
Electronic Notes in Theoretical Computer Science 59 No. 4 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume59.html 15 pages

Rule-based Programming for Building Expert
Systems: a Comparison in the Microbiological

Data Validation and Surveillance Domain

E. Lamma a,3 L. Maestrami 5 P. Mello b,1 F. Riguzzi a,2

S. Storari a,4

a Department of Engineering,
University of Ferrara, Via Saragat 1,

44100 Ferrara, Italy
b DEIS,

University of Bologna, Viale Risorgimento 2,
40136 Bologna, Italy

Abstract

In this work, we compare three rule-based programming tools used for building an
expert system for microbiological laboratory data validation and bacteria infections
monitoring. The first prototype of the system was implemented in KAPPA-PC. We
report on the implementation and performance by comparing KAPPA-PC with two
other more recent tools, namely JESS and ILOG JRULES. In order to test each
tool we realized three simple test applications capable to perform some tasks that
are peculiar of our expert system.

1 Introduction

This work is part of a project for Nosocomial Infection Monitoring. Hospital-
acquired or nosocomial infection diseases are developed by patients after the
admission to the hospital. They are more dangerous than non-nosocomial
infections because they are caused by bacteria that are much more resistant
to antibiotics.

The project aims at building an Expert System [1] for Microbiological data
validation and bacteria Infections Surveillance (ESMIS). The system validates

1 Email: pmello@deis.unibo.it
2 Email: friguzzi@ing.unife.it
3 Email: elamma@ing.unife.it
4 Email: sstorari@ing.unife.it
5 Email: lmaestrami@mail.omnitel.it

c©2001 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume59.html�
mailto:pmello@deis.unibo.it�
mailto:friguzzi@ing.unife.it�
mailto:elamma@ing.unife.it�
mailto:sstorari@ing.unife.it�
mailto:lmaestrami@mail.omnitel.it�

Lamma et al

the analyses performed by a microbiological laboratory (antibiograms): the
quality of analyses results is critical because clinicians use directly these re-
sults for therapy definition. ESMIS importa bacteria The system should also
identify critical situations such as unexpected resistance of a bacterium or
contagion events in an hospital unit and alarm the microbiologist. ESMIS
importa bacteria antibiograms, performs validation of the antibiogras controls
described in section 3 and returning evaluation results back to laboratory per-
sonnel so, in order to perform a significant trial, test application will performs
the same steps on bacteria antibiograms.

In the past, DEIS and Dianoema S.p.A. have designed and implemented
an expert system for the validation of clinical analyses[2].

In the paper we describe the first ESMIS prototype. It adopts a rule-based
approach to identify critical situations and correspondingly generate alarms.
The rules applied have been obtained by analyzing international standard
guidelines for microbiological laboratory practice and by integrating them with
expert suggestions.

The first prototype was implemented using KAPPA-PC [3], a tool for
expert system development. A tool has now to be chosen for implementing
the final ESMIS prototype. In order to make this choice, we have analyzed the
available commercial tools and we have selected the JESS [4] and JRULES [5]
for deeper investigation and testing. The feature presented by these tools are
described in section 4.

In order to test each tool we realized three simple test applications capa-
ble of performing some ESMIS tasks. For each tool, the techniques adopted
for implementing these applications and the performance obtained for each
trial are described. One criteria for the choice is the performance of the test
application because ESMIS will work in real time.

The paper is organized as follows: in section 2 the basic concepts of micro-
biological data analysis are presented. In section 3 the specifications of ESMIS
are dedscribed. In section 4 the various development tools are described. In
section 5 the test applications are described together with the performance
results obtained. Section 6 presents an overall comaparison of the tools and
section 7 concludes the paper.

2 Microbiological Data Analysis

For each isolated bacterium, the antibiogram represents its resistance to a
series of antibiotics [6]. The antibiogram is a vector of couples (antibiotic,
result), where four types of results are recorded: R if the bacterium is resistant
to the antibiotic, I if it is intermediate, S if it is sensitive and null when
unknown. Bacteria of the same species with the same antibiograms represent
a particular ”strain”.

Some instruments execute intelligent controls on antibiotic test results but
these controls are limited because they don’t have information about speci-

2

Lamma et al

men, patient characteristics and infection history. A system, capable of using
all available information, may represent a better support for laboratory per-
sonnel in the validation task. This system should also control the application
of standard antibiotic testing guidelines: these guidelines, used by almost all
microbiological laboratories, indicate the execution of antibiotic test meth-
ods and the interpretation of results. Examples of problems that this sys-
tem should solve are: automatic correction of antibiotic results for particular
species that present in vitro susceptibility but in vivo resistance, controls on
the list of tested antibiotics, predictions of test results for a group of antibi-
otics using some representative antibiotic (ex. Tetracycline is representative
for all tetracyclines), intelligent reporting.

