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Abstract. In genetic studies, complex diseases are often analyzed sear-
ching for marker patterns that play a significant role in the susceptibility
to the disease. In this paper we consider a dataset regarding periodontitis,
that includes the analysis of nine genetic markers for 148 individuals. We
analyze these data by using a novel subgroup discovering algorithm, na-
med APRIORI-B, that is based on APRIORI and bootstrap techniques.
This algorithm can use different metrics for rule selection. Experiments
conducted by using as rule metrics novelty and confirmation, confirmed
some previous results published on periodontitis.

1 Introduction

In classical genetics [1], diseases are divided into Mendelian disorders and com-
plex traits. While the former are attributed to single gene mutations with a
simple mode of inheritance, the latter are thought to result from interaction
among multiple genes. The main task in the study of these polygenic diseases is
obviously to find the genetic patterns that increase susceptibility to the diseases.

In machine learning, such task is faced by using subgroup discovery tech-
niques. Their goal is to find subgroups, represented by rules, which describe
subsets of the population that are sufficiently large and statistically unusual
with respect to a target attribute. This task is at the intersection of predictive
and descriptive induction, and has been formulated in [2], [3], [4]. The problem
can be expressed as follows: given a population and a single property of the
individuals, find population subgroups that are statistically “most interesting”.
For example, we may look for groups that are as large as possible and on which
the property of interest has a distribution that is as different as possible with
respect to the distribution over the whole population. In the literature, several
algorithms have been proposed for subgroup discovery (e.g. Explora [2], MIDOS
[3], APRIORI-SD [5], CN2-SD [6]) and for classification rule learning (e.g. CBA
[7]).

In this paper, we present a novel algorithm, named APRIORI-B, that per-
forms subgroup discovery by combining APRIORI [8] and bootstrap techniques
(more precisely the randomization test).



Our method uses APRIORI for finding frequent itemsets, and then generates
rules from them. In the rule selection post-processing phase, it sorts the genera-
ted rules by using a rule evaluation metric. Then the most significant rules are
selected by using the randomization test [9].

We verified the suitability of APRIORI-B for marker analysis by applying
it on real biological data. In the experiment, we analyzed a dataset used by
biologists to investigate the relation between nine genetic markers and perio-
dontitis. For this biological dataset we provide some subjective evaluations of
the subgroups identified.

This paper is organized as follows: Section 2 presents background information
on APRIORI algorithm and methods for rule evaluation. Section 3 describes our
algorithm. Section 4 illustrates the chosen case study: the analysis of genetic
markers. Section 5 reports the results of applying our algorithm the genetic da-
taset. Finally, Section 6, presents conclusions and perspectives for future works.

2 Background

In subgroup discovery, subgroups can be modeled by classification rules. In this
section, we first present association rules and then one of their special case,
represented by classification rules (Section 2.1). Then in Section 2.2, we briefly
describe the APRIORI algorithm [8] for association rule mining.

2.1 Association and classification rules

Association rules. Consider a table D having only discrete attributes. If D has
also numeric attributes, they are discretized. An item is a literal of the form
A = v where A is an attribute of D and v is a value in the domain of A. Let M
be the set of all the possible items. An itemset X is a set of items, i.e. it is such
that X ⊆ M . A k-itemset is an itemset with k elements. We say that a record
r of D contains an itemset X if X ⊆ r or, alternatively, if r satisfies all the
items in X. Let n(X) be the number of records of D that contain X. Let n(X)
be the number of records of D that do not contain X. Let N be the number of
records of D. The support of an itemset X (indicated by Sup(X)) is the fraction
of records in D that contain X. i.e., Sup(X) = n(X)/N . It is also equal to the
probability of a record of D of satisfying X, i.e. p(X) = Sup(X). When X and
Y are two itemsets we use the shorthand notation n(XY ), Sup(XY ) and p(XY )
to mean, respectively, n(X ∪ Y ), Sup(X ∪ Y ) and p(X ∪ Y ).

Association rules are of the form B → H where B and H are itemsets such
that B ∩ H = ∅. B and H are respectively called body and head.

Classification rules. Classification rules are association rules whose head is of
the form Class = c where Class is a special attribute of D. In this case, the
records of D are also called examples and a rule B → Class = c covers a record
r if B ⊆ r and correctly covers a record if B ∪ {Class = c} ⊆ r.



Notice that, for classification rules, a contingency table is a generalization of
a confusion matrix, which is the standard basis for computing rule evaluation
measures in binary classification problems. In the confusion matrix notation,
n(H) is the number of positive examples, n(H) the number of negative exam-
ples, n(B) is the number of examples covered by the rule therefore predicted
as positive, n(B) is the number of the examples not covered by the rule and
therefore predicted as negative, n(BH) = TP is the number of true positives,
n(BH) = TN is the number of true negatives, n(BH) = FP is the number of
false positives, and n(BH) = FN is the number of false negatives.

