Algorithms for Efficiently and Effectively Using Background
Knowledge inTerti us

Peter Flach Valentina Maraldi Fabrizio Riguzzi
!Department of computer science, University of Bristol,
Woodland Road, Bristol BS8 1UB, United Kingdom,
peter.flach@ristol.ac. uk
2DEIS, Universi di Bologna,

Viale Risorgimento 2, 40136 Bologna, Italy,
val enti na. mar al di @t udi o. uni bo. it
3Dipartimento di Ingegneria, Univeraitdi Ferrara,

Via Saragat 1, 44100 Ferrara, Italy,
friguzzi@ng.unife.it

SOMMARIO/ ABSTRACT and a new confirmation measure that satisfies all four ax-
ioms. It also proposes a learning systefer ti us for

Ter ti us is an Inductive Logic Programming system that performing confirmatory induction with the new measure
performs confirmatory induction, i.e., it looks for the in the domain of Inductive Logic Programming (ILP in the
clauses that have the highest value of a confirmation evatollowing). In other words, the data can be represented
uation function. In this setting, background knowledgeusing multiple relations and the rules are first-order logic
is very useful because it can improve the reliability ofclauses.

the evaluation function, aSSigning minimal confirmation In order to compute its confirmation measure,

to clauses that are implied by the background knowledggerti us needs to populate two contingency tables
and increasing the confirmation of the remaining clausegor each clause, one for observed values and one for
We propose the algorithnigackgroundlandBackground2 expected values. When computing these tafllest i us

that look for clauses in the background that imply thecan exploit background knowledge in order to improve the
clause under evaluation Ber t i us. Both are based on reliability of the evaluation function, assigning minimal

a simplified implication test that is correct with respect toconfirmation to clauses that are implied by the background
f-subsumption but not complete. The implication test isknowledge (they have very low novelty) and increasing
not complete because we want to keep the run time inge confirmation of the remaining clauses.

side acceptable bounds. We compBiackgroundlwith In this paper we propose two algorithnBackgroundl
Backgroundn two datasets. The results show tBatk- andBackground2that allow the exploitation of the back-
ground2is more efficient 'FharBackgroundl Moreover, ground knowledge byfer ti us. They are both based on
we also present the algorithRreprocesghat infers new g implication test between two clauses that is simpler than
clauses from the background knowledge in order to exploip_s;hsumption. The simplification was obtained by giving
it as much as possible. The algorithm modifies the consgyp the completeness of the test (but not the correctness),
quence finding algorithm proposed by Inoue by reducingns obtaining a fast approximate implication algorithm

its execution time while giving up completeness. that could be easily implemented in C and interfaced with
the current system, also written in C.
1 Introduction Moreover, we extendederti us also with the algo-

rithm Preprocesshat completes the background knowl-

Confirmatory induction is an important task of Knowledge €dge with clauses not present in it but implied by it. The
Discovery in Databases. It consists in finding theules ~ added clauses can then be used during learning for improv-
of the formH «— B most “confirmed” by the data, i.e., ing the reliability of the confirmation measurf@teprocess
with the highest value of a confirmation measure. [6] pro-modifies the consequence finding algorithm proposed by
poses three axioms that a confirmation measure should] in order to reduce the execution time while giving up
obey. Various confirmation measures have been proposegompleteness.
The simplest one is weighted relative accuracy. In general, Algorithms Backgroundland Backgroundzhave been
a confirmation measure combines the novelty [3] of a rulethoroughly tested on a number of datasets in order to check
i.e. the unexpectedness of a rule, and its satisfaction [3}heir correctness and speed. The experiments show that
i.e. the fraction of expected counter-instances that are ndackgroundzhas a better scalability thasackgroundl
observed. Also Preprocessas been tested.

[3] proposes a new axiom to be added to those of [6] The paper is organized as follows. In section 2 we

present some preliminary notions regarding confirmatoryVe can build a contingency table where the observed fre-

induction, Tert i us and the use of background knowl- quencies are substituted by the expected frequencies. We
edge inTerti us. In section 3 we illustrate our three can now define the observed and expected probabilities of
algorithms: Background1 Background2and Preprocess counter-instances:
Section 4 describes the results of the various experiments

: . g
that have been performed, while section 5 presents the con- PEp = %
clusions and some directions for future works.

