logic Programming, Logic Programs
with Annotated Disjunctions, ProbLog.

1 Introduction

Statistical Relational Learning and Probabilistic Inductive Logic Programming
provide successful techniques for learning from real world data. Such techniques
usually require the execution of a high number of inferences in probabilistic
logics, which are costly tasks. In order to reduce the computational load, we
may resort to approximate inference that trades accuracy for speed. In this
paper we present two approaches for computing the probability of queries from
Logic Programs with Annotated Disjunctions (LPADs) [6] in an approximate
way. LPADs are particularly interesting because of their sound semantics, of
their intuitive syntax and because they allow to exploit many of the techniques
developed in Logic Programming for probabilistic reasoning. We present two
approaches inspired by those available for ProbLog [2]: k-best and Monte Carlo.
The first finds a lower bound for the probability of a query by considering only
the k most probable explanations, while the latter estimates the probability of
the query by the fraction of sampled possible worlds where the query is true.

2 Logic Programs with Annotated Disjunctions

A Logic Programs with Annotated Disjunctions T [6] consists of a finite set
of disjunctive clauses of the form (H1 : α1) ∨ (H2 : α2) ∨ . . . ∨ (Hn : αn) ←
B1, B2, . . . Bm called annotated disjunctive clauses. The Hi, Bi and αi that ap-
pear in such a clause are respectively logical atoms, logical literals and real
numbers in the interval [0, 1] such that

∑n

i=1 αi ≤ 1. If
∑n

i=1 αi < 1, the head
of the annotated disjunctive clause implicitly contains an extra atom null that
does not appear in the body of any clause and whose annotation is 1−

∑n

i=1 αi.
For a clause C of the form above, we define head(C) as {(Hi : αi)|1 ≤ i ≤ n}
if
∑n

i=1 αi = 1 and as {(Hi : αi)|1 ≤ i ≤ n} ∪ {(null : 1 −
∑n

i=1 αi)} otherwise.
Moreover, we define body(C) as {Bi|1 ≤ i ≤ m}, Hi(C) as Hi and αi(C) as αi.

In order to define the semantics of an LPAD T , we need to consider its
grounding ground(T) that must be finite, so T must not contain function symbols
if it contains variables. More specifically, an atomic choice is a triple (C, θ, i)
where C ∈ T , θ is a substitution for the variables of C and i ∈ {1, . . . , |head(C)|}
meaning that the headHi(C)θ : αi(C) was chosen for the clause Cθ. A composite

choice κ is a set of atomic choices that are ground (Cθ is ground) and consistent
((C, θ, i) ∈ κ, (C, θ, j) ∈ κ⇒ i = j, meaning that only one head is selected for a
ground clause) whose probability P (κ) is given by P (κ) =

∏
(C,θ,i)∈κ αi(C). A

selection σ is a composite choice containing an atomic choice (C, θ, i) in σ for
each clause Cθ in ground(T) and identifies a normal logic program wσ called a
possible world (or simply world) of T and defined as follows wσ = {(Hi(C)θ ←
body(C))θ|(C, θ, i) ∈ σ}.
WT denotes the set of all the possible worlds of T . Since selections are com-

posite choices, we can assign a probability to possible worlds: P (wσ) = P (σ) =∏
(C,θ,i)∈σ αi(C). The probability of a closed formula φ according to an LPAD T

is given by the sum of the probabilities of the possible worlds where the formula
is true according to the WFS: P (φ) =

∑
σ∈WT ,wσ |=φ P (σ). It is easy to see that

P satisfies the axioms of probability.
In order to compute the probability of a query from a probabilistic logic

program, [6] proposed to first find a covering set of explanations for the query and
then compute the probability from the set by using Binary Decision Diagrams.
An explanation is a composite choice κ such that the query is true in all the
possible worlds consistent with κ. A set K of explanations is covering if each
possible world where the query is true is consistent with at least one of the
explanations in K.

