
Integrating Induction and Abduction in Logic

Programming

Evelina Lamma a, Paola Mello b, Michela Milano a and

Fabrizio Riguzzi a

a DEIS, Universit�a di Bologna Viale Risorgimento 2, 40136 Bologna, Italy

felamma,mmilano,friguzzig@deis.unibo.it
b Dip. di Ingegneria, Universit�a di Ferrara Via Saragat 1, 41100 Ferrara, Italy

pmello@ing.unife.it

We propose an approach for the integration of abduction and induction

in Logic Programming. We de�ne an Abductive Learning Problem as an

extended Inductive Logic Programming problem where both the back-

ground and target theories are abductive theories and where abductive

derivability is used as the coverage relation instead of deductive deriv-

ability. The two main bene�ts of this integration are the possibility of

learning in presence of incomplete knowledge and the increased expres-

sive power of the background and target theories. We present the system

LAP (Learning Abductive Programs) that is able to solve this extended

learning problem and we describe, by means of examples, four di�erent

learning tasks that can be performed by the system: learning from incom-

plete knowledge, learning rules with exceptions, learning from integrity

constraints and learning recursive predicates.

Key words: Abductive Logic Programming. Inductive Logic Programming.

Machine Learning. Nonmonotonic Reasoning.

1 Introduction

Both abduction and induction have been recognized as powerful mechanisms

for hypothetical reasoning in presence of incomplete knowledge [9,20,25,31,32].

Abduction is generally understood as reasoning from e�ects to causes or ex-

planations. Given a theory T and a formula G, the goal of abduction is to

�nd a (possibly minimal) set of atoms � which, together with T , entails G.

Induction is generally understood as inferring general rules from speci�c data.

Given a theory T and a formula (observation) G, the goal of induction is to

�nd a set of general rules � (of the type � ! �) which, together with T ,

entails G.
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The relationship between abduction and induction has been studied recently

by several authors, mainly in the �eld of Arti�cial Intelligence (see, for in-

stance, [8,34]). In general, the question of how abduction and induction could

be integrated and how they would cooperate, complement and a�ect each

other is emerging as an important problem and has been the subject of two

international workshops (see [15,22]).

Our work is an attempt to bring closer the �elds of abductive and inductive

reasoning in the Logic Programming setting, as done also in [1,4,17]. An In-

ductive Logic Programming (ILP, for short) problem can be de�ned as follows

[5]: given a set P of possible programs, sets E+ and E� of positive and nega-

tive examples and a consistent logic program B (background knowledge), �nd

a logic program P 2 P (target program) such that B [ P entails (or covers)

each e+ 2 E+ and does not entail any e� 2 E�. In Abductive Logic Program-

ming (ALP, for short) ([20,23]) a program is a triple hP;A; ICi where P is a

logic program possibly with abducible atoms in clause bodies, A is a set of

abducible predicates and IC is a set of integrity constraints (denials, for sim-

plicity). Abducibles are predicates which can be assumed true (or false) during

the computation provided that they are consistent with integrity constraints.

Therefore, they can be used to deal with incomplete information.

Our approach for the integration of abduction and induction consists in de�n-

ing a new learning problem, called Abductive Learning Problem, where both

the background and target programs are abductive logic programs and abduc-

tive derivability is used as the coverage relation in substitution of deductive

derivability. The main advantages of the integration concern the possibility

of learning in presence of incomplete knowledge and the increased expressive

power of learned programs.

We propose the system LAP (Learning Abductive Programs) that is able to

solve the new learning problem. The algorithm extends the basic top-down

algorithm adopted in ILP [5] by substituting the deductive proof procedure

of logic programming with the abductive proof procedure de�ned in [26] for

testing the coverage of examples. The algorithm is sound but incomplete with

respect to the new problem de�nition. We identify and discuss four di�er-

ent tasks that can be accomplished by such a learning system: learning from

incomplete data, learning rules with exceptions, learning from integrity con-

straints and learning recursive predicates.

The paper is organized as follows: in section 2, we recall the main concepts of

ALP and ILP. In section 3, we present the algorithm, and we discuss its prop-

erties of soundness and completeness in section 4. In section 5, we illustrate

the above mentioned tasks by means of examples. Related works are presented

in section 6. Conclusions and future works follow in section 7.
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2 Abductive and Inductive Logic Programming

In this section, we �rst brie
y recall some notations of Logic Programming

and the basic concepts of Abductive Logic Programming and Inductive Logic

Programming. Then we de�ne the Abductive Learning Problem.

2.1 Preliminaries on Logic Programming

Let us �rst set up some basic notations and terminologies we will adopt

throughout the paper. We shall use the basic concepts of logic programming

(e.g. as in [3]). We consider normal logic programs, where negation is denoted

by not, and can occur in clause bodies.

A normal logic program is a set of rules of the form:

A0  A1; : : : ; Am; not Am+1; : : : ; not Am+n:

where m;n � 0 and each Ai (i = 0; : : : ; m+ n) is an atom.

