
Abductive Concept LearningA.C. Kakas and F. RiguzziJanuary 31, 1997AbstractWe investigate how abduction and induction can be integrated in orderto obtain a more powerful learning framework. In particular, we discussthe possible applications of the Abductive Concept Learning framework,an extension of the Inductive Logic Programming learning paradigm tothe case in which both the background and the target theory are abduc-tive logic programs. In this framework, we can learn in the presence ofincomplete information in the background knowledge and/or in the train-ing set by exploiting the hypothetical reasoning of abduction. We �rststate the requirements for a system that performs ACL, and then illus-trate how such a system could be used to solve some of the problems ofextensional and intensional ILP systems. Abductive logic programs area powerful means of representing concepts: we investigate the di�erentuses of integrity constraints in the target theory. Finally, we present analgorithm for ACL, which performs a depth-�rst search in the space ofclause orderings and a best-�rst search in the space of clause re�nements,together with an appropriate heuristic function.1 IntroductionIn this paper we investigate how abduction and induction can be integrated inorder to obtain a more powerful learning framework. In particular, we discusshow the Inductive Logic Programming (ILP) learning paradigm [12, 2] can beextended in order to learn abductive logic programs instead of de�nite or normallogic programs.The extended inductive problem resulting from this integration was intro-duced in [6] and was called Abductive Concept Learning.De�nition 1.1 Abductive Concept Learning (ACL)Given� a set of positive examples E+,� a set of negative examples E�, 1

� an abductive theory AT = hT;A; ICi as background theory.FindA new abductive theory AT 0 = hT 0; A; IC0i such that� for each e+ 2 E+, AT 0 j=A e+,� for each e� 2 E�, AT 0 6j=A e�.Therefore, ACL di�ers from ILP because both the background knowledgeand the learned program are abductive logic programs. As a consequence, thenotion of entailment of ILP must be substituted with the notion of abductiveentailment (j=A). ACL is a new learning paradigm that contains ILP as a specialcase.In the following, we will consider a modi�ed version of this de�nition of ACL,in which the last condition is substituted by� for each e� 2 E�, AT 0 j=A not e�.We will call the �rst de�nition ACL1, while the latter ACL2. When mentioningsimply ACL we will be referring to ACL2. In section 2 we will discuss thedi�erences between the two de�nitions.ACL can be used when the background theory is available in the form of anabductive logic program. This is usually the case when the background knowl-edge is incomplete, because we are lacking some information on the domain. Inthis case, a system for ACL can be used to learn despite the incompleteness.Some of the background predicates will be considered as abducible: these arepredicates for which we suspect or we know that they have an incomplete de-�nition. During the learning process, we can make assumptions, by means ofabduction, about these predicates, provided that these assumptions are consis-tent with the available partial de�nition given in terms of rules and integrityconstraints. These assumptions are made in order to provide support for thetheory that we are learning.We will show that ACL is able to deal also with a di�erent type of incom-pleteness: sparseness of the training set. In this case the target predicates areconsidered abducible and, during the learning process, a system for ACL triesto complete the training data by using abduction. In this case, the assumptionshave to be consistent with the training data and with the partial de�nitionavailable for the target predicate.The aim of the learning process is to produce a complete de�nition of thetarget predicates despite the incompleteness of the available information. If thisis not possible, we could consider them as abducible (or incomplete) in the �naltheory and try to restrict the assumptions that can be made on them by learningintegrity constraints. For abducible predicates in the background knowledge, wewould also like to �nd stricter boundaries by inferring integrity constraints.Let us illustrate these ideas by means of an example.2

Example 1.2 Suppose we want to learn the concept father. Let the backgroundtheory be:T = fparent(john;mary);male(john);parent(david; steve);parent(katy; ellen); female(katy)gA = fmale; femalegand let the training data be:E+ = ffather(john;mary); father(david; steve)gE� = ffather(katy; ellen)gIn this case, we would like an ACL system to learn the rulefather(X;Y) parent(X;Y);male(X):making the assumptions � = fmale(david); not male(katy)g. By consideringthe background knowledge together with these assumptions, we could infer theintegrity constraint: male(X); female(X):The next example shows that ACL can be particularly useful for perform-ing multiple predicate learning, because assumptions made while learning oneconcept can be used as training data for learning another concept.Example 1.3 Suppose we want to learn the concepts grandfather and father.Let the background theory be:T = fparent(john;mary); father(john;mary);male(john);parent(mary; ellen); female(mary);parent(ellen; sue);parent(david; steve);parent(steve; jim)gA = ffather;male; femalegand let the training data be:E+ = fgrandfather(john; ellen); grandfather(david; jim)gE� = fgrandfather(mary; sue)gAn ACL system should learn the rule:grandfather(X;Y) father(X;Z); parent(Z; Y):abducing �1 = ffather(david; steve); not father(mary; ellen)g. Now we learna de�nition for father using T [�1:father(X;Y) parent(X;Y);male(X)abducing �2 = fmale(david); not male(mary)g. Moreover, as in example 1.2,we can infer an integrity constraint from T [�1 [�2: male(X); female(X):In the previous examples, we have seen that integrity constraints are gen-erated for predicates of the background knowledge. However, when the targetpredicate is abducible as well and we have made assumptions about it in thelearning phase, we may want to generate constraints on it, as it is shown in thenext example. 3

Example 1.4 Let the background theory beT = fr(a); q(b; a); q(c; d); s(e)gA = fpgand the training data beE+ = fp(a); p(b); p(c)gE� = fp(e)gIn this case, the rulesp(X) r(X):p(X) q(X;Y); p(Y):could be learned, abducing � = fp(d)g. At this point we could stop the learningprocess because we have a complete and consistent program w.r.t. to the trainingdata. But the learned program doe not gives a complete de�nition of the conceptp, because we have made an assumption about it which is not covered by anyrule. Therefore p will remain abducible as well in the learned theory, allowingfor new assumptions on p. However, we could make the assumption p(e), whichis false because it is a negative example for p. Therefore we have to generateintegrity constraints on p, in order to avoid the assumption of false hypothesis.In this case, the integrity constraint p(X); s(X):could be generated, which prohibits the assumption of p(e)Let us now summarize the tasks that an algorithm for ACL has to perform,starting from the simpler one and going to the more complex.(1) Make assumptions about abducible literals from the background knowl-edge in order to cover positive examples and rule out negative ones.(2) Make assumptions on target literals again in order to cover positive andrule out negative examples. In this way we enlarge the training set andtherefore new learning steps may be required.(3) Infer integrity constraints on the assumptions made on abducible predi-cates from the background knowledge, therefore reducing the incomplete-ness of their de�nition.(4) Infer integrity constraints on target predicates. For this case we have todistinguish two di�erent uses of constraints:(i) in the case which the rules inferred are correct (they do not derivefalse facts), integrity constraints can be used to limit the assumptionsabout the facts that cannot be proved using the rules;(ii) in the case in which the rules inferred are not correct, we can use in-tegrity constraints to specialize them in order to avoid the derivationof false facts. In this case, everything that has been derived usingthe rules must be veri�ed against integrity constraints.4

