
Incremental Declarative Process Mining

Massimiliano Cattafi, Evelina Lamma, Fabrizio Riguzzi, and Sergio Storari

ENDIF – Università di Ferrara – Via Saragat, 1 – 44100 Ferrara, Italy.
{massimiliano.cattafi,evelina.lamma,fabrizio.riguzzi,sergio.storari}@unife.it

Abstract. Business organizations achieve their mission by performing
a number of processes. These span from simple sequences of actions to
complex structured sets of activities with complex interrelation among
them. The field of Business Processes Management studies how to de-
scribe, analyze, preserve and improve processes. In particular the subfield
of Process Mining aims at inferring a model of the processes from logs
(i.e. the collected records of performed activities). Moreover, processes
can change over time to reflect mutated conditions, therefore it is of-
ten necessary to update the model. We call this activity Incremental
Process Mining. To solve this problem, we modify the process mining
system DPML to obtain IPM (Incremental Process Miner), which em-
ploys a subset of the SCIFF language to represent models and adopts
techniques developed in Inductive Logic Programming to perform theory
revision. The experimental results show that is more convenient to revise
a theory rather than learning a new one from scratch.

Keywords: Business Processes, Process Mining, Theory Revision

1 Introduction

In the current knowledge society, the set of business processes an organization
performs in order to achieve its mission often represents one of the most impor-
tant assets of the organization. It is thus necessary to be able to describe them
in details, so that they can be stored and analyzed. In this way we can pre-
serve and/or improve them. These problems are studied in the field of Business
Processes Management (BPM) (see e.g. [1]).

Often organizations do not have a formal or precise description of the pro-
cesses they perform. The knowledge necessary to execute the processes is owned
by the individual workers but not by the organization as a whole, thus exposing
it to possible malfunctions if a worker leaves.

However, modern information systems store all the actions performed by
individual workers during the execution of a process. These action sequences are
called traces and the set of all the traces recorded in a period of time is called
a log. The Process Mining research area [2] proposes techniques for inferring a
model of the process from a log.

Very often processes change over time to reflect mutated external or internal
conditions. In this case, it is necessary to update their models. In particular,

given a process model and a new log, we want to modify the model so that
it conforms also with the new log. We call this activity Incremental Process
Mining. In this paper we show that revising an existing model may be more
effective than learning a new model ex novo from the previous and new log.
Moreover, in some cases the previous log may not be available, thus making
model updating necessary.

We choose Logic Programming for the representation of traces and process
models in order to exploit its expressiveness for the description of traces together
with the wide variety of learning techniques available for it. An activity can be
represented as a logical atom in which the predicate indicates the type of action
and the arguments indicate the attributes of the action. One of the attributes is
the time at which the action has been performed. Thus a trace can be represented
as a set of instantiated atoms, i.e., a logical interpretation.

In order to represent process models, we use a subset of the SCIFF language
[3, 4]. A model in this language is a set of logical integrity constraints in the form
of implications. Given a SCIFF model and a trace, there exists an interpreter
that checks whether the trace satisfies or not the model. Such a representation
of traces and models is declarative in the sense that we do not explicitly state
the allowed execution flows but we only impose high level constraints on them.

DPML is able to infer a SCIFF theory from a set of positive and negative
traces. Positive traces represent correct executions of the business process, while
negative traces represent process executions that have been judged incorrect or
undesirable.

Given that these traces are represented as logical interpretations and that
SCIFF integrity constraints are similar to logical clauses, DPML (Declarative
Process Model Learner) [5] employs Inductive Logic Programming techniques [6]
for learning from interpretations [7]. In particular, it modifies the ICL system
[8] that learns sets of logical clauses from positive and negative interpretations.

In this paper, we present the system IPM (Incremental Process Miner) that
faces the problem of revising an existing theory in the light of new evidence. This
system is an adaptation of DPML and adopts techniques developed in Inductive
Logic Programming (such as [9]) to perform theory revision.

IPM generalizes theories that do not satisfy new positive traces, as well as
specializes theories that do not exclude new negative examples. To this pur-
pose, we exploit the generalization operator presented in [5] for SCIFF theories.
Moreover, we define a specialization operator.

IPM is experimentally evaluated on processes regarding the management of
a hotel and an electronic auction protocol. In the “hotel management” case the
available traces are divided into two sets: one containing “old” traces and one
containing “new” traces. Then two experiments are performed: in the first we
learn a theory with DPML using the “old” traces and we revise the theory with
IPM using the “new” traces, while in the latter we learn a theory with DPML
from “old” and “new” traces. Then we compare the accuracy of the final theories
obtained and the running time. A similar comparison is performed on the auction
protocol, except that in this case the initial theory is not learned using some

2

“old” traces but it is a modified version of the actual model to simulate the
revision of an imperfect theory written down by a user. Results associated to
these experiments show that revising a theory is more efficient that inducing it
from scratch. Moreover, the models obtained are more accurate on unseen data.

The paper is organized as follows. In Section 2 we recall the basic notions of
Logic Programming, Inductive Logic Programming and Business Process Man-
agement. In Section 3 we discuss the representation of traces and models using
Logic Programming. Section 4 illustrates the IPM algorithm. In Section 5 we
report on the experiments performed. In Section 6 we discuss related works and
we conclude with Section 7.

2 Preliminaries

We start by briefly recalling the basic concepts of Logic Programming, Inductive
Logic Programming and Business Process Management.

2.1 Logic Programming

A first order alphabet Σ is a set of predicate symbols and function symbols (or
functors) together with their arity. A term is either a variable or a functor applied
to a tuple of terms of length equal to the arity of the functor. If the functor has
arity 0 it is called a constant. An atom is a predicate symbol applied to a tuple
of terms of length equal to the arity of the predicate. A literal is either an atom
a or its negation ¬a. In the latter case it is called a negative literal. In logic
programming, predicate and function symbols are indicated with alphanumeric
strings starting with a lowercase character while variables are indicated with
alphanumeric strings starting with an uppercase character.

A clause is a formula C of the form

h1 ∨ . . . ∨ hn ← b1, . . . , bm

where h1, . . . , hn are atoms and b1, . . . , bm are literals. A clause can be seen as
a set of literals, e.g., C can be seen as

{h1, . . . , hn,¬b1, . . . ,¬bm}.

In this representation, the disjunctions among the elements of the set are left
implicit.