3 Microbiological Surveillance Expert System

A surveillance system may be realized using an Expert System programming
approach. This Artificial Intelligence programming technique has been applied
to the medical field since 1980. In an Expert System [1], also called Knowledge
Based System (KBS), knowledge about the problem is translated into special
data structures and rules. An inference engine applies these rules to the
available data to perform specific tasks.

Given a newly isolated bacterium and the related antibiogram, ESMIS per-
forms five main tasks: validates the culture results, identifies the most suit-
able antibiotics list to be reported, issues alarms regarding the newly isolated
bacterium, issues alarms regarding patient clinical situation and identifies po-
tential epidemic events inside the hospital. In the validation task, the system
finds antibiotics that have not been tested but are necessary, it identifies im-
possible antibiotic results for a particular species and it tests common relations
between antibiotic results. In the intelligent reporting task, the system asso-
ciates to each antibiotics a suitability, obtained considering some antibiotic
characteristics: costs, infection site, bacteria specie and hospital ward. In the
bacterium alarms task, the system provides information regarding the bacte-
ria (dangerous resistance, multiresistant bacteria, etc.). In the patient alarms
task, it issues alarms regarding the infection history of the patient. Example
of possible alarms are:
• Polimicrobic population: if two or more bacteria species where found at

successive times in the same sample material;
• Resistance Acquisition: if the newly identified bacterium has more antibiotic

resistances than the previous one of the same species.

The system will also provide information regarding the hospital ward (con-
tagion) and epidemic breakout alarms: the system architecture is ready but
these controls are not implemented yet.

The knowledge has been elicitated from the annual compendium [8]of NC-
CLS [7], an international standard organization recognized from almost all

3

Lamma et al

Fig. 1. Databases and data types.

laboratory as reference in routinely work. The compendium contains testing
guidelines for microbiological laboratory. NCCLS guidelines, for each species,
are basically composed of: a table that specifies antibiotics to be tested, a ta-
ble that specifies antibiotic test interpretation and a list of exception regarding
particular antibiotic test result. We have also used local expert suggestions
and particular data mining techniques (see [9]).

A laboratory information system called Italab C/S (developed by Dia-
noema S.p.A.) manages and stores all the information concerning patients,
analysis requests and analysis results in an Oracle database and transfers in
real-time microbiological data to a dedicated database called Epidemiological
Observatory. A description of databases and data types is shown in figure 1.
ESMIS will become part of the routinely laboratory result production process
as described in figure 2. ESMIS introduces an automatic validation step in
the process: in this step ESMIS presents the results of its controls to labora-
tory personnel that will decide to agree or disagree with them and to make,
if necessary, changes on antibiotic test results. ESMIS also produces the final
report and issues alarms regarding the patient clinical situation.

4 Expert system tools

One of the aims of this project is to identify the tool that grants the best
cost/benefit ratio for the ESMIS expert system. We decide to test KAPPA-
PC, also used in the first prototype implementation, and two other JAVA [10]
tools called JESS and JRULES. A tool is basically composed by:
• Libraries of functions for knowledge base construction, rule definition and

inference engine personalization;

4

Lamma et al

Fig. 2. Control flow of the overall system.

• A graphical developing interface;
• Database connectivity;
• An inference engine;
• A programming language (general purpose, like JAVA and C++, or dedi-

cated).

Each tool has specific characteristics, described in following sections, and
may be used for ESMIS implementation in different ways.

4.1 KAPPA-PC

KAPPA-PC is an Intellicorp S.p.A [3] product. Its features are:
• Programming environment: KAPPA-PC has a good programming envi-

ronment composed by some graphical tools for object management, rule
management and code debugging. These tools speed up the expert system
development and allow easy knowledge management to non-skilled users
too.

• Software architecture: KAPPA-PC is build with an old programming tech-
nology and its 16-bit architecture limits the maximum available memory
and therefore the number of objects that can be loaded in memory at the
same time.

• Programming language: KAPPA-PC uses a dedicated programming lan-
guage called KAL with a simple C like syntax. This language may be
translated in C++ for code compilation.