, re. = HHB
2 Tertius HB N

2.1 Confirmatory Induction and the marginal probabilities

The confirmatory induction task is a specific problem of Di = %

Knowledge Discovery in Databases. In the domain of ILP

it can be formalized in this way: The three axioms that a confirmation measure should sat-
Given: isfy according to [6] are

* aset of programs in first-order logie, Al the confirmation should be Ojf7, = 755

e a set of ground facts, or evidence (E),) . : .
g) A2 the confirmation should monotonically decrease with

e a confirmation functiore(E, C) that, given a clause P, all other parameters remaining the same

C and the evidencé’, returns a real number.
A3 the confirmation should monotonically increase with

Find: pg (or pg), all other parameters remaining the same.

e then most confirmed clauses. The fourth axiom added by [3] is

Terti us [3] is a top-down rule discovery system that
solves the confirmatory induction task in the ILP domain. A4 two rulesH — B andB < H should get equal
SpecificallyTer t i us finds rules of the formv(H — B) confirmation only if they have the same number of
from the dataset, wherH and B are formulas with some counter-instances
free variables and(-) denotes the universal closure over

the free variables. We will omit the quantifier in the fol- " Order to defindfer ti us’s confirmation measure (sim-

ply confirmation from now on), we also define the value

lowing. H is called theheadof the rule and it is a dis- ' .
junction of literals, whileB is called thebodyof the rule &~ that is a measure of the strength of the dependency be-
tweenH andB

and it is a conjunction of literals. The most important as-
pect of the confirmatory induction task is the definition of
the confirmationfunction that measures how much a rule
is confirmed by the evidence. [6] proposes three axioms
that a confirmation measure should obey. [3] adds to the
a fourth axiom. The confirmation measureTdrti us
satisfies all four axioms.

In order to express the confirmation axioms, we nee
two values: theexpected probabilityand theobserved

o2
@2:(”HB”HB nyE"HEE)
ngNgnNBNg

B2 is obtained from Pearson’s statistias? by dividing

for N. ®2 ranges from 0O (total independence) to 1 (total
éjependence). The confirmation is obtained by finding the
minimum @2 of ®> by keeping constant only the ob-

probability of the counter-instances of the rule. We Con_served and. expgctedQ freguep cy of counter—lngtances and
the population size.®% , is given by the following for-

sider a sample oV grounding substitutiong of H «— B, mula:
and we build a contingency table as Table 1. Specifically, '
nyp denotes the number of grounding substitutions that
satisfy both head and body of the rule; similarly; , de-

notes the number of grounding substitutions that satisfy

the body and falsify the head, also referred t@asnter- Whenpz; = 0 andng,z = 0 we assumebz, = 0.
instancesf the rule. In Table 1 we have also the one-way®; ., being the square root @b2. , ranges from -1 to

d =+ /@2 — "HB _PHB
HB —
T — "HB

marginalsn;, wheren; denotes the number of grounding +1. &5, = 0 iff pzp = wﬁBHgAl). Opmp = 1iff

substitution that satisfy. If we assume the null hypoth- pz. = 0 andpz = pg = 0.5 anddgz, = —1 iff

esis of complete independencefand B, the expected p, = VT Ingeneralz , increases with decreasing

frequency of counter-instances is given by: number of observed counter-instances and increasing num-
ngng ber of expected counter-instances (A2-A3). Finally, A4 is

FaB = 7N satisfied sinc&@; ; is not symmetric inif andB.

Table 1: A contingency table. Table 3: Multi-way contingency table over the dataset.

Body Body
Head B B B, /6 B1/14
E ngp ngg | N Head By By | By B
H| 4 0] 3 4|11
npg ng N
13 7 20
Table 2: Multi-way Contingency table.
Bodyl,Body2 Table 4: Contingency table at step 1.
31/7“317 Bl/anli BOdy
Head Bs B B> B, B1/6 Bi/14
E NHB, By NyB, B, NyBIB, NyBE; ny Head BQ B2 B2 B2
H | "gpp, "EpB; | "AB B, "HEB | "I H|1 1|1 119
n5, ng; N H|l1 1|1 1[11
13 7 20