The form of a clause that is used in the following will be clear from the
context. h1 ∨ . . . ∨ hn is called the head of the clause and b1, . . . , bm is called
the body. We will use head(C) to indicate either h1 ∨ . . . ∨ hn or {h1, . . . , hn},
and body(C) to indicate either b1, . . . , bm or {b1, . . . , bm}, the exact meaning will
be clear from the context. When m = 0, C is called a fact. When n = 1, C is
called a program clause. When n = 0, C is called a goal. The conjunction of a
set of literals is called a query. A clause is range restricted if all the variables
that appear in the head appear as well in positive literals in the body.

3

A theory P is a set of clauses. A normal logic program P is a set of program
clauses.

A term, atom, literal, goal, query or clause is ground if it does not con-
tain variables. A substitution θ is an assignment of variables to terms: θ =
{V1/t1, . . . , Vn/tn}. The application of a substitution to a term, atom, literal,
goal, query or clause C, indicated with Cθ, is the replacement of the variables
appearing in C and in θ with the terms specified in θ.

The Herbrand universe HU (P) is the set of all the terms that can be built
with function symbols appearing in P . The Herbrand base HB(P) of a theory P
is the set of all the ground atoms that can be built with predicate and function
symbols appearing in P . A grounding of a clause C is obtained by replacing the
variables of C with terms from HU (P). The grounding g(P) of a theory P is the
program obtained by replacing each clause with the set of all of its groundings.
A Herbrand interpretation is a set of ground atoms, i.e. a subset of HB(P). In
the following, we will omit the word Herbrand.

Let us now define the truth of a formula in an interpretation. Let I be an
interpretation and φ a formula, φ is true in I, written I |= φ if

– a ∈ I, if φ is a ground atom a;
– a 6∈ I, if φ is a ground negative literal ¬a;
– I |= a and I |= b, if φ is a conjunction a ∧ b;
– I |= a or I |= b, if φ is a disjunction a ∨ b;
– I |= ψθ for all θ that assign a value to all the variables of X if φ = ∀Xψ;
– I |= ψθ for a θ that assigns a value to all the variables of X if φ = ∃Xψ.

A clause C of the form

h1 ∨ . . . ∨ hn ← b1, . . . , bm

is a shorthand for the formula

∀Xh1 ∨ . . . ∨ hn ← b1, . . . , bm

where X is a vector of all the variables appearing in C. Therefore, C is true in
an interpretation I iff, for all the substitutions θ grounding C, if I |= body(C)θ
then I |= head(C)θ, i.e., if (I |= body(C)θ)→ (head(C)θ ∩ I 6= ∅). Otherwise, it
is false. In particular, a program rule is true in an interpretation I iff, for all the
substitutions θ grounding C, (I |= body(C)θ)→ h ∈ I.

A theory P is true in an interpretation I iff all of its clauses are true in I
and we write

I |= P.

If P is true in an interpretation I we say that I is a model of P . It is sufficient
for a single clause of a theory P to be false in an interpretation I for P to be
false in I

For normal logic programs, we are interested in deciding whether a query Q
is a logical consequence of a theory P , expressed as

P |= Q.

4

This means that Q must be true in the model M(P) of P that is assigned to P
as its meaning by one of the semantics that have been proposed for normal logic
programs (e.g. [10–12]).

For theories, we are interested in deciding whether a given theory or a given
clause is true in an interpretation I. This can be achieved with the following
procedure [13]. The truth of a range restricted clause C on a finite interpreta-
tion I can be tested by asking the goal ?-body(C),¬head(C) against a database
containing the atoms of I as facts. By ¬head(C) we mean ¬h1, . . . ,¬hm. If the
query fails, C is true in I, otherwise C is false in I.

In some cases, we are not given an interpretation I completely but we are
given a set of atoms J and a normal program B as a compact way of indicating
the interpretationM(B∪J). In this case, ifB is composed only of range restricted
rules, we can test the truth of a clause C on M(B ∪ J) by running the query
?-body(C),¬head(C) against a Prolog database containing the atoms of J as
facts together with the rules of B. If the query fails C is true in M(B ∪ J),
otherwise C is false in M(B ∪ J).

2.2 Inductive Logic Programming

Inductive Logic Programming (ILP) [6] is a research field at the intersection of
Machine Learning and Logic Programming. It is concerned with the development
of learning algorithms that adopt logic for representing input data and induced
models. Recently, many techniques have been proposed in the field that were
successfully applied to a variety of domains. Logic proved to be a powerful tool
for representing the complexity that is typical of the real world. In particular,
logic can represent in a compact way domains in which the entities of interest
are composed of subparts connected by a network of relationships. Traditional
Machine Learning is often not effective in these cases because it requires input
data in the flat representation of a single table.

The problem that is faced by ILP can be expressed as follows:
Given:

– a space of possible theories H;
– a set E+ of positive example;
– a set E− of negative examples;
– a background theory B.

Find a theory H ∈ H such that;

– all the positive examples are covered by H
– no negative example is covered by H

If a theory does not cover an example we say that it rules the example out so
the last condition can be expressed by saying the “all the negative examples are
ruled out by H”.

The general form of the problem can be instantiated in different ways by
choosing appropriate forms for the theories in input and output, for the examples
and for the covering relation.

5

In the learning from entailment setting, the theories are normal logic pro-
grams, the examples are (most often) ground facts and the coverage relation is
entailment, i.e., a theory H covers an example e iff

H |= e.

In the learning from interpretations setting, the theories are composed of
clauses, the examples are interpretations and the coverage relation is truth in an
interpretation, i.e., a theory H covers an example interpretation I iff

I |= H.

Similarly, we say that a clause C covers an example I iff I |= C.
In this paper, we concentrate on learning from interpretation so we report

here the detailed definition:
Given:

– a space of possible theories H;
– a set E+ of positive interpretations;
– a set E− of negative interpretations;
– a background normal logic program B.

Find a theory H ∈ H such that;

– for all P ∈ E+, H is true in the interpretation M(B ∪ P);
– for all N ∈ E−, H is false in the interpretation M(B ∪N).

The background knowledge B is used to encode each interpretation par-
simoniously, by storing separately the rules that are not specific to a single
interpretation but are true for every interpretation.

The algorithm ICL [8] solves the above problem. It performs a covering loop
(function ICL in Figure 1) in which negative interpretations are progressively
ruled out and removed from the set E−. At each iteration of the loop a new clause
is added to the theory. Each clause rules out some negative interpretations. The
loop ends when E− is empty or when no clause is found.

The clause to be added in every iteration of the covering loop is returned by
the procedure FindBestClause (Figure 1). It looks for a clause by using beam
search with p(|C) as a heuristic function, where p(|C) is the probability that
an example interpretation is classified as negative given that it is ruled out by
the clause C. This heuristic is computed as the number of ruled out negative
interpretations over the total number of ruled out interpretations (positive and
negative). Thus we look for clauses that cover as many positive interpretations
as possible and rule out as many negative interpretations as possible. The search
starts from the clause false← true that rules out all the negative interpretations
but also all the positive ones and gradually refines that clause.

The refinements of a clause are obtained by generalization. A clause C is more
general than a clause D if the set of interpretations covered by C is a superset
of those covered by D. This is true if D |= C. However, using logical implication

6

function ICL(E+, E−, B)
initialize H := ∅
do

C := FindBestClause(E+, E−, B)
if best clause C 6= ∅ then

add C to H
remove from E− all interpretations that are false for C

while C 6= ∅ and E− is not empty
return H

function FindBestClause(E+, E−, B)
initialize Beam := {false← true}
initialize BestClause := ∅
while Beam is not empty do

initialize NewBeam := ∅
for each clause C in Beam do

for each refinement Ref ∈ δ(C) do
if Ref is better than BestClause then BestClause := Ref
if Ref is not to be pruned then

add Ref to NewBeam
if size of NewBeam > MaxBeamSize then

remove worst clause from NewBeam
Beam := NewBeam

return BestClause

Fig. 1. ICL learning algorithm

7

as a generality relation is impractical because of its high computational cost.
Therefore, the syntactic relation of θ-subsumption is used in place of implication:
D θ-subsumes C (written D ≥ C) if there exist a substitution θ such that
Dθ ⊆ C. If D ≥ C then D |= C and thus C is more general than D. The
opposite, however, is not true, so θ-subsumption is only an approximation of the
generality relation. For example, let us consider the following clauses:

C1 = accept(X)← true

C2 = accept(X) ∨ refusal(X)← true

C3 = accept(X)← invitation(X)
C4 = accept(alice)← invitation(alice)

Then C1 ≥ C2, C1 ≥ C3 but C2 6≥ C3, C3 6≥ C2 so C2 and C3 are more general
than C1, while C2 and C3 are not comparable. Moreover C1 ≥ C4, C3 ≥ C4 but
C2 6≥ C4 and C4 6≥ C2 so C4 is more general than C1 and C3 while C2 and C4

are not comparable.
From the definition of θ-subsumption, it is clear that a clause can be refined

(i.e. generalized) by applying one of the following two operations on a clause

– adding a literal to the (head or body of the) clause
– applying a substitution to the clause

FindBestClause computes the refinements of a clause by applying one of the
above two operations. Let us call δ(C) the set of refinements so computed for
a clause C. The clauses are gradually generalized until a clause is found that
covers all (or most of) the positive interpretations while still ruling out some
negative interpretations.

The literals that can possibly be added to a clause are specified in the lan-
guage bias, a collection of statements in an ad hoc language that prescribe which
refinements have to be considered. Two languages are possible for ICL: Dlab
and rmode (see [14] for details). Given a language bias which prescribes that the
body literals must be chosen among {invitation(X)} and that the head disjuncts
must be chosen among {accept(X), refusal(X)}, an example of refinements se-
quence performed by FindBestClause is the following:

false← true

accept(X)← true

accept(X)← invitation(X)
accept(X) ∨ refusal(X)← invitation(X)

The refinements of clauses in the beam can also be pruned: a refinement is pruned
if it is not statistical significant and if it cannot produce a value of the heuristic
function larger than that of the best clause. As regards the first type of pruning,
a statistical test is used, while as regards the second type, the best refinement
that can be obtained is a clause that covers all the positive examples and rules
out the same negative examples as the original clause.

When a new clause is returned by FindBestClause, it is added to the current
theory. The negative interpretations that are ruled out by the clause are ruled
out as well by the updated theory, so they can be removed from E−.

8

2.3 Incremental Inductive Logic Programming

The learning framework presented in Section 2.2 assumes that all the examples
are provided to the learner at the same time and that no previous model exists
for the concepts to be learned. In some cases, however, the examples are not
all known at the same time and an initial theory may be available. When a
new example is obtained, one approach consists of adding the example to the
previous training set and learning a new theory from scratch. This approach
may turn out to be too inefficient, especially if the amount of previous examples
is very high. An alternative approach consists in revising the existing theory to
take into account the new example, in order to exploit as much as possible the
computations already done. The latter approach is called Theory Revision and
can be described by the following definition:
Given:

– a space of possible theories H;
– a background theory B
– a set E+ of previous positive example;
– a set E− of previous negative examples;
– a theory H that is consistent with E+ and E−

– a new example e.

Find a theory H ′ ∈ H such that;

– H ′ is obtained by applying a number of transformations to H
– H ′ covers e if e is a positive example, or
– H ′ does not cover e if e is a negative example.

Theory Revision has been extensively studied in the learning from entailment
setting of Inductive Logic Programming. In this case, examples are ground facts,
the background theory is a normal logic program and the coverage relation is
logical entailment. Among the systems that have been proposed for solving such
a problem are: RUTH [15], FORTE [16] and Inthelex [9]

All these systems perform the following operations:

– given an uncovered positive example e, they generalize the theory T so that
it covers it

– given a covered negative example e, they specialize the theory T so that it
does not cover it

As an example of an ILP Theory Revision system, let us consider the algorithm
of Inthelex that is shown in Figure 2. Function Generalize is used to revise the
theory when the new example is positive. Each clause of the theory is consid-
ered in turn and is generalized. The resulting theory is tested to see whether it
covers the positive example. Moreover, it is tested on all the previous negative
examples to ensure that the clause is not generalized too much. As soon as a
good refinement is found it is returned by the function.

Function Specialize is used to revise the theory when the new example is
negative. Each clause of the theory involved in the derivation of the negative

9

function Generalize(E−, e, B,H)
repeat

pick a clause C from H
obtain a set of generalizations δ(C)
for each clause C′ ∈ δ(C)

let H ′ := H \ {C} ∪ {C′}
test H ′ over e and over all the examples in E−

if H ′ cover e and does not cover any negative example then
return H ′

until all the clauses of H have been considered
// no generalization found
add a new clause to H that covers e and is consistent with E−

let H ′ be the new theory
return H ′

function Specialize(E+, e, B,H)
repeat

pick a clause C used in the derivation of e in H
obtain a set of specializations ρ(C)
for each clause C′ ∈ δ(C)

let H ′ := H \ {C} ∪ {C′}
test H ′ over e and over all the examples in E−

if H ′ does not cover e and covers all positive examples then
return H ′

until all the clauses of H used in the derivation of e have been considered
// no specialization found
add e to H as an exception
let H ′ be the new theory
return H ′

Fig. 2. Inthelex Theory Revision algorithm

10

example is considered in turn and is specialized. The resulting theory is tested
to see whether it rules out the negative example. Moreover, it is tested on all
the previous positive examples to ensure that the clause is not specialized too
much. As soon as a good refinement is found it is returned by the function.

While various systems exist for Theory Revision in the learning from entail-
ment setting, to the best of our knowledge no algorithm has been proposed for
Theory Revision in the learning from interpretation setting.

2.4 Business Process Management

The performances of an organization depend on how accurately and efficiently
it enacts its business processes. Formal ways of representing business processes
have been studied in the area of Business Processes Management (see e.g. [17]),
so that the actual enactment of a process can be checked for compliance with a
model.

Recently, the problem of automatically inferring such a model from data
has been studied by many authors (see e.g. [18, 2, 19]). This problem has been
called Process Mining or Workflow Mining. The data in this case consists of
execution traces (or histories) of the business process. The collection of such
data is made possible by the facility offered by many information systems of
logging the activities performed by users.

Let us now describe in detail the problem that is solved by Process Mining.
A process trace T is a sequence of events. Each event is described by a number
of attributes. The only requirement is that one of the attributes describes the
event type. Other attributes may be the executor of the event or event specific
information.

An example of a trace is
〈a, b, c〉

that means that activity a was performed first, then b and finally c.
A process model PM is a description of the process in a language that ex-

presses the conditions a trace must satisfy in order to be compliant with the
process, i.e., to be a correct enactment of the process. An interpreter of the lan-
guage must exists that, when applied to a model PM and a trace T , returns
yes if the trace is compliant with the description and false otherwise. In the first
case we write T |= PM , in the second case T 6|= PM . A bag of process traces
L is called a log. Often, in Process Mining, only compliant traces are used as
input of the learning algorithm, see e.g. [18, 2, 19]. We consider instead the case
in which we are given both compliant and non compliant traces. This is the case
when we want distinguish successful process executions from unsuccessful ones.

The approaches presented in [18, 2, 19] aim at discovering complex and pro-
cedural process models, and differ by the structural patterns they are able to
mine. While recognizing the extreme importance of such approaches, recently
[20] pointed out the necessity of discovering declarative logic-based knowledge,
in the form of process fragments or business rules/policies, from execution traces.
Declarative languages seem to fit better complex, unpredictable processes, where
a good balance between support and flexibility is of key importance.

11

[20] presents a graphical language for specifying process flows in a declarative
manner. The language, called ConDec, leaves the control flow among activities
partially unspecified by defining a set of constraints expressing policies/business
rules for specifying either what is forbidden as well as mandatory in the pro-
cess. Therefore, the approach is inherently open and flexible, because workers
can perform actions if those are not explicitly forbidden. ConDec adopts an un-
derlying semantics by means of Linear Temporal Logics (LTL), and can also
be mapped onto the logic programming-based framework SCIFF [3, 21] that
provides a declarative language based on Computational Logic. In SCIFF con-
straints are imposed on activities in terms of reactive rules (namely Integrity
Constraints). Such reactive rules mention in their body occurring activities,
i.e., events, and additional constraints on their variables. SCIFF rules contain in
their head expectations over the course of events. Such expectations can be pos-
itive, when a certain activity is required to happen, or negative, when a certain
activity is forbidden to happen.

Most works in Process Mining deal with the discovery of procedural pro-
cess models (such as Petri Nets or Event-driven Process Chains [22, 23]) from
data. Recently, some works have started to appear on the discovery of logic-
-based declarative models: [24, 5, 25] study the possibility of inferring essential
process constraints, easily understandable by business analysts and not affected
by procedural details.

3 Representing Process Traces and Models with Logic

A process trace can be represented as a logical interpretation: each event is
modeled with an atom whose predicate is the event type and whose arguments
store the attributes of the action. Moreover, an extra argument is added to the
atom indicating the position in the sequence. For example, the trace:
〈a, b, c〉

can be represented with the interpretation
{a(1), b(2), c(3)}.

If the execution time is an attribute of the event, then the position in the se-
quence can be omitted.

Besides traces, we may have some general knowledge that is valid for all
traces. We assume that this background information can be represented as a
normal logic program B. The rules of B allow to complete the information
present in a trace I: rather than simply I, we now consider M(B∪ I), the model
of the program B∪I according to one of the semantics for normal logic programs.

For example, consider the trace
I = {ask price(bike, 1), tell price(500, 2), buy(bike, 3)}

of a bike retail store and the background theory
B = {high price(T)← tell price(P, T), P ≥ 400}.

that expresses information regarding price perceptions by clients. Then M(B∪I)
is
{ask price(bike, 1), tell price(500, 2), high price(2), buy(bike, 3)}

12

in which the information available in the trace has been enlarged by using the
background information.

The process language we consider was proposed in [5] and is a subset of
the SCIFF language, originally defined in [3, 4], for specifying and verifying
interactions in open agent societies.

A process model in our language is a set of integrity constraints (ICs for
short). An IC, C, is a logical formula of the form

Body → ∃(ConjP1)∨ . . .∨∃(ConjPn)∨∀¬(ConjN1)∨ . . .∨∀¬(ConjNm) (1)

where Body, ConjPi i = 1, . . . , n and ConjNj j = 1, . . . ,m are conjunctions of
literals built over event atoms, over predicates defined in the background or over
built-in predicates such as ≤,≥, The variables appearing in the body are
implicitly universally quantified with scope the entire formula. The quantifiers
in the head apply to all the variables appearing in the conjunctions and not
appearing in the body.

We will use Body(C) to indicate Body and Head(C) to indicate the formula
∃(ConjP1)∨ . . .∨∃(ConjPn)∨∀¬(ConjN1)∨ . . .∨∀¬(ConjNm) and call them
respectively the body and the head of C. We will use HeadSet(C) to indicate
the set {ConjP1, . . . , ConjPn, ConjN1, . . . , ConjNm}.

Body(C), ConjPi i = 1, . . . , n and ConjNj j = 1, . . . ,m will be sometimes
interpreted as sets of literals, the intended meaning will be clear from the context.
We will call P conjunction each ConjPi for i = 1, . . . , n and N conjunction each
ConjNj for j = 1, . . . ,m. We will call P disjunct each ∃(ConjPi) for i = 1, . . . , n
and N disjunct each ∀¬(ConjNj) for j = 1, . . . ,m.

An example of an IC is

a(bob, T), T < 10
→∃(b(alice, T1), T < T1)
∨
∀¬(c(mary, T1), T < T1, T1 < T + 10)

(2)

The meaning of IC (2) is the following: if bob has executed action a at a time
T < 10, then alice must execute action b at a time T1 later than T or mary must
not execute action c for 9 time units after T . The disjunct ∃(b(alice, T1), T <
T1) stands for ∃T1(b(alice, T1), T < T1) and the disjunct ∀¬(c(mary, T1), T <
T1, T1 < T + 10) stands for ∀T1¬(c(mary, T1), T < T1, T1 < T + 10).

An IC C is true in an interpretation M(B∪I), written M(B∪I) |= C, if, for
every substitution θ for which Body is true in M(B ∪ I), there exists a disjunct
∃(ConjPi) or ∀¬(ConjNj) that is true in M(B ∪ I). If M(B ∪ I) |= C we say
that the trace I is compliant with C. [5] showed that the truth of an IC in an
interpretation M(B ∪ I) can be tested by running the query:

?-Body,¬(ConjP1), . . .¬(ConjPn), ConjN1, . . . , ConjNm

against a Prolog database containing the clauses of B and atoms of I as facts. If
the N conjunctions in the head share some variables, then the following query
must be issued

13

?-Body,¬(ConjP1), . . .¬(ConjPn),¬(¬(ConjN1)), . . . ,¬(¬(ConjNm))
that ensures that the N conjunctions are tested separately without instantiating
the variables.

Thus, for IC 2, the query is
?-a(bob, T), T < 10,¬(b(alice, T1), T < T1),¬(¬(c(mary, T1), T < T1, T1 <

T + 10))
If the query finitely fails, the IC is true in the interpretation. If the query

succeeds, the IC is false in the interpretation. Otherwise nothing can be said.
It is the user’s responsibility to write the background B in such a way that no
query generates an infinite loop. For example, if B is acyclic then a large class
of queries will be terminating [26].

A process model H is true in an interpretation M(B ∪ I) if every IC of H is
true in it and we write M(B ∪ I) |= H. We also say that trace I is compliant
with H.

The ICs we consider are more expressive than clauses, as can be seen from
the query used to test them: for ICs, we have the negation of conjunctions, while
for clauses we have only the negation of atoms. This added expressiveness is
necessary for dealing with processes because it allows us to represent relations
between the execution times of two or more activities.

4 Incremental Learning of ICs Theories

In order to induce a theory that describes a process, we must search the space
of ICs. To this purpose, we need to define a generality order in such a space.

IC C is more general than IC D if C is true in a superset of the traces where
D is true. If D |= C, then C is more general than D.

Similarly to the case of clauses, [5] defined the notion of θ-subsumption also
for ICs.

Definition 1 (Subsumption). An IC D θ-subsumes an IC C, written D ≥ C,
iff it exists a substitution θ for the variables in the body of D or in the N
conjunctions of D such that

– Body(D)θ ⊆ Body(C) and
– ∀ConjP (D) ∈ HeadSet(D), ∃ConjP (C) ∈ HeadSet(C) : ConjP (C) ⊆
ConjP (D)θ and

– ∀ConjN(D) ∈ HeadSet(D), ∃ConjN(C) ∈ HeadSet(C) : ConjN(D)θ ⊆
ConjN(C)

For example, IC 2 is subsumed by the IC

a(bob, 4)
→∃(b(alice, T1), 4 < T1, T1 < 4 + 10)
∨
∀¬(c(mary, 5), 4 < 5)

(3)

14

with the substitution {T/4, T1/5}.
It was proved in [5] that implication and θ-subsumption for ICs share the

same relation as in the case of clauses.

Theorem 1 ([5]). D ≥ C ⇒ D |= C.

Thus, θ-subsumption can be used for defining a notion of generality among ICs,
which can be used in learning algorithms.

In order to define a refinement operator, we must first define the language
bias. We use a language bias that consists of a set of IC templates. Each template
specifies

– a set of literals BS allowed in the body,
– a set of disjuncts HS allowed in the head. Each disjunct is represented as a

couple (Sign,DS) where
• Sign is either + or − and specifies where it is a P or an N disjunct,
• DS is the set of literals allowed in the disjunct.

[5] defined a refinement operator from specific to general (upward operator) in
the following way: given an IC D, the set of upward refinements δ(D) of D is
obtained by performing one of the following operations

– adding a literal from BS to the body;
– removing a literal from a P disjunct in the head;
– adding a literal to an N disjunct in the head where the literal must be

allowed by the language bias;
– adding a disjunct from HS to the head: the disjunct can be
• a formula ∃(d1 ∧ . . . ∧ dk) where DS = {d1, . . . , dk} is the set of literals

allowed by the IC template for D for a P disjunct,
• a formula ∀¬(d) where d is allowed by the IC template for D for a N

disjunct.

In order to perform theory revision, we also define a refinement operator from
general to specific (downward operator). The operator inverts the operations
performed in the upward operator, i.e., given an IC D, the set of downward
refinements ρ(D) of D is obtained by performing one of the following operations

– removing a literal from the body of D;
– adding a literal to a P disjunct in the head, the literal must be allowed by

the language bias;
– removing a literal from an N disjunct in the head;
– removing a disjunct from the head when
• it is a P disjunct ∃(d1 ∧ . . .∧ dk) where {d1, . . . , dk} is the set of literals

allowed by the IC template for D for the P disjunct,
• it is an N disjunct containing a single literal ∀¬(d).

We define the algorithm for performing theory revision starting from the algo-
rithm DPML (Declarative Process Model Learner) that is an adaptation of ICL
[8]. DPML solves the following learning problem
Given

15

– a space of possible process models H
– a set E+ of positive traces;
– a set E− of negative traces;
– a background normal logic program B.

Find: a process model H ∈ H such that

– for all T+ ∈ E+, M(B ∪ T+) |= H;
– for all T− ∈ E−, M(B ∪ T−) 6|= H;

If M(B ∪ T) |= C we say that IC C covers the trace T and if M(B ∪ T) 6|= C
we say that C rules out the trace T .

DPML is obtained from ICL by using the testing procedure and the refine-
ment operator defined for SCIFF ICs in place of those for logical clauses.

The system IPM (Incremental Process Mines) modifies DPML in order to
deal with theory revision. As in Section 2.3, we call H the space of possible
theories, B the background theory, E+ the set of previous positive examples,
E− the set of previous negative ones and T the theory (obtained by DPML or
expressed by a human expert) we would like to refine to make it consistent with
the new examples: Enew− and Enew+. Figure 3 shows the IDPML algorithm.

The initial theory, together with old and new positive examples and old
negative ones, is given as input to RevisePositive whose aim is to revise the
theory in order to cover as many positive examples as possible. The output
of RevisePositive is then given as input, together with all sets of examples,
to ReviseNegative, whose revision tries to rule out the negative examples, and
whose output is the overall revised theory.