5

Lamma et al

• Inference engine: kappa-PC inference engine may use either forward or
backward chaining. Rules are applied using pattern matching in exhaustive
mode: in every inference step all rules and all conditions in each rule are
tested in order to identify applicable rules. During forward chaining, four
different strategy may be used for selecting the rule to be applied from
a set of rules with the same priority: bestfirst, depthfirst, breadthfirst or
selective.

• Rule syntax: Rules are specified with a IF Condition THEN Conclusion
syntax. Condition is composed by a set of tests on object attributes linked
by logic operator (AND, OR, XOR). Conclusion is composed by a set of
actions to be performed on working memory objects.

• Easy database connectivity: the tool has a complete function library for
database connectivity. Connection is obtained using ODBC drivers.

4.2 JESS

JESS (Java Expert System Shell) [4] is an expert system tool written in JAVA
that may be added to every JAVA application. JESS characteristics are:
• Software architecture: Since JESS is written in JAVA, applications are

independent from the operating system. The code has a 32-bit architecture
so there are no memory limitations.

• Programming interface: JESS programming interface is represented by a
simple console . There are no tools for object management or rule manage-
ment and the language employs a complex LISP syntax. The development
of applications is difficult and not suitable for non-skilled users.

• Language syntax: As in the LISP language, the JESS language main concept
is that of atom. The head of a list represents a specific function and the
elements in the tail represent the function arguments. A variable is an atom
in which has ? as first character, and may contain a single atom, a number
or a string. Atoms in which the last character is a $ represent multiple
variables.

• Inference engine: JESS inference engine uses the RETE algorithm. This
algorithm grants better performance than standard pattern matching ex-
haustive techniques. Rules are compiled in a particular net in which each
test on an object is executed only one time even if this test is included in
more rules. Rules may be applied in forward and backward chaining. In
forward chaining two different strategies may be applied for conflict reso-
lution: depth or breadth. In the depth strategy the last activated rule is
applied before the other ones. In the breadth strategy rules are applied in
the activation order.

• Rule syntax: Rules evaluation modifies facts in the working memory. Rules
are defined using the ”defrule” function using the LISP like syntax. One
example is:

6

Lamma et al

JESS> (defrule thief_alarm (thief-identified) =>
(activate-the-bell))

This rule is univocally identified by the name ”thief alarm” and subdivided
in two parts by ”=¿”. The first part contains the conditions to be tested and
the second the actions to take if all the conditions specified in the first part
are verified. The patterns in the conditional part are used for selecting an
object of the working memory matching the pattern. In the example shown
above, the rule will be activated if the (thief-identified) fact is present in
the knowledge base or in the working memory. Each rule has a ”salience”
that indicates the rule priority.

• Inference on objects: JESS inference engine can not directly interact with
java objects so it is necessary to build an interface between JESS objects
and JAVA objects. This characteristic makes application development quite
complex.

4.3 JRULES

ILOG JRULES 3.0 [5] is a library of JAVA classes used for adding intelligent
reasoning to a JAVA application. JRULES has the following features:
• Software architecture: JRULES is written in JAVA, so applications are in-

dependent of the operating system. The code has a 32-bit architecture so
there are not memory limitations.

• Programming interface: JRULES has a set of graphical tools for the man-
agement of classes, for rule editing and for code debugging. There is also a
graphical tool for managing the transfer of data between JAVA classes and
database tables.

• Programming language: JRULES does not have a dedicated programming
language but directly uses JAVA. The inference process can directly manip-
ulate JAVA objects.

• Inference engine: JRULES inference engine uses the RETE algorithm. The
inference engine works in forward chaining, applying instantiated rules on
working memory objects. Rules are selected considering priority and par-
ticular criteria (Refraction, Priority, Recency, Lexicographic order of rule
names) are used to resolve conflicts when several rule instances are candi-
dates for firing at the same time.

• Rule syntax: The conditional part of a rule is composed by one or more ex-
pressions (patterns) capable of selecting some objects of the working mem-
ory.

rule rule_1 {
when {
Class1(colour == white; shape == square);
Class1(shape == circle); }

7

Lamma et al

then {...}
}

Rule activation may lead to changes in the working memory and rule
applicability is tested until new objects are added into it. Rules can be
grouped together as rule packets. Associating rules in a packet provides a
way to activate and deactivate the rules by using the packet name.

• Truth Maintenance System: A Truth Maintenance System has the aim of
eliminating facts deduced from hypotheses that have since turned out to be
false. It is implemented by means of logical objects. Labeling an object as
logical means that its existence is based upon some kind of justification. A
logical object is maintained in the working memory as long as the condition
part, which constitutes its justifications, remains true. If the condition part
becomes false, the logical object loses one of its justifications. A justification
counter is associated with the logical object to record the number of times it
has been justified. The logical object itself continues to exist in the working
memory as long as the value of the counter has not dropped to zero.

• Database connection: The JRULES database connectivity tool is a Java
application-programming interface (API), which provides access to rela-
tional databases. Using the database connectivity tool (DBTool) the user
can access any JDBC-compliant database from an ILOG JRULES applica-
tion. This allows the user to use rules on remote objects and provides a
way to construct three-tier architecture applications. DBTool is provided
with a graphical user interface (GUI), which allows you to easily select and
implement a mapping from database entities to Java objects.

5 Tool testing phase

In order to test the tools we realized three simple test applications, one for
each tool, capable to perform the same ESMIS tasks. Each test application is
basically composed by:
• Working memory: objects containing antibiotic data, patient data and an-

tibiotic test result data;
• Rule base: restricted to some validation rules;
• Application functions: used for importing data from a database, returning

evaluation results to database, managing knowledge and performing actions
and controls during the inference process.

In this section we describe, for each tool, the techniques adopted for imple-
menting these components and the performance obtained for each trial.

5.1 Working memory

JESS and JRULES testing environments is based on a set of classes, used
for several tasks. The applications import analysis requests and antibiotic

8

Lamma et al

test results using a JDBC interface and create the relative objects. JESS
inference engine can not directly interact with java objects so it is necessary to
build an interface between JESS objects and JAVA objects. The KAPPA-PC
testing application executes the same tasks using an ODBC connections and
the database connectivity functions provided by KAL language. Descriptions
of the working memory classes and rule base implementation are presented
below for each tool.

Working memory classes Each antibiotic test result is an object of a class
called ’AntibioticRes’ which contains:
• Antibiotic name;
• Antibiotic test result;
• Antibiotic test result proposed by expert system;
• Rack test alarms and justifications;
• Validation alarms and justifications;
• Reporting alarms and justifications;
• ToReport Boolean field, that indicates if test result should be presented in

the final report;
• DerivedResult, that indicates if the test result was returned by instruments

or derived by other results during the inference process.

Some methods were defined for the ’AntibioticRes’ class in order to change
the proposed results and to insert alarm justifications. Other implemented
classes are:

• A ’Patient’ class, containing information about the patient;
• A ’Request’ class, containing information about the request;
• A ’IdentifiedMicro’ class, containing information about identified bacteria;
• A ’AntibioticHierarchy’ class, containing antibiotic hierarchy and charac-

teristics.

The ’AntibiticcRes’ class definition used in JESS and JRULES was created
using the following JAVA code:

public class AntibioticRes {
public String Code;
public String Name;
public String TestResult;
public String ProposedResult;
public String[] RackTestComment;
public String[] ValidationComment;
public String[] ReportingComment;
public boolean ToReport = TRUE;
public boolean Derived = FALSE;

9

Lamma et al

}

’AntibioticRes’ class in KAPPA-Pc was created using the graphical class edi-
tor.

KAPPA-PC testing application is written using only the dedicated KAL
language. JESS and JRULES testing applications were merged into a sin-
gle JAVA application in which we included the system classes necessary for
embedding JESS and JRULES reasoning. In this JAVA application we cre-
ated an ’ExpertSystem’ abstract class containing only abstract methods, that
represents the interface for JESS and JRULES subclasses containing method
implementations. These classes are instantiated according to user choice:
• ’JrulesExpertSystem’ subclass of ’ExpertSystem’ class: In the initialization

phase an object of the JRULES ’IlrContextIlr’ class and of the JRULES
’IlrRuleset’ class are created. The ’IlrContextIlr’ object contains the expert
system functions and structure, while the JRULES ’IlrRuleset’ object con-
tains the application rules. Methods for knowledge base construction (data
about bacteria and antibiotics) and inference management are defined too.

• ’JESSExpertSystem’ class of ’ExpertSystem’ class: In the initialization phase
an object of the JESS ’Rete’ class, containing the expert system function,
structure and rule format, is created: as previously described, the applica-
tion can not directly work on JAVA objects, so their JESS description is cre-
ated specifying each command and executing it by Rete.executeCommand
(”JESSCode”).