2.2 Background Knowledge in Tertius

Section 2.1 describes hoWer t i us calculates the con- the cells are assigned value 1. The next step of the algo-
firmation of a rule. In this measure, all the literals of the1thm is to adjust the value of each cells in order to fit the

body of a rule are considered together by building a contin®n€-way marginals that are taken from contingency Table

gency table with two dimensions. In order to incorporate3- 1he first marginal that we want to fit is the one finto

background knowledge, we consider all the literals on theit!iS Purpose, we multiply the first row foy4 = 2.25 and
own and not as a unique element. the second row foill/4 = 2.75 obtaining contingency

Consider for example the rull — B, By. For this Table 5. Then, we consider the liter®; and, after fit-
rule we have to build the multiway contingency table thattnd its one-way marginal we obtain Table 6. The last step
is shown in table 2. is the one that fits the marginal a8, obtaining Table 7.

As stated in Section 2.1, for the evaluation of confir-NOW’ if we cycle again over the dimensions, we obtain no

mation we need two values, the observed frequency ang1@n9€ in the table: we have reached a fix point. So it is

the expected frequency of counter-instances. The observ&g_'Ongh to fit the marginals for each dimension once to ob-

frequency of counter-instances is obtained from the mulgi@" the expgcted frequencies. The expected frequency of
he counter-instances for the rule that we want to evaluate

way contingency table: it is represented by the quantit [now present in the cell correspondinaf B: B
nﬁBle . p p gﬁh 1, D2-

The expected frequency of counter-instance is the fre- \ye want to exploit the background knowledge in order
quency of counter-instances that we would get in the hygg jmprove the accuracy of the confirmation of the rules.
pothesis of complete independence among the literals, i.6zor example, if we have the rutg B, < Bi) in the back-
in the case that/, B, and B, are independent of each ground knowledge, we know that there will be no substi-
other. tutions for whichB; is true andB, false. If we trust the

To compute the expected frequency we use an iterativgackground knowledge more than the evidence, we can set
algorithm: we build a contingency table with the correct

dimensions and we initialize each cell with the value 1.

Then we take the one-way marginals from the observeq,able 5. Contingency table after fitting the one-way
contingency table and then iteratively change the cell val- e
ues in order to fit these marginals. At the end of the fittingmargmaII ONA.
phase, in the cell correspondingb B;, B, we have the

expected frequency that we were looking for. The follow-

ing example shows the behavior of the algorithm.

Body
B, /6 Bi/14
Head| B, By | By Bs

H | 225 225|225 225| 9

Example 2.1. Suppose we want to evaluate the rile— Tl27 275275 275 | 11
By A Bs. and suppose that Table 3 is the table of the ob-
served frequencies built over the dataset. The first step of 13 7 20

the algorithm is to build contingency Table 4 in which all

Table 6: Contingency table after fitting the marginall®n Table 8: Contingency table that incorporate the back-

Body ground knowledge at step 1.
B1/6 B1/14 BOdyﬁ
Head| B By | By B, Bi/6 | Bi/14
H 135 135|315 315/ 9 Head| By By | B, DBs
H | 165 165|385 3.85 |11 E 1 0 1 1 9
13 7 20 H 1 0 1 1 11
13 7 20
Table 7: Contingency table after fitting the marginal®n
Body Table 9: Contingency table that incorporate the back-
B,/6 B;/14 ground knowledge after the first iteration.
Head B Big Bs E BOdyﬁ
Bi/6 | Bi/14

H | 1755 0.945 | 4.095 2205 | 9
H | 2.145 1.155 | 5.005 2.695 | 11

13 7 20

Head| B, B, By By

H127 0 (315 315| 9
H |33 0 |38 385 |11

13 7 20

to 0 the cells of the observed contingency table associated
to B, B,. This is equivalent to considering the instances
that are not consistent with the background knowledge as The second modification is necessary because with zeros
noise in the data. Moreover, we can sef flso the cells of in the initial table we do not reach a fix point anymore after
the expected contingency table associate®#i®, since fitting over all the dimensions. After a first iteration over
we do not expect any substitution to satigfy andB,. By all the dimensions is performed, the expected marginals
setting some of the cells of the expected contingency tabl@ould not be equal to the observed marginals and a sec-
to 0, we change the values of the expected probabilities?nd iteration would further reduce the differences between
those of the counter-instances of clauses implied by ththem. Therefore, we iterate over all the dimensions until
background go t® while those of the counter-instances the maximum of the absolute value of the differences be-
of the other clauses built with the same literals increaseiween the expected marginals and the observed marginals
in order to fit the marginals. This leads to a confirmationfalls below a threshold defined by the user.
of 0 for the clauses implied by the background knowledge Inthe case of example 2.1, after the first iteration over all
(whenmz, = 0 andpg, = 0 the confirmation is as- the dimensions we get contingency table 9. After a number
sumed to be) and to a higher confirmation for the other of iterations we get contingency table 10. Supposing the
clauses built with the same literals. Thus, we increase ththreshold is 0.21, this table is the final table because the
confirmation difference between clauses and we gain mor@aximum difference is the one relative & that is 0.2.
precise information. As you can see, the number of expected counter-instances
In order to compute the expected frequency consideringf the clauses not implied by, « Bj, such asH «
the background knowledge, we modify the previous algoB1, Bz, is increased.
rithm in two ways: first, we add an initial step before the [1] proposed an approach for taking into account back-
phase of iterative fitting and, second, we repeat the iterati ground knowledge iffer t i us by interfacing it with Pro-
fitting phase until the absolute differences between the eX0g. In particular, in this approach, each cell of the con-
pected and observed marginals fall below a certain thresiingency table is tested for implication against the back-
old. In the initial step we set toall the cells corresponding ground knowledge by asking the appropriate Prolog query.
to counter-instances of clauses implied by the background.he problem with this approach is that the test of implica-
For example, if we have the rut§ B, — B;) in the back- tion with Prolog can be slow.
ground and we are considering the rulg? — By A Bs),
we can set td) the two cellsH, B;, B, and H, By, B,
of the initial expected contingency table. In fact, this
would be exquivalent to setting to 0 the number of counterg 1 Implication Algorithms
instances of the clausd$, «— B, H andBy, H «— Bj.
In the case of example 2.1, the initial contingency table oin this section we describe two algorithms that look in
the expected frequencies is Table 8. the background knowledge for a rule that implies the rule

3 Algorithms

Table 10: Contingency table that incorporate the back- if-for every Iltedrgl (:fC thetr)e l's a C:ltgral D with the
ground knowledge at the final step. same predicate Ssymbol an S’@"“?”’ i
Body for all couples(Ly, L) of literals inC"

B, /6 Bi/14 cons_ider the coupléM;, M) formed by the

Head| B, B, | B, B, literals of D that correspond t0L,, Ls),
for all couples of arguments ¢f., L») that

H|27 0 [314 316| 9 are identical,

H |33 0 |38 38611 if the corresponding arguments of
(M., My) are differenthen,

13 7 20 return failure.

return success.
else returnfailure.

)

for every cell of the contingency table, generate th

corresponding clausb, Figure 2: Thesimplified subsumption test

for every ruleC of the background knowledge:
verify if C implies D using the simplified

subsumption test, first because it does not perform a separate search in the
if so, set td) the corresponding cell of the background for every cell of the contingency table. Rather,
contingency table anelxit from the it considers the set atomsD’ involved in a contingency
inner cycle. table (i.e. it considers the set of literals corresponding t
a cell stripped of their signs). Then, for each clause
Figure 1: AlgorithmBackgroundl1 the background, it removes the signs of the literals as well,

obtainingC’, and it tests whethet” implies D’ using the
simplified subsumption testvhen it finds a claus€” im-
found byTer ti us. plying D’, it assigns to the atoms d’ the opposite of
The first algorithm,Backgroundl consider each cell the signs of the corresponding literals@h The assign-
of the contingency table in turn and generates the clausment of signs determines which cells have to be séx to
D for which that cell represent the number of counter-Backgroundds shown in Figure 3.
instances. For example, cell, B, B, corresponds to From the logic point of view the two algorithms are
clause{H, By, B> }. Then the algorithm looks in the back- equivalent, i.e., they set to zero the same number of cells
ground knowledge for a clauge that impliesD. To this in the contingency table. As a consequence of this they re-
purpose, it checks whethdp is implied by C for each turn the same set of rules. The difference between them is
clauseC of the background knowledge. In order to testin terms of computational complexity.
implication, we use a simplified version éfsubsumption. The algorithm Background2has a lower complexity
Note thatf-subsumption is correct but not complete with than Background1 In particular, there is no exponential
respect to implication: if &' 6-subsumesD thenC' im- term because we perform only one query to the background
plies D but the converse is not true. The test we employ isknowledge. Therefore, the complexityiXq x m?) where
correct but not complete with respectitgsubsumption: if 1 is the number of literals of the rule we are evaluating and
it answers yes the@' f-subsumesD (and thusC' implies ¢ is the number of rules in the background knowledge.
D) butifitanswers na' may stillf-subsumes (andimply) For example, suppose th@erti us found the rule
D. D = Y(H — B; A By). The set of atomsD’ is
Specifically, algorithnBackgroundis composed by the D’ = {H, B;, B,}. Suppose also that we have the clause
steps described in Figure 1. Tkemplified subsumption C = V(B, «— B;) in the background knowledge. Clause
testbetween two clauses and D is shown in Figure 2. C'is{By, B>}. ThusC’ implies D’ and we can set some
Now, we consider the computational complexity of of the cells of the contingency table fér to 0. We should
Backgroundl The first step oBackgroundlis the gen- set to0 all the cells corresponding to the sign combination
eration of the sign combination to be tested, which im-{B;, B>}, i.e.{H, By, By} and{H, By, B> }.
poses the repetition of the te8t" times, wherem is As stated before, the two algorithms use an implication
the number of literals of the rule that we are evaluatingtest that is not complete. However, we can say that there is
The next step is theimplified subsumption tesivhich a particular class of problems where this implication test i
has a complexity proportional t0(¢ x m?) wherem is complete. In our test, for each atom of the rule of the back-
the number of literals of the rule angdis the number of ground we look for it in the clause found Bgr t i us. In
rules in the background knowledge. Summarizing, we caparticular, this search stops at the first failure. This iagl
say that the complexity of the algorithBackgroundlis that the implication test is complete only if we consider
O(2™ x g x m?). rules where each predicate symbol appears at most once
The second algorithmBackground? differs from the because, in this way, we have only one possibility to try

generate clausP’ by removing the signs of literals
from clauseD,
for each clauseC in the background knowledge:
generate claus€’ by removing the signs
of literals fromC,
use thesimplified subsumption tekt see
whetherC’ implies D',
if so, set td) the corresponding cells in
the contingency table.

The rules that compose the background knowledge are
obtained by startinger t i us with an empty background
knowledge and taking the most confirmed rules.

The first result that we show is on tl&@stwestdataset
where we fix the maximum number of variables in the rules
to 2 and of literals in the body td, and we analyze the
behavior of the two algorithms by varying the number of
rules in the background knowledge franto 500. We can
see the result of this experiment in Figure 5. The x-axis

Graphic on the Eastwest dataset for 4 literals and 2 variables

— Background1
—— Background2

Figure 3: AlgorithmBackground2 250

for i := 1 to number_of_rules — 1 do
Cur := Cj
for j := i+ 1to number_of rules do
if Cur and C; can be resolvethen
Cur := resolve(Cur, Cj)
output C'ur

200

[
@
=)

e
o
S}

Elapsed time (seconds)

Figure 4: AlgorithmPreprocess

50

the match between the atom of the background rule and
the atom of the rule found bfer ti us. - I I IR

Number of rules in the background knowledge

3.2 Preprocessing Figure 5: Response times d@ackgroundland Back-

ground2on theEastwestdataset, with 2 maximum vari-
ables and 4 maximum literals, as a function of the number
of rules in the background.

In this section we describe the algoritHPneprocesghat,
from an initial background knowledge, infers clauses
which are theorems of it. The importance of this algo-

rithm is that the more rules in the background knowledgemc the graph in Figure 5 represents the number of rules in

are present the more cells in the contingency table will b?he background knowledge, while the y-axis represents the

Selt’tr(()e().rocesés insoired by the conseauence findin Con_time of response of the algorithms. We can see that the per-
P >P y q 9 formance ofBackground2are better than the performance

cept that was defined by Lee [5] and recently extended t%f Background1

ILP by Inoue in [4]. In our algorithm we generate new . .

. : o Another experiment on thEastwestataset is done b
rules by applying the resolution principle [7] to couples Ofincreasing thg maximum number of variables3tand ofy
clauses. The algorithrRreprocesss shown in Figure 4. . . :

o : iterals to5. As in the previous experiment, we analyze the
Let us now see an example of application of our algorltthehavior of the two zfl orithms bp varving the nun{ber of
suppose we have the rulda(X) «— b(X), b(X) « 9 y varying

¢(X)} in the background knowledge, our algorithm gener-rUIeS in the background _knowledge frirto .15' F|gure_
ates the ruleu(X) — c(X) that is a theorem of the initial 6 shows the results of this experiment. As in the previous

theory. experiment, in the x-axis we have the number of rules in
the background knowledge and in the y-axis we have the

response time of the algorithms. By increasing the search
space we can observe a general increase of the response
time but the performance @ackground2s again better
In this section we describe some experiments that compatban that oBackgroundl
the performance dBackgroundlandBackground2 Now, we show the results of an experiment onlthga-

We have used two standard datasets. The first is thgenesislataset using a search space limited to horn-clauses
Eastwestdataset, where we have 20 instances of trainend with a maximum number of variablesb&nd a max-
and we want to predict their direction on the basis of theiimum number of literals oft. As in the previous exper-
length, the shape of their cars, etc. The second iMia- iments, we vary the number of rules in the background
genesiglataset, where we have 188 instances of moleculdesnowledge from) to 15. Figure 7 shows the result of this
and we want to predict their mutagenicity on the basis oexperiment. The search space was limited to horn-clauses
the atoms and bonds that are part of it. in order to keep the response time low. The x-axis and y-

4 Experiments

Graphic on the Eastwest dataset for 5 literals and 3 variables

420 T T

400 -

360

3

®

S
T

Elapsed time (seconds)
8
S
T

300

280

240 =———
0

—— Backgroundl
—— Background2

5 10
Number of rules in the background knowledge

15

axis have the same meaning as before. In general, due to
the dimension of the dataset, the response time is greater
that the one on thEastwestataset, but the relative behav-
ior of the two algorithms remains unchanged.

In the next experiment we analyze the behavidBatk-
groundlandBackgroundZn relation to the search space.
This experiment is done on tlgastwestlataset and uses,
for the two algorithms, a set @0 rules in the background
knowledge. The maximum number of variablestiand
the maximum number of literals vary frointo 8. The re-
sult is shown in Figure 8. In the x-axis of this graph we

Graphic on the Eastwest dataset for 4 variables and 20 rules in the background knowledge

2500 T T T T
—— Background1
—— Background2

2000

1500

Figure 6: Response times dackgroundland Back-
ground2on the Eastwestdataset, with 3 maximum vari-
ables and 5 maximum literals, as a function of the number

Elapsed time (seconds)

1000

of rules in the background.

1400 T

Graphic on the Mutagenesis dataset for 4 literals and 2 variables
T T T T T

1200

1000

600

Elapsed time (seconds)

400

200

— Background1
— Background2

I
0 2 4 6 8 10 12 14
Number of rules in the background knowledge

Figure 7: Response times dackgroundland Back-

16 18 20

500~

-

Number of literals

Figure 8: Response times ddackgroundland Back-
ground2on the Eastwestdataset, with 4 maximum vari-
ables and 20 rules in the background, as a function of the
maximum number of literals.

have the maximum number of literals of the search space
while in the y-axis we have the response time of the algo-
rithms. In particular, we can see that, for a low number of
literals in the search space, the performance of the two al-
gorithms are comparable, but, when the number of literals
increasesBackgroundlincreases its response time more
thanBackground2

After this set of experiments, we can say that, for a lim-
ited number of rules in the background knowledge and for
a small search space, the performance of the two algo-
rithms are similar. However, if we increase the number of
rules in the background knowledge or the number of liter-
als of the search space, the response tingamkground1
increases more than that Background2

Now, we want to show the percentage of cells of the con-
tingency tables that are set to zero due to the background
knowledge. In particular, the two algorithms set to zero

ground2 on the Mutagenesisdataset, with 2 maximum the same number of cells. In the following table we repre-
variables and 4 maximum literals, as a function of the numsent an experimental result on the Eastwest dataset with a

ber of rules in the background.

maximum number of literal o8 and a maximum number

of variables of2. In particular, Table 11 presents the rela-
tion between the percentage of the total number of cells of
the contingency tables that are set to zero and the number
of rules of the background knowledge. In the following

Table 11: Percentages of cells set to 0 for 3 maximum Iit-b(d):-h(g).