RevisePositive cycles on new positive examples and finds out which con-
straints (if any) of the previous theory are violated for each example. An inner
cycle generalizes all such constraints in order to make the theory cover the ruled
out positive example. The generalization function performs a beam search with
p(|C) as the heuristic (see Section 2.2) and δ as the refinements operator (see
Section 4). For theory revision, however, the beam is not initialized with the
most specific constraint (i.e. {false← true}) but with the violated constraint.

Since some of the previously ruled out negative examples may be again cov-
ered after the generalization process, ReviseNegative checks at first which neg-
ative examples, either old or new, are not ruled out. Then it selects randomly
an IC from the theory and it performs a specialization cycle until no negative
example is covered. The Specialize function is similar to the Generalize one with
δ replaced with ρ as the refinement operator (see Section 4).

It is also possible that some negative examples can’t be ruled out just by
specializing existing constraints, so after ReviseNegative a covering loop (as the
one of DPML) has to be performed on all positive examples and on the negative
ones which are still to be ruled out.

5 Experiments

In this section we present some experiments that have been performed for inves-
tigating the effectiveness of IPM. In particular, we want to demonstrate that,

16

function IPM(T,E+, E−, Enew+, Enew−, B)
H:= RevisePositive(T,E+, E−, Enew+, B)
H:= ReviseNegative(H,E+, E−, Enew+, Enew−, B)
H:=H∪ DPML(E+ ∪ Enew+, Covered(Enew−, H), B)
return H

function RevisePositive(T,E+, E−, Enew+, B)
foreach e+ ∈ Enew+

V C:=FindViolatedConstraints(T, e+)
T := T − V C
E+:=E+ ∪ {e+}
foreach vc ∈ V C

c:= Generalize(vc, E+, E−, B)
T := T ∪ {Best(c, vc)}

return T

function Generalize(vc, E+, E−, B)
Beam:={vc}
BestClause:= ∅
while Beam 6= ∅

foreach c ∈ Beam
foreach ref of c

BestClause:= Best(ref, c)
Beam:= Beam ∪ {ref}
if size(Beam) > MaxBeamSize

Beam:= Beam− {Worst(Beam)}
return Beam

function ReviseNegative(T,E+, E−, Enew+, Enew−, B)
Enew−:=TestNegative(T,E−, Enew−)
E+:=E+ ∪ Enew+

H:=∅
while T 6= ∅ ∧ Enew− 6= ∅

pick randomnly an IC c from T
T :=T − {c}
nc:= Specialize(c, E+, Enew−, B)
H:=H ∪ {Best(c, nc)}
Enew−:= Enew− −RuledOut(Enew−, Best(c, nc))

return H

Fig. 3. IPM algorithm

17

given an initial theory H and a new set of examples Enew, it can be more ben-
eficial to revise H in the light of Enew than to learn a theory from E ∪ Enew.
Another use case consists in the revision of an (imperfect) theory written down
by a user and its comparison with the theory learned from scratch using the
same set of examples.

5.1 Hotel Management

Let’s first consider a process model regarding the management of a hotel and
inspired by [27]. We generated randomly a number of traces for this process, we
classified them with the model and then we applied both DMPL and IDMPL.

The model describes a simple process of renting rooms and services in a hotel.
Every process instance starts with the registration of the client name and her
preferred way of payment (e.g., credit card). Data can also be altered at a later
time (e.g the client may decide to use another credit card). During her stay, the
client can require one or more room and laundry services. Each service, identified
by a code, is followed by the respective registration of the service costs into the
client bill. The cost of each service must be registered only if the service has
been effectively provided to the client and it must be registered only once. The
cost related to the nights spent in the hotel must be billed. It is possible for the
total bill to be charged at several stages during the stay.

This process was modeled by using eight activities and eight constraints. Ac-
tivities register client data, check out and charge are about the check-in/check-
out of the client and expense charging. Activities room service and laundry ser-
vice log which services have been used by the client, while billings for each
service are represented by separate activities. For each activity, a unique iden-
tifier is introduced to correctly charge the clients with the price for the services
they effectively made use of.

Business related aspects of our example are represented as follows:

– (C.1) every process instance starts with activity register client data. No lim-
its on the repetition of this activity are expressed, hence allowing alteration
of data;

– (C.2) bill room service must be executed after each room service activity,
and bill room service can be executed only if the room service activity has
been executed before;

– (C.3) bill laundry service must be executed after each laundry service ac-
tivity, and bill laundry service can be executed only if the laundry service
activity has been executed before;

– (C.4) check out must be performed in every process instance;
– (C.5) charge must be performed in every process instance;
– (C.6) bill nights must be performed in every process instance.
– (C.7) bill room service must be executed only one time for each service iden-

tifier;
– (C.8) bill laundry service must be executed only one time for each service

identifier;

18

The process model is composed by the following ICs:

(C.1) true

→ ∃(register client data(Trcd) ∧ Trcd = 1).

(C.2) room service(rs id(IDrs), T rs)

→ ∃(bill room service(rs id(IDbrs), T brs) ∧
IDrs = IDbrs ∧ Tbrs > Trs).

bill room service(rs id(IDbrs), T brs)

→ ∃(room service(rs id(IDrs), T rs) ∧
IDbrs = IDrs ∧ Trs < Tbrs).

(C.3) laundry service(la id(IDls), T ls)

→ ∃(bill laundry service(la id(IDbls), T bls) ∧
IDls = IDbls ∧ Tbls > T ls).

bill laundry service(la id(IDbls), T bls)

→ ∃(laundry service(la id(IDls), T ls) ∧
IDbls = IDls ∧ T ls < Tbls).

(C.4) true

→ ∃(check out(Tco)).
(C.5) true

→ ∃(charge(Tch)).

(C.6) true

→ ∃(bill nights(Tbn)).

(C.7) bill room service(rs id(IDbrs1), T brs1)

→ ∀¬(bill room service(rs id(IDbrs2), T brs2) ∧
IDbrs1 = IDbrs2 ∧ Tbrs2 > Tbrs1).

(C.8) bill laundry service(la id(IDbls1)), T bls1)

→ ∀¬(bill laundry service(la id(IDbls2), T bls2) ∧
IDbls1 = IDbls2 ∧ Tbls2 > Tbls1).

For this process, we randomly generated execution traces and we classified them
with the above model. This was repeated until we obtained four training sets
each composed of 2000 positive examples and 2000 negative examples. Each
training set was randomly split into two subset, one containing 1500 positive
and 1500 negative examples, and the other containing 500 positive and 500
negatives examples. The first subset is used for getting an initial theory, while
the second is used for the revision process.