5.2 Rule base implementation

In our testing environment, we have built three lists of rules, containing respec-
tively rules in JESS syntax, rules in JRULES syntax and rules in KAPPA-PC
syntax. We formalized 34 rules obtained by analysing the NCCLS document
for the Staphilococcus Aureus species, and considering expert suggestions.
These rules control antibiotic the validity of test results by working on objects
describing antibiotic characteristics and representing relations that need to be
verified. A rule example is:

Rule_1: IF TestResult(oxacillin)=R

THEN TestResult(PENICILLIN)=R;
This rule may be implemented in different ways depending on used tool.
JESS syntax

(defrule rule_1 (declare (salience 2))
(resantib (CODE OXA) (RIS_PROP R))
?r <-(resantib (CODE ?cod) (RIS_PROP ?rp))

(test (neq ?rp R))
(antibiotic (CODE ?cod) (FAMILY PENICILLIN))

10

Lamma et al

=>
(bind ?c (fact-slot-value ?r COMMENT))
(bind ?temp (fact-slot-value ?c COM_VAL))

(modify ?c (COM_VAL ?temp "IF OXACILLIN test result is R THEN
test results of antibiotics belonging into
PENICILLIN family must be R."))

(modify ?r (RIS_PROP R))
)

JESS syntax is similar to LISP syntax. In order to make the rule simpler
and clearer we have defined some functions for performing common operations.
For example, the function ’ValidAlarm’ is defined as follows:

(deffunction ValidAlarm (?res_ant ?risp ?comment)
(bind ?c (fact-slot-value ?res_ant COMMENT))
(bind ?temp (fact-slot-value ?c COM_VAL))
(modify ?c (COM_VAL ?temp ?comment))
(modify ?res_ant (RIS_PROP ?risp)))

This function may be included in the conclusion part of a rule:

=> (ValidAlarm ?r R " IF OXACILLIN test result "))

JRULES syntax

rule rule_1
{
packet = Vali; priority = 2;
when
{
ResAntib(Code.equals("OXA"); PropRes.equals("R"));
?r_1: ResAntib(?c_1: CODE; !PropRes.equals("R"));

Antib(Code.equals(?c_1);Family.equals("Penicillin"));
}
then
{

?r_1.ValidAlarm("R","IF OXACILLIN test result is R THEN
test results of antibiotics belonging into PENICILLIN
family must be R.");

update ?r_1;
} };

This rule verifies three conditions:
• If there exists an object of the ’AntibioticRes’ class with the Code field

equal to OXA and the test result field equal to R
• If there exists an object R2 of the ’AntibioticRes’ class with the test result

field not equal to R

11

Lamma et al

• If the antibiotic represented by R2 belongs to the ’Penicillin’ group
• If all these conditions are satisfied, then the ”ValidAlarm” function, a java

method of the ’AntibioticRes’ class, is called: this function sets the ’Pro-
posedResult’ field to the value of the first function argument and adds to
the comment field the value of the second function argument.

KAPPA-PC syntax
Rule 1 con be expressed in KAPPA-PC as follows:

If VerifyAntibioticResult(OXA,R) And
Not(VerifyFamilyResults(Betalammin_1,R));

Then {
ValidationRuleName(rule_1);
ValidAlarm:"If OXACILLIN test result is R Then test results
of antibiotics belonging into PENICILLIN
family must be R.");

In this rule, we used some functions:
• ’VerifyAntibioticResult’ verifies if ’Oxacillin’ is an element of the patient

antibiogram and if its test result is R (resistant);
• ’VerifyFamiltyResults’ verifies if there is one or more antibiotics of the

antibiogram belonging to the ’Penicillin’ family (represented by BetaLat-
tamin 1) whose result is R;

• ’ValidAlarm’ issues an alarm for each antibiotic that verifies the rule con-
ditions setting a customisable comment.

5.3 Tool performance

One criteria for final tool choice is represented by the performance of the test
applications. ESMIS will work in real time importing bacteria antibiograms,
performing the controls described in section 3, and returning evaluation results
back to the laboratory personnel. Therefore, in order to perform a significant
trial, the test applications will performs the same steps on bacteria antibi-
ograms.

In order to evaluate the test applications reaction to stress situation, we
tested them on blocks of increasing dimensions. The evaluation steps are:
• The application retrieves a block of N antibiograms and, for each one, the

associated antibiotic test results are imported in ’AntibioticRes’ objects and
added to working memory;

• 34 validation rules are applied on working memory elements using forward
chaining;

• Changes to antibiotic test results (new proposed results and validations
note) are applied to corresponding database records.

Table 1 shows the performance obtained using the three different proto-

12

Lamma et al

Table 1
Performance on antibiogram block validation

Antibiogram JRULES JESS K-PC Issued alarms Corrections

Number Sec. Sec. Sec. Number Number

100 7 7 17 35 35

200 14 15 35 72 72

300 22 23 55 109 109

400 29 29 72 143 143

1000 73 76 190 332 332

Table 2
Comparison between analyzed tools L = Low, M = Medium, H = High P = Poor,

S = Sufficient, A = Acceptable, G = Good, VG = Very good

Tool Language Developing Programming Inference Engine Cost

Complexity Tools Complexity Performance

K-PC L VG L A S L

JESS H P H A G M

JRULES M G M VG G H

types for the validation of a set of N antibiograms. The sonclusions about
results of this first trial are:
• Each prototype correctly applies rules making the same number of correc-

tions on the proposed results and issuing the same alarms;
• Prototypes written using JESS and JRULES are more efficient than KAPPA-

PC one because they use a more complex and advanced inference engine
(RETE algorithm);

• Prototype performances are not influenced by antibiograms block dimen-
sion: relation between elapsed time and the number of antibiogram is linear.

Test was performed in on a PentiumIII 733MHz Intel pc with 128 MB of
RAM with Microsoft WindowsNT4.

6 Results of tool analysis

Table 2 synthesizes quality of examined tool features, described in section 4,
and their suitability in realizing a system for real-time microbiological data
validation and surveillance, described in section 5. This table reports a qual-
ity value for: language complexity, developing tools, programming complexity,
efficiency and amount of features available within the inference engine, per-
formance, and cost.

13

Lamma et al

JRULES offers the best technical features but because of its high cost it is
more suitable for big industrial applications. JESS is powerful but its complex
language and poor developing environment make application development slow
and limited only to skilled users. KAPPA-PC is a good tool with a simple and
easy developing interface and programming language. Its inference engine has
low performance and makes it not suitable for high complexity reasoning and
time-critical applications.

7 Conclusions

In this paper we described a project whose aim is to build a system for micro-
biological laboratory data validation and bacteria infections monitoring. We
report on the first results we have obtained with a prototype that adopts a
knowledge-base approach to identify critical situations and to correspondingly
issue alarms. In order to identify the most suitable tool for the ESMIS final
prototype implementation, we analyzed three commercial tools for expert sys-
tem development. We have presented tool specific characteristics and we have
described tests executed on simple application realized with such tools.

8 Acknowledgements

We are grateful to A.Nanetti, belonging to Medicine Department of the Uni-
versity of Bologna and to MURST [11](project 23204/DSPAR/99) that has
partially supported this project.

References

[1] M. Stefik,Introduction to knowledge systems, Morgan Kaufmann, 1995

[2] M.Boari, E.Lamma, P.Mello, S.Storari, S.Monesi, An Expert System Approach
for Clinical Analysis Result Validation, ICAI 2000,Las Vegas, Nevada, USA

[3] Intellicorp, Inc., www.intellicorp.com, Accessed 07/08/2001

[4] JESS, herzberg.ca.sandia.gov/jess/, Accessed 07/08/2001

[5] JRULES, www.ilog.com, Accessed 07/08/2001

[6] A.Balows, W.J.Hauser,Jr, K.L.Herrmann, H.D.Isenberg, H.J.Shadomy, Manual
of Clinical Microbiology, 5Ed, American Society for Microbiology, Washington,
1991

[7] National Committee for Clinical Laboratory Standards (NCCLS),
www.nccls.org, Accessed 07/08/2001

[8] NCCLS, Performance Standards for Antimicrobial Susceptibility Testing; Ninth
Informational Supplement, M100-S9 Vol. 19 No. 1, January 1999

14

http://www.intellicorp.com�
http://herzberg.ca.sandia.gov/jess/�
http://www.ilog.com�
http://www.nccls.org�

Lamma et al

[9] E.Lamma, M.Manservigi, P.Mello, A.Nanetti, F.Riguzzi, S.Storari, The
Automatic Discovery of Alarm Rules for the Validation of Microbiological Data,
IDAMAP2001, London, UK

[10] JAVA by SUN Microsystems, www.sun.com, Accessed 07/08/2001

[11] Ministero dell’universit e della ricerca scientifica e tecnologica, www.murst.it,
Accessed 31/03/2001

15

http://www.sun.com�
http://www.murst.it�

