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Abstract.  We present an application of Machine Learning and 
Statistics to the problem of distinguishing between defective and 
non-defective industrial workpieces, where the defect takes the 
form of a long and thin crack on the surface of the piece.  The 
images of the pieces are described by means of a set of visual 
primitives, including the Hough transform and the Correlated 
Hough transform. We have compared an attribute-value learner, 
C4.5, a backpropagation neural network, NeuralWare Predict, and 
the statistical techniques linear, logistic and quadratic discriminant 
for the classification of pieces. Moreover, two feature sets are 
considered, one containing only the Hough transform and the other 
one containing also the Correlated Hough Transform. The results 
of the experiments show that C4.5 performs best for both feature 
sets and gives an average accuracy of  93.3 % for the first dataset 
and 95,9 % for the second dataset. 

1 INTRODUCTION 

We present an application of Machine Learning and Statistics to a 
problem of Automated Visual Inspection (AVI) that consists of 
automatically inspecting the integrity of metallic industrial 
workpieces.  The aim is to classify each piece as defective or non-
defective depending on whether it contains or not surface defects, 
visible only under UV light.  The surface defect is a crack that is 
visible under UV light as a bright, thin and roughly rectilinear 
shape. 

In order to recognize cracks, a set of visual primitives has been 
selected for characterizing the images of pieces.  In this way, each 
image is described by a set of numerical attributes and machine 
learning can be applied in order to find a classifier for new images. 

In particular, we use the Hough transform (HT) that has been 
proposed in the literature of image analysis for detecting straight 
lines [1].  The HT transforms the image space into another two 
dimensional space (called Hough space) where each local 
maximum point corresponds to a straight edge in the image space. 
Moreover, another transformation is used, the Correlated Hough 
transform (CHT), that has the specific aim of detecting shapes that 
are bright, rectilinear and thin [2].  The CHT transforms an image 
from the Hough space to the Correlated Hough space where each 
local maximum point represents a couple of close, straight edges in 
the image. 

In order to test the effectiveness of these different primitives on 

classification, we have considered two different datasets, one 
containing features from the Hough and the Correlated Hough 
space, and another one containing features from the Hough space 
only. 

On the two datasets, we have compared an attribute-value 
learner, C4.5, a backpropagation neural network, NeuralWare 
Predict, and the statistical techniques linear, logistic and quadratic 
discriminant. 

The paper is divided as follows: next section introduces the 
specific application.  Section 3 discusses the adopted visual 
primitives.  Section 4 discusses the results of experiments, 
providing a comparative analysis among the different algorithms. 
Finally, the last section provide final conclusions. 

2 DEFECT DETECTION 

The application goal is visual integrity inspection of metallic 
industrial workpieces and in particular the location of surface and 
subsurface defects in ferromagnetic materials.  

This target can not be reached by normal, visible-light 
inspection but is usually accomplished by adopting a “Magnetic-
Particle Inspection” technique (MPI) [3]. First, the piece is 
magnetized and dipped in a water suspension of fluorescent 
ferromagnetic particles; then, it is exposed under ultraviolet light 
and examined by a human inspector. When surface or subsurface 
defects are present, they produce a leakage field that attracts and 
concentrates the ferromagnetic particles. Defects can then be easily 
perceived by the human eye, since ultraviolet light greatly 
enhances fluorescence. Off-the-shelf CCD cameras and frame 
grabbers are used in order to acquire the images. 

Examples of images with cracks are shown in figures 1, 2 and 3.  
Figure 1 shows a whole image, while figures 2 and 3 show two 
cracks in detail, more and less evident respectively.  

 

Figure 1.  Image with a crack. 
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Figure 2.  Detail of an evident crack. 

 

Figure 3.   Detail of a less evident crack. 

3 CLASSIFICATION BY VISUAL 
PRIMITIVES 

The defect shape was a-priori known by means of a qualitative 
model provided by human inspectors. They defined it as a “thin, 
roughly rectilinear and very bright shape”.  