The cplint system1 [5] applied this approach to LPADs. cplint first com-
putes a covering set of explanations for a query by using a Prolog meta-interpreter
that performs resolution and keeps a set of atomic choices that represents a par-
tial explanation. Each time the meta-interpreter resolves the selected goal with
a disjunctive clause, it adds a (possibly non-ground) atomic choice to the partial
explanation and checks for its consistency. If the program is range-restricted,
when the meta-interpreter reaches the empty goal, every atomic choice in the

1 http://www.ing.unife.it/software/cplint/

2

http://www.ing.unife.it/software/cplint/

partial explanation becomes ground and an explanation is obtained. By enclos-
ing the meta-interpreter in a findall call, a covering set K of explanations is
found. Then cplint converts K into the following Disjunctive Normal Form
(DNF) logical formula F =

∨
κ∈K

∧
(C,θ,i)∈κ(XCθ = i). The probability of the

query is then given by the probability of F taking value 1. F is converted to a
Decision Diagram that is traversed by using a dynamic programming algorithm
to compute the probability. Specifically, cplint uses Binary Decision Diagram
(BDD) because of the availability of highly efficient packages for processing them.
Since disjunctive clauses may contain any number of logical heads, multivalued
variables are binary encoded by means of boolean variables to be used in BDDs.

3 Approximate Inference

In some domains, computing exactly the probability of a query may be imprac-
tical and it may be necessary to resort to some forms of approximations. [2,3]
proposed various approaches for approximate inference. With iterative deepen-

ing, upper and lower bounds for the probability of the query are computed and
their difference is gradually decreased by increasing the portion of the search
tree that is explored. With the k-best algorithm, only the k most probable ex-
planations are considered and a lower bound is found. With Monte Carlo, the
possible worlds are sampled and the query is tested in the samples. An estimate
of the probability of the query is given by the fraction of sampled worlds where
the query succeeds. All three approaches have been adapted to LPADs and in-
cluded in cplint. In the following we report only on the k-best and Monte Carlo,
since iterative deepening was not giving clear advantages with respect to exact
inference on the datasets tested.

3.1 k-best Algorithm

According to [3], using a fixed number of proofs to approximate the probability is
fundamental when many queries have to be evaluated because it allows to control
the overall complexity. The k-best algorithm uses branch and bound to find the k
most probable explanations, where k is a user-defined parameter. The algorithm
records the k best explanations. Given a partial explanation, its probability
(obtained by multiplying the probability of each atomic choice it contains) is
an upper bound on the probability that a complete explanation extending it
can achieve. Therefore, a partial explanation can be pruned if its probability
falls below the probability of the k-th best explanation. Our implementation
of the k-best algorithm interleaves tree expansion and pruning: a set of partial
explanations are kept and are iteratively expanded for some steps. Those whose
upper bound is worse than the k-th best explanation are pruned. Once the proof
tree has been completely expanded, the k best explanations are translated into
a BDD to compute a lower bound of the probability of the query. This solution
uses a meta-interpreter while ProbLog uses a form of iterative deepening that
builds derivations up to a certain probability threshold and then increases the

3

Algorithm 1 Function solve

1: function solve(Goal, Explan)
2: if Goal is empty then

3: return 1
4: else

5: Let Goal = [G|Tail]
6: if G =(\+ Atom) then
7: V alid :=solve([Atom], Explan)
8: if V alid = 0 then

9: return solve(Tail, Explan)
10: else

11: return 0
12: end if

13: else

14: Let L be the list of couples (GL,Step) where GL is obtained by resolving
15: Goal on G with a program clause C on head i with substitution θ

16: and Step = (C, θ, i)
17: return sample cycle(L,Explan)
18: end if

19: end if

20: end function

threshold if k explanations have not been found. The meta-interpreter approach
has the advantages of avoiding to repeat resolution steps at the expense of a
more complex bookkeeping.

3.2 Monte Carlo Algorithm

In [3] the Monte Carlo algorithm for ProbLog is realized by using a vector with an
entry for every probabilistic fact. The entries store whether the facts have been
sampled true, sampled false or not yet sampled. The vector is initialized with
not yet sampled for all facts. Then a transformed ProbLog program is executed
that derives the goal and updates the vector each time a new probabilistic fact
is sampled.

ProbLog’s algorithm requires all the probabilistic facts to be ground in the
input program. While LPADs can be converted to ProbLog programs [1], the
result of the conversion may contain non ground probabilistic facts so ProbLog’s
Monte Carlo algorithm may not always be used.