In examples 1.2 and 1.3 the system performs tasks (1) and (3), while inexample 1.4 tasks (2) and (4)(i) are performed.Up to now, two algorithms for ACL have been de�ned. The one proposedin [8] extends an intensional top-down ILP system [2] with abduction, while theone proposed in [11] extends FOIL [15], an extensional top-down system [2],with abduction. Both of them perform only task (1) above. In this paper wepresent an algorithm which is able to perform all four tasks.In section 2 we illustrate the di�erences between the two de�nitions of ACL.The problems of extensional systems are discussed in section 3 and it is shownhow tasks (1) and (2) can be used to solve some of them. In section 4 we discusshow the same tasks can help intensional systems to overcome some problemswhen learning multiple predicates and normal logic programs. The relationbetween rules and integrity constraints in case (4) is discussed in section 5,while in section 6 we concentrate on case (ii). An algorithm that performs allfour tasks above is presented in section 7. The heuristics for this algorithm arediscussed in 8. In section 9, we show how this algorithm can be extended inorder to comply with ACL1. Finally, in section 10, we conclude summarizingthe main points analyzed in the paper and discussing future works.2 Di�erences between the two de�nitions of ACLACL1 requires that the negative examples can not be abductively derived fromthe learned theory. This means that there must be no way of making assump-tions that allow to derive the negative examples. In ACL2 instead, we test eachnegative example e� by trying to abductively derive not e�. In order to derivenot e�, we can make assumptions to support the goal. Therefore this conditionis weaker than the previous one and it allows us to exploit abduction not onlyto cover positive examples more easily but also to rule out negative examples.Let us illustrate this di�erence by means of an example.Example 2.1 Consider example 1.2 and suppose that the integrity constraint male(X); female(X):is in the background knowledge. Suppose also that the fact female(katy) is notin the background knowledge. We want to test the negative examplefather(katy; ellen) according to ACL1. The test fails, because it is possibleto derive father(katy; ellen) by assuming male(katy), since the integrity con-straint is not violated by this assumption. If we test the example according toACL2, the test succeeds because we can derive not father(katy; ellen) by abduc-ing not male(katy).If we consider the same learning problem but with female(katy) in thebackground knowledge, now the derivation of father(katy; ellen) fails, and thenegative example is not covered also according to ACL1. The derivation ofnot father(katy; ellen) on its turn, succeeds without the abduction of anything.5

If the abductive derivation of a negative example fails, then its negation canbe derived without making any assumption. Therefore(AT 6j=A e�)) (AT j=A not e�)The opposite implication is not true, as it has been shown in the example.3 ACL for extensional systemsExtensional coverage [2] has been used instead of intensional coverage in or-der to partially solve the problems of multiple predicate learning. However,extensionality has introduced other problems, summarized in [16], due to thefact that, during learning, theories are tested in an extensional way, while afterlearning they are used intensionally, and the behaviour can be di�erent. Theseproblems arise only when we are trying to learn recursive predicates or whenwe are trying to learn multiple predicates. The possible cases of discrepanciescan be summarized as follows:� Extensional consistency, intensional inconsistency.� Extensional completeness, intensional incompleteness.� Intensional completeness, extensional incompleteness.Let us examine each of them in more detail.3.1 Extensional consistency, intensional inconsistencyThis problem can arise in two cases. To illustrate the �rst one, suppose we aretrying to learn a theory for the concepts p and q and we have learned the rulep(X) : : : q(X)A certain negative example p(e�) is not covered if q(e�) is a negative examplefor q. However, many extensional system, such as FOIL [15], instead of checkingthat q(e�) is among the negative examples for q, just check that it is not amongthe positive. This is done because the set of negative examples, if speci�ed, isprobably not going to be complete and therefore we cannot expect it to containall the negative examples. Instead, the set of positive example is consideredto be, even if not complete, more representative of the concept because thenumber of positive examples in the universe is generally much smaller than thatof negative ones. Therefore a closed-world assumption is made, assuming thatall the non-positive atoms are negative. Negative examples are used only fortesting the rules, not for extensional derivation. This can lead to intensionalinconsistency, because when the de�nition of q is learned, q(e�) may not be6

among the negative examples and therefore we can derive a rule that coversit. This problem can be overcome by remembering the assumption made aboutq(e�), as it is done in the algorithm in [11], so that when we learn the rules forq, q(e�) is in the training set.The second case in which this problem can arise is when the rule for q islearned �rst q(X) : : :The rule is tested against the examples of the training set and we are sure thatthis rule covers the positive examples and does not cover the negative ones.However, the training set is rarely equal to the entire universe, therefore someatoms can be unde�ned and some of these atoms can be as well covered by thegenerated rule. This can cause problems when we learn a rule for pp(X) : : : q(X)because some of the unde�ned atoms q(x�) intensionally covered by the rulefor q, can result in the coverage of the negative example p(x�) for p. There aretwo possible solutions to this problem:� when the rule for q is generated, all the unde�ned atoms are tested todetermine if they are extensionally covered or not by the rule. If they are,they are added to the extensional de�nition of q. This is the approachfollowed in [11] and it is possible only when the Herbrand universe is�nite, which is an usual assumption for extensional systems. However,even if the universe is �nite, it can be very large, therefore this approachcan be computationally expensive.� Instead of testing all unde�ned atoms, we could test the rule for p andwhen an atom is neither positive nor negative for q, we can assume ittrue in order to cover positive examples for p or false in order to ruleout negative ones. The assumptions made are recorded and the de�nitionfor q is tested against them. If it is incomplete and/or inconsistent, it isrevised accordingly. Otherwise, we can use the partial de�nition of q whentesting the rule for p if there is no matching positive or negative examplein the extensional de�nition of q, thus leading to an hybrid extensional-intensional system whose properties must be further investigated.3.2 Extensional completeness, intensional incompletenessThis case happens when we learn a recursive program without a base clause.For example:even(X) succ(X;Y); odd(Y):odd(X) succ(X;Y); even(Y):In this case, the problem can not be solved using abduction. A solution to thisproblem has been proposed in [13]. 7

3.3 Intensional completeness, extensional incompletenessThis is the most obvious problem of extensionality, and the one that is bestsolved using ACL. Sometimes an intensionally complete hypothesis can not belearned because it is not extensionally complete, since some of the examplesfor q needed to cover the positive examples for p may not be available in thetraining set. Abduction can be used to assume all the needed examples for qthat are not known.However, even if sometimes assumptions are the only way to overcome thisproblem, when other informations are available (such as a de�nition for q), theymust be exploited as much as possible before resorting to abduction. We willshow this in the next example adapted from example 4 in [16].Example 3.1 Suppose you have to learn the concepts father andmale ancestor from the training setE+ = ffather(luc; soetkin); father(bart; stijn);father(willem; lieve);male ancestor(luc; soetkin);male ancestor(bart; stijn);male ancestor(rene; willem);male ancestor(rene; lieve)gE� = ffather(lieve; soetkin);male ancestor(esther; lieve);male ancestor(katleen; stijn)gand from the background knowledgeBK = fparent(luc; soetkin); parent(bart; stijn);parent(rene; willem); parent(willem; lieve);male(luc);male(bart);male(rene);male(willem);parent(lieve; soetkin); parent(esther; lieve); parent(katleen; stijn);female(lieve); female(esther); female(katleen)gIn this case, the following hypothesis is intensionally complete and consistentbut it is extensionally incomplete because it does not covermale ancestor(rene; willem)father(X;Y) male(X); parent(X;Y):male ancestor(X;Y) father(X;Y)male ancestor(X;Y) male ancestor(X;Z); parent(Z; Y):Suppose the de�nition of father was learned �rst. In order to covermale ancestor(rene; willem), father(rene; willem) could be assumed but itcould as well be derived using the de�nition learned for father. Using the de-�nition learned so far is to be preferred to abduction when possible, because itleads to more certain results.The notion of extensionality should therefore be changed: when no de�ni-tion is available for a predicate, use its training set for derivation, but when ade�nition has been learned, use that instead or in addition to the training set.What we get is the same hybrid system combining extensional and intensionalcoverage seen in section 3.1. 8