Rule metrics For association and classification rules a number of quality metrics
can be defined. All rule evaluation measures are defined in terms of frequencies
from the contingency table only (see Table 1).

Table 1. A contingency table.

Body

Head B B

H n(HB) n(HB) n(H)

H n(HB) n(HB) n(H)

n(B) n(B) N

Given a rule R = B → H, we define the following metrics:

– Support: Sup(R) = p(BH) = Sup(BH) = n(BH)
N

– Confidence: Conf (R) = p(H|B) = Sup(BH)
Sup(B) = n(BH)

n(B)

– Novelty: Nov(R) = p(HB) − p(H)p(B)

– Confirmation: Confirmation(R) = p(BH)−p(B)p(H)√
p(B)p(H)p(B)p(H)

Support and Confidence are classical association and classification rule me-
trics. Novelty [10] and Confirmation [11] are examples of more complex rule
evaluation metrics [12], and we choose to focus the experiments described in this
paper on them.

The definition of novelty states that we are only interested in high support
if that could not be expected from the marginal probabilities, i.e., when p(H)
and/or p(B) are relatively low. It can be demonstrated that −0.25 ≤ Nov(R) ≤
0.25: a strongly positive value indicates a strong association between H and B,
while a strongly negative value indicates a strong association between H and B.

2.2 APRIORI

The task of discovering association rules consists in finding all the association
rules having a minimum support minsup and a minimum confidence minconf .



In order to discover such rules, the approach proposed in [8] first discovers all the
itemsets with support higher than minsup and then finds the rules from them.
The itemset with support above minsup are called large. The part of APRIORI
that finds large itemsets is shown in Figure 1. Figure 2 shows function apriori-gen
that is used by APRIORI.

Notation:Lk, set of large k-itemset

1. L1 = { large 1-itemsets }
2. for(k=2; Lk−1 6= ∅ ; k + +) do begin
3. Ck=apriori-gen(Lk−1); // new candidates
4. forall records r ∈ D do begin
5. Cr = subset( Ck, r); // candidates contained in r
6. forall candidates c ∈ Cr do
7. c.count + +
8. end
9. Lk = {c ∈ Ck|(c.count/size(D)) > minsup}
10. end
11. Answer = L =

⋃
k

Lk

Fig. 1. Algorithm APRIORI

// Phase 1
Insert into Ck

Select p.item1,p.item2,. . .,p.itemk−1,q.itemk−1

From Lk−1 p, Lk−1 q
Where (p.item1=q.item1) and . . . and
(p.itemk−2=q.itemk−2) and (p.itemk−1 < q.itemk−1)

// Phase 2
forall itemset c ∈ Ck do

forall (k − 1)-subsets s of c do
if s 6∈ Lk−1 then

Delete c from Ck

Fig. 2. Function apriori-gen

APRIORI is based on the fact that X ⊇ Y → Sup(X) ≤ Sup(Y ). Therefore
if Sup(X) < minsup then ∀Y ⊇ X, Sup(Y ) < minsup. So we can discard every
itemset that has a non large subset.



3 APRIORI-B algorithm

APRIORI-B performs subgroup discovery by learning in several steps a set og
classification rules. Given a dataset D, it:

1. removes the Class attribute from D, obtaining Dnoclass;
2. uses APRIORI (described in Section 2.2) on Dnoclass, to obtain the set of

large itemsets L;
3. for each itemset B ∈ L and for each item H = {Class = c} where c is a

value of the Class attribute, builds the rule R = B → H;
4. for each rule, computes the rule score metric;
5. sorts rules (in descending order of the metric) and filters them (using a lower

bound on the metric minmetric and a maximum number of rules maxrules),
6. evaluates the p-value of each rule, by using the randomization test described

in Section 3.1.
7. filters the rules, considering a p-value threshold, and obtains the final rule

set RS.

APRIORI-B allows the use of several rule evaluation metrics. For the expe-
riment performed in this paper, we used novelty and confirmation (defined in
Section 2.1).

Our algorithm is very close to CBA [7] but while CBA uses APRIORI
for identifying classification rules with a minimum support, APRIORI-B uses
APRIORI in the first learning phase for finding itemsets with a minimum sup-
port that are then used as classification rule bodies. Another difference is the
following: our algorithm does not aim to build a classifier. Its goal is to find a
set of rules that can highlight relations between attributes and the class.

Moreover, one of the main distinguishing features of APRIORI-B is the use of
randomization test. The main advantage of using this approach for rule selection
is that we obtain immediately a p-value for each rule. This can be very useful to
assess rules significance.

3.1 Randomization test

In order to select only the rules having a significant value for the considered
metric, we performed a randomization test [9].

