
Algorithms for Efficiently and Effectively Using Background
Knowledge inTertius

Peter Flach1 Valentina Maraldi2 Fabrizio Riguzzi3
1Department of computer science, University of Bristol,

Woodland Road, Bristol BS8 1UB, United Kingdom,
peter.flach@bristol.ac.uk

2DEIS, Universit̀a di Bologna,
Viale Risorgimento 2, 40136 Bologna, Italy,

valentina.maraldi@studio.unibo.it
3Dipartimento di Ingegneria, Università di Ferrara,

Via Saragat 1, 44100 Ferrara, Italy,
friguzzi@ing.unife.it

SOMMARIO/ ABSTRACT

Tertius is an Inductive Logic Programming system that
performs confirmatory induction, i.e., it looks for then
clauses that have the highest value of a confirmation eval-
uation function. In this setting, background knowledge
is very useful because it can improve the reliability of
the evaluation function, assigning minimal confirmation
to clauses that are implied by the background knowledge
and increasing the confirmation of the remaining clauses.
We propose the algorithmsBackground1andBackground2
that look for clauses in the background that imply the
clause under evaluation byTertius. Both are based on
a simplified implication test that is correct with respect to
θ-subsumption but not complete. The implication test is
not complete because we want to keep the run time in-
side acceptable bounds. We compareBackground1with
Background2on two datasets. The results show thatBack-
ground2 is more efficient thanBackground1. Moreover,
we also present the algorithmPreprocessthat infers new
clauses from the background knowledge in order to exploit
it as much as possible. The algorithm modifies the conse-
quence finding algorithm proposed by Inoue by reducing
its execution time while giving up completeness.

1 Introduction

Confirmatory induction is an important task of Knowledge
Discovery in Databases. It consists in finding then rules
of the formH ← B most “confirmed” by the data, i.e.,
with the highest value of a confirmation measure. [6] pro-
poses three axioms that a confirmation measure should
obey. Various confirmation measures have been proposed.
The simplest one is weighted relative accuracy. In general,
a confirmation measure combines the novelty [3] of a rule,
i.e. the unexpectedness of a rule, and its satisfaction [3],
i.e. the fraction of expected counter-instances that are not
observed.

[3] proposes a new axiom to be added to those of [6]

and a new confirmation measure that satisfies all four ax-
ioms. It also proposes a learning system,Tertius for
performing confirmatory induction with the new measure
in the domain of Inductive Logic Programming (ILP in the
following). In other words, the data can be represented
using multiple relations and the rules are first-order logic
clauses.

In order to compute its confirmation measure,
Tertius needs to populate two contingency tables
for each clause, one for observed values and one for
expected values. When computing these tables,Tertius
can exploit background knowledge in order to improve the
reliability of the evaluation function, assigning minimal
confirmation to clauses that are implied by the background
knowledge (they have very low novelty) and increasing
the confirmation of the remaining clauses.

In this paper we propose two algorithms,Background1
andBackground2, that allow the exploitation of the back-
ground knowledge byTertius. They are both based on
an implication test between two clauses that is simpler than
θ-subsumption. The simplification was obtained by giving
up the completeness of the test (but not the correctness),
thus obtaining a fast approximate implication algorithm
that could be easily implemented in C and interfaced with
the current system, also written in C.

Moreover, we extendedTertius also with the algo-
rithm Preprocessthat completes the background knowl-
edge with clauses not present in it but implied by it. The
added clauses can then be used during learning for improv-
ing the reliability of the confirmation measure.Preprocess
modifies the consequence finding algorithm proposed by
[4] in order to reduce the execution time while giving up
completeness.

Algorithms Background1and Background2have been
thoroughly tested on a number of datasets in order to check
their correctness and speed. The experiments show that
Background2has a better scalability thanBackground1.

Also Preprocesshas been tested.
The paper is organized as follows. In section 2 we

present some preliminary notions regarding confirmatory
induction,Tertius and the use of background knowl-
edge inTertius. In section 3 we illustrate our three
algorithms: Background1, Background2and Preprocess.
Section 4 describes the results of the various experiments
that have been performed, while section 5 presents the con-
clusions and some directions for future works.

2 Tertius

2.1 Confirmatory Induction

The confirmatory induction task is a specific problem of
Knowledge Discovery in Databases. In the domain of ILP
it can be formalized in this way:
Given:

• a set of programs in first-order logicP ,

• a set of ground facts, or evidence (E),

• a confirmation functionc(E,C) that, given a clause
C and the evidenceE, returns a real number.