On the basis of this rather generic model, we elicited a set of 
measurable visual properties that can be used for describing the 
defects, by associating them with the aspects of the qualitative 
model: 
• bright shape → high local gradient of luminosity in the 

proximity of its edges; 
• rectilinear → with two main edges approximately straight; 
• thin → with an upper-bounded distance between the two main 

edges.  
Once elicited the visual properties, a set of quantitative image 

operators able to reflect them has to be defined. Usually, the 
approach consists of defining a rather large set of image operators, 
or features, each of them somehow related to one or more visual 
properties, which will be later used by a machine learning phase. 
The choice of the initial feature set is critical since the information 
lost at this step cannot be recovered later. 

To this aim, we defined and compared two different feature sets, 
motivated by opposite rationale: in the first set, we included a 
specialized primitive called Correlated Hough transform (CHT 
[2]), which has been proposed for detection of objects 
corresponding exactly to our model; in the second set, we used 
only image operators of general use. The two feature sets reflect a 
different control of the visual aspects of the problem, the first one 
calling for the insight on image operators typical of a computer 
vision specialist, while the second one requires just the use of well-
known image operators.  

Both feature sets include the Hough transform (HT), which 
essentials is sketched hereafter. The HT has been proposed in the 
computer vision literature to detect straight lines [1]. It consists of 
a space transformation from the image space to a 2-coordinate 
parameter space: “collinear” points forming a straight line segment 
in the image space are collected into a single point of the parameter 
space, where the point’s first co-ordinate, ϑ, is the slope of the 
straight line and the second co-ordinate, ρ, is its distance from the 
origin. Each point in the Hough space has a value which is exactly 
the number of collinear points in the straight line segment; thus, 
the longer the line segment, the higher is the point’s value in the 
Hough space. Furthermore, in this work we adopted a refined 
version of the Hough transform, called gradient-weighted Hough 
transform (GWHT, [1]) in which each collinear point is weighted 
by its luminosity gradient. Therefore, peaks in the Hough space 
(i.e., points with high values) correspond to the existence of 
straight, bright lines in the image space, or we could also say that 
the problem of detecting lines in the image space is converted in 
the much easier problem of detecting peaks in the Hough space.  

In the inspected images, a crack has two edges with similar 
gradient magnitude (with same direction but opposite orientation); 
since the crack is thin, the distance between the two edges is upper-
bounded. Therefore, two peaks must be detected in the Hough 
space, with similar values and their ρ, ϑ parameters mutually 
constrained. In alternative to the separate detection of these two 
peaks, it is possible to exploit the Correlated Hough transform. The 
CHT performs a post-processing of the GWHT Hough space by 
correlating the area where the first peak is detected with the one 
where the second peak should be located: if it is actually present, 
the resulting correlation value is very high and can be easily 
detected. The CHT has been proven robust to non-ideality and 
noise, since the detection after correlation is more reliable than the 
detection of the two separate peaks in the Hough space. However, 
the CHT itself is not enough for detecting cracks when they 
strongly differ from their ideal aspect, and therefore we added in 
the feature set many other features related with the model. 
The set based on the CHT (called CH dataset) contains the 
following features: 

1. CH (Correlated_Hough_Peak):     this is the maximum value in 
the Correlated Hough space; its ρ, ϑ co-ordinates correspond to 
the parameters of a straight line in the image located on the 
crack, in case a crack is present. 

2. H1 (First_Hough_Peak): this is the value in the point of the 
Hough space with the same co-ordinates ρ, ϑ , where the first 
peak is formed in case a crack is present. 

3. H2 (Second_Hough_Peak): it is the peak in the Hough space 
between π and 2π at the ideal point where the second straight 
edge should be found. 

4. H22 (Second_Hough_Average): this feature is CH divided by 
H1; it measures how much the correlation operation increases 
the evidence of the crack with respect to the uncorrelated 
Hough space. 