2.2 Abductive Logic Programming

Abduction plays an important role in everyday human problem solving, and

it has been recognized as a powerful mechanism for hypothetical reasoning

in presence of incomplete knowledge. In Arti�cial Intelligence, abduction has

been applied successfully to a number of �elds [24]: fault diagnosis, high level

vision, natural language understanding, planning, knowledge assimilation, de-

fault reasoning.

In a logic programming setting, abduction is modelled through abductive theo-

ries or abductive logic programs [24]. An abductive theory is a triple hP;A; ICi

where:

{ P is a de�nite logic program;

{ A is a set of abducible predicates (or abducibles);

{ IC is a set of integrity constraints in the form of denials, i.e.:

 A1; : : : ; Am:

Abducibles represent the predicates about which we can make assumptions

because they are incompletely speci�ed. They \carry" all the incompleteness of

the domain. We indicate with LA the set of all atoms built over the predicates

of A and we call them abducible atoms.
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Given an abductive logic program T = hP;A; ICi and a formula G, the goal

of abduction is to �nd a (possibly minimal) set of ground atoms � (abductive

explanation) of predicates in A such that P [� j= G. It is also required that

the program P [� is consistent with respect to IC, i.e., P [� j= IC.

Example 1 Let us consider the following abductive logic program T , inspired

to [35], where P is:

shoes are wet grass is wet:

grass is wet rained last night:

grass is wet sprinkler was on:

electrical black out:

The integrity constraints IC are:

 electrical black out; sprinkler was on:

(stating that electrical black out and sprinkler was on cannot be both true in

a consistent model) and let predicates rained last night and sprinkler was on

be abducible. The observation shoes are wet has the abductive explanation:

�1 = frained last nightg.

The set �2 = fsprinkler was ong, even if it explains the observation, is not

considered as a valid abductive explanation because it violates the constraint.

ALP considers as well programs T = hP;A; ICi where P is a normal logic

program and constraints in IC contain negative literals. In this case, abduc-

tion is used also for modelling negation, obtaining a type of negation called

negation by default [6]. Negation is modelled by transforming the program T

into its positive version T � = hP �; A [ A�; IC [ IC�i. T � does not contain

negative literals and is obtained in this way: for each predicate symbol p, a

new predicate symbol not p is included in A� and the integrity constraint:

 p(x); not p(x)

is included in IC�, where x is a tuple of variables. We de�ne the complement

l of a literal l as

l =

8
><
>:
not p(x) if l = p(x)

p(x) if l = not p(x)

We indicate with LD the set of all atoms built over the predicates of A� and we

call them default atoms. In the following we will always consider the positive

version of programs.

As a model-theoretic semantics for ALP, we adopt the abductive model seman-
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tics de�ned in [6]. We do not want to enter into the details of the de�nition, we

will just give the following proposition which will be useful in the following.

Proposition 2 Given an abductive model M for the abductive program AT =

hP;A; ICi, there exists a set of atoms H � (LA [ LD) such that M is the least

Herbrand model of P [H.

PROOF. Straightforward from the de�nition of abductive model (de�nition

5.7 in [6]. 2

In [26] a proof procedure for the positive version of abductive logic programs

has been de�ned. This procedure (reported in the Appendix) starts from a

goal and a set of initial assumptions �i and results in a set of consistent

hypotheses (abduced literals) �o such that �o � �i and �o, together with

the program P , allows to derive the goal. The proof procedure uses the notion

of abductive and consistency derivations. Intuitively, an abductive derivation

is the standard Logic Programming derivation suitably extended in order to

consider abducibles. As soon as an abducible atom � is encountered, it is added

to the current set of hypotheses, and it must be proved that every integrity

constraint containing � is satis�ed. To this purpose, a consistency derivation

for � is started. Each integrity constraint containing � is considered and �

is removed from it. We have to verify that all the resulting constraints are

satis�ed. Being the constraints denials only (i.e. goals), this corresponds to

prove that every resulting goal fails. In the consistency derivation, when an

abducible is encountered, an abductive derivation for its complement is started

in order to prove its failure, so that the constraint is satis�ed.

When the procedure succeeds for the goal G and the initial set of assumptions

�i, producing as output the set of assumptions �o, we say that T abductively

derives G or that G is abductively derivable from T and we write T `�o

�i

G.

In [6] it has been proved that the proof procedure is sound and weakly com-

plete with respect to the abductive model semantics of [6] under a number of

restriction. We will present these results in details in section 4.

2.3 Inductive Logic Programming

Now we recall some basics on ILP. We �rst give a de�nition of the ILP problem

[5]:
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Given:

{ a set P of possible programs

{ a set E+ of positive examples

{ a set E� of negative examples

{ a consistent logic program B such that B 6` e+ for at least one e+ 2 E+.