First of all, we generated 1000 shuffled dataset, starting from the original one,
by independently shuffling the values inside each column. In this way we obtai-
ned datasets with the same probabilities for each attribute values but without
relations between them. This step was performed before the dataset preparation
described in Section 5.1.

We used APRIORI for obtaining the rules, and sorted them using the value
of the metric. Then we re-computed the metric for each of the learned rules using
all the 1000 shuffled dataset. In this way, for each rule, we obtained a statistical
distribution of its metric (i.e. we computed the mean and standard deviation
of the metric). By comparing the value of the metric computed by using the
original dataset with this distribution, we can assess the significance value of a
rule (we considered the values to have a normal distribution).



4 The case study: Marker Analysis

Most common diseases are complex genetic traits [1], where multiple genetic and
environmental variables contribute to the observed traits. Because of the multi-
factorial nature of complex traits, each individual genetic variant (susceptibility
allele3) generally has only a modest effect, and the interaction of genetic variants
with each other or with environmental factors can potentially be quite important
in determining the observed phenotype4. Genetic association studies, in which
the allele or genotype5 frequencies at markers are determined in affected indivi-
duals and compared with those of controls (case-control study design), may be
an effective approach to detecting the effects of common susceptibility variants.

The most abundant source of genetic variation in the human genome is repre-
sented by single nucleotide polymorphisms (SNPs). SNPs can identify common,
but minute, variations that occur when a single unit in a genome sequence (nu-
cleotide) is altered. These variations can be used to track inheritance in families.

Eleven million SNPs of greater than 1% frequency are estimated to exist in
the genome and the International HapMap Project has as a primary goal the
identification of appropriate sets of tag SNPs that span the genome. These tag
SNPs may be able to capture most of the common genetic variants contributing
to complex human disease.

At the moment, studies and algorithms able to identify non-random correla-
tions between alleles at a pair of SNPs, have been discussed as a general approach
to determine multiple locus involved in human chronic diseases with a genetic
component. Moreover, a quantity of “tagging” algorithms for selecting minimum
informative subsets of SNPs has recently appeared in the literature.

4.1 Experimental Dataset

As an example of complex genetic trait, we choose Generalized Aggressive Perio-
dontitis (GAP) as case study. Periodonditis is a dental disorder that results from
progression of gingivitis, involving inflammation and infection of the ligaments
and bones that support the teeth.

The dataset, provided by the Research Center for the Study of Periodontal
Diseases, University of Ferrara, collects data from 46 GAP patients (16 males
and 30 females) and 102 periodontally healthy control subjects. All subjects were
chosen amongst current and permanent residents of the city of Ferrara area. Sy-
stemically healthy GAP patients were selected for study among those undergoing
periodontal supportive therapy at the Research Center for the Study of Perio-
dontal Diseases, University of Ferrara, and the diagnoses were confirmed by the

3 Allele: one of several alternative form of a gene or DNA sequence at a specific
chromosomal location (locus). At each locus an individual possesses two alleles, one
inherited from the father an one from the mother.

4 Phenotype: the observable attribute(s) of a cell or an individual, brought about by
the interaction of genotype and environment.

5 Genotype: the specific allelic composition of an organism or cell.



same clinician. The clinical diagnosis at the time of the initial visit was based
on recent international classification [13]. The periodontally healthy control sub-
jects were selected if they showed no interproximal attachment loss greater than
2 mm at any of the fully erupted teeth. Controls were matched by age and sex
with GAP patients. All GAP patients and controls were Caucasian Italian. The
study design was approved by the local ethical and written informed consent was
provided by all participants in line with the Helsinki Declaration before inclusion
in the study.

The following variants in the IL-1 gene cluster have been tested: IL-1α+4845

(recorded as M1), IL-1β+3953 (M3), IL-1β−511 (M2) and also the minisatellite of
IL-1RN intron 2 (M5). Furthermore, it has been tested a new marker variant at
the IL-1F5 (M6) gene as described in Scapoli et al. [14]. Besides polymorphisms
at IL-1 cluster, other markers have been tested in different pro-inflammatory
cytochine such as IL-6 (variant IL-6−174 (M8) and IL-6−622 (M7)) and TNF-A
(variant TNF-α−308 (M4)). Finally also a polymorphism at the TNF-α receptor
has been tested (TNFRSF1β+196 (M9)).

4.2 Related Studies

Several studies have shown a role for the involvement of interleukin-1 (IL) gene
cluster polymorphisms in the risk of periodontal diseases. In [15] the authors te-
sted polymorphisms, derived from genes of the IL1 cluster, for association with
generalized aggressive periodontitis (GAP) through both allelic association and
by constructing a Linkage Disequilibrium map of the 2q13-14 disease candidate
region. For the IL-1RN intron 2 (M5), a statistically significant difference was
found between patients and controls in the genotypic distribution, but no signi-
ficant difference was found for allelic distribution. Authors also observed some
evidence for an association between GAP and the IL-1β+3953 (M3) polymor-
phism.