5. Thickness: the mutual distance between H1 and H2. It 
represents the object thickness. 

6. Number_of_Points: the number of voting points accumulated in 
H1, which estimates the edge length. 

7. Average_Vote: the average "vote" of the voting points, i.e. the 
average luminosity gradient of each point voting for H1 (it is 
computed by dividing H1 by the Number_of_Points); it 



measures the average luminosity gradient along the crack 
profile. 

8. Average_Image_Gradient: the average luminosity gradient of 
the image; it is a different property with respect to the others, 
since it is global, meaning that it is an overall feature of the 
whole image. It might be used by the classifier as a 
“normalization” attribute, since images with low values of the 
average gradient have proportionally lower CH and Hough 
space values. 

Operationally, we acquire images with relevant views of the 
mechanical piece and for each image we compute the CHT. Then, 
we detect the CHT maximum (the CH feature) and record a tuple 
with CH and the other associated feature values. We then detect all 
the points of the correlated Hough space whose value is greater or 
equal an assigned percentage of the maximum (75% was used in 
the experiments), and record a tuple for each of them; this is done 
in order to catch multiple cracks that can be present in a single 
image. After acquiring the tuples, we pre-classify each of them into 
the two categories of Defect or NoDefect by checking manually if 
the straight line segment corresponding with the tuple was located 
on a real crack in the image or not. 

In the approach followed, the CHT plays a major role, since the 
CH maximum is the feature that determines the position where the 
crack may be located. However, the CHT is a highly specialized 
operator, and it is interesting to approach the problem with a 
feature set with more standard features, and comparing the 
performance of the resulting classifiers. 

Therefore, in the second dataset set (called H1 H2 dataset) we 
excluded the CH value and included the following features: 

1. H1: the value of the Hough maximum in the range ϑ ∈[0,π], 
where the first peak is formed in case a crack is present; its ρ, ϑ 
co-ordinates correspond to the parameters of a straight line 
located on one edge of the crack. 

2. H2: the value of the Hough maximum in the range ϑ ∈[π, 2π], 
where the second peak is formed in case a crack is present; its 
ρ’, ϑ’ co-ordinates correspond to the parameters of a straight 
line located on the other edge of the crack. However, if multiple 
cracks are present, H1 and H2 may not be associated with the 
same crack.  

3. Number_of_Votes: the sum of the number of image points that 
were transformed into H1 and H2. 

4. Distance: the mutual distance between H1 and H2 in the Hough 
space. It represents the object thickness if H1 and H2 
correspond to the same crack. 

5. Delta_rho: the |ρ’ - ρ| value, and 
6. Delta_theta: the |ϑ’ - ϑ - π | value. Delta_rho and Delta_theta 

express the distance between the two peaks along the ρ and ϑ 
directions, respectively. In case of a same real crack, 
Delta_theta should be close to 0 and Delta_rho upper bounded.  
Delta_rho and Delta_theta are related to Distance by the 
following formula : 

       Distance= 22 __ thetaDeltarhoDelta + . 

7. Delta_product: the product delta_rho * delta_theta. It correlates 
the Delta_rho and Delta_theta values, expecting small values 
for the product in case of a same real crack. 

8. Average_Image_Gradient: The average luminosity gradient of 
the image. 

Since there is not an explicit correlation operation between H1 and 
H2, we also added some basic arithmetic functions of the H1 and 
H2 values: 

9. Product: the product H1 * H2: should be high in case of a real 
crack (about the square of each of the two values). 

10. Ratio: the ratio H1 / H2: should be close to 1 in case of a real 
crack. 

11. Sum: the sum H1 + H2: should be high in case of a real crack 
(about double each of the two values). 

12. Difference: the difference H1 - H2: should be close to 0 in case 
of a real crack. 

These arithmetic functions are just combinations of other features 
and thus may be considered redundant, but they have been 
explicitely included in the feature set since they are related with the 
model and may improve the classifiers’ performance in case the 
classifier does not explore linear or quadratic combinations or 
ratios of the feature values. 

Operationally, we acquire images with relevant views of the 
mechanical piece and for each image we compute the Hough space 
with the GWHT. Then, we detect the H1 and H2 maxima and 
record them in a tuple with the other associated feature values. We 
then repeat the process for all the points of the Hough space in the 
range [0, π] and [π, 2π] whose value is greater or equal an assigned 
percentage of H1 and H2, respectively, and record a tuple for each 
couple; this is done in order to catch multiple cracks that can be 
present in a single image. After acquiring the tuples, we pre-
classify each of them into the two categories of Defect or NoDefect 
by checking manually if the straight line segments corresponding 
with H1 and H2 were located on a same real crack. 

4 EXPERIMENTS 

We have experimented and compared two different machine 
learning techniques: attribute-value learning and backpropagation 
neural networks. Moreover, due to the numeric nature of all the 
attributes, we have used statistical techniques as well in order to 
compare their performance with that of machine learning tools. 

For attribute-value learning we have used C4.5 [4] that is able 
to learn both decision trees and rules. For backpropagtion neural 
networks, we have used a commercial system, Predict by 
NeuralWare1. As regards statistical techniques, we have used the 
algorithms Discrim, Logdisc and Quadisc, developed under the 
Statlog project [5], that implement respectively linear discriminant, 
logistic discriminant and quadratic discriminant. 

In the following, we first give a brief description of each 
algorithm and then we present the results of experiments. 

4.1.1  Discrim 

Discrim finds a linear discriminant, i.e., a hyperplane in the p-
dimensional space of the attributes. Given the values of the 
attributes of a new pattern, its class is found by looking at the 
position of the corresponding point with respect to the hyperplane.  

The hyperplane equation is found on the assumption of normal 
probability distribution: the attribute vectors for the examples of 
class Ai are independent and follow a certain probability 

 
1 More information about Predict can be found at 
http://www.neuralware.com/ . 



distribution with probability density function (pdf) fi. A new point 
with attribute vector x is then assigned to that class for which the 
probability density function fi(x) is greatest. This is a maximum 
likelihood method. The distributions are assumed normal (or 
Gaussian) with different means but the same covariance matrix. 
The probability density function of the normal distribution is  
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where µ is a p-dimensional vector denoting the theoretical mean 
for class i and Σ, the theoretical covariance matrix, is a p × p 
matrix that is necessarily positive definite. In this case the 
boundary separating the two classes, defined by the equality of the 
pdfs, can be shown to be a hyperplane that passes through the mid-
point of the two means. Its equation is 
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where µi is the population mean for class Ai. When using this 
formula for classification the exact distribution is usually not 
known and the parameters must be estimated from the available 
sample. With two classes, if the sample means are substituted for µi 
and the pooled sample covariance matrix for Σ, then Fisher’s linear 
discriminant [6] is obtained. The covariance matrix for a dataset 
with ni examples from class Ai is 
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Where X is the ni × p matrix of attribute values and x  is the p-
dimensional row vector of attribute means. The pooled covariance 
matrix S is 
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where the summation is over all the classes and (n-q) is chosen 
to make the pooled covariance matrix unbiased. 

4.1.2 Quadisc 

Quadisc performs a quadratic discrimination. Quadratic 
discrimination is similar to linear discrimination with the 
difference that the surface separating the two regions is quadratic. 
This means that the discriminating function will contain not only 
the attributes but also their squares and the products of two 
attributes. With respect to the case of probability maximization 
seen in the previous case, if we remove the assumption that the 
normal distributions have the same covariance matrix S, we obtain 
a quadratic surface, for example an ellipsoid or a hyperboloid.  

The simplest quadratic discrimination function for a class is 
defined as the logarithm of the corresponding probability density 
function and is given by equation 5 in the case of differing prior 
probabilities. The suffix i is used to indicate class Ai. 
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In this equation πi stands for the prior probability of class Ai. As 
before, the means and covariance matrix are substituted by their 
sample counterparts obtained from the training set. In the same 
way, πi is substituted by the sample proportion of class Ai 
examples. For classification, the discriminant is calculated for each 
class and the one giving the highest value is chosen. 

The most frequent problem with quadratic discriminants is 
caused when some attribute has zero variance in one class, for then 
the covariance matrix can not be inverted. One way of avoiding 
this problem is to add a small positive constant term to the 
diagonal terms in the covariance matrix (this corresponds to adding 
random noise to the attributes). 

4.1.3 Logdisc 

Logdisc performs a logistic discrimination. As linear 
discriminants, a logistic discriminant consists of a hyperplane 
separating the classes in the best possible way, but the criterion 
used to find the hyperplane is different. The method adopted in this 
procedure is to maximize a conditional probability. In theory, when 
the attributes have a normal distribution with equal covariances 
and are independent from each other, linear and logistic 
discriminants are equivalent. Different result are obtained when 
these hypotheses are not satisfied. 

The method here described is partially parametric, as the actual 
pdfs for the classes are not modeled, but rather the ratio between 
them. In particular the logarithms of the ratios of the probability 
density functions for the classes are modelled as linear functions of 
the attributes. Thus, for two classes 

x
x
x '

2

1

)(f

)(f
log βα +=  (6) 

where α and the p-dimensional vector β are the parameters of 
the adopted model and must be estimated. The case of normal 
distribution is a special case in which these parameters are 
functions of the prior probabilities, of the class means and of the 
common covariance matrix. 

The parameters are estimated by maximum conditional 
likelihood. The model implies that, given attribute values x, the 
conditional class probabilities for classes A1 and A2 take the forms: 
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Given independent samples for the two classes, the parameters 
are estimated by maximizing the probability: 
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Iterative methods have been proposed in order to estimate the 
parameters for example like in [7] and [8]. Since in practice there 
is often little difference between logistic and linear discriminant, 
the latter are taken as a starting point for the former. 



4.1.4 NeuralWorks Predict 

Predict by Neural Works is a system for training multi-layer 
neural nets. Predict uses an adaptive gradient learning rule which is 
a form of back-propagation. Predict does not start from a fixed 
network architecture but uses a constructive method for 
determining a suitable number of hidden nodes. This constructive 
method is referred to as "Cascade Learning" [10] and is loosely 
characterised by the fact that hidden nodes are added one or a few 
at a time. New hidden nodes have connections from both the input 
buffer and the previously established hidden nodes. Construction is 
stopped when performance on an independent test set shows no 
further improvement. 

4.1.5 C4.5 

C4.5 [4] is a system for learning rules and decision trees. Its 
peculiarity is the heuristics it adopts in order to select the test to 
perform at each steps. These heuristics are based on the notion of 
entropy from information theory that represents the amount of “dis-
uniformity” of examples in the training set with respect to the class 
attributes: at each step a test is selected that makes the resulting 
subsets as uniform as possible with respect to the class attribute, 
i.e., subsets containing examples from only one class or from a 
small number of classes.  

4.1.6 Results 

All systems have been tested on the CH and H1 H2 datasets 
employing 10-fold cross validation. Both datasets contain 317 
tuples of which 67 belong to the Defect class and 250 to the 
NonDefect class. The spread of attribute values is larger for the 
Defect class. 

Table 1 shows the average accuracies of the classification 
algorithms for both datasets, while table 2 shows the total number 
of false negative and false positive errors summed over the ten 
folds. False negatives are defective pieces that are classified as non 
defective and false positive are non defective pieces that are 
classified as defective. It is important to distinguish between these 
two types of errors because the damage that derives from a false 
negative is much higher than the one deriving from a false positive. 
Therefore, we should prefer an algorithm that minimizes the 
number of false negatives. 