Find:

{ a logic program P 2 P such that

� 8e+ 2 E+, B [ P ` e+ (completeness)

� 8e� 2 E�, B [ P 6` e� (consistency).

Let us introduce some terminology. The sets E+ and E� form the training

set. The program P that we want to learn is the target program and the

predicates which are de�ned in it are target predicates. The program B is

called background knowledge and contains the de�nitions of the predicates that

are already known. We say that program P covers example e if P [ B ` e.

Therefore the conditions that the program P must satisfy in order to be a

solution for the ILP problem can be expressed as \P must cover all positive

examples (P is complete) and must not cover any negative example (P is

consistent)". The set P is called the hypothesis space. The importance of this

set lies in the fact that it de�nes the search space of the ILP system. In order

to be able to e�ectively learn a program, this space must be restricted as much

as possible. If the space is not restricted, the search could result infeasible. The

language bias (or simply bias in this paper) is a description of the hypothesis

space. Many formalisms have been introduced in order to describe this space

[5], we will consider only a very simple bias in the form of a set of literals

which are allowed in the body of the clauses for the target predicates.

Let us now consider a simple example.

Example 3 Suppose we want to learn the concept grandfather from the back-

ground knowledge:

father(X; Y ) parent(X; Y ); male(X):

parent(john;mary):

parent(ann;mary):

parent(mary; steve):

male(john):

female(mary):

and the training sets:

E+ = fgrandfather(john; steve)g

E� = fgrandfather(ann; steve); grandfather(john;mary)g
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Initialize H := ;

repeat (Covering loop)

Generate one clause c

Remove from E+ the e+ covered by c

Add c to H

until E+ = ; (Su�ciency stopping criterion)

Generate one clause c:

Select a predicate p that must be learned

Initialize c to be p(X) :

repeat (Specialization loop)

Select a literal L from the language bias

Add L to the body of c

if c does not cover any positive example

then backtrack to di�erent choices for L

until c does not cover any negative example (Necessity stopping criterion)

return c

(or fail if backtracking exhausts all choices for L)

Fig. 1. Basic top-down ILP algorithm

Suppose also that the hypothesis space P is described in this way:

P is the set of clauses of the type grandfather(X; Y )  � where � is a

conjunction of literals chosen among the following:

father(X; Y ); father(X;Z); father(Z; Y );

parent(X; Y ); parent(X;Z); parent(Z; Y );

male(X); male(Y ); male(Z);

female(X); female(Y ); female(Z)

The following program P is a solution to this ILP problem because it covers

the positive example and does not cover any of the negative ones:

grandfather(X; Y ) father(X;Z); parent(Z; Y ):

There are two broad categories of ILP learning methods: bottom-up methods

and top-down methods. In bottom-up methods clauses are generated by start-

ing with a clause that covers one or more positive examples and no negative

example and by generalizing it as much as possible without covering any neg-

ative example. In top-down methods clauses are constructed starting with a

general clause that covers all positive and negative examples and by specializ-

ing it until it does no longer cover any negative example while still covering at

least one positive. In this paper, we concentrate on top-down methods. A ba-

sic top-down inductive algorithm [5,30] learns programs by generating clauses

one after the other. A clause is generated by starting with an empty body and
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iteratively adding literals to the body. The basic inductive algorithm, adapted

from [5] and [30], is sketched in �gure 1.

2.4 The Abductive Learning Problem

We consider an extended de�nition of the ILP learning problem where both

the background and target theory are abductive logic programs and abductive

derivability is used as the coverage relation instead of deductive derivability.

Let us �rst de�ne the correctness of an abductive logic program T with respect

to the training set E+; E�. This notion replaces those of completeness and

consistency for logic programs.

De�nition 4 (Correctness) An abductive logic program T is correct, with

respect to E+ and E�, if and only if there exists a � such that

T `�
;
E+; not E�

where not E� = fnot e�je� 2 E�g and E+; not E� stands for the conjunction

of each atom in E+ and not E�

De�nition 5 (Abductive Learning Problem) Given

{ a set of positive examples E+,

{ a set of negative examples E�,

{ an abductive theory T = hP;A; ICi as background theory.

{ a set T of possible abductive theories

Find

A new abductive theory T 0 = hP [P 0; A; ICi such that T 0 2 T and T 0 is correct

wrt E+ and E�.

We say that a conjunction of positive or (negated) negative examples L is

covered if T `�
;
L. We say that a negative example e� is not covered (or ruled

out) if T `�
;
not e�

Di�erently from the ILP problem, we require the conjunction of examples to

be covered instead of each example singularly. This is required to ensure that

the abductive explanations for di�erent examples are consistent with each

other.

The abductive program that is learned can contain new rules (eventually con-

taining abducibles in the body), but not new abducible predicates and new

integrity constraints.
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procedure LAP(

inputs : E+; E� : training sets,

T = hP;A; ICi : background abductive theory,

outputs : H : learned theory, � : abduced literals)

H := ;

� := ;

repeat

GenerateRule(input: T;H;E+; E�;�; output: Rule; E+

Rule
;�Rule)

Add to E+ the positive literals of target predicates in �Rule

Add to E� the complement of negative literals

of target predicates in �Rule

E+ := E+ � E+

Rule

H := H [ fRuleg

� := � [�Rule

until E+ = ; (Su�ciency stopping criterion)

output H;�

Fig. 2. The covering loop

3 The Algorithm

The system LAP is able to solve the Abductive Learning Problem. The algo-

rithm is obtained from the basic top-down ILP algorithm shown in section 2

by substituting the deductive proof procedure of logic programming with the

abductive proof procedure de�ned in [26] for testing the coverage of examples.

The system has been implemented in Sicstus Prolog version 3#5 [38].

The covering loop of the algorithm for learning abductive rules is presented

in �gure 2, the specializing loop in �gure 3 and the procedure for testing

the coverage of a rule in �gure 4. The basic top-down inductive algorithm is

extended in the following respects.

First, in order to determine the set of positive examples E+

Rule
covered by the

generated rule Rule (procedure TestCoverage in �gure 4), an abductive deriva-

tion is started for each positive example. This derivation results in a (possibly

empty) set of consistent hypotheses (abduced literals) which, together with

the current theory, allows to derive the examples. The abductive procedure

takes as input also the set of literals abduced in the derivation of previous

examples. In this way, we ensure that the conjunction of examples will be

covered because the procedure is allowed only to make assumptions that are

consistent with those previously made for covering other examples, as will be

proved in section 4.
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procedure GenerateRule(

inputs : T : background abductive theory, H : current hypothesis,

E+; E� : training sets, � : current set of abduced literals

outputs : Rule : rule, E+

Rule
: positive examples covered by Rule,

�Rule : set of literals abduced during the derivation of examples)

Select a predicate to be learned p

Let Rule := p(X) true:

repeat

select a literal L from the language bias

add L to the body of Rule

TestCoverage(input: Rule; T;H;E+; E�;�,

output: E+

Rule
; consistentRule;�Rule)

if E+

Rule
= ;

backtrack to a di�erent choice for L

until consistentRule is true (Necessity stopping criterion)

output Rule; E+

Rule
;�Rule

Fig. 3. The specialization loop

Second, in order to check that no negative example is covered (necessity stop-

ping criterion in �gure 3) by the generated rule Rule, an abductive derivation

is started for the conjunction of each negated negative example (procedure

TestCoverage). We test the conjunction of negative examples, instead of test-

ing them singularly as we do for positive examples, because we are interested

in clauses that cover not E� and not a subset of it, while we are interested in

clauses that possibly cover only a subset of E+. Also in this case, the deriva-

tion does not start from an empty set of abducibles, but it starts from the set

of abducibles previously assumed. Therefore the set of abducibles is passed

on from derivation to derivation and gradually extended. This is done across

di�erent clauses as well by enlarging the � set at each iteration in procedure

LAP (�gure 2).

Third, in the covering loop, after the generation of a new clause, the abduced

literals regarding target predicates are added to the training set. In particular,

positive literals of target predicates are added to E+, while default literals of

target predicates (in their complemented form) are added to E�. In this way,

we ensure that the assumptions made about target predicates will be respected

by the rules that will be learned in the future: no new rule will cover an atom

assumed false, and all the atoms assumed true will be covered, as will be

proved in section 4.

We have increased the ways in which a positive example can be covered and a

negative example ruled out. A positive example can be covered by abducing

nothing, thus expressing the fact that the example is surely positive, or it can
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procedure TestCoverage(

inputs : Rule : rule, T : background abductive theory,

H : current hypothesis, E+; E� : training sets,

� : current set of abduced literals

outputs: E+

Rule
: positive examples covered by Rule,

consistentRule: true if not E
� is covered,

�Rule : set of literals abduced during the derivation of examples)

E+

Rule
:= ;

�in := �

for each e+ 2 E+ do

if AbductiveDerivation(e+; hP [H [ fRuleg; A; ICi;�in;�out)

succeeds then

Add e+ to E+

Rule

�in := �out

endif

endfor

if AbductiveDerivation(not E�; hP [H [ fRuleg; A; ICi;�in;�Rule)

succeeds then

consistentRule := true

else

consistentRule := false

endif

output E+

Rule
; consistentRule;�Rule

Fig. 4. Coverage testing

be covered by making some assumptions, thus expressing the fact that we do

not have complete con�dence in its coverage, but that it is consistent with

our current representation of the domain. Similarly, a negative example can

be ruled out with certainty, when its negation is derived by abducing nothing,

or it can be ruled out under certain assumptions. The learning power of the

algorithm is therefore greater than that of an ILP system because it is able to

learn even when the knowledge about the domain is not completely speci�ed,

as it is often the case for real learning problems, by making hypotheses about

the unknown parts of the domain, provided that these are consistent with

known integrity constraints.

The system is able to learn as well from information on target predicates

expressed in the form of integrity constraints. Before starting the learning

process, additional examples are extracted from the constraints using the ab-

ductive proof procedure. The process will be described in full details in section

5.3.
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4 Properties of the algorithm

The algorithm is sound, under some restriction, but not complete. In this

section we give a proof of its soundness and we point out the reasons why it

is incomplete.

Let us �rst adapt the de�nitions of soundness and completeness for an in-

ductive inference machine, as given by [5], to the new problem de�nition. We

will call Abductive Inductive Inference Machine (AIIM) an algorithm that

solves the Abductive Learning Problem. If M is an AIIM, then we shall write

M(T ; E+; E�; B) = T to indicate that, given the hypothesis space T , posi-

tive and negative examples E+ and E�, and a background knowledge B, the

machine outputs a program T . We write M(T ; E+; E�; B) = ? when M does

not produce any output.

With respect to the problem de�nition of section 2.4, the de�nition of sound-

ness and completeness are

De�nition 6 (Soundness) An AIIM M is sound if and only if if M(T ; E+;

E�; B) = T , then T 2 T and T is correct with respect to E+ and E�.

De�nition 7 (Completeness) An AIIM M is complete if and only if if

M(T ; E+; E�; B) = ?, then there is no T 2 T that is correct with respect to

E+ and E�.

The proof of soundness of the algorithm is based on the theorems of soundness

and weak completeness of the abductive proof procedure given in [6]. We will

�rst present the results of soundness and completeness for the proof procedure

and then we will prove the soundness of our algorithm.

The theorems of soundness and weak completeness (theorems 7.3 and 7.4 in

[6]) have been extended by considering the goal to be proved as a conjunc-

tion of abducible and non-abducible atoms instead of a single non-abducible

atom and by considering an initial set of assumptions �i. The proofs of these

extensions are straightforward, given the original theorems.

Theorem 8 (Soundness) Let us consider an abductive logic program. Let L

be a conjunction of atoms. If there exists an abductive derivation from

( L �i) to ( �o) then there exists an abductive modelM such that M j= L

and �o �MA [MD, where MA = M \ LA and MD =M \ LD.

Theorem 9 (Weak completeness) Let us consider an abductive logic pro-

gram. Let L be a conjunction of atoms. Suppose that every selection of rules

in the proof procedure for L terminates with either success or failure. If there

exists an abductive model M such that M j= L, then there exists a selection of
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rules such that the procedure succeeds for L returning �, where � �MA[MD.

We need as well the following lemma.

Lemma 10 Let us consider an abductive logic program. Let L be a conjunc-

tion of atoms. If there exists an abductive derivation from ( L fg) to ( �)

then lhm(P [ �) j= L 1 , where lhm(P [ �) is the least Herbrand model of

P [�.

PROOF. Derives directly from theorem 5 in [18]. 2

The theorems of soundness and weak completeness are true under a number

of assumptions:

{ the abductive logic program must be ground,

{ the abducibles must not have a de�nition in the program,

{ the integrity constraints are denials with at least one abducible in each

constraint.

Moreover, the completeness theorem is limited by the assumption that the

proof procedure for L always terminates.

The soundness of LAP is limited as well by these assumptions. In the following,

we discuss the restrictions imposed by these assumptions.

The requirement that the program is ground is not restrictive in the case

in which there are no function symbols in the program and therefore the

Herbrand universe is �nite. In this case, in fact, we can obtain a �nite ground

program from a non-ground one by grounding in all possible ways the rules

and constraints in the program.

The restriction on the absence of a (partial) de�nition for the abducible does

not reduce the generality of the results since, in the case in which abducible

predicates have de�nitions in T , we can apply a transformation to T so that

the resulting program T 0 has no de�nition for abducible predicates. This is

done by introducing an auxiliary predicate �a for each abducible predicate a

and by adding the clause

a(x) �a(x):

The predicate a is no longer abducible, whereas �a is now abducible. In this

way, we are able to deal as well with partial de�nitions for abducible predi-

cates, and this is particularly important when learning from incomplete data,

1 i.e., if L = l1 ^ l2 ^ : : : ^ ln, then M j= L, 8i : i = 1 : : : n; li 2 lhm(P [�).
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because the typical situation is exactly to have some predicates whose de�ni-

tion is incomplete, as will be shown in section 5.1.

The requirement that each integrity constraint contains an abducible predicate

is not restrictive because we use constraints only for limiting assumptions and

therefore a constraint without abducible predicates would be useless.

The most restrictive requirement is the one on the termination of the proof

procedure. However, it can be shown that the procedure always terminate for

call-consistent programs [26], i.e., if no predicate depends on itself through an

odd number of negative recursive calls (e.g., p not p).

We need as well the following two theorems.

Theorem 11 If T = hP;A; ICi `�1

;
L1 and T `�2

�1
L2, where L1 and L2 are

two conjunctions of atoms, then T `�2

;
L1 ^ L2.

PROOF. From T `�1

;
L1 and lemma 10 we have that lhm(P [�1) j= L1.

From the de�nition of abductive proof procedure we have that �1 � �2. Since

we consider the positive version of programs, P [�1 and P [�2 are de�nite

logic programs. From the monotonicity of de�nite logic programs lhm(P [

�1) � lhm(P [�2) therefore lhm(P [�2) j= L1.

From T `�2

�1
L2, by the soundness of the abductive proof procedure, we have

that there exists an abductive model M2 such that M2 j= L2 and �2 � MA

2
[

MD

2
. From proposition 2, there exists a set H2 such that M2 = lhm(P [H2).

Since abducible and default predicates have no de�nition in P , we have that

M2 \ (L
A [ LD) = H2 and �2 � H2. Therefore M2 j= L1.

From M2 j= L2 and from the weak completeness of the abductive proof pro-

cedure, we have that T `�2

�1
L1 ^ L2 2.

Theorem 12 If T = hP;A; ICi `�1

;
L1 and T 0 = hP [ P 0; A; ICi `�2

�1
L2,

then T 0 `
�2

;
L1 ^ L2.

PROOF. Very similar to the proof of theorem 11. 2

We can now give the soundness theorem for our algorithm.

Theorem 13 (Soundness) The AIIM LAP is sound.
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PROOF. Let us consider �rst the case in which the target predicates are not

abducible and therefore no assumption is added to the training set. In order

to prove that the algorithm is sound, we have to prove that, for any given sets

E+ and E�, the program T 0 = hB[H;A; ICi that is output by the algorithm

is such that

T 0
`
�

;
E+; not E�

LAP learns the program T 0 by iteratively adding a new clause to the cur-

rent hypothesis, initially empty. Each clause is tested by trying an abductive

derivation for each positive and for the conjunction of each (negated) nega-

tive example. Let E+

c
= fe+

1
: : : e+

nc
g be the set of positive examples whose

conjunction is covered by clause c.

Clause c is added to the current hypothesis H when:

9E+

c
� E+ : 8i 2 f1 : : : ncg : hP [H [ fcg; A; ICi `

�
+

i

�
+

i�1

e+
i

hP [H [ fcg; A; ICi `�
�

�
+
nc

not E�

where �+

0
= �H , �

+

i�1 � �+

i and �+

nc
� ��.

By induction on the examples and using theorem 11, we can prove that

hP [H [ fcg; A; ICi `
�
H[fcg

�H

E+

c
; not E�

where �H[fcg = ��.

At this point, it is possible to prove that

T 0
`
�

;
E+

c1
[ : : : [ E+

c
k

; not E�

by induction on the clauses and using theorem 12. From this and from the

su�ciency stopping criterion (see �gure 2) we have that E+

c1
[ : : :[E+

c
k

= E+.

We now have to prove soundness when the target predicates are abducible as

well and the training set is enlarged during the computation. In this case, if

the �nal training sets are E+

F
and E�

F
, we have to prove that

T 0
`
�

;
E+

F
; not E�

F

If a positive assumption is added to E+, then the resulting program will con-

tain a clause that will cover it because of the su�ciency stopping criterion. If

a negative assumption not e� is added to E� obtaining E 0�, clauses that will

be generated afterwards will surely derive not E 0�. We have to prove that also

clauses generated before allow to derive not E 0�. Consider a situation where

not e� has been assumed during the testing of the last clause added to H. We

have to prove that

hP [H;A; ICi `�
;
E+

H
; not E�

) hP [H;A; ICi `�
;
E+

H
; not E 0�
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where not e� 2 � and e� 2 E 0�. From the left part of the implication and

for the soundness of the abductive proof procedure, we have that there exists

an abductive model M such that � �MA [MD. From not e� 2 �, we have

that not e� 2M and therefore by weak completeness

hP [H;A; ICi `�
;
not e�

By theorem 11, we have the right part of the implication. 2

We turn now to the incompleteness of the algorithm. LAP is incomplete be-

cause a number of choice points have been overlooked in order to reduce the

computational complexity. The �rst source of incompleteness comes from the

fact that, after a clause is added to the theory, it is never retracted. Thus, it

can be the case that a clause not in the solution is learned and the restrictions

imposed on the rest of the learning process by the clause (through the covered

positive examples and the respective assumptions) prevent the system from

�nding a solution even if there is one. In fact, the algorithm performs only

a greedy search in the space of possible programs, while fully exploring only

the smaller space of possible clauses. However, this source of incompleteness is

not speci�c to LAP because most ILP systems perform such a greedy search

in the programs space.

The following source of incompleteness, instead, is speci�c to LAP. For each

example, there may be more than one explanation and, depending on the one

we choose, the coverage of other examples can be in
uenced. An explanation

for an example may prevent the coverage of other examples, because they

do not have any explanation consistent with it, while a di�erent explanation

would have allowed such a coverage. Thus, in case of a failure in �nding a

solution, we should backtrack on example explanations.

We decided to overlook these choice points because they have an high compu-

tational cost and we estimated that the cases in which they can prevent the

system from �nding a solution are relatively infrequent.

5 Applications of LAP

In this section, we describe, by means of examples, four tasks that can be

accomplished by LAP.
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5.1 Learning from Incomplete Data

In this section, we consider the task of learning from incomplete data in the

background knowledge and we show how LAP is able to complete the available

knowledge.

Let us consider the case of an abductive background theory containing the

following clauses, abducibles and constraints:

P = fflat tyre(bike1):

circular(bike1):

tyre holds air(bike3):

circular(bike4):

tyre holds air(bike4):g

A = fflat tyre; broken spokesg

IC = f flat tyre(X); tyre holds air(X):

 circular(X); broken spokes(X):g

E+ = fwobbly wheel(bike1); wobbly wheel(bike2); wobbly wheel(bike3)g

E� = fwobbly wheel(bike4)g

The program must �rst be transformed in its positive version and then into

a program where abducibles have no de�nition, as shown in section 2.2. For

simplicity, we omit the two transformations (apart from the use of the symbol

not instead of not ), and we suppose to apply to the learned program the

inverse transformations.

LAP generates the following clause in the specializing loop:

wobbly wheel(X) flat tyre(X):

Then the clause is tested. This clause covers wobbly wheel(bike1) because

flat tyre(bike1) is speci�ed in the background knowledge and covers

wobbly wheel(bike2) by assuming

fflat tyre(bike2); not tyre holds air(bike2)g.

The assumption not tyre holds air(bike2) is produced by the abductive proof

procedure in order to satisfy the constraint flat tyre(X); tyre holds air(X):

The example wobbly wheel(bike3), however, can not be covered: in fact, we

can not assume flat tyre(bike3) since it is inconsistent with the integrity con-
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straint flat tyre(X); tyre holds air(X): and the fact tyre holds air(bike3).

Then, we check that not wobbly wheel(bike4) is derivable in the hypotheses

set. This derivation succeeds by abducing not flat tyre(bike4).

The system has now veri�ed that the generated clause covers at least one pos-

itive example and the conjunction of (the default negation of) negative exam-

ples, therefore it can add the clause to the current theory and remove from E+

the examples covered by it, i.e., fwobbly wheel(bike1); wobbly wheel(bike2)g.

A new iteration of the covering loop is then started with:

E+ = fwobbly wheel(bike3)g, E
� = fwobbly wheel(bike4)g

� = fflat tyre(bike2); not tyre holds air(bike2); not f lat tyre(bike4)g.

In order to cover the remaining positive example wobbly wheel(bike3), the

system generates the clause:

wobbly wheel(X) broken spokes(X):

which covers the example by abducing

fbroken spokes(bike3); not circular(bike3)g

In fact, these assumptions are consistent with the integrity constraint:

 circular(X); broken spokes(X):

As for the previous case, the negative example is ruled out by assuming

not broken spokes(bike4). At this point the algorithm terminates because E+

becomes empty. The resulting set of assumptions allows the generated pro-

gram to cover all the initial positive examples and not to cover the negative

one.

To the best of our knowledge, only the system RUTH [2] would be able to

generate the above theory from such a small amount of information (see section

6 for details on RUTH and on the di�erences with LAP). Even systems that

embody special techniques for handling imperfect data, like FOIL [36], Progol

[33] and mFOIL [19], would not be able to learn the above theory because they

can not generate clauses that do not cover any positive example, like (without

abduction) the clause wobbly wheel(X) broken spokes(X):

5.2 Learning Rules with Exceptions

The task of learning exceptions to rules is a di�cult one because exceptions

limit the generality of the rules since they represent speci�c cases. In the

following we show how LAP performs the task of learning exceptions to rules,
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provided that a number of auxiliary abducible predicates are available. These

abducible predicates are used in order to represent exceptions to induced rules.

The bias must contain a number of abducible literals of the form

not abnormi(X) and, for each of them, the positive version of the program will

contain an integrity constraint of the form  abnormi(X); not abnormi(X):

and the predicate abnormi(X) in the abducibles. The number of the literals

not abnormi(X) must be estimated so that it is su�cient to take care of all

the exceptions that can be encountered by the system.