For the other IL-1 Cluster polymorphisms, no significant differences were
found between patients and controls for both genotypic and allelic frequencies.

Moreover, in [16], the authors showed that allele 1 of the IL-1β+3953 (M3) and
allele 1 of the IL-1RN intron 2 (M5) in combination were significantly elevated
in GAP as compared to controls.

5 Experiments

5.1 Results on GAP dataset

Dataset preparation The application of the algorithms for subgroup discovery
on genetics dataset was performed by an examiner who was blinded as to the
correspondence of the M1, M2,. . . ,M9 variables and the related polymorphisms,
so that the examiner had not information on previous statistical analyses and on
the expected results about IL-1β+3953 (M3), IL-1RN (M5) and TNFRSF1β+196

(M9) markers and the disease status.



Starting from the blinded dataset originated from the GAP study, we ob-
tained a new dataset on which we ran the experiments. In the original dataset,
each marker can assume three possible values: 11, 12 and 22. 11 and 22 are
homozygote subjects while 12 define the heterozygote status. As an example,
if there are two markers (M1,M2) a possible record of the dataset is (11, 12).
In our analysis we consider the configuration of a single chromosome and we
want to test, for each marker, whether the allele on that chromosome is 1 or 2.
For heterozygote individuals, we do not know on which chromosomes lies the
1: in other words, the allelic configuration for the marker on the two chromo-
somes could be 12 or 21 with equal probability. The new dataset will contain,
for each record from the original dataset all possible configurations of a single
chromosome (haplotype) compatible with the record. Therefore, for each record
in the original dataset, we generate 2k tuples in the new dataset, where k is the
number of marker analyzed. For example, in the case of the record above, the
new dataset will contain the four tuples: (1, 1), (1, 2), (1, 1) and (1, 2).

Results: The dataset obtained (as described in the previous section) was analy-
zed by using APRIORI-B with two different rule metric, Novelty and Confirma-
tion. The algorithm was configured with the following parameters: minsup set
to 0.3, minmetric set to 0, maxrule set to 100 and p-value threshold set to 0.01
.

Rule learned by APRIORI-B using Novelty are shown in Table 2. For each
learned rule, the table shows:

– Rule Body, the body of a learned rule containing a conjunction of Marker =
Allele tests ;

– State, the disease state associated to the conjunction of Marker = Allele
tests in the Rule Body;

– Novelty, the novelty metric value for the rule;

– Rand. Mean, the mean of the novelty values found in the 1000 randomized
datasets for the classification rule under analysis;

– Rand. Std, the standard deviation of the Novelty values found in the 1000
randomized datasets for the classification rule under analysis;

– p-value, the rule p-value.

Rules learned by APRIORI-B using Confirmation have not been reported as
they are the same learned in the experiment conducted with Novelty even if in
a slightly different order.

Analyzing these results, we noticed that some of the rules are related to the
two markers that have been reported in literature as involved in the pathology:
M3 and M5. The expert confirmed that the correlation between the combination
of M3 and M5 found in rule 3 is confirmed by literature [16]. The role of M9 and
the combination between M8 and M9, and between M1 and M9 needs further
biological investigations.



Table 2. Rule learned by APRIORI-B using Novelty

# Rule Body State Novelty Rand. Mean Rand. Std p-value

1 M9=1 GAP 0.0498 -0.0006 0.0154 0.000530
2 M5=1 M9=1 GAP 0.0408 -0.0006 0.0153 0.003379
3 M3=1 M5=1 M9=1 GAP 0.0383 0.0000 0.0127 0.001288
4 M3=1 M9=1 GAP 0.0377 -0.0001 0.0131 0.001953
5 M8=1 M9=1 GAP 0.0323 -0.0005 0.0127 0.005038
6 M1=1 M9=1 GAP 0.0310 -0.0001 0.0130 0.008699
7 M1=1 M5=1 M9=1 GAP 0.0305 -0.0001 0.0127 0.008153

6 Conclusion And Future Work

In this paper we described a novel algorithms for subgroup discovery named
APRIORI-B. This algorithm is based on APRIORI for large itemset generation
and randomization test for rule selection.

We developed this algorithm in order to study data obtained from marker
analysis. APRIORI-B performance has been evaluated on a real dataset about
generalized aggressive periodontitis, and the learned rules were judged intere-
sting by the biologist.

Given this set of rules, further investigation could be made identifying the
group of patients which present the marker combination specified by one of the
rules. The comparison of the clinical state of these patient groups can be useful
to conduct a more specific study of the disease (e.g. finding different disease
phenotypes). This will be matter of future works. Moreover, a new dataset about
sclerosis will be analyzed.
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