In order to evaluate if the accuracy differences between 
algorithms are significant, we have computed a 10-fold cross-
validated paired t test for every pair of algorithms (see [11] for an 
overview of statistical tests for the comparison of machine learning 
algorithms). 

This test is computed as follows.  Given two algorithms A and 
B, let pA

(i) (respectively pB
(i)) be the observed proportion of test 

examples misclassified by algorrithm A (respectively B) in trial i. If 
we assume that the 10 differences p(i)=pA

(i)-pB
(i) are drawn 

independently from a normal distribution, then we can apply 
Student t test by computing the statistic 

Table 1.   Average accuracies 

 Discrim Logdisc Quadisc Predict C4.5 tree C4.5 
rules 

CH 0,853 0,857 0,853 0,873 0,959 0,959 

H1 H2 0,855 0,928 0,316 0,864 0,933 0,933 

Table 2.   Average false negative (FN) and false positive (FP) errors 

 Discrim Logdisc Quadisc Predict C4.5 tree C4.5 rules 

 FN FP FN FP FN FP FN FP FN FP FN FP 

CH  37 9 36 9 31 15 15 25 6 7 6 7 

H1 H2  26 19 14 9 40 177 3 40 13 8 12 9 

Table 3.   Values for the t statistics for the CH dataset 

t  Discrim Logdisc Quadisc Predict C4.5 tree C4.5 rules 

Discrim  1,000 0,000 0,452 1,947 1,947 

Logdisc   0,166 0,376 1,959 1,959 

Quadratic    0,615 2,352 2,352 

Predict     2,031 2,031 

C4.5 tree      0,000 

Table 4. Values for the t statistics for the H1 H2 dataset 

t  Discrim Logdisc Quadisc Predict C4.5 tree C4.5 rules 

Discrim  1,753 2,114 0,118 1,586 1,689 

Logdisc   2,411 0,867 0,127 0,135 

Quadisc    2,509 3,068 3,050 

Predict     0,843 0,858 

C4.5 tree      0,000 
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where n is the number of folds (10) and p  is  
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In the null hypothesis, i.e. that A and B have the same accuracy, 
this statistic has a t distribution with n-1 (9) degrees of freedom. If 
we consider a probability of 90%, then the null hypothesis can be 
rejected if  

383.190.0,9 => tt  (12) 

Table 3 shows the values of the statistic for the CH dataset, 
while table 4 shows the values of the statistic for the H1 H2 
dataset. The value of the statistic for algorithms A and B can be 
found at the crossing of line A with column B. The numbers in 
bold are those that provide a probability of 90% or more of 
rejecting the null hypothesis. 

From these tables can be seen that, for the CH dataset, the 
accuracy difference is statistically significant only between C4.5 
algorithms and the other ones, while it is not statistically 
significant among the statistical and neural algorithms. Therefore, 
for the CH dataset, we can state that the best performance has been 
obtained by C4.5, both for the case of trees and rules. 

On the H1 H2 dataset there is a significant difference between 
the best performing algorithms, C4.5 and Logdisc, and Discrim and 
Quadisc. The difference among the best performing algorithms and 
Predict is instead a little less certain, having 80% probability. 

In conclusion, for both datasets, the best overall accuracy has 
been obtained by C4.5 both for the case of trees and rules. The 
comparison of machine learning and statistical techniques shows 
that C4.5 performs better than statistical techniques for the CH 
dataset, while on H1 H2 dataset Logdisc is equivalent to C4.5. 
Instead, for Predict, the differences with statistical techniques are 
less significant. 

As can be seen, the CH feature is very important because it 
leads to more accurate classifiers for all systems apart from 
Logdisc and Discrim. 

As regards the number of false negatives, C4.5 yields the lowest 
number of them for the CH dataset, while for the H1 H2 dataset the 
lowest number is given by Predict. 