Our Monte Carlo algorithm for LPADs uses a meta-interpreter that keeps
a partial explanation containing atomic choices for the disjunctive clauses sam-
pled up to that point. The meta-interpreter is realized by Function solve in
Algorithm 1 and returns 1 if the list of atoms of the goal is derivable in the
sample and 0 otherwise. In order to derive the selected literal G of the current
goal, solve finds all the matching clauses and builds a list of couples (new goal,
atomic choice) for each matching clause. Then, it calls Function sample cycle

in Algorithm 2 whose aim is to perform sampling steps for the matching clauses

4

Algorithm 2 Function sample cycle

1: function sample cycle(L,Explan)
2: Derivable = 0
3: while Derivable = 0 and L 6= ∅ do

4: Remove the first element (GL, (C, θ, i)) from L

5: repeat

6: if Cθ is ground then

7: if (C, θ) is already present in Explan with head j then

8: h := j

9: else

10: h :=sample(C)
11: end if

12: else

13: h :=sample(C)
14: end if

15: Explan := Explan ∪ {(C, θ, h)}
16: if h = i then

17: Derivable :=solve(GL, Explan)
18: else

19: Derivable := 0
20: end if

21: until consistent(Explan)
22: end while

23: return Derivable

24: end function

until the truth of the selected literal is determined and a consistent set of ground
atomic choices is obtained. Each matching clause is sampled independently and
the resulting atomic choice is added to the partial explanation that is passed by
reference to future calls of solve and sample cycle.

Since a matching clause may be sampled when it is still not completely
ground, further grounding/sampling may lead to inconsistency in the partial
explanation. To address this problem, sampling is repeated until a consistent
partial explanation is found. The algorithm is guaranteed to terminate because
the same head will be eventually sampled for each couple of identical ground-
ings of a clause. Also note that the sampling distribution is not affected since
inconsistency arises independently of the success or failure of a query.

In Algorithm 2, consistent(Explan) returns true if Explan is consistent
while sample(C) samples a head index for clause C. solve is called repeatedly
to obtain the samples of truth values for the goal. The fraction of true values is
an estimation of the probability of the query of interest. The confidence interval
on those samples is computed every m samples and the simulation ends when
its value drops below a user-defined δ.

5

4 Experiments

We considered three datasets: graphs of biological concepts from [2], artificial
graphs and the UWCSE dataset from [4]. All the experiments have been per-
formed on Linux machines with an Intel Core 2 Duo E6550 (2333 MHz) processor
and 4 GB of RAM. The algorithms were implemented in YAP Prolog and run on
the data for 24 hours or until the program ended for lack of memory. The values
used for the parameters are k = 64 as the number of explanations to consider
for k-best and δ = 0.01 as the maximum confidence interval width for Monte
Carlo algorithm because they represent a good compromise between speed and
accuracy.

The biological networks represent relationships among biological entities.
Each edge is associated with a probability value that expresses the strength of
the relationship. Determining the probability of an indirect association among
a couple of entities is the same as computing the probability that a path ex-
ists between their nodes. The datasets are obtained from a network containing
11530 edges and 5220 nodes built around four genes responsible of Alzheimer’s
disease. Ten samples were extracted from the whole network each containing 50
graphs of increasing size (from 200 to 5000 nodes). For our test purposes we
queried the probability that the genes HGNC 620 and HGNC 983 are related.
Figure 1 presents the results of the experiments: the number of graphs for which
the computation succeeded is reported on Figure 1(a), while Figure 1(b) reports
the CPU time in seconds averaged over the graphs on which the algorithms suc-
ceeded as a function of the number of edges. The experimental results suggest
that k-best does not improve with respect to exact because of the cost of keeping
partial explanations sorted in sparse graphs, but Monte Carlo can solve twice as
much problems than exact (up to 4000 edges). In terms of time, each algorithm
performs almost like its ProbLog counterpart. With regard to the average ab-
solute error, both k-best algorithms show a value of about 0.9%. Monte Carlo’s
average absolute error, however, is 4.9% for our implementation and 6.7% for
ProbLog.

The artificial networks were used to evaluate the effective speedup in spe-
cific scenarios. The datasets contain graphs of increasing size that have different
complexity with respect to the branching ratio and the length of paths between
the terminal nodes. The graphs are built iteratively and are named after their
shape: lanes, branches and parachutes. Lanes graphs, for example, gain a new
parallel path a node longer than the previous graph. Branches are more complex
because every step adds a new set of paths a node longer than before by forking
at each node. Parachutes graphs are a trade-off between the two: they fork but
each step introduces only one node (open paths fall back on existing nodes).
Each dataset has a probability 0.3 on the edges and the path definition of lanes
and parachutes contain 300 graphs, while branches only 25. Figure 2 shows an
example for each dataset.

Again, we queried the probability that a path exists between the terminal
nodes (0 and 1) of the graphs. Figures 1(c), 1(d) and 1(e) show that in almost
any case, our algorithms have performed better than their ProbLog equivalent,

6

with Monte Carlo always being the fastest. The average absolute error for k-best
and Monte Carlo is 0.001% and 3.170% respectively. ProbLog’s Monte Carlo is
not applicable because of the presence of a probability value in rules for path.

On the UWCSE dataset, Monte Carlo took 3.873 seconds to solve the problem
with 20 students, while the algorithm CVE of [4] can solve at most the problem
with 7 students and taking around 1000 seconds. For 7 students Monte Carlo
takes 1.961 seconds and incurs in a 4.3% absolute error on the problem with
0 students, the only one for which we have the exact result (see Figure 1(f)).
ProbLog’s Monte Carlo was not applicable because the problem involves non
ground probabilistic facts. ProbLog’s k-best managed to solve the problem with
25 students thus resulting to be the fastest algorithm on this dataset. It incurs
into an absolute error of 4.7% on the problem with 0 students.

The source code of the algorithms together with more details on the datasets
and the experiments are available at the address http://sites.google.com/a
/unife.it/ml/acplint.

Acknowledgements

This work has been partially supported by the Italian MIUR PRIN 2007 project
No. 20077WWCR8.

References

1. De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A.,
Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon, I.,
Vennekens, J.: Towards digesting the alphabet-soup of statistical relational learning.
In: NIPS*2008 Workshop on Probabilistic Programming (2008)

2. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: 20th International Joint Conference on Artificial
Intelligence. pp. 2468–2473. AAAI Press (2007)

3. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the efficient
execution of problog programs. In: International Conference on Logic Programming.
LNCS, vol. 5366, pp. 175–189. Springer (2008)

4. Meert, W., Struyf, J., Blockeel, H.: CP-Logic theory inference with contextual vari-
able elimination and comparison to BDD based inference methods. In: Inductive
Logic Programming. LNCS, vol. 5989, pp. 96–109. Springer (2010)

5. Riguzzi, F.: A top down interpreter for LPAD and CP-Logic. In: Congress of the
Italian Association for Artificial Intelligence. LNAI, vol. 4733, pp. 109–120. Springer
(2007)

6. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated dis-
junctions. In: International Conference on Logic Programming. LNCS, vol. 3132,
pp. 95–119. Springer (2004)

7

http://sites.google.com/a/unife.it/ml/acplint
http://sites.google.com/a/unife.it/ml/acplint

500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

10

Edges

A
n

sw
e

rs

exact
k-best
monte carlo
PL exact
PL k-best
PL monte carlo

(a) Successes on biological graphs.

500 1000 1500 2000 2500 3000 3500 4000
10

−4

10
−2

10
0

10
2

10
4

10
6

Edges

T
im

e
 (

lo
g

 s
)

exact
k-best
monte carlo
PL exact
PL k-best
PL monte carlo

(b) Execution times on biological
graphs.

50 100 150 200 250 300
10

−4

10
−2

10
0

10
2

10
4

10
6

Size (steps)

T
im

e
 (

lo
g

 s
)

exact
k-best
monte carlo
PL exact
PL k-best

(c) Execution times on Lanes graphs.

2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Size (steps)

T
im

e
 (

lo
g

 s
)

exact
k-best
monte carlo
PL exact
PL k-best

(d) Execution times on Branches
graphs.

2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Size (steps)

T
im

e
 (

lo
g

 s
)

exact
k-best
monte carlo
PL exact
PL k-best

(e) Execution times on Parachutes
graphs.

5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

Students

T
im

e
 (

lo
g

 s
)

exact
k-best
monte carlo
PL exact
PL k-best

(f) Execution times on UWCSE
graphs.

Fig. 1. Experimental results.

(a) Lanes. (b) Branches. (c) Parachutes.

Fig. 2. Examples of artificial graphs.

8

	Approximate Inference for Logic Programs with Annotated Disjunctions