In the next example we show what kind of problem can be encountered whenusing assumptions to covers examples.Example 3.2 Consider the same background knowledge and E� of the previousexample and the training setE+ = ffather(luc; soetkin); father(willem; lieve)male ancestor(luc; soetkin);male ancestor(bart; stijn);male ancestor(rene; lieve)gIn this case, the previous hypothesis is intensionally complete and consistent butis extensionally incomplete because it does not cover male ancestor(bart; stijn)and male ancestor(rene; lieve)The �rst two clauses could be learned as well by an extensional ACL system.When trying to cover male ancestor(bart; stijn), the system could, correctly,abduce father(bart; stijin) but it could do the same formale ancestor(rene; lieve) obtaining father(rene; lieve), which is not true inthe intended interpretation, and the last rule would not be generated.In order to discriminate between assumptions, we need some more informa-tion. This can be constituted by integrity constraints on the concept father, forexampleparent(X;Y) father(X;Y)or father(X;Y); parent(X;Z); parent(Z; Y)which, respectively, state that \a father must be a parent" and \X can not beY's father if it is Z's father and Z is Y's father". This kind of constraints canbe given in the background knowledge or can be extracted as regularities fromthe data, however with the problems that will be shown in example 6.4.4 ACL for intensional systemsExtensional coverage has been introduced in order to solve the problems ofintensional systems when used for Multiple Predicate Learning (MPL). Theseproblems have been thoroughly analyzed in [16] and are summarized below.Most intensional systems have been designed for single predicate learning.When we want to learn multiple predicates, the most straightforward way tosolve the problem is to repeat the single predicate learning task for each targetpredicate. At each step, a decision has to be made on which predicate to learnnext. The order in which predicates are learned is very important because forsome orders we may not be able to �nd a solution even if one exists or we may�nd a very complex solution. Therefore, backtracking has to be considered onthe predicate learning order. This problem is worsened by the fact that therestriction on the language imposed by the bias may further restrict the set oforders that lead to a solution. Moreover, in order to learn mutually recursivepredicates, we have to interleave the generation of a clause for one predicate and9

for the other, we can not learn the complete de�nition of a predicate after theother. Therefore, we must noy only consider all the orderings of single predicatelearning tasks, but also all the orderings of single clause learning tasks.This leads to a second problem: the addition of a consistent clause to atheory can make previous clauses inconsistent. The learning process is non-monotonic with respect to consistency. For example, suppose you learn thefollowing clauses in the order in which they are listed:q(X) Body1(X):p(X) Body2(X); q(X):q(X) Body3(X):Suppose that the second clause is consistent since it rules out all the negativeexamples e�p for p because for them q(e�p) is always false. When we add thethird clause, this can cover as well some of the atoms q(e�p), because they maynot be in E�q .Therefore, in intensional systems, after the addition of a clause to the currentpartial hypothesis, the negative examples for all the predicates must be tested(global consistency), as in fact is done in the systems MPL [16] and TRACY[1]. This is clearly very expensive, and it is avoided by resorting to extensionalderivation. This problem dos not arise in the case of Single Predicate Learn-ing (SPL) because global and local consistency coincide, since all the negativeexamples are always tested in order to check consistency.Among this two problems, the latter can be solved using abduction. Whenwe test the clausep(X) Body2(X); q(X):against a negative example p(e�p) and the de�nition of q is not complete (somee+q are still in E+), besides ensuring that q(e�p) is not derivable, we shouldassume that q(e�p) is false and add it to E�q , so that when a new clause for q islearned these examples are not covered.This can, however, lead to the impossibility of �nding a solution even if itexists because the assumptions can constrain too much q. Therefore, backtrack-ing on clause addition is still needed, besides backtracking on literals, and theassumptions made must be retracted. The cost of clause backtracking can bereduced using heuristics, both for the addition of literals and for the selectionof the predicate in the head of the clause to learn. See [16] for an example ofsuch heuristics.Moreover, abduction can help considerably to learn more e�ectively in mul-tiple predicate learning problems. In fact, in this case a possible incompletenessin the training set for a predicate can prevent the system to learn a correct de�n-ition for other predicates as well. By making assumptions about a subpredicatewhen the atom to be assumed cannot be derived by any rule, we can supply theincompleteness of the subpredicate de�nition. Then, the assumptions made canbe used to learn new rules for the subpredicate, thus completing its de�nition.In other cases, the de�nition of the subpredicate may be incorrect because it isovergeneral, as will be illustrated in example 6.3.10

4.1 ACL for learning normal logic programsNormal logic programs are programs that can contain negated atoms in the bodyof the rules. When learning normal logic programs, apart from the previous twoproblems, another problem can arise: adding a clause to a partial hypothesiscan reduce the coverage of that hypothesis. In fact, normal programs are non-monotonic, adding a clause to them may reduce the set of derivable facts. Forexample:q(X) Body1(X):p(X) Body2(X); not q(X):q(X) Body3(X):After the addition of the third clause, some of the positive examples covered bythe second may not be covered anymore. A similar problem can arise also inSPL, in the case of negative recursive clauses:p(X) Body1(X):p(X) Body2(X;Y); not p(Y):p(X) Body3(X):The problem arise because the set of positive examples is gradually reduced andcovered positive examples are not anymore tested. This is the dual problemof the one seen before for de�nite programs. The learning process is againnon-monotonic but, this time, with respect to coverage instead of consistency.Therefore, we can not take out the positive examples from E+ when they arecovered by a clause, but after the addition of each clause all the previouslycovered e+ must be checked again.An alternative solution to this problem is to use abduction to record as-sumptions about negative literals not p(e) being true (or p(e) being false), sothat clauses generated afterwards will not cover the example p(e).Therefore, to solve the problems of learning both de�nite and normal pro-grams, we record negative assumptions about target predicates and add them tothe set E� for successive learning phases. This avoids the checking of the wholetraining set, E+ and E�, after the addition of a new clause. In this approach,the set of negative examples is gradually expanded to include the negative as-sumptions made. This is similar to the approach followed in TRACYnot [3].Since we gradually add negative examples, this approach may seem similar tothe one adopted in incremental systems such as MIS [18]. However, while inthese systems a consistency check must be done after the addition of each e�,we do not have to do this because we add an e� only after having tested thatit is not covered by any clause.5 Rules and integrity constraintsIn this section, we examine in more detail the roles of rules and integrity con-straints in learning. A target predicate may be de�ned by a set of rules with11

that predicate in the head plus a set of integrity constraints with that predicatein the body.The rules express su�cient condition for the target concept. This means thatif an unseen example satis�es all the conditions in the body of a rule, we canclassify it as an instance of the concept. If it does not satisfy all the conditions,we can consider it a negative instance of the concept. This corresponds toadopting a two-valued semantics.Integrity constraints on target predicates, instead, represent necessary con-ditions that the unseen examples have to satisfy in order not to be classi�edas negative instances of the concept. In this way, an example is classi�ed asnegative if it does neither satisfy any su�cient condition nor all the necessaryconditions. If an example does not satisfy any of the su�cient conditions butsatis�es all the necessary ones, we cannot classify it either as positive or nega-tive, but we have to consider it as unknown and we can make assumptions aboutit. This corresponds to adopting a three-valued semantics for the concepts, asobserved by Flach [9].A three valued semantics is necessary in order to learn in the presence of in-complete information, since we cannot consider everything that is not known tobe false. In this case, we have to learn both the positive concept, represented bysu�cient conditions, and the negative one, represented by necessary conditions,in order to distinguish between what is certainly true, what is certainly falseand what is unknown. Therefore, rules and integrity constraints complementeach other in the representation of the learned concept.Example 5.1 Consider the abductive theory:T = fflies(X) bird(X); normal bird(X):gA = ffliesg:IC = f flies(X); penguin(X):gThe rule in T can be used to conclude that tweety ies if we know that it is abird and is a normal bird. If we know that freddie is a penguin, we can concludethat it does not ies. If we don't know anything about billy, we can assume thatit ies because this is consistent with the integrity constraints.A di�erent way in which rules and integrity constraints can complement eachother is to use integrity constraints to specialize the rules. In the next sectionthis case will be considered in detail.6 Integrity constraints used to specialize rulesIn top-down learners, rules are specialized by adding a literal to the body. Alter-natively, integrity constraints can be used in order to specialize the rule. In thiscase, each fact derived by the rules must be checked against integrity constraintsand, if it violates one or more constraints, it is rejected. Therefore, this use ofconstraints di�ers from the previous one in which they were used only to check12

the assumptions made when no rule was applicable. Let us see an example ofthis use.Example 6.1 Suppose the learning system has generated the rule:flies(X) bird(X)This rule is not correct because it can derive that penguins y. We can specializeit by adding the constraint flies(X); penguin(X):In the following, we will �rst examine the relationships between these twospecialization operators, and then we will discuss what is the possible use ofintegrity constraints for specialization.6.1 Equivalence of integrity constraints and addition ofliterals as specializing operatorsIntegrity constraints o�er a way of specializing rules which is alternative toadding a literal to the body. We will show informally, by means of examples,that everything that can be expressed using integrity constraints in this way,can be expressed as well by adding literals to the rules. Let us start from thesimplest case, in which we have a rulec(X) Body(X):where c is the concept to be learned and Body(X) is a conjunction of literals,and the constraint c(X); p(X):Informally, this theory expresses that \c(X) is true if Body(X) is true but wecannot have c(X) and p(X) true at the same time". The same theory can beexpressed by the rule c(X) Body(X); not p(X):where we have used Negation As Failure (NAF) because the integrity constraintscan be interpreted as meta-level statements about the provability of literals. Forexample, the previous constraint can be interpreted as demo(T; c(X)); demo(T; p(X)A more complex case is the one in which we have the constraintq(X) c(X); p(X):This can be rewritten as c(X); p(X); not q(X):13

which, informally, can be interpreted as \it is never the case that c(X), p(X)and not q(X) are true at the same time". Therefore, in order for c(X) to betrue, p(X) must be false or q(X) must be true. This can be expressed as wellin terms of rules c(X) Body(X); not p(X):c(X) Body(X); q(X):The last case we consider is the one in which some of the predicates in theintegrity constraint are used to instantiate new variables not present in theconcept atom c(X); p(X;Y); q(X;Y)In this case, we could not produce the previous two rules because we wouldloose the relationship between X and Y . Therefore we have to keep the literalsin both rules c(X) Body(X); p(X;Y); not q(X;Y):c(X) Body(X); not p(X;Y); q(X;Y):These two rules do not cover the case in which both p(X;Y) and q(X;Y) arefalse, therefore we must add another rulec(X) Body(X); not p(X;Y); not q(X;Y):Alternatively, instead of the previous three rules, we could add the single rulec(X) Body(X); not (p(X;Y); q(X;Y)):Therefore, specialization by integrity constraints is not more expressive thanspecialization by addition of a literal.6.2 Uses of integrity constraints as a specializing operatorWe have seen that integrity constraints and the addition of literals are twoalternative specialization operators. We want to investigate now when the useof integrity constraints is more appropriate.In some cases, a correct rule can not be learned because of lack of trainingdata, while it is possible to learn an integrity constraint, as it is illustrated inthe next example.Example 6.2 Suppose the learning system has generated the abductive theory:T = ffather(X;Y) parent(X;Y):gIC = f father(X;Y); female(X):gThe �rst rule is not correct, because it can conclude that X is a father even whenX is female. The integrity constraint is therefore used to avoid the derivationof female fathers. not female(X) was not added to the rule because it was notuseful to discriminate negative from positive examples, supposing we did not14

have negative examples of female fathers. But analyzing the regularities in thedata, it was possible to infer that it was never the case that a female was afather.In this case, the addition of a literal was not considered because of the wayin which the rules are learned. We are supposing to use a top-down algorithmwhich learns the most general de�nition that is able to discriminate positivefrom negative examples. But in this way we may have overgeneralization, asshown in the previous example. A bottom-up learner would generate the mostspeci�c rule that covers all the positive examples and rules out the negative,but the opposite problem can arise: the generated rules could not generalizeenough to cover unseen examples of the same concept. Moreover, in this casethe most speci�c rule father(X;Y) parent(X;Y); not female(X): containsa NAF literal, and bottom-up systems able to learn normal logic programs donot exist yet. Integrity constraints can therefore help to restrict the generalityof the rules inferred by a top-down learner.Moreover, we can see the integrity constraints as a means to generate nega-tive informationswhich were not directly available. In the previous example, theconstraints express that all female fathers are negative examples for the conceptfather, while in the training data we did not have any negative examples. In thefollowing example we show how this negative informations can be fundamentalfor successive learning phases.Example 6.3 Consider a multiple predicate learning task in which you have tolearn the concepts father and grandfather starting from a background theorywhich contains the de�nitions for parent, male and female. Suppose also thatthe training set for father has the properties of example 6.2 and therefore welearn the same rule for fatherfather(X;Y) parent(X;Y):Then we learn the de�nition for grandfather, obtaininggrandfather(X;Y) father(X;Z); parent(Z; Y):which is correct on the training set because all the positive example forgrandfather are covered and none of the negative examples. The resulting the-ory, however, is clearly not correct on unseen cases, in order to make it correct,we have to add the constraint father(X;Y); female(X):One objection can be made regarding example 6.2: a correct rule could not belearned because the available data was not su�cient. In this case the generationof integrity constraints resulted in the correct de�nition of the concept, butmaybe in other cases it could �nd regularities in the data that are irrelevant tothe concept that we are trying to learn.Example 6.4 Suppose you have the same learning problem of example 6.2where now you know a person steve that is not a father and that is poor15

(poor(steve)). If you do not know anything about fathers being poor or not,you could assume that they are not poor and observe the regularity in the data father(X;Y); poor(X):which expresses that there are no poor fathers. This is derived in the same wayas it was the constraint on female, but it restricts too much the concept fatherThis example shows that we must be very careful when extracting regu-larities from data because sometimes incidental regularities could be found.We need therefore a way to distinguish between incidental from relevant reg-ularities, which must come from other information than the training data,such as the user bias. In example 6.2, we could generate only the constraint father(X;Y); female(X) because the user somehow knows that the conceptfather has something to do with sex but not with welfare of people.This problem is part of a wider issue regarding the minimum amount ofdata which is necessary for learning a theory. With ACL we are trying tolower this limit by making assumptions, but the available data must guide theseassumptions. If the data are insu�cient, we can make the wrong assumptionsand do not learn a correct de�nition for the target concepts. In this paper weassume that the amount of information available is su�cient for learning theintended theory using ACL. Determining what is exactly this amount is an openproblem that is subject for future works.In the following, we assume that integrity constraints are not used to special-ize rules but only to restrict the possible assumptions when no rule is applicable.7 AlgorithmIn order to develop an algorithm able to perform ACL in its full form, we canstart from the intensional algorithm presented in [8] in which the usual notionof coverage of examples is substituted with the notion of abductive coverage.It is able to make assumptions during the learning phase and to generate rulesthat contain abducibles.We want to develop an intensional system because we have shown that theproblems of intensionality can be solved with abduction. Therefore we considerthe algorithm in [8] and we extend it in order to perform MPL, using ideas from[16], and to learn general integrity constraints of the formA1; : : : ; Am B1; : : : ; Bnwhere Ai and Bi are atoms. The algorithm considered is also able to learnintegrity constraints, but only of the limited form of denials between a predicateand its default literal a(X); not a(X)General integrity constraints can be learned by ICL [17]. ICL starts from ade�nite program as background knowledge, from a set of positive and a set of16

procedure PACL(inputs : E+; E� : training sets,AT = hT;A; ICi : background abductive theory,outputs : H : learned theory, � : abduced literals)H := ;� := ;while E+ 6= ; doGenerateRule(input: AT;H;E+; E�;�; output: Rule)if GenerateRule fails, thendo backtracking on the previous rule addedLet E+Rule be the set of positive examples covered by RuleLet �Rule be the set of literals abduced duringthe derivation of e+ and not e� using RuleAdd to E+ all the positive literals of target predicates in �RuleAdd to E� all the atoms corresponding to negative literalsof target predicates in �RuleE+ := E+ � E+RuleH := H [fRuleg� := � [�Ruleendwhileoutput H;� Figure 1: PACL, the covering loopnegative interpretations and �nds a clausal theory H such that all the positiveinterpretions (together with the background knowledge) are models of H andall the negative ones are not models. We combine ICL with an extension of theprevious algorithm in order to perform ACL in its full form.In section 7.1 we will discuss how to extend the algorithm in [8] in order toperform MPL using best �rst search. We will call it PACL (Partial AbductiveConcept Learning). In section 7.2 we will show how to use ICL in our framework,and in section 7.3 we describe how to integrate the two in order to obtain ACL,an algorithm that performs full ACL.7.1 Partial ACLThis algorithm is an extension of the algorithm presented in [8] which in turnis based on the generic top-down algorithm presented in [12]. As the generictop-down algorithm, PACL is composed of two loops: the covering loop (�gure1) and the specialization loop (�gure 2).The covering loop starts with an empty hypothesis and, at each iteration,17

procedure GenerateRule(inputs : AT : background theory, H : current hypothesis,E+; E� : training sets, � : current set of abduced literalsoutputs : Rule : rule)StartRules := f p(X) true: where p is a target predicate for whichthere are still some e+ in E+ gAgenda := ;for all Rule 2 StartRules doadd hRule;Evaluate(Rule;AT;E+; E�;�); i to AgendaSelect and remove Best rule from AgendaWhile Best covers some e� doBestRefinements := set of re�nements of Best allowedby the language biasfor all Rule 2 BestRefinements doV alue := Evaluate(Rule;AT;E+; E�;�)if Rule covers at least one pos. ex. thenadd hRule; V aluei to AgendaendforSelect and remove Best rule from Agendaendwhilelet Best be hRule; V alueioutput Rule Figure 2: PACL, the specialization loop
18

function Evaluate(inputs : Rule: rule ,AT : background theory,E+; E� : training sets, � : current set of abduced literals)returns the value of the heuristic function for Rulen� = 0, number of pos. ex. covered without abducing anythingn�A = 0, number of pos. ex. covered abducing somethingn	 = jE�j, number of neg. ex. covered (not e� has failed)n	A = 0, number of neg. ex. uncovered abducing something�in = �for each e+ 2 E+ doif AbductiveDerivation(e+; hT [H [fRuleg; A; ICi;�in;�out)succeeds thenif no new assumptions have been made thenincrement n�else increment n�Aendifendif�in = �outendforfor each e� 2 E� doif AbductiveDerivation(not e�; hT [H [fRuleg; A; ICi;�in;�out)succeeds thendecrement n	if new assumptions have been made thenincrement n	Aendifendif�in = �outendforreturn Heuristic(n�; n�A; n	; n	A)Figure 3: PACL, evaluation of the heuristic function19

a new clause is added to the hypothesis. Each clause is generated in the spe-cialization loop (contained in the function GenerateRule). The new clause willcover some positive examples and none of the negative, after the addition thecovered positive examples are removed from the set of positive examples E+ andthe literals abduced during the derivation of positive and negative examples areadded to the current set of abducibles �. Moreover, each assumption madeabout target predicates is added either to E+ or to E�, depending on the signof the literal. The loop ends when all the positive examples are covered.The space of possible clause orderings is searched depth-�rst: in the casein which no clause could be generated by GenerateRule, then backtracking isdone on the clause added at the previous step. The clause is retracted and theprocedure GenerateRule is requested to produce another clause.Let us consider the specialization loop. The clauses are generated by per-forming a best-�rst search in the space of the possible re�nements. At thebeginning, the set of current clauses (called Agenda) contains one clause withan empty body for each target literal whose de�nition has not yet been com-pleted (some positive examples for it are still in E+). For each clause in theset the value of the heuristic function is computed (�gure 3). This is done bytrying to derive each positive example and the negation of each negative one.At each iteration of the specialization loop, the clause with the maximumvalue for the heuristic function is selected and removed from the Agenda. All itsre�nements, allowed by the language bias, are generated. For each re�nement,the value of the heuristic function is calculated and the re�nement, togetherwith the value of the heuristic, is added to the Agenda if it covers at leastone positive example. The loop terminates when a clause is found that doesnot cover any negative examples. That clause is then returned as output. Inthe case in which such a clause could not be found, the procedure fails. Thishappens when the Agenda becomes empty, because no re�nement covers at leastone positive example.Let us now consider the way in which the heuristic function is evaluated.For each positive example e+ and for each negative example e�, an abductivederivation is started for e+ and not e� respectively, using the procedure de�nedin [10]. This procedure takes as input the goal to be derived, the abductivetheory and, if it succeeds, produces as output the set of literals abduced duringthe derivation. We consider as well as input the set of literals already abduced.This does not require any major modi�cation of the procedure. In this way, weensure that the assumptions made during the derivation of the current exampleare consistent with the ones made before. Thus, we can test each positive andnegative example separately and be sure that the clause will derive e+1 ^: : :^e+n ^not e�1 ^ : : :^not e�m. The set of abduced literals is passed on from derivation toderivation and gradually extended. This is done as well across di�erent clauses,in order to maintain the consistency among assumptions.The positive and negative examples covered are counted, distinguishing be-tween examples covered (uncovered) with or without abduction, and these num-20

bers are used to calculate the heuristic function, which will be discussed insection 8.However, it must be noted that an example could be successfully derivedwith di�erent sets of assumptions. Suppose you have two possible sets, onecompatible with some examples while the other not compatible. If we assumethe second set, we are not going to derive anymore these examples. This is achoice point of the algorithm and backtracking should be used in the case offailure of the generation of a clause in order to �nd other set of abducible thatcould possibly allow the coverage of more examples. However, we decided notto consider this choice point in order to reduce the computational cost of thealgorithm.The strategy for generating the clause to add to the partial theory is similarto one used in the system MPL because the predicate in the head of the clauseis not decided a priori, before starting the specialization, but is selected in orderto produce the most promising clause. However our strategy di�ers from MPLbecause they keep a set of the best bodies found so far while we keep the set ofthe best complete clauses found so far. They evaluate one body by selecting themaximum value of the heuristic function for the clauses generated by adding allthe possible heads to the body. We think that in most cases each body in theset will have a good performance for just one head and therefore it is useless totest it with all the other heads.Let us examine the properties of soundness and completeness the algorithm.The use of literals abduced so far in the derivation of the examples, ensuresthat we will not generate clauses that make previous clauses inconsistent orthat reduce their coverage. Therefore the algorithm is sound for the problem ofACL and, as a consequence, it is sound also for learning normal logic programsin the case of multiple target predicates. As regards completeness, depth-�rstsearch in the space of clause orderings and best-�rst search in the space of clausere�nements ensure a complete search of the space in the worst case. However, asobserved before, we do not perform backtracking on the choice of the abducedliteral set. Therefore the algorithm is not complete for the problem of ACL. Ifbacktracking on that choice point is added, then the algorithmbecomes completefor ACL and therefore also for learning normal logic programs with multipletarget predictes.The space of clause re�nements can be represented as a tree, in which theroot is the empty clause and each child of the root is a clause with the targetpredicate in the head and an empty body. The complete search space cantherefore be represented by a tree in which each node is also a tree. In order tobe able to do backtracking on the clauses added, we need to store the boundarynodes of the inner tree for each iteration of the covering loop (i.e., for each nodeof the outer tree). This means storing the Agenda of the specialization loop. Inthis way, when backtracking is required, the previous Agenda is restored andthe procedure GenerateRule selects from it another clause which does not covernegative examples, maybe after having done some specialization steps. Since21

the search strategy of the outer tree is depth �rst, only the current path alongthe tree must be stored and therefore we need to store one set of clauses for eachlevel of the tree. This may be too expensive from a storage point of view andwe could use beam-search instead of best-�rst, thus putting a constraint on thesize of the Agenda. However, this restrict further the property of completenessof the algorithm.A number of optimizations are possible. One regards the search space: eachtime a new clause is added, the search in the space of re�nements starts fromthe root of the tree and goes down until it �nds a clause which is consistent, i.e.does not cover any negative examples. When we are looking for the next clause,we do not need to start from the root because we already know that all theclauses up to the point reached before were inconsistent at the previous step, andtherefore will be inconsistent as well now, since E� and � have been, possibly,enlarged. Therefore, we could start from the set of clauses obtained at theprevious step. Clearly, the value of the heuristic function must be recalculatedfor each clause in the set because the sets E+, E� and � may have changed.This optimization saves a considerable amount of search time and does notrequire additional storage space because the set of clauses of the previous stepmust be kept anyway in order to be able to perform backtracking on the outertree.Another optimization regards the evaluation of the heuristic function for eachre�nement of a clause. This evaluation requires to try an abductive derivationfor each member of E+ and E�. As a result, we identify the subsets E+Ref � E+and E�Ref � E� that contain positive and negative examples still covered bythe re�nement. At the successive specialization step for this clause, we do notneed to test all the elements of E+ and E� because the ones which were notcovered before will not be covered as well by a re�nement (since we are startingfrom the same set of abduced literals). Therefore, we can test only the subsetsE+Ref and E�Ref , thus gradually reducing the number of tests as the clause isspecialized. This requires storing, together with the re�nement and its value,also the subsets E+Ref and E�Ref , together with the set �Ref of literals abducedduring previous tests, so that the new tests will be consistent with them.7.2 Learning integrity constraintsIn order to learn the integrity constraints we use the system ICL [17]. Thelearning problem that is solved by ICL can be stated as follows.� Given{ B, a de�nite clause background theory;{ P , a set of interpretations such that for all p 2 P , M (B [p) is a trueinterpretation of the unknown target theory;22

{ N , a set of interpretations such that for all n 2 N , M (B [n) is afalse interpretation of the unknown target theory.� Find a clausal theory H such that{ for all p 2 P ,M (B [p) is a true interpretation of H (Completeness);{ for all n 2 P , M (B [n) is a false interpretation of H (Consistency);In our case, we would like to learn integrity constraints on abducibles by usingthe information contained in the set � of assumption made during the learningphase. � is a set of positive and negative literals, we can obtain from it twosets: �+, which contains all the positive literals, and ��, which contains theatoms corresponding to negative literals in �. In the following, E�A indicatesthe set of negative examples of abducible predicates. We can apply ICL to ourcase in this way:� the background knowledge B is the program T 0,� the set P contains only one positive interpretation p = �+;� the set N contains a negative interpretation for each element of �� [E�AThe training sets are included in the interpretations if the target predicates arealso abducible, and therefore we would like to learn integrity constraints onthem. The learning bias for ICL is set in order to learn clauses of the formhead body; abducible predicateThe learned clauses will be true in M (T 0 [�+) and will be false in each modelM (T [f��g) where �� 2 �� [E�A . Therefore, when the integrity constraintswill be added to the �nal abductive theory, they will not allow any assumptionbelonging to �� [E�A , that is precisely what we want.In our case, T is a normal program, while in the problem statement of ICLthe background knowledge is considered to be a de�nite program. However, evenif the authors did not mention it in [17], ICL can be used without modi�cationsalso for learning from normal background knowledge.7.3 Full ACLA system for performing full ACL can be obtained by running in sequence PACLand ICL:� Input: hT;A; ICi; E+; E�� Run PACL obtaining H;�� Run ICL, obtaining IC', with input:23

{ B = T{ P = f�+g{ N = ff��g such that �� 2 E�A [��g� Output: hT [H;A; IC [IC0i8 HeuristicsVarious heuristics have been proposed in ILP for the evaluation of the quality ofa clause, see [12] for an overview. All of them express the intuitive notion thata clause is better than another if it covers more positive and less negative ex-amples. The most widely used heuristics can be divided into two main families,one based on expected classi�cation accuracy and the other based on informativ-ity. Both of them are based on the probability p(�jc) that an example coveredby a clause c is positive. However, this probability is not known and thereforemust be estimated. After having presented the various heuristics as functionsof p(�jc), we will discuss how to estimate p(�jc). Then we will show how theheuristics presented can be adapted to the ACL framework.8.1 Heuristic functionsThe expected classi�cation accuracy of a clause c is de�ned exactely as theprobability that an example covered by c is positiveA(c) = p(�jc)The informativity of a clause c is de�ned as the amount of information necessaryto specify that an example covered by the clause is positiveI(c) = � log2 p(�jc)In this case, as opposed to the previous one, the quality of the clause is higher ifinformativity is lower. A more intuitive meaning of informativity will be givenin section 8.2, when the probability estimates will be discussed.From these two basic heuristics, others can be derived. Given the currentclause c = T Q and a re�nement c0 = T Q0, the accuracy gain AG(c0; c)and information gain IG(c0; c) can be de�ned as followsAG(c0; c) = A(c0)� A(c) = p(�jc0)� p(�jc)IG(c0; c) = I(c) � I(c0) = log2 p(�jc0) � log2 p(�jc)The accuracy gain is the increase in classi�cation accuracy, while the informationgain is the decrease in information necessary to specify that an example coveredby the clause is positive, achieved by specializing clause c to c0. In this way we24

can compare di�erent specializations of a clause and select the one which givesthe biggest gain.However, these heuristics can prefer very speci�c rules with an high gainto more general rules whith a lower gain. For example, two rules could beobtained from the specialization of the same rule, one which covers 2 positiveexamples and no negative ones, the other which covers 100 positive examplesand 1 negative. The gain heuristics would prefer the �rst rule, even if the secondis probably more interesting because it is more general. Therefore, the valueof the gain heuristics is adjusted by means of a weight factor which shouldtake into account the generality of the rule. This factor can be given by thefraction of positive examples which is covered before and after the specializationstep n�(c0)n�(c) . What we get is weighted accuracy gain WAG(c0; c) and weightedinformation gain WIG(c0; c)WAG(c0; c) = n�(c0)n�(c) � (p(�jc0)� p(�jc))WIG(c0; c) = n�(c0)n�(c) � (log2 p(�jc0)� log2 p(�jc))By introducing a weight, we aim at �nding a balance between the gain andthe number of positive examples covered by a clause. An heuristic similar toWIG(c0; c) is used in FOIL [15].It has been shown that the respective heuristics based on accuracy andinformativity give similar results with respect to the accuracy of the generatedclauses [5]. Instead, the model used to estimate probability has a strongerinuence on the performances of the heuristic, specially when the training dataare noisy.8.2 Probability estimatesAll the heuristic functions previously described are based on the probabilityp(�jc) that an example covered by clause c is positive. Clearly, this probabilitycan not be known with certainty, because it is given by the behaviour of theclause on all the examples, while we have only a small sample constituted bythe training set. Therefore, we must estimate p(�jc) using only the examplesin the current training set Ecur and, in particular, the numers:� n�(c) = number of positive examples covered by c� n(c) = total number of examples covered by cThree di�erent estimates have been proposed in the literature: relative fre-quency, Laplace estimate and m-estimate, in order from the most accurate to25

the least. The simplest of them is the relative frequency of positive exampleswith respect to the total number of examplesp(�jc) = n�(c)n(c)By using this probability estimate in the informativity heuristic, we obtainI(c) = log2 n(c)� log2 n�(c)This formulae can be used to give a more intuitive meaning of the informativityheuristic. Suppose we have n(c) examples and we are testing them. Supposethat we want to transmit a message expressing the fact that the example testedis positive. The informativity of the clause is the number of bits necesary toencode this message and it is given by the number of bits necessary to specifywhich example was tested, log2 n(c), minus the number of bits necessary tospecify which of the positive examples was covered, log2 n�(c), because we arenot interested in \which" positive example was but only that it was a positiveexample.This probability estimate is the simplest and the most di�used. However,the reliability of this estimate decreases as the size of the training set decreases:in the extreme case of only one positive example in Ecur, the estimate of p(�jc)is 1. This is clearly an estimate too optimistic even in the absence of noise. Toavoid this problem, the Laplace law of succession was used [14]: if in the sampleof n trials there were s successes, the probability of the next trial being successfulis s+1n+2 , assuming a uniform initial distribution of successes and failures. TheLaplace estimate is therefore given byp(�jc) = n�(c) + 1n(c) + 2This estimate is more reliable when dealing with a small number of samples.For example, in the case in which both n�(c) and n(c) are 0, the probability is12 , which reects the fact that an empty training set can not alter our a prioriassumptions that positive and negative examples have the same probability.However, this assumption is rarely true in practice. Therefore them-estimate[4] was introduced that takes into account as well the prior probabilities of theclasses p(�jc) = n�(c) +m � pa(�)n(c) +mwhere the prior probability pa(�) can be estimated by the relative frequencyof positive examples in the initial training set n�n . The value of m expressesour con�dence in the representativeness of the training set. The actual valueof m should be set subjectively according to the amount of noise in the exam-ples (larger m for more noise). As m grows towards in�nity, the m-estimateapproaches the prior probability of the positive class.26

The m-estimate provides a stronger theoretical ground to heuristc functionsand allows to build clauses that are more accurate on unseen examples. More-over, the other two probability estimates can be obtained as special cases of them-estimate by appropriately setting the two parameter m and pa(�):� relative frequency p(�jc) = n�(c)n(c) for m = 0, and� Laplace estimate p(�jc) = n�(c)+1n(c)+2 for m = 2 and pa(�) = 12 .In [12] the authors report the results of experiments conducted in order to com-pare the performances of AGrf ; AGLap; AGm=2;WAGrf , IGrf ; IGLap; IGm=2,WIGrf , obtained by combining the accuracy gain and information gain withthe di�erent probability estimates and weighted gains with relative frequency.The results of the experiments showed that WAG and WIG have performancesimilar to unweighted AG and IG using the m-estimate. Therefore the authorsconclude by making the hypothesis that weighted heuristics perform better thanunweighted ones, the best being WIG and WAG using the m- estimate.8.3 A heuristic for ACLWe have seen that informativity and accuracy have similar performances. There-fore we have chosen accuracy for its simplicity. The gain heuristics give an esti-mate of the quality improvement obtained by specializing a a clause. In our casewe are more interested in selecting the clause which has the best performanceon the training set, not the one which has had the best improvement. Thereforewe use simple accuracy as the heuristic function.As regards the function used to estimate probability, we use m-estimatebecause it has been shown to have better performances. We now illustrate howto apply this probability estimate in the abductive framework. For the sakeof simplicity, in the following discussion we will use relative frequency. Themodi�cations to this estimate can then be extended to the m-estimate withoutdi�culties.In ACL a new clause c is tested against the examples of the training set bystarting an abductive derivation for each positive example and for the negationof each negative one. Some positive examples will be covered without abducingany literals, while other examples will be covered by making some assumptions.Similarly, some negative examples will be ruled out abducing some facts, whileothers without abducing anything. As a consequence, in this case we have four�gures to consider� n�(c) = number of positive examples covered by c without abduction ofany literal� n	(c) = number of negative examples covered by c (not e� has failed)27

� n�Abd(c) = number of positive examples covered by c with the abductionof some literals� n	Abd(c) = number of negative examples uncovered by c (not e� has suc-ceded) with the abduction of some literalsThe examples covered by making some assumptions are not covered with com-plete certainty, because abduction is a form of hypothetical reasoning. Theassumptions are hypothesis that may turn out to be wrong, the integrity con-straints ensure that we do not make an assumption when it is certainly false,but if no constraint is violated the hypothesis may still be false, because we maynot have all the relevant integrity constraints. Therefore, we should give lessimportance to examples covered or ruled out by abducing some literals. In otherwords, if two clauses cover the same amount of positive and negative examplesbut one of them covers the positive examples by making assumptions, than weshould prefer the other. In the case in which they both cover some exampleswith abduction and some other without abduction, then a balance should befound. The heuristic function we propose isA = n� + k � n�Abdn� + n	 + n�Abd + (1� k)� n	Abdwhere we have omitted for brevity the argument c from the �gures. The coef-�cient k, with 0 � k � 1, expresses the con�dence we have in the assumptionsthat can be derived from the background abductive theory. In the numerator,positive examples covered with the abduction of some literals have been givena smaller weight, expressed by k, with respect to the ones covered without ab-duction. It may seem natural to add the same weight to n�Abd as well in thedenominator. This has not been done because of the following observation.Consider two rules for which n	Abd and n	 are both 0. If we have the k fac-tor also at the denominator, the value of the heuristic function will be 1 forboth of the rules regardless of the fraction of positive examples that are coveredwith abduction n�Abdn� , while we would prefer the rule that covers more positiveexamples without abduction.The negative examples ruled out by using abduction are taken into accountwith the addendum (1�k)�n	Abd in the denominator. The reason for this can beexplained as follows. Consider a rule which would cover n0	 negative examples ifabduction were not available, but using abduction we can rule out n	Abd negativeexamples. Therefore the covered negative examples are n	 = n0	 � n	Abd. If weapply the accuracy heuristic of standard ILP to the second rule we getA = n�n� + n0	 � n	AbdSubtracting n	Abd in the denominator inuences too strongly the heuristic func-tion because a negative example ruled with abduction is considered equivalent28

to a negative example ruled out without abduction. Therefore we multiply n	Abdby k in order to reduce its inuence, obtainingA = n�n� + n0	 � k � n	AbdWe know that n0	 = n	 + n	Abd, therefore we haveA = n�n� + n	 + n	Abd � k � n	Abd= n�n� + n	 + (1 � k)� n	Abd9 Extension of the algorithm to ACL1The algorithm we have de�ned complies with the de�nition of ACL2, in whichit is required that the negation of each negative example is abductively entailedby the learned theory. We want now to adapt the algorithm to comply withthe de�nition of ACL1, in which it is required that the learned theory mustnot abductively entail each negative example. The condition of ACL1 is morestringent than that of ACL2, because in ACL2 we can make assumptions in orderto rule out a negative example, while in ACL1 not only we can not make anyassumption to rule the example out, but it is required also that no assumptioncan be made in order to cover it.Therefore, the algorithm must be changed so that, instead of testing thesuccess of the abductive derivation of not e�, it tests the failure of the abduc-tive derivation of e�. The heuristic function must be changed accordingly: inthis case we do not to distinguish between negative examples ruled out withabduction or without abduction, therefore the heuristic can be simpli�ed inA = n� + k � n�Abdn� + n	 + n�AbdThe condition on negative examples of ACL1 can be too stringent in some cases,thus we may look for an hybrid solution: if a negative example is still coveredaccording to ACL1, we may try to rule it out using abduction as speci�ed inACL2. However, a negative example not covered according to ACL1 and one notcovered according to ACL2 can not be considered equivalent in the evaluationof the clause, because the latter fact is less certain than the �rst. The set ofnegative examples is partitioned into three classes:1. examples not covered by the clause (e� failed)2. examples ruled out with abduction (e� and not e� both succeeded1)1with di�erent sets of assumptions. 29

3. examples covered by the clause (e� succeeded and not e� failed)If we indicate the cardinality of the last two classes with the names n	Abd andn	, we can use the same heuristic function seen in section 8.3. However, in thiscase the classes are di�erent from those considered before1. examples not covered by the clause (not e� succeeded with � = ;)2. examples ruled out with abduction (not e� succeeded with � 6= ;)3. examples covered by the clause (not e� has failed)Since the two partitions are di�erent, the value of k would have to be di�er-ent in the two cases in order to reect the di�erent con�dence we have in theuncoverage of negative examples.10 ConclusionsIn this paper we have investigated how abduction and induction can be inte-grated in order to obtain a more powerful learning framework in the context ofILP. We have adopted the Abductive Concept Learning framework de�ned in[6] which extends the ILP learning paradigm to the case in which both the back-ground and the target theory are abductive logic programs. In this framework,we have shown how we can learn in the presence of incomplete information in thebackground knowledge and/or in the training set by exploiting the hypotheticalreasoning of abduction.After having stated the requirements for an algorithm that performs ACL, weillustrated the bene�ts of applying such an algorithm to extensional and inten-sional ILP systems. As regards extensional systems, the problems of extensionalconsistency, intesional inconsistency and intensional completeness, extensionalincompleteness can be solved by using abduction and recording the assump-tions made. As regards intensional systems, abduction can be used to avoid thechecking of the global consistency of the current hypothesis after the addition ofeach clause, in the case of multiple predicate learning. Moreover, when learningnormal logic programs, abduction can be used in order to avoid the recheckingof positive examples previously covered after the addition of a clause.Abductive logic programs are a powerful means of knowledge representation.They allow the use of integrity constraints in order to represent concepts. Wehave investigated two di�erent uses of integrity constraints, the �rst consist inhaving correct rules and using constraints only to check assumptions when norule is applicable, while the second consist in having overgeneral rules whichare specialized by using the constraints. We have shown some of the problemsconnected with the latter use and therefore we have adopted the former.Finally, we have proposed an algorithm for ACL, which performs a depth-�rst search in the space of clause orderings and a best-�rst search in the space of30

clause re�nements, together with an appropriate heuristic function. This algo-rithm is sound but it is not complete because it does not consider backtrackingon abductive explanations of examples. If backtracking is added for this choicepoint, the algorithm will also be complete. However, we think that adding thisbacktracking point would be computationally too expensive in practice.In the future, the algorithm that has been presented will be implemented anda number of experiments will be performed in order to evaluate the advantagesof the ACL system with respect to conventional ILP systems such as FOIL [15]or m-FOIL [7]. In order to show the performances of ACL on incomplete data,we will consider a complete dataset and we will take gradually information out,then comparing the degradation of performances of ACL with those of FOIL orm-FOIL. Moreover, we will consider the application of ACL to a domain wherethe background knowledge is inherently abductive and therefore conventionalILP systems can not be applied. The domain is event-calculus and the learningproblem consist in �nding rules which describe the e�ect of actions given a sparsetraining set containing facts about actions and properties holding at di�erenttime instants.According to the results of these experiments, the parameters in the designof the algorithm will be tuned in order to get the best ratio of quality of learnedprogram to learning time. For example, if backtracking on clause orderingsproves to be too expensive, a greedy search will be performed instead. At thesame time, if the best-�rst search strategy proves to be too expensive in termsof time or space, we could resort to beam-search, thus putting a limit on thesize of the agenda, and eventually to hill-climbing, by setting to 1 that size.Moreover, the parameters k and m in the heuristic function have to be set anddi�erent experiments will be performed in order to evaluate the e�ect of theseparameters on the learning process.Further work is required also on theoretical aspects. The di�erent uses of in-tegrity constraints, as specializng operator or as condition only on assumptions,must be further investigated. By combining the learning of rules with that ofintegrity constraints, ACL integrates the two learning paradigm of explanatoryand con�rmatory induction [9]. The relation between these two paradigms inthe context of ACL must be better understood, in order to have a clearer ideaof the capabilities and the limits of the framework. Another interesting researchdirection is to deepen the study of learning in a three-valued setting. In partic-ular, in such a setting we should learn as well the de�nition of the negation ofconcepts. Rules, being su�cient conditions, can express positive concepts, whileintegrity constraints, being necessary conditions, can express negative concepts,in the sense that if a constraint is violated by the assumption of a fact, thatfact is certainly false. In this case, when an unseen example has to be classi�ed,�rst we may try to classify it with certainty as a positive or negative instanceof a concept and, only if it is not possible, we can make an hypothesis about it.31

References[1] F. Bergadano and D. Gunetti. Learning Clauses by Tracing Derivations. InProceedings 4th Int. Workshop on Inductive Logic Programming, 1994.[2] F. Bergadano and D. Gunetti. Inductive Logic Programming. MIT press, 1996.[3] F. Bergadano and D. Gunetti. Learning Logic Programs with Negation as Failure.In Advances in Inductive Logic Programming. IOS Press, 1996.[4] B. Cestnik. Estimating probabilities: A crucial task in machine learning. InProceedings of the Ninth European Conference on Arti�cial Intelligence, pages147{149, London, 1990. Pitman.[5] B. Cestnik. Estimating probabilities in machine learning. PhD thesis, Faculty ofElectrical Engineering and Computer Science, University of Ljubljana, Ljubljana,Slovenia, 1991. In Slovenian.[6] Y. Dimopoulos and A. Kakas. Abduction and Learning. In Advances in InductiveLogic Programming. IOS Press, 1996.[7] S. D�zeroski and I. Bratko. Handling noise in inductive logic programming. InS. Muggleton, editor, Proceedings of the 2nd International Workshop on InductiveLogic Programming, Report ICOT TM-1182, 1992.[8] F. Esposito, E. Lamma, D. Malerba, P. Mello, M.Milano, F. Riguzzi, and G. Se-meraro. Learning Abductive Logic Programs. In Proceedings of the ECAI96Workshop on Abductive and Inductive Reasoning, 1996.[9] P. Flach. An inquiry concerning the logic of induction. PhD thesis, TilburgUniversity, 1995.[10] A.C. Kakas and P. Mancarella. On the relation between Truth Maintenance andAbduction. In Proceedings of PRICAI90, 1990.[11] E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Introducing Abduction into(Extensional) Inductive Logic Programming Systems. submitted.[12] N. Lavra�c and S. D�zeroski. Inductive Logic Programming: Techniques and Appli-cations. Ellis Horwood, 1994.[13] L. Martin and C. Vrain. A three-valued framework for the induction of generallogic programs. In Advances in Inductive Logic Programming. IOS Press, 1996.[14] T. Niblett and I. Bratko. Learning decision rules in noisy domains. In M. Bramer,editor, Research and Development in Expert Systems III, pages 24{25. CambridgeUniversity Press, 1986.[15] J. R. Quinlan and R.M. Cameron-Jones. Induction of Logic Programs: FOIL andRelated Systems. New Generation Computing, 13:287{312, 1995.[16] L. De Raedt, N. Lavra�c, and S. D�zeroski. Multiple Predicate Learning. In Proceed-ings of the 3rd International Workshop on Inductive Logic Programming, 1993.[17] L. De Raedt and W. Van Lear. Inductive Constraint Logic. In Proceedings of the5th International Workshop on Algorithmic Learning Theory, 1995.[18] E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.32