Find:

• then most confirmed clauses.

Tertius [3] is a top-down rule discovery system that
solves the confirmatory induction task in the ILP domain.
Specifically,Tertius finds rules of the form∀(H ← B)
from the dataset, whereH andB are formulas with some
free variables and∀(·) denotes the universal closure over
the free variables. We will omit the quantifier in the fol-
lowing. H is called theheadof the rule and it is a dis-
junction of literals, whileB is called thebodyof the rule
and it is a conjunction of literals. The most important as-
pect of the confirmatory induction task is the definition of
the confirmationfunction that measures how much a rule
is confirmed by the evidence. [6] proposes three axioms
that a confirmation measure should obey. [3] adds to them
a fourth axiom. The confirmation measure ofTertius
satisfies all four axioms.

In order to express the confirmation axioms, we need
two values: theexpected probabilityand theobserved
probability of the counter-instances of the rule. We con-
sider a sample ofN grounding substitutionsθ of H ← B,
and we build a contingency table as Table 1. Specifically,
nHB denotes the number of grounding substitutions that
satisfy both head and body of the rule; similarly,nHB de-
notes the number of grounding substitutions that satisfy
the body and falsify the head, also referred to ascounter-
instancesof the rule. In Table 1 we have also the one-way
marginalsni, whereni denotes the number of grounding
substitution that satisfyi. If we assume the null hypoth-
esis of complete independence ofH andB, the expected
frequency of counter-instances is given by:

µHB =
nHnB

N

We can build a contingency table where the observed fre-
quencies are substituted by the expected frequencies. We
can now define the observed and expected probabilities of
counter-instances:

pHB =
nHB

N

πHB =
µHB

N

and the marginal probabilities

pi =
ni

N

The three axioms that a confirmation measure should sat-
isfy according to [6] are

A1 the confirmation should be 0 ifpHB = πHB

A2 the confirmation should monotonically decrease with
pHB , all other parameters remaining the same

A3 the confirmation should monotonically increase with
pH (or pB), all other parameters remaining the same.

The fourth axiom added by [3] is

A4 two rulesH ← B and B ← H should get equal
confirmation only if they have the same number of
counter-instances

In order to defineTertius’s confirmation measure (sim-
ply confirmation from now on), we also define the value
Φ2 that is a measure of the strength of the dependency be-
tweenH andB

Φ2 =
(nHBnHB − nHBnHB)2

nHnHnBnB

Φ2 is obtained from Pearson’s statisticsX2 by dividing
for N . Φ2 ranges from 0 (total independence) to 1 (total
dependence). The confirmation is obtained by finding the
minimum Φ2

HB
of Φ2 by keeping constant only the ob-

served and expected frequency of counter-instances and
the population size.Φ2

HB
is given by the following for-

mula:

ΦHB = ±
√

Φ2

HB
=

πHB − pHB√
πHB − πHB

When pHB = 0 and πHB = 0 we assumeΦHB = 0.
ΦHB , being the square root ofΦ2

HB
, ranges from -1 to

+1. ΦHB = 0 iff pHB = πHB (A1). ΦHB = 1 iff
pHB = 0 and pH = pB = 0.5 and ΦHB = −1 iff
pHB =

√
πHB . In generalΦHB increases with decreasing

number of observed counter-instances and increasing num-
ber of expected counter-instances (A2-A3). Finally, A4 is
satisfied sinceΦHB is not symmetric inH andB.

Table 1: A contingency table.
Body

Head B B

H nHB nHB nH

H nHB nHB nH

nB nB N

Table 2: Multi-way Contingency table.
Body1,Body2

B1/nB1
B1/n

B1

Head B2 B2 B2 B2

H nHB1B2
n

HB1B2
n

HB1B2
n

HB1B2
nH

H n
HB1B2

n
HB1B2

n
HB1B2

n
HB1B2

n
H

nB2
n

B2
N

2.2 Background Knowledge in Tertius

Section 2.1 describes howTertius calculates the con-
firmation of a rule. In this measure, all the literals of the
body of a rule are considered together by building a contin-
gency table with two dimensions. In order to incorporate
background knowledge, we consider all the literals on their
own and not as a unique element.

Consider for example the ruleH ← B1, B2. For this
rule we have to build the multiway contingency table that
is shown in table 2.

As stated in Section 2.1, for the evaluation of confir-
mation we need two values, the observed frequency and
the expected frequency of counter-instances. The observed
frequency of counter-instances is obtained from the multi-
way contingency table: it is represented by the quantity
nHB1B2

.
The expected frequency of counter-instance is the fre-

quency of counter-instances that we would get in the hy-
pothesis of complete independence among the literals, i.e.,
in the case thatH, B1 and B2 are independent of each
other.

To compute the expected frequency we use an iterative
algorithm: we build a contingency table with the correct
dimensions and we initialize each cell with the value 1.
Then we take the one-way marginals from the observed
contingency table and then iteratively change the cell val-
ues in order to fit these marginals. At the end of the fitting
phase, in the cell corresponding toH,B1, B2 we have the
expected frequency that we were looking for. The follow-
ing example shows the behavior of the algorithm.

Example 2.1. Suppose we want to evaluate the ruleH ←
B1 ∧ B2. and suppose that Table 3 is the table of the ob-
served frequencies built over the dataset. The first step of
the algorithm is to build contingency Table 4 in which all

Table 3: Multi-way contingency table over the dataset.
Body

B1/6 B1/14
Head B2 B2 B2 B2

H 2 0 4 3 9
H 4 0 3 4 11

13 7 20

Table 4: Contingency table at step 1.
Body

B1/6 B1/14
Head B2 B2 B2 B2

H 1 1 1 1 9
H 1 1 1 1 11

13 7 20

the cells are assigned value 1. The next step of the algo-
rithm is to adjust the value of each cells in order to fit the
one-way marginals that are taken from contingency Table
3. The first marginal that we want to fit is the one onH: to
this purpose, we multiply the first row for9/4 = 2.25 and
the second row for11/4 = 2.75 obtaining contingency
Table 5. Then, we consider the literalB1 and, after fit-
ting its one-way marginal we obtain Table 6. The last step
is the one that fits the marginal onB2 obtaining Table 7.
Now, if we cycle again over the dimensions, we obtain no
change in the table: we have reached a fix point. So it is
enough to fit the marginals for each dimension once to ob-
tain the expected frequencies. The expected frequency of
the counter-instances for the rule that we want to evaluate
is now present in the cell corresponding toH,B1, B2.

We want to exploit the background knowledge in order
to improve the accuracy of the confirmation of the rules.
For example, if we have the rule∀(B2 ← B1) in the back-
ground knowledge, we know that there will be no substi-
tutions for whichB1 is true andB2 false. If we trust the
background knowledge more than the evidence, we can set

Table 5: Contingency table after fitting the one-way
marginal onH.

Body
B1/6 B1/14

Head B2 B2 B2 B2

H 2.25 2.25 2.25 2.25 9
H 2.75 2.75 2.75 2.75 11

13 7 20

Table 6: Contingency table after fitting the marginal onB1.
Body

B1/6 B1/14
Head B2 B2 B2 B2

H 1.35 1.35 3.15 3.15 9
H 1.65 1.65 3.85 3.85 11

13 7 20

Table 7: Contingency table after fitting the marginal onB2.
Body

B1/6 B1/14
Head B2 B2 B2 B2

H 1.755 0.945 4.095 2.205 9
H 2.145 1.155 5.005 2.695 11

13 7 20

to 0 the cells of the observed contingency table associated
to B1B2. This is equivalent to considering the instances
that are not consistent with the background knowledge as
noise in the data. Moreover, we can set to0 also the cells of
the expected contingency table associated toB1B2, since
we do not expect any substitution to satisfyB1 andB2. By
setting some of the cells of the expected contingency table
to 0, we change the values of the expected probabilities:
those of the counter-instances of clauses implied by the
background go to0 while those of the counter-instances
of the other clauses built with the same literals increase,
in order to fit the marginals. This leads to a confirmation
of 0 for the clauses implied by the background knowledge
(when πHB = 0 and pHB = 0 the confirmation is as-
sumed to be0) and to a higher confirmation for the other
clauses built with the same literals. Thus, we increase the
confirmation difference between clauses and we gain more
precise information.

In order to compute the expected frequency considering
the background knowledge, we modify the previous algo-
rithm in two ways: first, we add an initial step before the
phase of iterative fitting and, second, we repeat the iterative
fitting phase until the absolute differences between the ex-
pected and observed marginals fall below a certain thresh-
old. In the initial step we set to0 all the cells corresponding
to counter-instances of clauses implied by the background.
For example, if we have the rule∀(B2 ← B1) in the back-
ground and we are considering the rule∀(H ← B1 ∧B2),
we can set to0 the two cellsH,B1, B2 and H,B1, B2

of the initial expected contingency table. In fact, this
would be exquivalent to setting to 0 the number of counter-
instances of the clausesB2 ← B1,H andB2,H ← B1.
In the case of example 2.1, the initial contingency table of
the expected frequencies is Table 8.

Table 8: Contingency table that incorporate the back-
ground knowledge at step 1.

Body
B1/6 B1/14

Head B2 B2 B2 B2

H 1 0 1 1 9
H 1 0 1 1 11

13 7 20

Table 9: Contingency table that incorporate the back-
ground knowledge after the first iteration.

Body
B1/6 B1/14

Head B2 B2 B2 B2

H 2.7 0 3.15 3.15 9
H 3.3 0 3.85 3.85 11

13 7 20

The second modification is necessary because with zeros
in the initial table we do not reach a fix point anymore after
fitting over all the dimensions. After a first iteration over
all the dimensions is performed, the expected marginals
would not be equal to the observed marginals and a sec-
ond iteration would further reduce the differences between
them. Therefore, we iterate over all the dimensions until
the maximum of the absolute value of the differences be-
tween the expected marginals and the observed marginals
falls below a threshold defined by the user.

In the case of example 2.1, after the first iteration over all
the dimensions we get contingency table 9. After a number
of iterations we get contingency table 10. Supposing the
threshold is 0.21, this table is the final table because the
maximum difference is the one relative toB2 that is 0.2.
As you can see, the number of expected counter-instances
of the clauses not implied byB2 ← B1, such asH ←
B1, B2, is increased.

[1] proposed an approach for taking into account back-
ground knowledge inTertius by interfacing it with Pro-
log. In particular, in this approach, each cell of the con-
tingency table is tested for implication against the back-
ground knowledge by asking the appropriate Prolog query.
The problem with this approach is that the test of implica-
tion with Prolog can be slow.

3 Algorithms

3.1 Implication Algorithms

In this section we describe two algorithms that look in
the background knowledge for a rule that implies the rule

Table 10: Contingency table that incorporate the back-
ground knowledge at the final step.

Body
B1/6 B1/14

Head B2 B2 B2 B2

H 2.7 0 3.14 3.16 9
H 3.3 0 3.84 3.86 11

13 7 20

for every cell of the contingency table, generate the
corresponding clauseD,
for every ruleC of the background knowledge:

verify if C impliesD using the simplified
subsumption test,

if so, set to0 the corresponding cell of the
contingency table andexit from the
inner cycle.

Figure 1: AlgorithmBackground1.

found byTertius.
The first algorithm,Background1, consider each cell

of the contingency table in turn and generates the clause
D for which that cell represent the number of counter-
instances. For example, cellH,B1, B2 corresponds to
clause{H,B1, B2}. Then the algorithm looks in the back-
ground knowledge for a clauseC that impliesD. To this
purpose, it checks whetherD is implied by C for each
clauseC of the background knowledge. In order to test
implication, we use a simplified version ofθ-subsumption.
Note thatθ-subsumption is correct but not complete with
respect to implication: if aC θ-subsumesD thenC im-
pliesD but the converse is not true. The test we employ is
correct but not complete with respect toθ-subsumption: if
it answers yes thenC θ-subsumesD (and thusC implies
D) but if it answers noC may stillθ-subsumes (and imply)
D.

Specifically, algorithmBackground1is composed by the
steps described in Figure 1. Thesimplified subsumption
testbetween two clausesC andD is shown in Figure 2.

Now, we consider the computational complexity of
Background1. The first step ofBackground1is the gen-
eration of the sign combination to be tested, which im-
poses the repetition of the test2m times, wherem is
the number of literals of the rule that we are evaluating.
The next step is thesimplified subsumption test, which
has a complexity proportional toO(q × m2) wherem is
the number of literals of the rule andq is the number of
rules in the background knowledge. Summarizing, we can
say that the complexity of the algorithmBackground1is
O(2m × q ×m2).

The second algorithm,Background2, differs from the

if for every literal ofC there is a literal inD with the
same predicate symbol and signthen,
for all couples(L1, L2) of literals inC:

consider the couple(M1,M2) formed by the
literals ofD that correspond to(L1, L2),

for all couples of arguments of(L1, L2) that
are identical,
if the corresponding arguments of

(M1,M2) are differentthen,
return failure.

return success.
else return failure.

Figure 2: Thesimplified subsumption test.

first because it does not perform a separate search in the
background for every cell of the contingency table. Rather,
it considers the set ofatomsD′ involved in a contingency
table (i.e. it considers the set of literals corresponding to
a cell stripped of their signs). Then, for each clauseC in
the background, it removes the signs of the literals as well,
obtainingC ′, and it tests whetherC ′ impliesD′ using the
simplified subsumption test. When it finds a clauseC ′ im-
plying D′, it assigns to the atoms ofD′ the opposite of
the signs of the corresponding literals inC. The assign-
ment of signs determines which cells have to be set to0.
Background2is shown in Figure 3.

From the logic point of view the two algorithms are
equivalent, i.e., they set to zero the same number of cells
in the contingency table. As a consequence of this they re-
turn the same set of rules. The difference between them is
in terms of computational complexity.

The algorithmBackground2has a lower complexity
thanBackground1. In particular, there is no exponential
term because we perform only one query to the background
knowledge. Therefore, the complexity isO(q×m2) where
m is the number of literals of the rule we are evaluating and
q is the number of rules in the background knowledge.

For example, suppose thatTertius found the rule
D = ∀(H ← B1 ∧ B2). The set of atomsD′ is
D′ = {H,B1, B2}. Suppose also that we have the clause
C = ∀(B2 ← B1) in the background knowledge. Clause
C ′ is {B1, B2}. ThusC ′ impliesD′ and we can set some
of the cells of the contingency table forD to 0. We should
set to0 all the cells corresponding to the sign combination
{B1, B2}, i.e. {H,B1, B2} and{H,B1, B2}.

As stated before, the two algorithms use an implication
test that is not complete. However, we can say that there is
a particular class of problems where this implication test is
complete. In our test, for each atom of the rule of the back-
ground we look for it in the clause found byTertius. In
particular, this search stops at the first failure. This implies
that the implication test is complete only if we consider
rules where each predicate symbol appears at most once
because, in this way, we have only one possibility to try

generate clauseD′ by removing the signs of literals
from clauseD,

for eachclauseC in the background knowledge:
generate clauseC ′ by removing the signs

of literals fromC,
use thesimplified subsumption testto see

whetherC ′ impliesD′,
if so, set to0 the corresponding cells in

the contingency table.

Figure 3: AlgorithmBackground2.

for i := 1 to number of rules− 1 do
Cur := Ci

for j := i + 1 to number of rules do
if Cur and Cj can be resolvedthen

Cur := resolve(Cur,Cj)
output Cur

Figure 4: AlgorithmPreprocess.

the match between the atom of the background rule and
the atom of the rule found byTertius.

3.2 Preprocessing

In this section we describe the algorithmPreprocessthat,
from an initial background knowledge, infers clauses
which are theorems of it. The importance of this algo-
rithm is that the more rules in the background knowledge
are present the more cells in the contingency table will be
set to0.

Preprocessis inspired by the consequence finding con-
cept that was defined by Lee [5] and recently extended to
ILP by Inoue in [4]. In our algorithm we generate new
rules by applying the resolution principle [7] to couples of
clauses. The algorithmPreprocessis shown in Figure 4.
Let us now see an example of application of our algorithm:
suppose we have the rules{a(X) ← b(X), b(X) ←
c(X)} in the background knowledge, our algorithm gener-
ates the rulea(X) ← c(X) that is a theorem of the initial
theory.

4 Experiments

In this section we describe some experiments that compare
the performance ofBackground1andBackground2.

We have used two standard datasets. The first is the
Eastwestdataset, where we have 20 instances of trains
and we want to predict their direction on the basis of their
length, the shape of their cars, etc. The second is theMuta-
genesisdataset, where we have 188 instances of molecules
and we want to predict their mutagenicity on the basis of
the atoms and bonds that are part of it.

The rules that compose the background knowledge are
obtained by startingTertius with an empty background
knowledge and taking the most confirmed rules.