DPML was applied to each training sets with 3000 examples. The theories
that were obtained were given as input to IPM together with the corresponding

19

revision full dataset

dataset time accuracy time accuracy

µ σ µ σ

1 4123 0.732539 0.0058 18963 0.702367 0.0068

2 4405 0.757939 0.0223 17348 0.686754 0.0269

3 6918 0.825067 0.0087 13480 0.662302 0.0180

4 3507 0.724764 0.0257 17786 0.679003 0.0248

µ σ µ σ µ σ µ σ

global 4738 1299 0.760 0.0433 16894 2057 0.682 0.0255
Table 1. Revision compared to learning from full dataset for the hotel scenario

1000 examples training set. Finally, DPML was applied to each of the complete
4000 examples training sets.

The models obtained by IPM and by DPML on a complete training set
were then applied to each example of the other three training set. Accuracy is
then computed as the number of compliant traces that are correctly classified as
compliant plus the number of non-compliant traces that are correctly classified
as non-compliant divided by the total number of traces.

In table 1 we show a comparison of time spent (in seconds) and resulting
accuracies from the theory revision process and from learning based on the full
dataset. The µ sub-columns for accuracy present means of results from tests on
the three datasets not used for training, while in the σ one standard deviations
can be found. The last row shows aggregated data for the correspondent columns.

As it can be noticed, in this case revising the theory to make it compliant
with the new logs is faster than learning it again from scratch, and the accuracy
of the results is higher.

5.2 Auction Protocol

Let us now consider an interaction protocol among agents participating in an
electronic auction [28].

The auction is sealed bid: the auctioneer communicates the bidders the open-
ing of the auction, the bidders answer with bids over the good and then the auc-
tioneer communicates the bidders whether they have won or lost the auction.

The protocol is described by the following ICs [29].

bid(B,A,Quote, TBid)
→∃(openauction(A,B, TEnd, TDL, TOpen),
TOpen < TBid, TBid < TEnd)

(4)

This IC states that if a bidder sends the auctioneer a bid, then there must have
been an openauction message sent before by the auctioneer and such that the

20

bid has arrived in time (before TEnd).

openauction(A,B, TEnd, TDL, TOpen),
bid(B,A,Quote, TBid),
TOpen < TBid

→∃(answer(A,B, lose,Quote, TLose),
TLose < TDL, TEnd < TLose)
∨∃(answer(A,B,win,Quote, TWin),
TWin < TDL, TEnd < TWin)

(5)

This IC states that if there is an openauction and a valid bid, then the auctioneer
must answer with either win or lose after the end of the bidding time (TEnd)
and before the deadline (TDL).

answer(A,B,win,Quote, TWin)
→∀¬(answer(A,B, lose,Quote, TLose), TWin < TLose)

(6)

answer(A,B, lose,Quote, TLose)
→∀¬(answer(A,B,win,Quote, TWin), TLose < TWin)

(7)

These two ICs state that the auctioneer can not answer both win and lose to
the same bidder.

A graphical representation of the protocol is shown in Figure 4.
The traces have been generated in the following way: the first message is

always openauction, the following messages are generated randomly between
bid and answer. For answer, win and lose are selected randomly with equal
probability. The bidders and auctioneer are always the same. The times are
selected randomly from 2 to 10. Once a trace is generated, it is tested with the
above ICs. If the trace satisfies all the ICs it is added to the set of positive traces,
otherwise it is added to the set of negative traces. This process is repeated until
500 positive and 500 negative traces are generated for length 3, 4, 5 and 6.
Five datasets are obtained in this way, containing each 2000 positive and 2000
negative traces.

We then considered 500 randomly selected traces (half positive and half neg-
ative). We applied both DPML and IPM to this dataset, the latter starting with
a version of the model that was manually modified to simulate an imperfect
theory written down by an user.

The results in Table 2 confirm those of Table 1: revision offers benefits both
in time and accuracy.

6 Related Works

Process mining is an active research field. Notable works in such a field are [18,
22, 23, 19, 30, 31].

21

Fig. 4. Sealed bid auction protocol.

In particular in [30, 31] (partially) declarative specifications (thus closer to
our work) are adopted.

In [31] activities in business process are seen as planning operators with
pre-conditions and post-conditions. In order to explicitly express them, fluents
besides activities (i.e., properties of the world that may change their truth value
during the execution of the process) have to be specified. A plan for achieving
the business goal is generated and presented to the user which has to specify
whether each activity of the plan can be executed. In this way the system collects
positive and negative examples of activities executions that are then used in a
learning phase. Our work remains in the traditional domain of BPM in which
the pre-conditions and post-conditions of activities are left implicit.

In [30] sets of process traces, represented by Petri nets, are described by high
level process runs. Mining then performs a merge of runs regarding the same
process and the outcome is a model which may contain sets of activities that
must be executed, but for which no specific order is required. However, runs are
are already very informative of the process model; in our work, instead, mining
starts from traces, which are simply a sequence of events representing activity
executions.

In [32] events used as negative examples are automatically generated in order
to partially take away from the user the burden of having to classify activities.
We are interested in the future to investigate automatic generation of negative
traces.

22

revision full dataset

dataset time accuracy time accuracy

µ σ µ σ

1 820 0.962812 0.0043 1373 0.921687 0.0043

2 1222 0.962937 0.0043 1403 0.939625 0.0041

3 806 0.96375 0.0039 1368 0.923312 0.0044

4 698 0.961125 0.0018 1618 0.937375 0.0020

5 743 0.963875 0.0038 1369 0.92350 0.0042

µ σ µ σ µ σ µ σ

global 857 187 0.962 0.0039 1426 96 0.929 0.0086
Table 2. Revision compared to learning from dataset for the auction scenario

A useful survey about theory revision methods, including a brief description
of common refinement operators and search strategies, can be found in [33].
With regard to the taxonomy proposed there, we deal with proper revision (not
restructuring) both under the specializing and generalizing points of view.

In [34], the authors address structural process changes at run-time, once a
process is implemented, in the context of adaptive process-aware information
systems. Basically, adaptive systems are based on loosely specified models able
to deal with uncertainty, i.e. able to be revised to cover unseen positive exam-
ples. The implemented process must be able to react to exceptions, i.e. it must be
revised to rule-out unseen negative examples. Both kinds of revision must guar-
antee that compliant traces with the previous model are still compliant with the
revised one. In [34], the authors consider process models expressed as Petri nets,
where structural adaptation is based on high-level change patterns, previously
defined in [35]. They review structural and behavioral correctness criteria needed
to ensure the compliance of process instances to the changed schema. Then, they
show how and under which criteria it is possible to support dynamic changes
in the ADEPT2 system, also guaranteeing compliance. Similarly to them, we
address the problem of updating a (declarative and rule-based, in our case) pro-
cess model while preserving the compliance of process instances to the changed
model. This is guaranteed, however, not by identifying correctness criteria, but
rather by the theory revision algorithm itself. We think that their approach is
promising, and subject for future work, in order to identify both change patterns
to be considered (up to now we consider one generalization and one refinement
operator only) and correctness criteria under which the revision algorithm might
be improved.