erals and 2 maximum variables. .
Nrules| 2 | 4 | 6 | 8 | 10 | 5 Conclusions and Future Works

Pcells| .21% | .42% | .63% | .84% | 1.06%|

We have presented three algorithms that can be used in or-
der to improve the handling of background knowledge by
the ILP systenTer t i us. BackgroundfandBackground?2

Table 12: Percentages of cells set to 0 for 4 maximum lit€xPloit background during learning for setting to 0 some of

erals and 3 maximum variables. the.cellr_s.of the conting.ency tab!es. They.are both based on
Nrues| 1 | 5 | 10 | 15 | 20 | a simplified subsumption algorithm that is correct but not
Pcells| .009% | .04% | .28% | .32% | .73% | complete. The experiments show that, as was expected,

Background2s much more efficient thaackground1
The last algorithm performs a preprocessing of the back-

ground knowledge by adding to it some of the clauses that
table we represent another experimental result on the Eastre its logical consequences. In this way more cells of the
west dataset with a maximum number of literaldond contingency tables can be set to 0 thus improving the reli-
a maximum number of variables 8f As in the previous ability of the confirmation function.
experiment, Table 12 presents the relation between the per- An interesting line of future research is to integrate in
centage of cells set to zero and the number of rules in thBackground2the algorithm proposed in [2] for perform-
background knowledge. Now, we want to show some exing #-subsumption. Such an algorithm takes as input two
amples of howPreprocesavorks. In the first experiment clauses” and D and returns the set of all the substitutions

we consider this initial background knowledge: 0 suchthatCd C D. This setis useful in our case because,
1. a(X,Y):-c(Y),b(X. for each substitution, a different set of cells of the contin
2. b(X):-d(X). gency table can be set to 0. In fact, different substitutions
3. d(X):-h(X). may map the same literal @ to different literals ofD,

The result of this experiment is the following: thus leading to different corresponding cells of the table.
4. a(X Y):-c(Y),d(X).

5. a(X Y):-c(Y), h(X). REFERENCES

6. b(X):-h(X).

Let us follow the behavior of the algorithm. It starts from [1] T. S. Dahl. Background knowledge in the tertius first
rule 1 and it tries to resolve it with the following rules. order knowledge discovery tool.Technical Report
So, rule4 is obtained by the resolution of rulewith rule CSTR-99-006, Department of Computer Science, Uni-
2. Then, rule4 is resolved with rule3 obtaining rule5. versity of Bristo] March 1999.

Finally, rule6 is obtained by resolving rul2 with rule 3.

Another experiment is done with a background knowl-
edge where some rules have constants. We consider this
background knowledge:

[2] Stefano Ferilli, Nicola Di Mauro, Teresa Maria Al-
tomare Basile, and Floriana Esposito. A complete sub-
sumption algorithm. IRAI*IA 2003: Advances in Arti-
ficial Intelligence, 8th Congress of the Italian Associ-

;‘ E(X, Y) :d' c(X).b(X). ation for Artificial Intelligence, Pisa, Italy, September
2 dE ‘fg - hg % : 23-26, 2003, Proceedingpages 1—13, 2003.

The result of the experiment is: [3] Peter A. Flach and Nicolas Lachiche. Confirmation-
4. a(g,X):-c(g),d(9). guided discovery of first-order rules with tertiusla-

5. a(g,X):-c(g),h(g). chine Learning42:61-95, January 2001.

6. b(g):-h(g). . .)
Rule 4 is obtained by resolving rulgé with rule 2. Then, [4] Katsumi Inoue. Induction as consequence findg-

the algorithm obtains rul® resolving ruled with rule 3. chine Learning55:109-135, May 2004.

FinaIIy, rule6 is the result of the resolution of ruwith [5] Char-Tung Lee.A Comp|eteness theorem and a com-

rule 3. puter program for finding theorems derivable from
In the last experiment we consider a background knowl- given axiomsPhD thesis, 1967.

edge where all the rules have all their variables insteediat

to constants: [6] Gregory Piatetsky-Shapiro. Discovery, analysis, and

DD e e, et o g e, iy Dy
2. b(d):-d(g). :
3. d(g):-h(g). [7] J. A. Robinson. A machine-oriented logic based on the

The only rule that can be obtained is the one from the res- resolution principleJ. ACM 12(1):23-41, 1965.
olution of rule2 with rule 3:

