An Application of Machine L earning and Statisticsto
Defect Detection

R. Cucchiaral, P. Mello?,

Abstract.
Statistics to the problem of distinguishing betwelsfective and
non-defective industrial workpieces, where the defiakes the
form of a long and thin crack on the surface of phece. The
images of the pieces are described by means of afsasual

primitives, including the Hough transform and ther@tated

Hough transform. We have compared an attributeevddarner,
C4.5, a backpropagation neural network, NeuralWaegliEt, and
the statistical techniques linear, logistic anddyatic discriminant
for the classification of pieces. Moreover, two ttea sets are
considered, one containing only the Hough transfanch the other
one containing also the Correlated Hough Transfdre results
of the experiments show that C4.5 performs besbéih feature
sets and gives an average accuracy of 93.3 %héofirst dataset
and 95,9 % for the second dataset.

1 INTRODUCTION

We present an application of Machine Learning atadiSics to a
problem of Automated Visual Inspection (AVI) thabnsists of
automatically inspecting the integrity of metallimdustrial

workpieces. The aim is to classify each pieceedsative or non-
defective depending on whether it contains or nofase defects,
visible only under UV light. The surface defectaicrack that is
visible under UV light as a bright, thin and roughkctilinear

shape.

In order to recognize cracks, a set of visual giies has been
selected for characterizing the images of piedasthis way, each
image is described by a set of numerical attribated machine
learning can be applied in order to find a classifor new images.

In particular, we use the Hough transform (HT) thas been
proposed in the literature of image analysis falediing straight
lines [1]. The HT transforms the image space iaother two
dimensional space (called Hough space) where eadal |
maximum point corresponds to a straight edge inrttege space.
Moreover, another transformation is used, the Catedl Hough
transform (CHT), that has the specific aim of détecshapes that
are bright, rectilinear and thin [2]. The CHT trlotmis an image
from the Hough space to the Correlated Hough spdereneach
local maximum point represents a couple of closajght edges in
the image.

In order to test the effectiveness of these diffepimitives on
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We present an application of Machine Learning andclassification, we have considered two differentadats, one

containing features from the Hough and the Corrdladt®ugh
space, and another one containing features fronHtheyh space
only.

On the two datasets, we have compared an attrialte
learner, C4.5, a backpropagation neural network, réléiare
Predict, and the statistical techniques linearistigand quadratic
discriminant.

The paper is divided as follows: next section idtroes the
specific application. Section 3 discusses the smbpvisual
primitives.  Section 4 discusses the results of earpents,
providing a comparative analysis among the differdgorithms.
Finally, the last section provide final conclusions

2 DEFECT DETECTION

The application goal is visual integrity inspectioh metallic
industrial workpieces and in particular the locatmf surface and
subsurface defects in ferromagnetic materials.

This target can not be reached by normal, visiiglet
inspection but is usually accomplished by adoptngviagnetic-
Particle Inspection” technique (MPI) [3]. First, ethpiece is
magnetized and dipped in a water suspension ofrehoent
ferromagnetic particles; then, it is exposed undeaviolet light
and examined by a human inspector. When surfasilmsurface
defects are present, they produce a leakage figidattracts and
concentrates the ferromagnetic particles. Defeatsticen be easily
perceived by the human eye, since ultraviolet ligjteatly
enhances fluorescence. Off-the-shelf CCD cameras fearde
grabbers are used in order to acquire the images.

Examples of images with cracks are shown in figdrea and 3.
Figure 1 shows a whole image, while figures 2 ansh8w two
cracks in detail, more and less evident respegtivel

Figure 1.

Image with a crack.



Figure 2. Detail of an evident crack.

Figure3. Detail of a less evident crack.

3 CLASSIFICATION BY VISUAL
PRIMITIVES

The defect shape was a-priori known by means ofiaitgtive
model provided by human inspectors. They defineasita “thin,
roughly rectilinear and very bright shape”.

On the basis of this rather generic model, we telica set of
measurable visual properties that can be used decribing the
defects, by associating them with the aspects ef ¢halitative
model:

e bright shape - high local gradient of luminosity in the
proximity of its edges;
« rectilinear — with two main edges approximately straight;

e thin - with an upper-bounded distance between the twa mai

edges.

Once elicited the visual properties, a set of gtstite image
operators able to reflect them has to be definesually, the
approach consists of defining a rather large s@éhafie operators,
or features, each of them somehow related to omaase visual
properties, which will be later used by a machieahing phase.
The choice of the initial feature set is criticadce the information
lost at this step cannot be recovered later.

To this aim, we defined and compared two diffefeature sets,
motivated by opposite rationale: in the first se® included a
specialized primitive called Correlated Hough transf (CHT
[2]), which has been proposed for detection of cisje
corresponding exactly to our model; in the secoet] we used
only image operators of general use. The two feasets reflect a
different control of the visual aspects of the peofy the first one
calling for the insight on image operators typicéla computer
vision specialist, while the second one requirss flue use of well-
known image operators.

Both feature sets include the Hough transform (Hwhich
essentials is sketched hereafter. The HT has bespoged in the
computer vision literature to detect straight lifigp It consists of
a space transformation from the image space tocaofdinate
parameter space: “collinear” points forming a gfnailine segment
in the image space are collected into a singletpiithe parameter
space, where the point’s first co-ordinafe, is the slope of the
straight line and the second co-ordingigis its distance from the
origin. Each point in the Hough space has a valbielwis exactly
the number of collinear points in the straight Isegment; thus,
the longer the line segment, the higher is the tialue in the
Hough space. Furthermore, in this work we adoptedtfaned
version of the Hough transform, called gradientghéed Hough
transform (GWHT, [1]) in which each collinear poistweighted
by its luminosity gradient. Therefore, peaks in tHeugh space
(i.e., points with high values) correspond to thestence of
straight, bright lines in the image space, or weld¢@lso say that
the problem of detecting lines in the image spaceonverted in
the much easier problem of detecting peaks in thegH space.

In the inspected images, a crack has two edges siitfiar
gradient magnitude (with same direction but opgositentation);
since the crack is thin, the distance betweenwioestiges is upper-
bounded. Therefore, two peaks must be detectedi@nHough
space, with similar values and ther § parameters mutually
constrained. In alternative to the separate deteadf these two
peaks, it is possible to exploit the Correlated Hotrgnsform. The
CHT performs a post-processing of the GWHT Houghcspay
correlating the area where the first peak is detegtith the one
where the second peak should be located: if itisadly present,
the resulting correlation value is very high anch dee easily
detected. The CHT has been proven robust to notitideand
noise, since the detection after correlation isewetiable than the
detection of the two separate peaks in the HoughespHowever,
the CHT itself is not enough for detecting cracksewhthey
strongly differ from their ideal aspect, and therefwe added in
the feature set many other features related wihrtbdel.

The set based on the CHT (called CH dataset) conthies
following features:

1. CH (Correlated_Hough_Peak): this is the maximum value in
the Correlated Hough space; (itsS co-ordinates correspond to
the parameters of a straight line in the image temtan the
crack, in case a crack is present.

2. H1 (First_Hough Peak): this is the value in the point of the
Hough space with the same co-ordingte® , where the first
peak is formed in case a crack is present.

3. H2 (Second _Hough Peak): it is the peak in the Hough space
betweenrtt and 2t at the ideal point where the second straight
edge should be found.

4. H22 (Second_Hough_Average): this feature is CH divided by
H1; it measures how much the correlation operaiti@mneases
the evidence of the crack with respect to the uwetated
Hough space.

5. Thickness: the mutual distance between H1 and H2. It
represents the object thickness.

6. Number_of Points: the number of voting points accumulated in
H1, which estimates the edge length.

7. Average Vote: the average "vote" of the voting points, i.e. the
average luminosity gradient of each point voting il (it is
computed by dividing H1 by the Number_of Points); i



measures the average luminosity gradient along dfaek
profile.

8. Average Image Gradient: the average luminosity gradient of
the image; it is a different property with respazxtthe others,
since it is global, meaning that it is an overatiire of the
whole image. It might be used by the classifier as
“normalization” attribute, since images with lowlwes of the
average gradient have proportionally lower CH andugio
space values.

Operationally, we acquire images with relevant w@ewof the
mechanical piece and for each image we comput€HiE Then,
we detect the CHT maximum (the CH feature) and reeotaple
with CH and the other associated feature valuesthéfe detect all
the points of the correlated Hough space whoseevialgreater or
equal an assigned percentage of the maximum (75%6used in
the experiments), and record a tuple for each @fththis is done
in order to catch multiple cracks that can be prese a single
image. After acquiring the tuples, we pre-claseiigh of them into
the two categories dbefect or NoDefect by checking manually if
the straight line segment corresponding with th@etwas located
on a real crack in the image or not.

In the approach followed, the CHT plays a major rsiace the
CH maximum is the feature that determines the musitihere the
crack may be located. However, the CHT is a higiplgcsalized
operator, and it is interesting to approach theblegm with a
feature set with more standard features, and cangpathe
performance of the resulting classifiers.

Therefore, in the second dataset set (called Hdatdset) we
excluded the CH value and included the followingdess:

1. H1: the value of the Hough maximum in the rarfgé&l[0,m,
where the first peak is formed in case a crackeésent; itp, &
co-ordinates correspond to the parameters of aglstrdine
located on one edge of the crack.

2. H2: the value of the Hough maximum in the radggl[m, 2],
where the second peak is formed in case a crapteient; its
p’, &' co-ordinates correspond to the parameters ofaig$it
line located on the other edge of the crack. Howef/enultiple
cracks are present, H1 and H2 may not be assoaithdhe
same crack.

Since there is not an explicit correlation operati@tween H1 and
H2, we also added some basic arithmetic functidrnthe H1 and
H2 values:

9. Product: the product H1 * H2: should be high in case oéal
crack (about the square of each of the two values).

10.Ratio: the ratio H1 / H2: should be close to 1 in caka oeal
crack.

11.5um: the sum H1 + H2: should be high in case of a ceatk
(about double each of the two values).

12 Difference: the difference H1 - H2: should be close to Oasec
of a real crack.

These arithmetic functions are just combinationstber features
and thus may be considered redundant, but they loe@en
explicitely included in the feature set since they related with the
model and may improve the classifiers’ performaicease the
classifier does not explore linear or quadratic borations or
ratios of the feature values.

Operationally, we acquire images with relevant deof the
mechanical piece and for each image we computélthigh space
with the GWHT. Then, we detect the H1 and H2 maxiamal
record them in a tuple with the other associatetlife values. We
then repeat the process for all the points of tbadh space in the

range [0,] and frt, 21 whose value is greater or equal an assigned

percentage of H1 and H2, respectively, and recdrgpke for each
couple; this is done in order to catch multiplecksathat can be
present in a single image. After acquiring the @¢splwe pre-
classify each of them into the two categorie®eflect or NoDefect
by checking manually if the straight line segmetdsresponding
with H1 and H2 were located on a same real crack.

4 EXPERIMENTS

We have experimented and compared two differenthmec
learning techniques: attribute-value learning aadkpropagation
neural networks. Moreover, due to the numeric matfrall the
attributes, we have used statistical techniquewedkin order to
compare their performance with that of machinenieay tools.

For attribute-value learning we have used C4.5 lj4} ts able
to learn both decision trees and rules. For bagamtion neural

3. Number_of_Votes: the sum of the number of image points thatpanvorks. we have used a commercial system, Prebljct

were transformed into H1 and H2.

NeuralWaré. As regards statistical techniques, we have used

4. Distance: the mutual distance between H1 and H2 in the Houg algorithms Discrim, Logdisc and Quadisc, developeuier the

space. It represents the object thickness if H1
correspond to the same crack.
. Delta_rho: the p’ - p| value, and
6. Delta_theta: the §’ - § - 1| value.Delta_rho andDelta_theta
express the distance between the two peaks aleang dmdd
directions, respectively. In case of a same reaclgr
Déelta_theta should be close to 0 afzblta_rho upper bounded.
Ddta rho and Delta_theta are related toDistance by the
following formula :

Distance= \/Delta_rho2 + Delta_theta?® .

ol

7. Delta_product: the product delta_rho * delta_theta. It corredate

the Delta_rho and Delta_theta values, expectingllsmiues
for the product in case of a same real crack.

Statlog project [5], that implement respectivehelar discriminant,
logistic discriminant and quadratic discriminant.

In the following, we first give a brief descriptioaf each
algorithm and then we present the results of erpants.

411

Discrim finds a linear discriminant, i.e., a hypare in the p-
dimensional space of the attributes. Given the eslwf the
attributes of a new pattern, its class is foundldnking at the
position of the corresponding point with respedtt® hyperplane.
The hyperplane equation is found on the assumpmtiarormal
probability distribution: the attribute vectors ftire examples of

Discrim

N N . class A, are independent and follow a certain probability
8. Average Image Gradient: The average luminosity gradient of

the image.

1 More information about Predict be found at

http://www.neuralware.com/ .
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distribution with probability density function (pdf. A new point
with attribute vector x is then assigned to thasslfor which the
probability density functiorfi(x) is greatest. This is a maximum
likelihood method. The distributions are assumedmab (or
Gaussian) with different means but the same cavegiamatrix.
The probability density function of the normal distition is

1
[2nz]

f109= ex;{— S0 Ty )] @

wherep is a p-dimensional vector denoting the theoreticahn
for classi and Z, the theoretical covariance matrix, ispax p
matrix that is necessarily positive definite. Inisthcase the
boundary separating the two classes, defined begdoelity of the
pdfs, can be shown to be a hyperplane that pdssasgh the mid-
point of the two means. Its equation is

@

. 1 [
XZlUﬁ‘ﬂﬂ‘EUﬂ+ﬂﬁZ‘%M‘ﬂﬁ=0

wherey; is the population mean for clags When using this
formula for classification the exact distributios usually not
known and the parameters must be estimated fronavh#able
sample. With two classes, if the sample meansudrstituted fory,
and the pooled sample covariance matrixXpthen Fisher's linear
discriminant [6] is obtained. The covariance mafok a dataset
with n; examples from clash is

§=—1 xTx-x'%
ni -1

3
WhereX is then; x p matrix of attribute values ang is thep-

dimensional row vector of attribute means. Toeled covariance
matrix Sis

2(n -1

S=z2=e1 773

n-q

4

where the summation is over all the classes(afg) is chosen
to make the pooled covariance matrix unbiased.

41.2

Quadisc performs a quadratic discrimination. Quidclra
discrimination is similar to linear discriminatiowith the
difference that the surface separating the twooregis quadratic.
This means that the discriminating function willntain not only
the attributes but also their squares and the ptsdof two
attributes. With respect to the case of probabititsgximization
seen in the previous case, if we remove the assomfitat the
normal distributions have the same covariance rmé&triwe obtain
a quadratic surface, for example an ellipsoid byerboloid.

The simplest quadratic discrimination function #@rclass is
defined as the logarithm of the corresponding plodity density
function and is given by equation 5 in the caseliffering prior
probabilities. The suffix i is used to indicatesda).

Quadisc

(®)

log 7 1§(x) =log 7, =2 10g(det@) =2« ~ 1) %7 x = 4)

In this equation stands for the prior probability of cla8s As
before, the means and covariance matrix are sutestitby their
sample counterparts obtained from the training kethe same
way, T§ is substituted by the sample proportion of class
examples. For classification, the discriminantakulated for each
class and the one giving the highest value is ¢hose

The most frequent problem with quadratic discrimisais
caused when some attribute has zero variance iclass, for then
the covariance matrix can not be inverted. One wfagvoiding
this problem is to add a small positive constammtdo the
diagonal terms in the covariance matrix (this cgponds to adding
random noise to the attributes).

413

Logdisc performs a logistic discrimination. As lave
discriminants, a logistic discriminant consists @fhyperplane
separating the classes in the best possible waythleucriterion
used to find the hyperplane is different. The mdthdopted in this
procedure is to maximize a conditional probabilitytheory, when
the attributes have a normal distribution with dgemvariances
and are independent from each other, linear andstiog
discriminants are equivalent. Different result afgtained when
these hypotheses are not satisfied.

The method here described is partially paramedaiscthe actual
pdfs for the classes are not modeled, but ratherdtio between
them. In particular the logarithms of the ratiostiog probability
density functions for the classes are modellednasit functions of
the attributes. Thus, for two classes

Logdisc

IogM =a+ X (6)
fo(x)

wherea and the p-dimensional vectfirare the parameters of
the adopted model and must be estimated. The dasermal
distribution is a special case in which these patams are
functions of the prior probabilities, of the clasgans and of the
common covariance matrix.

The parameters are estimated by maximum conditional
likelihood. The model implies that, given attributaluesx, the
conditional class probabilities for classesafd A take the forms:

P(a 1) = PO BN ™
1+ exp + %)
VP — ®)

1+exp@ + £x)

Given independent samples for the two classespain@meters
are estimated by maximizing the probability:

L@.pB= TMPAx) 9)

{A 1, samplg

MP(A2 [x)
{ A, samplg

Iterative methods have been proposed in ordertima&® the
parameters for example like in [7] and [8]. Sineeiactice there
is often little difference between logistic anddar discriminant,
the latter are taken as a starting point for thimé.



Tablel1l. Average accuracies

Discrim [ Logdisc| Quadis Predigt CA4.5 tfeeC4.5

rules

CH 0,853 0,857 0,853 0,873 0,959 0,959
H1H2| 0,855 0,928 0,316 0,864 0,933 0,933

Table2. Average false negative (FN) and false positive @R)rs

Discrim Logdisc Quadisc Predict C4.5 treg C4.8sul
FN FP FN FP FN FP FN FR FN Fp FN HP

CH 37 9 36 9 31 15 15 25 6 7 6 ‘!
H1 H2 26 19 14 9 40 177 3 4Q 13 § 12 b

Table3. Values for thd statistics for the CH dataset

|t| Discrim Logdisc Quadisc Predict C4.5 treg C4.B3ul
Discrim 1,000 0,000 0,452 1,947 1,947
Logdisc 0,166 0,376 1,959 1,959
Quadratic 0,615 2,352 2,352
Predict 2,031 2,031
C4.5 tree 0,000
Table 4. Values for the statistics for the H1 H2 dataset
|t| Discrim Logdisc Quadisc Predict C4.5 treg C4.B3ul
Discrim 1,753 2,114 0,118 1,586 1,689
Logdisc 2,411 0,867 0,127 0,135
Quadisc 2,509 3,068 3,050
Predict 0,843 0,858
C4.5 tree 0,000
414  NeuralWorks Predict 416 Results

Predict by Neural Works is a system for trainingltilayer
neural nets. Predict uses an adaptive gradiemtifearule which is
a form of back-propagation. Predict does not dram a fixed
network architecture but uses a constructive method
determining a suitable number of hidden nodes. Thisstructive
method is referred to as "Cascade Learning" [10] ianldosely
characterised by the fact that hidden nodes aredadde or a few
at a time. New hidden nodes have connections froth the input
buffer and the previously established hidden no@esstruction is
stopped when performance on an independent tegthsets no
further improvement.

415 C45

C4.5 [4] is a system for learning rules and decidiees. Its
peculiarity is the heuristics it adopts in orderstlect the test to
perform at each steps. These heuristics are baséideonotion of
entropy from information theory that representsahmunt of “dis-
uniformity” of examples in the training set withspect to the class
attributes: at each step a test is selected th&esnthe resulting
subsets as uniform as possible with respect taclines attribute,
i.e., subsets containing examples from only onsscler from a
small number of classes.

All systems have been tested on the CH and H1 Hasdts
employing 10-fold cross validation. Both datasetsitam 317
tuples of which 67 belong to the Defect class ab® # the
NonDefect class. The spread of attribute valuelanger for the
Defect class.

Table 1 shows the average accuracies of the dtz®in
algorithms for both datasets, while table 2 shdvestbtal number
of false negative and false positive errors summeer the ten
folds. False negatives are defective pieces tlatlassified as non
defective and false positive are non defective gdethat are
classified as defective. It is important to distiigh between these
two types of errors because the damage that defiives a false
negative is much higher than the one deriving feofalse positive.
Therefore, we should prefer an algorithm that mirnés the
number of false negatives.

In order to evaluate if the accuracy differenceswben
algorithms are significant, we have computed a dl-fcross-
validated paired test for every pair of algorithms (see [11] for an
overview of statistical tests for the comparisommaichine learning
algorithms).

This test is computed as follows. Given two aljoris A and
B, let p.¥ (respectively g”) be the observed proportion of test
examples misclassified by algorrithm A (respectivg) in trial i. If
we assume that the 10 difference®=p,?-ps® are drawn
independently from a normal distribution, then wean capply
Student test by computing the statistic



(10)

where n is the number of folds (10) apdis

(11)

__1
p:_
n

o i)
g_lp

In the null hypothesis, i.e. that A and B haveghme accuracy,
this statistic has a t distribution with n-1 (9)gdees of freedom. If
we consider a probability of 90%, then the null diyyesis can be
rejected if

lt] > tg00 =1.383 12)

Table 3 shows the values of the statistic for th¢ dataset,
while table 4 shows the values of the statistic fioe H1 H2
dataset. The value of the statistic for algoritttnand B can be
found at the crossing of line A with column B. Thambers in
bold are those that provide a probability of 90% more of
rejecting the null hypothesis.

From these tables can be seen that, for the CHsetatthe
accuracy difference is statistically significanthometween C4.5
algorithms and the other ones, while it is not istiaglly
significant among the statistical and neural alfpons. Therefore,
for the CH dataset, we can state that the besbimeaince has been
obtained by C4.5, both for the case of trees atesru

On the H1 H2 dataset there is a significant difieeebetween
the best performing algorithms, C4.5 and Logdisci Biscrim and
Quadisc. The difference among the best performiggrithms and
Predict is instead a little less certain, havinge8@robability.

In conclusion, for both datasets, the best overatiuracy has
been obtained by C4.5 both for the case of treesrales. The
comparison of machine learning and statistical iesplnes shows
that C4.5 performs better than statistical techesqéor the CH
dataset, while on H1 H2 dataset Logdisc is equntate C4.5.
Instead, for Predict, the differences with statatitechniques are
less significant.

As can be seen, the CH feature is very importachabse it
leads to more accurate classifiers for all systeapsrt from
Logdisc and Discrim.

As regards the number of false negatives, C4.8lyitle lowest
number of them for the CH dataset, while for theHPLdataset the
lowest number is given by Predict.

These results show that machine learning toolsozaperform
statistical classifiers on the domain examined.

1 RELATED WORKS

Machine learning has been widely exploited for obje
classification in computer vision. Learning is oftessential for
defining an effective classifier in the case of tamstured objects
or shapes, which are difficult to model in terms ggometric,
topologic or other metric features. Examples ofuke of learning
in computer vision are for instance recognitionhahd gestures,
landscape inspection, medical images analysis, appmkarance-
based recognition [11,12,13,14]. However, the
comprehensive work concerning the use of learnirgg f

classification is the StatLog project [5]. StatLogludes several
classification algorithms, covering machine leagpimeural and
statistical techniques. The algorithms are compagainst several
different classification tasks, nine of which catsiof classifying
images (Dig44, KL, Vehicle, Letter, Chrom, Satlnegé, Cut20,
Cut50). As reported in the StatLog results in [thle ranking of
classifiers in terms of error rates varies with thmage

classification task. As stated in the analysisesuits still in [5],

some of these tasks address mostly classificatfopixel areas,
while others address classification of derived (fezd computed
from the pixel values. These tasks are very diffeie nature, and
this may be a major reason for the different raglof classifiers’

error rates.

The k-NN classifier achieves generally the besbremate.
However, one pitfall of the k-NN method is the fewat it typically
treats variables with equal weight, and this maythsereason for
the few exceptions (Vehicle and Segm); in thesegak-NN is
outperformed by many other algorithms, including84

Quadisc achieves the best error rates only for ethiosage
datasets considered as object recognition (Dig44, Wehicle,
Letter, Chrom), while performing badly on averagethe image
datasets considered as segmentation (Satim, Seg20,GCut50).

The machine learning algorithm C4.5 tends to asggsxd
performance for the segmentation tasks (Segm, C@a0) and
in particular, it largely outperforms Quadisc oe fut dataset. On
the other datasets, C4.5 ranks on average positions

In the application we considered C4.5 achieveshist error
rates for both feature sets, while k-NN ranks i& skecond position.
Quadisc assesses significantly worse performaimodasto that of
the other classifiers for the CH feature set arastitrally lower for
the H1 H2 one. The resu

5 CONCLUSION

We have presented an application of machine legr@nd
statistics to the problem of recognizing surfacacks on metallic
pieces. In order to learn from the images of thecgs, we have
identified a set of visual features for characiagzeach image.
One of these features, the average gradient of nlosity, is
computed on the image itself, while the others @mputed on
transformed versions of the image obtained with theugh
transform (HT) and the Correlated Hough transfo@HT). We
use these features because they have been exphesddsigned
for the recognition of straight lines and rectilmehapes.

In order to test the effectiveness of these varif@asures on
classification, we have considered two differenttsseone
containing features from the Hough and the Corelatough
space, and another one containing features fronHthegh space
only.

Various machine learning and statistical technigi@ge been
applied to the problem. As regards machine learning have
employed an attribute value learner, C4.5, and wahenetwork
trainer, NeuralWare Predict. As regards statistieahniques, we
have employed linear, logistic and quadratic disgrants.

The results of the experiments show that, of thefeature sets,
the one containing the CHT leads to more accuratgsifiers for
all learning methods apart from Logdisc and Quadigws
confirming the usefulness of highly specialized rapers for

mosiComputer Vision.



Among all systems, C4.5 had a performance sigmifigdnigher
than the other systems on the CH dataset, whiléhenH1 H2
dataset it was significantly higher than Discrind &uadisc.

These results are not easy to explain It is not gmexplain this
behaviour C4.5 provided a very good performanceis Tis
probably due to spread in the attribute valueseasfly for the
Defect class, that requires the adaptiveness ohimadearning
tools.

6 REFERENCES

[1] J. llingworth, J. Kittler, “A survey of the Houginansform”, Comp.
Vision Graphics, Image Process. (43): 221-238.

[2] R. Cucchiara, M. Piccardi, “Eliciting visual prinviés for detection
of elongated shapes”, Image and Vision Computind,7y n.5-6, pp.
347-355, Elsevier, 1999.

[3] R. Mason, editor, Magnetic Particle Inspection. destructive
Testing (33), pp. 6-12.

[4] J. R. Quinlan, C4.5: Programs for Machine Learniiprgan
Kaufmann Publishers, San Mateo, California, 1993.

[5] D. Michie, D.J.Spiegelhalter and C.C.Taylor (eds:Machine
Learning, Neural and Statistical Classification”|liE Horwood,
1994,

[6] R. Fisher, “The use of multiple measurements inonaxic
problems”, Annals of Eugenics, 7, pp. 179-188, 1936

[71 D. R. Cox, “Some procedures associated with thistioggualitative
response curve”, in Research Papers on Statistestschrift for J.
Neyman, Wiley, pp. 55-77, 1966.

[8] N. Day, D. Kerridge, “A general maximum likelyhodéscriminant”,
Biometrics, 23, pp. 313-324, 1967.

&l

(10]

(11]

(12]

(13]

(14]

S. E. Fahlmann, C. Lebiere, "The Cascade-Correlatiearning

Architecture”, Advances in Neural Information Presiag Systems
2, Morgan Kaufmann, 1988.

T. Dietterich, “Approximate satistical tests fomgparing supervised
classification learning algorithms”, Neural Comgign, in press
(draft version available at http://www.cs.orst.edgfl/projects
/supervised.html).

K. Cho, S. M. Dunn, “Learning shape classes”, IEE®@NS. on
PAMI 16 (1994) n. 9, pp. 882-887.

B. A. Drapter, C. E. Brodley, P. E. Utgoff, “Goaliretted

classification using Linear Machine Decision tre¥EE Trans. on
PAMI 16 (1994) n. 9, pp. 888-893.

P. Pellegretti, F. Roli, S. Serpico, G. Vernazzgervised learning
of descriptions for image recognition purposes’EEE Trans. on
PAMI 16 (1994) n. 1, pp. 92-98.

H. Murase, S. K. Nayar, “Learning by a generatiggpraach to
appearance based object recognition”, Proc. of I3ER, Vienna 1
(1996) , pp. 24-30.