The first result that we show is on theEastwestdataset
where we fix the maximum number of variables in the rules
to 2 and of literals in the body to4, and we analyze the
behavior of the two algorithms by varying the number of
rules in the background knowledge from0 to 500. We can
see the result of this experiment in Figure 5. The x-axis

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Number of rules in the background knowledge

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Graphic on the Eastwest dataset for 4 literals and 2 variables

Background1
Background2

Figure 5: Response times ofBackground1and Back-
ground2on theEastwestdataset, with 2 maximum vari-
ables and 4 maximum literals, as a function of the number
of rules in the background.

of the graph in Figure 5 represents the number of rules in
the background knowledge, while the y-axis represents the
time of response of the algorithms. We can see that the per-
formance ofBackground2are better than the performance
of Background1.

Another experiment on theEastwestdataset is done by
increasing the maximum number of variables to3 and of
literals to5. As in the previous experiment, we analyze the
behavior of the two algorithms by varying the number of
rules in the background knowledge from0 to 15. Figure
6 shows the results of this experiment. As in the previous
experiment, in the x-axis we have the number of rules in
the background knowledge and in the y-axis we have the
response time of the algorithms. By increasing the search
space we can observe a general increase of the response
time but the performance ofBackground2is again better
than that ofBackground1.

Now, we show the results of an experiment on theMuta-
genesisdataset using a search space limited to horn-clauses
and with a maximum number of variables of2 and a max-
imum number of literals of4. As in the previous exper-
iments, we vary the number of rules in the background
knowledge from0 to 15. Figure 7 shows the result of this
experiment. The search space was limited to horn-clauses
in order to keep the response time low. The x-axis and y-

0 5 10 15
240

260

280

300

320

340

360

380

400

420

Number of rules in the background knowledge

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Graphic on the Eastwest dataset for 5 literals and 3 variables

Background1
Background2

Figure 6: Response times ofBackground1and Back-
ground2on theEastwestdataset, with 3 maximum vari-
ables and 5 maximum literals, as a function of the number
of rules in the background.

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

Number of rules in the background knowledge

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Graphic on the Mutagenesis dataset for 4 literals and 2 variables

Background1
Background2

Figure 7: Response times ofBackground1and Back-
ground2 on the Mutagenesisdataset, with 2 maximum
variables and 4 maximum literals, as a function of the num-
ber of rules in the background.

axis have the same meaning as before. In general, due to
the dimension of the dataset, the response time is greater
that the one on theEastwestdataset, but the relative behav-
ior of the two algorithms remains unchanged.

In the next experiment we analyze the behavior ofBack-
ground1andBackground2in relation to the search space.
This experiment is done on theEastwestdataset and uses,
for the two algorithms, a set of20 rules in the background
knowledge. The maximum number of variables is4 and
the maximum number of literals vary from5 to 8. The re-
sult is shown in Figure 8. In the x-axis of this graph we

5 6 7 8
0

500

1000

1500

2000

2500
Graphic on the Eastwest dataset for 4 variables and 20 rules in the background knowledge

Number of literals

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Background1
Background2

Figure 8: Response times ofBackground1and Back-
ground2on theEastwestdataset, with 4 maximum vari-
ables and 20 rules in the background, as a function of the
maximum number of literals.

have the maximum number of literals of the search space
while in the y-axis we have the response time of the algo-
rithms. In particular, we can see that, for a low number of
literals in the search space, the performance of the two al-
gorithms are comparable, but, when the number of literals
increases,Background1increases its response time more
thanBackground2.

After this set of experiments, we can say that, for a lim-
ited number of rules in the background knowledge and for
a small search space, the performance of the two algo-
rithms are similar. However, if we increase the number of
rules in the background knowledge or the number of liter-
als of the search space, the response time ofBackground1
increases more than that ofBackground2.

Now, we want to show the percentage of cells of the con-
tingency tables that are set to zero due to the background
knowledge. In particular, the two algorithms set to zero
the same number of cells. In the following table we repre-
sent an experimental result on the Eastwest dataset with a
maximum number of literal of3 and a maximum number
of variables of2. In particular, Table 11 presents the rela-
tion between the percentage of the total number of cells of
the contingency tables that are set to zero and the number
of rules of the background knowledge. In the following

Table 11: Percentages of cells set to 0 for 3 maximum lit-
erals and 2 maximum variables.

N rules 2 4 6 8 10
P cells .21% .42% .63% .84% 1.06%

Table 12: Percentages of cells set to 0 for 4 maximum lit-
erals and 3 maximum variables.

N rules 1 5 10 15 20
P cells .009% .04% .28% .32% .73%

table we represent another experimental result on the East-
west dataset with a maximum number of literal of4 and
a maximum number of variables of3. As in the previous
experiment, Table 12 presents the relation between the per-
centage of cells set to zero and the number of rules in the
background knowledge. Now, we want to show some ex-
amples of howPreprocessworks. In the first experiment
we consider this initial background knowledge:
1. a(X,Y):-c(Y),b(X).
2. b(X):-d(X).
3. d(X):-h(X).
The result of this experiment is the following:
4. a(X,Y):-c(Y),d(X).
5. a(X,Y):-c(Y),h(X).
6. b(X):-h(X).
Let us follow the behavior of the algorithm. It starts from
rule 1 and it tries to resolve it with the following rules.
So, rule4 is obtained by the resolution of rule1 with rule
2. Then, rule4 is resolved with rule3 obtaining rule5.
Finally, rule6 is obtained by resolving rule2 with rule3.

Another experiment is done with a background knowl-
edge where some rules have constants. We consider this
background knowledge:
1. a(X,Y):-c(X),b(X).
2. b(g):-d(g).
3. d(X):-h(X).
The result of the experiment is:
4. a(g,X):-c(g),d(g).
5. a(g,X):-c(g),h(g).
6. b(g):-h(g).
Rule4 is obtained by resolving rule1 with rule 2. Then,
the algorithm obtains rule5 resolving rule4 with rule 3.
Finally, rule6 is the result of the resolution of rule2 with
rule3.

In the last experiment we consider a background knowl-
edge where all the rules have all their variables instantiated
to constants:
1. a(g,f):-c(f),b(g).
2. b(d):-d(g).
3. d(g):-h(g).
The only rule that can be obtained is the one from the res-
olution of rule2 with rule3:

b(d):-h(g).

5 Conclusions and Future Works

We have presented three algorithms that can be used in or-
der to improve the handling of background knowledge by
the ILP systemTertius. Background1andBackground2
exploit background during learning for setting to 0 some of
the cells of the contingency tables. They are both based on
a simplified subsumption algorithm that is correct but not
complete. The experiments show that, as was expected,
Background2is much more efficient thatBackground1.

The last algorithm performs a preprocessing of the back-
ground knowledge by adding to it some of the clauses that
are its logical consequences. In this way more cells of the
contingency tables can be set to 0 thus improving the reli-
ability of the confirmation function.

An interesting line of future research is to integrate in
Background2the algorithm proposed in [2] for perform-
ing θ-subsumption. Such an algorithm takes as input two
clausesC andD and returns the set of all the substitutions
θ such thatCθ ⊆ D. This set is useful in our case because,
for each substitution, a different set of cells of the contin-
gency table can be set to 0. In fact, different substitutions
may map the same literal ofC to different literals ofD,
thus leading to different corresponding cells of the table.

REFERENCES

[1] T. S. Dahl. Background knowledge in the tertius first
order knowledge discovery tool.Technical Report
CSTR-99-006, Department of Computer Science, Uni-
versity of Bristol, March 1999.

[2] Stefano Ferilli, Nicola Di Mauro, Teresa Maria Al-
tomare Basile, and Floriana Esposito. A complete sub-
sumption algorithm. InAI*IA 2003: Advances in Arti-
ficial Intelligence, 8th Congress of the Italian Associ-
ation for Artificial Intelligence, Pisa, Italy, September
23-26, 2003, Proceedings, pages 1–13, 2003.

[3] Peter A. Flach and Nicolas Lachiche. Confirmation-
guided discovery of first-order rules with tertius.Ma-
chine Learning, 42:61–95, January 2001.

[4] Katsumi Inoue. Induction as consequence finding.Ma-
chine Learning, 55:109–135, May 2004.

[5] Char-Tung Lee.A completeness theorem and a com-
puter program for finding theorems derivable from
given axioms. PhD thesis, 1967.

[6] Gregory Piatetsky-Shapiro. Discovery, analysis, and
presentation of strong rules. InKnowledge Discovery
in Databases, pages 229–248. AAAI/MIT Press, 1991.

[7] J. A. Robinson. A machine-oriented logic based on the
resolution principle.J. ACM, 12(1):23–41, 1965.