These results show that machine learning tools can outperform 
statistical classifiers on the domain examined. 

1 RELATED WORKS 

 
Machine learning has been widely exploited for object 

classification in computer vision. Learning is often essential for 
defining an effective classifier in the case of unstructured objects 
or shapes, which are difficult to model in terms of geometric, 
topologic or other metric features. Examples of the use of learning 
in computer vision are for instance recognition of hand gestures, 
landscape inspection, medical images analysis, and appearance-
based recognition [11,12,13,14]. However, the most 
comprehensive work concerning the use of learning for 

classification is the StatLog project [5]. StatLog includes several 
classification algorithms, covering machine learning, neural and 
statistical techniques. The algorithms are compared against several 
different classification tasks, nine of which consists of classifying 
images (Dig44, KL, Vehicle, Letter, Chrom, SatIm, Segm, Cut20, 
Cut50). As reported in the StatLog results in [5], the ranking of 
classifiers in terms of error rates varies with the image 
classification task. As stated in the analysis of results still in [5], 
some of these tasks address mostly classification of pixel areas, 
while others address classification of derived features computed 
from the pixel values. These tasks are very different in nature, and 
this may be a major reason for the different ranking of classifiers’ 
error rates.  

The k-NN classifier achieves generally the best error rate. 
However, one pitfall of the k-NN method is the fact that it typically 
treats variables with equal weight, and this may be the reason for 
the few exceptions (Vehicle and Segm); in these cases, k-NN is 
outperformed by many other algorithms, including C4.5. 

Quadisc achieves the best error rates only for those image 
datasets considered as object recognition (Dig44, KL, Vehicle, 
Letter, Chrom), while performing  badly on average on the image 
datasets considered as segmentation (SatIm, Segm, Cut20, Cut50). 

The machine learning algorithm C4.5 tends to assess good 
performance for the segmentation tasks (Segm, Cut20, Cut50) and 
in particular, it largely outperforms Quadisc on the Cut dataset. On 
the other datasets, C4.5 ranks on average positions. 

In the application we considered C4.5 achieves the best error 
rates for both feature sets, while k-NN ranks in the second position. 
Quadisc assesses significantly worse performance, similar to that of 
the other classifiers for the CH feature set and drastically lower for 
the H1 H2 one. The resu 

5 CONCLUSION 

We have presented an application of machine learning and 
statistics to the problem of recognizing surface cracks on metallic 
pieces. In order to learn from the images of the pieces, we have 
identified a set of visual features for characterizing each image. 
One of these features, the average gradient of luminosity, is 
computed on the image itself, while the others are computed on 
transformed versions of the image obtained with the Hough 
transform (HT) and the Correlated Hough transform (CHT). We 
use these features because they have been expressively designed 
for the recognition of straight lines and rectilinear shapes. 

In order to test the effectiveness of these various features on 
classification, we have considered two different sets, one 
containing features from the Hough and the Correlated Hough 
space, and another one containing features from the Hough space 
only. 

Various machine learning and statistical techniques have been 
applied to the problem. As regards machine learning, we have 
employed an attribute value learner, C4.5, and a neural network 
trainer, NeuralWare Predict. As regards statistical techniques, we 
have employed linear, logistic and quadratic discriminants. 

The results of the experiments show that, of the two feature sets, 
the one containing the CHT leads to more accurate classifiers for 
all learning methods apart from Logdisc and Quadisc, thus 
confirming the usefulness of highly specialized operators for 
Computer Vision. 



Among all systems, C4.5 had a performance significantly higher 
than the other systems on the CH dataset, while on the H1 H2 
dataset it was significantly higher than Discrim and Quadisc. 

 
These results are not easy to explain It is not easy to explain this 

behaviour C4.5 provided a very good performance. This is 
probably due to spread in the attribute values, especially for the 
Defect class, that requires the adaptiveness of machine learning 
tools. 
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