
 1

Specification of the Application SuperSport with
ER-DFD

Fabrizio Riguzzi

Dipartimento di Ingegneria, Università di Ferrara
Via Saragat, 1 44100 Ferrara, Italy
friguzzi@ing.unife.it

Technical Report CS-2003-01

Dipartimento di Ingegneria, Università di Ferrara

1 Introduction
This paper presents the specification of the application SuperSport expressed as an
Entiry Relationship – Data Flow Diagram.

The application was inspired by the application StraSport described in chapter 14
of [GR02].

The paper is organized as follows: section 2 describes the formalism of Entity
Relationship – Data Flow Diagrams and section 3 presents the application.

2 Entity Relationship - Data Flow Diagrams
Entity Relationship - Data Flow Diagrams (ER-DFD) [LMR97] are an integration of
Entity Relationship diagrams [Che78] and Data Flow Diagram [DeM78] that is
similar to Formal Data Flows Diagrams [FGM88]: the data stores of DFD are
replaced by entities and relationships of the ER diagrams, therefore we have data
flows entering directly into entities and relationships and coming out from them.
Moreove, we distinguish three types of data flows: proper data flows, that represent
the exchange of data, error flows, that represent the exchange of error messages, and
control flows, that represent the exchange of control information.

In order to distinguish between elements of the DFD and ER diagram which have a
similar graphical symbol, we adopt the following conventions: external agents (the
user or other applications) of DFD are represented with a dashed line box to
distinguish it from entities represented as normal boxes and data flows, error flows
and control flows are represented by arrows to distinguish them from the connections
between entities and relationship represented as simple lines. Data flows, error flows
and control flows are distinguished on the basis of the line of the arrow: continuous
for data flows, dashed for error flows and dotted for control flows. Figure 1 shows a
sample diagram. In this diagram, entity1 is a weak entity: its key is formed by the
attribute a1 plus the key of entity2, b1.

A number of fields are associated with each data flow: when a field has the same
name of the attribute of an entity, they refer to the same data. When the field does not
correspond to any attribute, it represents data derived from attributes by computation.
Error flows and control flows do not have any fields associated with them.

We suppose that the diagram contains also the indication of the boundaries of the
different applications in the form of dashed lines.

 2

Figure 1: Example of an ER-DFD diagram.

3 Application SuperSport
SuperSport is a company that wholesales sport apparel through a network of branches.
It uses the application SuperSport in order to manage its sales and the application
BranchManagement in order to manage its branches.

SuperSport's clients are usually big chains of department stores that have multiple
shop on the territory. Each client is served by one or more branches and by one or
more agents.

Client's orders are collected by a branch. Each order contains multiple rows, each
referring to a specific article. Once the order has been fulfilled, an invoice is emitted
by the competent branch. An invoice is emitted starting from a corresponding order
and adding information about the quantity of articles effectively delivered and the
actual price.

Each article is described by a series of info contained in articleInfo. Moreover,
each article belongs to a sub-category (e.g. swimming costumes, beach costumes).
Each sub-category belongs to a category.

The application SuperSport stores the prices given the article, the year, the season
(spring/summer or autumn/winter) and class of the order (for example: "by phone",
"by mail", etc.).

The application SuperSport is also used in order to store predictions regarding the
future: the predictions of quantities sold, of annullments, of returns, etc. for each
year, season, agent and category are stored in commercialBudget, while the same
predictions for each year and season are stored in marketingBudget.

user

entity1 relationship1 entity2

a1, a2

a1

b1, b2

b1

b2

Process1

(1,1) (1,n)

info

c1

c1

 3

The Entity-Relationhip diagram of the application is shown below.

for

(1,n)

(1,1)
category

(1,1)

subCategoryCode

marketingBudgetcommercialBudget

subCategory

price

for

in

for in

(1,n)

(1,1)

(1,n)

(1,1)

(1,n)

(1,n)

(1,n)

(1,1)

year season

in

categoryCode

orderClass

(1,1)

for

(1,n)

(0,n)

(1,1)

in

(1,1)

orderYear orderNumber

agentCode

rowNumber rowNumber

(1,1)

clientCode

branchCode

invoiceYear

invoiceNumber

client

branch

order

invoice

invoiceRow orderRow

agent article

articleInfo

has

emits takes
care of

emits

has

has

of of

has

(1,n)

(1,n)

(0,n)

(1,n)

(1,1)

(0,n)

(1,1)

(1,1)

(1,1)

(1,n)

 (0,n)

(1,1)

(0,n)

(1,1)

(1,1)

(1,1)

(1,n)

articleCode

places

(1,1)

(1,n)

receives

(1,1)

(1,n)

SuperSport

BranchManagement

year season

year seasonclass

 4

As redards the Function Point count of the application SuperSport, we assume to
know that the entity branch forms an ILF for the application BranchManagement.

The attributes owned by the entities are listed below.

branch:
branchCode
branchName
branchAddress
branchProvince
distributionChannel

agent:
agentCode
description
commission
agency
type

client:
clientCode
name
address
zipCode
province
fiscalCode
vatNumber
region
macroArea
relationshipStartDate
relationshipEndDate
discount
endOfYearDiscount
telephoneNumber
faxNumber
clientClass
salseVolumeClass
solvency

order:
year
number
season
payment
discountOnPayment
unconditionalDiscount
paymentDueDate
orderDate
orderQuantity
paymentType

orderRow:
year
number
rowNumber
quantity
deliveryDate
annullmentReason

 5

 article:

articleCode
description
color
model
vatCode
warehouseLocation

articleInfo:
articleCode
theme
productionYear
productionSeason
designer
averagePrice
producer
supplier
target
line
standardBuyPrice

invoice:
invoiceYear
invoiceNumber
date

invoiceRow:
invoiceYear
invoiceNumber
invoiceRowNumber
quantity
unconditionalDiscount
price

category:
categoryCode
description

subCategory:
subCategoryCode
description
categoryCode

 6

price:
year
season
articleCode
class
price

orderClass:
year
season
class

marketingBudget:
year
season
articleCode
returnsForecast
annullmentsForecast
finalYearDiscountsForecast
grossValueForecast
totalQuantityForecast
invoiceDiscountForecast

commercialBudget:
year
season
agentCode
categoryCode
returnsForecast
annullmentsForecast
discountsForecast
grossValueForecast
totalQuantityForecast

 7

The application SuperSport contains the processes described below.

An error is returned if the clientCode given as input is not already present in client.

addClient

clientaddClientuser
1

2

C: {clientCode, name, address, zipCode,
province, fiscalCode, vatNumber, region,
macroArea, relationshipStartDate,
relationshipEndDate, discount,
endOfYearDiscount, agentCode,
telephoneNumber, faxNumber,
clientClass, salseVolumeClass, solvency,
branchCode}.

2: C\{agentCode,branchCode} 3: branchCode 4: agentCode

1: C

has

takes
care of

3

4

updateClient

clientupdateClientuser

1

2

1: C

has

takes
care of

2: C\{agentCode,branchCode} 3: branchCode 4: agentCode

3

4

 8

An error is returned if the clientCode given as input is not already present in client.

An error is returned if the clientCode given as input is not already present in client.

deleteClient

clientdeleteClientuser

1

2

1: clientCode

has

takes
care of

2: C\{agentCode,branchCode} 3: branchCode 4: agentCode

3

4

inquireClient

clientinquireClientuser
1

2

5: branchName 6: C ∪ {branchName}

1: clientCode

6

has

takes
care of

2: C\{agentCode,branchCode} 3: branchCode 4: agentCode

3

4

branch

5

 9

reportClient

clientreportClientuser 1

5

4: branchName 5: C ∪ {branchName,totalNumberOfClients}

has

takes
care of

1: C\{agentCode,branchCode} 2: branchCode 3: agentCode

2

3

branch

4

addOrder

order

addOrderuser

1 2

1: O

O: {year, number, season, payment,
discountOnPayment, unconditionalDiscount,
paymentDueDate, orderData, orderQuantity,
paymentType, orderRowNumber, quantity,
deliveryDate, annullmentReason, clientCode,
branchCode, class, articleCode}

2: year,number, season, payment, discountOnPayment,
unconditionalDiscount, paymentDueDate, orderDate,
orderQuantity, paymentType

emits

has

orderRowof

in

3

3: year, number, rowNumber, quantity, deliveryDate,
annullmentReason

4: branchCode 5: clientCode 6: year, season, class

7: articleCode

places
4

5

6

7

 10

An error is returned if an order with year, number given as input is not already present
in order.

An error is returned if an order with year, number given as input is not already present
in order

deleteOrder

order

deleteOrderuser

1 2

1: year, number

2: year, number, season,payment, discountOnPayment,
unconditionalDiscount, paymentDueDate, orderDate,
orderQuantity, paymentType

emits

has

orderRowof

in

3

3: year, number, rowNumber, quantity, deliveryDate,
annullmentReason

places

4: branchCode 5: clientCode 6: year, season, class

7: articleCode

4

5

6

7

updateOrder

order

updateOrderuser

2

1: O

2: year, number, season,payment, discountOnPayment,
unconditionalDiscount, paymentDueDate, orderDate,
orderQuantity, paymentType

emits

has

orderRowof

in

3

3: year, number, rowNumber, quantity,
deliveryDate, annullmentReason

places

4: branchCode 5: clientCode 6: year, season, class

7: articleCode

1

4

5

6

7

 11

An error is returned if an order with year, number given as input is not present in
order

reportOrder

order

reportOrderuser

1

1: year, number, season,payment, discountOnPayment,
unconditionalDiscount, paymentDueDate, orderDate,
orderQuantity, paymentType

emits

has

orderRowof

in

2

2: year, number, rowNumber, quantity, deliveryDate,
annullmentReason

7

7: O ∪ {totalNumberOfOrders}

places

3: branchCode 4: clientCode 5: year, season, class

6: articleCode

3

4

5

6

inquireOrder

order

inquireOrderuser

1 2

1: year, number

2: year, number, season,payment, discountOnPayment,
unconditionalDiscount, paymentDueDate, orderDate,
orderQuantity, paymentType

emits

has

orderRowof

in

3

3: year, number, rowNumber, quantity, deliveryDate,
annullmentReason

8

places

4: branchCode 5: clientCode 6: year, season, class

7: articleCode 8: O

4

5

6

7

 12

emitInvoice takes as input the order year and number and emits the corresponding
invoice. Moreover, it takes as input the effective quantities and prices of articles (that
may differ from those of the order). It returns an error in the case the order taken as
input is not present in order.

It returns an error in the case the invoice taken as input (described by invoiceYear,
invoiceNumber) does not already exist.

updateInvoice

invoice

updateInvoiceuser

1 2

1: I

2: invoiceYear, invoiceNumber, date 3: branchCode

emits

has

invoiceRowof

5

4: clientCode

5: invoiceYear, invoiceNumber, invoiceRowNumber,
quantity, unconditionalDiscount, price

6: articleCode

receives

I: {invoiceYear, invoiceNumber, date, quantity,
unconditionalDiscount, price, branchCode,
clientCode, articleCode, invoiceRowNumber}

3

4

6

emitInvoice

invoiceemitInvoice
user

1 3

1: year, number, quantity, price

3: invoiceYear, invoiceNumber, date

4: branchCode 5: clientCode

emits

has

invoiceRow

of 6

6: invoiceYear, invoiceNumber, invoiceRowNumber, quantity, unconditionalDiscount, price

7: articleCode

receives

order
hasorderRow

2

2: branchCode, clientCode, articleCode, rowNumber,
unconditionalDiscount

has

emits
has

places

4

5

7

 13

It returns an error in the case the invoice taken as input (described by invoiceYear,
invoiceNumber) does not exist.

It returns an error in the case the invoice taken as input (described by invoiceYear,
invoiceNumber) does not exist.

inquireInvoice

invoice

inquireInvoiceuser

1 2

1: invoiceYear, invoiceNumber

2: invoiceYear, invoiceNumber, date

emits

has

invoiceRowof

3

receives

7: I

7

3: invoiceYear, invoiceNumber,
invoiceRowNumber, quantity,
unconditionalDiscount, price

4: branchCode 5: clientCode

6: articleCode

4

5

6

deleteInvoice

invoice

deleteInvoiceuser

1 2

1: invoiceYear, invoiceNumber

2: invoiceYear, invoiceNumber, date

emits

has

invoiceRowof

3

receives

3: invoiceYear, invoiceNumber,
invoiceRowNumber, quantity,
unconditionalDiscount, price

4: branchCode 5: clientCode

6: articleCode

4

5

6

 14

reportInvoice

invoice

reportInvoiceuser

6

1

1: invoiceYear, invoiceNumber, date

emits

has

invoiceRowof

2

receives

6: I ∪ {totalNumberOfInvoices}

2: invoiceYear, invoiceNumber,
invoiceRowNumber, quantity,
unconditionalDiscount, price

3: branchCode 4: clientCode

5: articleCode

3

4

5

addArticle

article

addArticle
user

1

2

1: A

A: {articleCode, description,
subCategoryCode, color, model, vatCode,
warehouseLocation, theme, productionYear,
productionSeason, designer, averagePrice,
producer, supplier, target, line,
standardBuyPrice}

2: articleCode, theme, productionYear,
productionSeason, designer, averagePrice,
producer, supplier, target, line,
standardBuyPrice

has

in

3

3: articleCode, description, color, model,
vatCode, warehouseLocation

articleInfo

4

4: subCategoryCode

 15

It returns an error in the case the article taken as input (described by articleCode) does
not exist.

It returns an error in the case the article taken as input (described by articleCode) does
not exist.

deleteArticle

article

deleteArticle
user

1

2

1: articleCode

2: articleCode, theme, productionYear,
productionSeason, designer, averagePrice,
producer, supplier, target, line,
standardBuyPrice

has

in

3

3: articleCode, description, color, model,
vatCode, warehouseLocation

articleInfo

4

4: subCategoryCode

updateArticle

article

updateArticle
user

1

2

1: A

2: articleCode, theme, productionYear,
productionSeason, designer, averagePrice,
producer, supplier, target, line,
standardBuyPrice

has

in

3

3: articleCode, description, color, model,
vatCode, warehouseLocation

articleInfo

4

4: subCatregoryCode

 16

It returns an error in the case the article taken as input (described by articleCode) does
not exist.

reportArticle

article

reportArticle
user

1

1: articleCode, theme, productionYear,
productionSeason, designer, averagePrice,
producer, supplier, target, line,
standardBuyPrice

has

in

2

2: articleCode, description, color, model,
vatCode, warehouseLocation

articleInfo

4

3: subCategoryCode

4: A∪ {totalNumberOfArticles}

3

inquireArticle

article

deleteArticleuser

1

2

1: articleCode

2: articleCode, theme, productionYear,
productionSeason, designer, averagePrice,
producer, supplier, target, line,
standardBuyPrice

has

in

3

3: articleCode, description, color, model,
vatCode, warehouseLocation

articleInfo

5

4: subCategoryCode

5: A

4

 17

It returns an error in the case the agent taken as input (described by agentCode) does
not exist.

updateAgent

agentupdateAgentuser
1

2

2: AG

1: AG

addAgent

agentaddAgentuser
1

2

AG: agentCode, description, commission, agency, type

2: AG

1: AG

 18

It returns an error in the case the agent taken as input (described by agentCode) does
not exist.

It returns an error in the case the agent taken as input (described by agentCode) does
not exist.

deleteAgent

agentdeleteAgentuser
1

2

2: AG
1: agentCode

inquireAgent

agentinquireAgentuser
1 2

2, 3: AG
1: agentCode

3

 19

addOrderClass

orderClassaddOrderClassuser
1

2

OC: {year, season, class}

2: OC

1: OC

reportAgent

agentreportAgentuser
1

1: AG

2

2: AG ∪ {totalNumberOfAgents}

 20

It returns an error in the case the order class taken as input (described by year, season
and class) does not exist.

It returns an error in the case there is no order class for the year and season given as
input.

deleteOrderClass

orderClassdeleteOrderClass
user

1

2

2: OC
1: OC

inquireOrderClass

orderClassinquireOrderClassuser
1

2

2, 3: OC
1: year, season

3

 21

When a new price is added, the process addPrice checks that the triple year, season,
class that is given as input is already present in orderClass otherwise it returns an
error.

addPrice

priceaddPrice
user

1

3

1: P

2: year, season,class

in

for

orderClass

3: P\{articleCode}

4: articleCode

2
P: {year, season, class, articleCode, price}

4

 22

When a price is updated, the process updatePrice checks that the triple year, season,
class that is given as input is already present in orderClass. In the case where year,
season, class do not represent a valid class or where a record with year, season, class
and articleCode does not already exist in price, an error is returned.

In the case where no record exist in price with the values for year, season, class and
articleCode given as input, an error is returned.

deletePrice

priceaddPriceuser
1

2

2: P\{articleCode}

3: articleCode

1: year, season, class, articleCode

in

for

3

updatePrice

priceupdatePriceuser
1

3

2: year, season, class
1: P

in

for

3: P\{articleCode}

4: articleCode orderClass

2

4

 23

In the case where no record exist in price with the values for year, season, class and
articleCode given as input, an error is returned.

reportPrice

pricereportPriceuser
1

2

2: P\{articleCode}

3: articleCode 4: P

1: year, season, class

in

for
4

3

inquirePrice

priceinquirePriceuser
1

2

2: P\{articleCode}

3: articleCode 4: P

1: year, season, class, articleCode

in

for

4

3

 24

It returns an error in the case the commercial budget item taken as input (described by
year, season, categoryCode and agentCode) does not exist.

updateCommBudgetItem

commercialBudget
updateCommBudgetItem

user

1 2

1: CB

2: CB\{agentCode,categoryCode}

for

for

3: agentCode

4: categoryCode

3

4

addCommBudgetItem

commercialBudgetaddCommBudgetItem
user

1 2

1: CB

CB: {year, season, agentCode,
categoryCode, returnsForecast,
annullmentsForecast, discountsForecast,
grossValueForecast,
totalQuantityForecast}

2: CB\{agentCode,categoryCode}

for

for

3: agentCode

4: categoryCode

3

4

 25

It returns an error in the case the commercial budget item taken as input (described by
year, season, categoryCode and agentCode) does not exist.

It returns an error in the case the commercial budget item taken as input (described by
year, season, categoryCode and agentCode) does not exist.

inquireCommBudgetItem

commercialBudget
inquireCommBudgetItem

user

1 2

1: year, season, agentCode, categoryCode

for

for

5

3

4

2: CB\{agentCode,categoryCode}

3: agentCode

4: categoryCode

5: CB

deleteCommBudgetItem

commercialBudget
deleteCommBudgetItemuser

1 2

1: year, season, agentCode, categoryCode

for

for

3

4

2: CB\{agentCode,categoryCode}

3: agentCode

4: categoryCode

 26

addMarkBudgetItem

marketingBudget
addMarkBudgetItem

user

1 2

1: MB

MB:{ year, season, articleCode, returnsForecast,
annullmentsForecast, finalYearDiscountsForecast,
grossValueForecast, totalQuantityForecast,
invoiceDiscountForecast}

2: MB\{articleCode}

3: articleCode

for3

reportCommBudgetItem

commercialBudget
reportCommBudgetItem

user

2

1: year, season

2: CB\{agentCode,
categoryCode}

for

for
4

1

3

3

3: agentCode

4: categoryCode

5: CB ∪ {totalNumberOfCBItems}

 27

It returns an error in the case the marketing budget item taken as input (described by
year, season, and articleCode) does not exist.

It returns an error in the case the marketing budget item taken as input (described by
year, season, and articleCode) does not exist.

deleteMarkBudgetItem

marketingBudget
deleteMarkBudgetItemuser

1 2

1: year, season, articleCode

for3

2: MB\{articleCode}

3: articleCode

updateMarkBudgetItem

marketingBudget
updateMarkBudgetItemuser

1 2

1: MB

for3

2: MB\{articleCode}

3: articleCode

 28

It returns an error in the case the marketing budget item taken as input (described by
year, season, and articleCode) does not exist.

reportMarkBudgetItem

marketingBudgetreportMarkBudgetItem
user

2

1: year, season

2: MB\{articleCode}

3: articleCode

4: MB ∪ {totalNumberOfMBItems}

for

4

1

3

inquireMarkBudgetItem

marketinglBudget
inquireMarkBudgetItem

user

1 2

1: year, season, articleCode

for

4

2: MB\{articleCode}

3: articleCode

4: MB

3

 29

It returns an error in the case the category taken as input (described by categoryCode)
does not exist.

category

deleteCategory

user 1

2
1: categoryCode

2: categoryCode,
description

deleteCategory

category

addCategory

user 1

2

1: categoryCode, description

2: categoryCode,
description

addCategory

 30

When a new sub category is added, the process checks that the input categoryCode is
present in category.

subCategory

addSubCategory

user 1

3

1: subCategoryCode, description,
categoryCode

3: subCategoryCode, description

4: categoryCode

addSubCategory

in

category
2

2: categoryCode

4

category

reportCategory

user

2

2, 3: categoryCode,
description

reportCategory

3

 31

It returns an error in the case the sub category taken as input (described by
subCategoryCode) does not exist.

It returns an error in the case the sub category taken as input (described by
subCategoryCode) does not exist.

subCategory

inquireSubCategory

user 1

2

1: subCategoryCode

2: subCategoryCode, description

3: categoryCode

4: subCategoryCode, description,
categoryCode

inquireSubCategory

4

in
3

subCategory

deleteSubCategory

user 1

2

1: subCategoryCode

2: subCategoryCode, description

3: categoryCode

deleteSubCategory

in3

 32

References
[FGM88] Fuggetta, A., Ghezzi, C., Mandrioli, D. and Morzenti, A. (1988) VLP:

a Visual Language for Prototyping. IEEE Workshop on Languages for
Automation, College Park, MD, August.

[Che76] Chen, P. P. (1976) The Entity-Relationship model. Toward a unified
view of data. ACM Transactions On Database System, 1(1).

[DeM78] DeMarco, T. (1978) Structured Analysis and System Specification.
Yourdon Press, New York.

[GR02] Golfarelli, M., Rizzi, S., (2002) Data Warehouse: Teoria e pratica
della progettazione. McGraw-Hill, Milano.

[LMR97] E. Lamma, P. Mello, F. Riguzzi, A System for Measuring Function
Points, Technical Report DEIS-LIA-97-006.

subCategory

reportSubCategory

user 1

2

1: categoryCode

2: subCategoryCode, description

3: categoryCode

4: subCategoryCode, description,
categoryCode

reportSubCategory

4
in3