7 Conclusions

In previous work we have presented the system DPML that is able to infer a
process model composed of a set of logical integrity constraints starting from a
log containing positive and negative traces.

23

In this paper we introduce the system IPM that modifies DMPL in order to
be able to revise a theory in the light of new evidence. This allows to deal with
the case in which the process changes over time and new traces are periodically
collected. Moreover, it does not need to store all previous traces. IPM revises
the current theory by generalizing it if it does not cover some positive traces and
by specializing it if it covers some negative traces.

IPM has been tested on artificial data regarding a hotel management process
and on an electronic auction protocol. The result shows that, when new evidence
becomes available, revising the current theory in the light of the new evidence
is faster than learning a theory from scratch, and the accuracy of the theories
obtained in the first way is higher. This supports our claim that updating can
be better that inducing a new theory.

In the future, we plan to perform more experiments in order to further analyze
the performance difference between learning from scratch and revision. Moreover,
we plan to investigate techniques for learning from positive only traces and for
taking into account change patterns.

References

1. Dumas, M., Reichert, M., Shan, M., eds.: Business Process Management, 6th
International Conference, BPM 2008. Volume 5240 of LNCS. Springer (2008)

2. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data
Knowl. Eng. 47(2) (2003) 237–267

3. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., P.Torroni: Verifiable
agent interaction in abductive logic programming: The sciff framework. ACM
Trans. Comput. Log. 9(4) (2008)

4. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive inter-
pretation for open societies. In Cappelli, A., Turini, F., eds.: 8th Congress of the
Italian Association for Artificial Intelligence (AI*IA 2003). Volume 2829 of LNAI.,
Springer Verlag (2003)

5. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic program-
ming to process mining. In: Inductive Logic Programming, 17th International
Conference. Number 4894 in Lecture Notes in Artificial Intelligence, Heidelberg,
Germany, Springer (2008) 132–146

6. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19/20 (1994) 629–679

7. Raedt, L.D., Dzeroski, S.: First-order jk-clausal theories are pac-learnable. Artif.
Intell. 70(1-2) (1994) 375–392

8. De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Algorithmic Learning
Theory, 6th Conference. Volume 997 of LNAI., Springer Verlag (1995)

9. Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy theory revision:
Induction and abduction in inthelex. Machine Learning 38(1-2) (2000) 133–156

10. Clark, K.L.: Negation as failure. In: Logic and Databases. Plenum Press (1978)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Proceedings of the Fifth International Conference and Symposium on Logic
Programming. (1988) 1070–1080

24

12. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3) (1991) 620–650

13. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3) (1997)
99–146

14. Van Laer, W.: ICL manual Available at: http://www.cs.kuleuven.be/

~ml/ACE/DocACEuser.pdf.
15. Adé, H., Malfait, B., Raedt, L.D.: Ruth: an ilp theory revision system. In Ras,

Z.W., Zemankova, M., eds.: Methodologies for Intelligent Systems, 8th Interna-
tional Symposium, ISMIS ’94, Charlotte, North Carolina, USA, October 16-19,
1994, Proceedings. Volume 869 of Lecture Notes in Computer Science., Springer
(1994) 336–345

16. Richards, B.L., Mooney, R.J.: Automated refinement of first-order horn-clause
domain theories. Machine Learning 19(2) (1995) 95–131

17. Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases 3(2) (1995) 119–153

18. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Proceedings of the 6th International Conference on Extending Database
Technology, EDBT’98. Volume 1377 of LNCS., Springer (1998) 469–483

19. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8) (2006) 1010–1027

20. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business pro-
cesses management. In: 2006 International Business Process Management Work-
shops. Volume 4103 of LNCS., Springer (2006) 169–180

21. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographies. ACM Trans-
actions on The Web (2009)

22. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004)
1128–1142

23. van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase process mining: Build-
ing instance graphs. In: 23rd International Conference on Conceptual Modeling.
Volume 3288 of LNCS., Springer (2004) 362–376

24. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative
logic-based models from labeled traces. In: Proceedings of the 5th International
Conference on Business Process Management. Number 4714 in Lecture Notes in
Computer Science, Heidelberg, Germany, Springer (2007) 344–359

25. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
inductive logic programming techniques for declarative process mining. LNCS
Transactions on Petri Nets and Other Models of Concurrency, ToPNoC II 5460
(2009) 278–295

26. Apt, K.R., Bezem, M.: Acyclic programs. New Generation Comput. 9(3/4) (1991)
335–364

27. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for
loosely-structured processes. In: 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007), IEEE Computer Society (2007) 287–
300

28. Chavez, A., Maes, P.: Kasbah: An agent marketplace for buying and selling goods.
In: Proceedings of the First International Conference on the Practical Applica-
tion of Intelligent Agents and Multi-Agent Technology (PAAM-96), London (April
1996) 75–90

25

29. Chesani, F.: Socs protocol repository Available at: http://edu59.deis.unibo.it
:8079/SOCSProtocolsRepository/jsp/index.jsp.

30. Desel, J., Erwin, T.: Hybrid specifications: looking at workflows from a run-time
perspective. Int. J. Computer System Science & Engineering 15(5) (2000) 291 –
302

31. Ferreira, H.M., Ferreira, D.R.: An integrated life cycle for workflow management
based on learning and planning. Int. J. Cooperative Inf. Syst. 15(4) (2006) 485–505

32. Goedertier, S.: Declarative techniques for modeling and mining business processes.
PhD thesis, Katholieke Universiteit Leuven, Faculteit Economie en Bedrijfsweten-
schappen (2008)

33. Wrobel, S.: First order theory refinement. In Raedt, L.D., ed.: Advances in Induc-
tive Logic Programming. IOS Press, Amsterdam (1996) 14 – 33

34. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information
systems. T. Petri Nets and Other Models of Concurrency 2 (2009) 115–135

35. Mutschler, B., Reichert, M., Rinderle, S.: Analyzing the dynamic cost factors of
process-aware information systems: A model-based approach. In: CAiSE. (2007)
589–603

26