The example which follows is inspired to [16]. Let us consider the following

background abductive theory T = hP;A; ICi and training sets E+ and E�:

P = fbird(X) penguin(X):

penguin(X) superpenguin(X):

bird(a):

bird(b):

penguin(c):

penguin(d):

superpenguin(e):

superpenguin(f):g

A = fabnorm1; abnorm2g

IC =f abnorm1(X); not abnorm1(X):

 abnorm2(X); not abnorm2(X):g

E+ = f
ies(a);
ies(b);
ies(e);
ies(f)g

E� = f
ies(c);
ies(d)g

Moreover, let the bias be:


ies(X) � where

� � fsuperpenguin(X); penguin(X); bird(X);

not abnorm1(X)g

abnorm1(X) � where

� � fsuperpenguin(X); penguin(X); bird(X);

not abnorm2(X)g

abnorm2(X) 
 where


 � fsuperpenguin(X); penguin(X); bird(X)g

The algorithm �rst generates the following rule (R1):


ies(X) superpenguin(X):

and removes 
ies(e) and 
ies(f) from E+. Then, in the specialization loop,
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the following rule (R2) is generated:


ies(X) bird(X):

which covers all the remaining positive examples, but also the negative ones.

In fact, the abductive derivation for not 
ies(c); not 
ies(d) fails. In order to

rule out negative examples, the abducible literal not abnorm1 is added to the

body of R2 obtaining R3:


ies(X) bird(X); not abnorm1(X):

Now, the abductive derivation for not 
ies(c); not 
ies(d) succeeds, provided

that abducibles fabnorm1(c); abnorm1(d)g are assumed true. Moreover, the

derivations of the positive examples 
ies(a) and 
ies(b) succeed by assuming:

fnot abnorm1(a); not abnorm1(b)g.

At this point, we start a new learning phase in which we try to generate a

rule for the exceptions, i.e., for the predicate abnorm1, by considering abduced

literals as new training examples for this predicate. Positive literals form the

E+ set, while negative literals form the E� set:

E+ = fabnorm1(c); abnorm1(d)g

E� = fabnorm1(a); abnorm1(b)g

The resulting induced rule is (R4):

abnorm1(X) penguin(X):

All positive examples for abnorm1 are covered by assuming nothing, and the

conjunction of negative examples is covered as well, therefore we can stop

learning. The algorithm ends by producing the following abductive rules:


ies(X) superpenguin(X):


ies(X) bird(X); not abnorm1(X):

abnorm1(X) penguin(X):

Note that the new abducible abnorm2 has not been used by the learning

process since we have only exceptions for one concept: 
ies. An equivalent

program for the same example can be obtained by using only negation by

default in this way


ies(X) bird(X); not(penguin(X)):


ies(X) superpenguin(X):

However, our approach allows to learn as well a de�nition for the class of excep-

tions, which can provide useful information on the domain at hand. Moreover,
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in the case in which the exceptions have a complex de�nition, by learning a

di�erent concept for them we can achieve a more understandable theory. For

example, suppose we have two exceptions for the concept fly: each bird 
ies

except for red penguins and blue ostriches. In this case, through negation, we

can learn:


ies(X) bird(X); not(penguin(X); red(X)); not(ostrich(X); blue(X)):

Conversely, through abduction we can learn a new concept for the exceptions:


ies(X) bird(X); not abnorm1(X):

abnorm1(X) penguin(X); red(X):

abnorm1(X) ostrich(X); blue(X):

A result similar to ours is obtained in [16], but exploiting \classical" (or,

better, syntactic) negation and priority relations between rules rather than

default negation as we do. The advantage of our approach, is that we do not

build an \ad hoc" algorithm to perform the task but we exploit a general

system that can be used as well for other forms of nonmontonic reasoning.

RUTH would be able to perform such a task because it also considers assump-

tions as new training examples (see section 6).

5.3 Learning from Integrity Constraints on Target Predicates

As a further example, let us consider the abductive program T 0 generated in

the previous section, and add to it the following user-de�ned constraint, I, on

target predicates:

 rests(X); plays(X):

Consider now the new training sets:

E+ = fplays(a); plays(b); rests(e); rests(f)g E� = fg

In this case, the information about the target predicates comes not only from

the training set, but also from integrity constraints. This kind of integrity

constraints di�ers from the ones that are usually given in the background

knowledge because they contain target predicates, while constraints in the

background knowledge usually contain only background predicates, either ab-

ducible or non-abducible. The generalization process is not limited by negative

examples but by integrity constraints. Suppose we generalize the two positive

examples for plays in plays(X). This means that for all X, plays(X) is true.

However, this is inconsistent with the integrity constraint I because plays(X)
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cannot be true for e and f .

The information contained in these integrity constraints must be made avail-

able in a form that is exploitable by our learning algorithm. In particular, our

algorithm learns a de�nition for the target predicates employing only positive

and negative examples of the predicates. Therefore, we must transform the

information conveyed by the integrity constraints into new examples for the

target concepts, as it is done in the theory revision systems [11,2]. When the

knowledge base violates a newly supplied integrity constraint, these systems

extract one example from the constraint and revise the theory on the basis of

it: in [11] the example is extracted by querying the user on the truth value of

the literals in the constraint, while in [2] the example is automatically selected

by the system.

In our approach, we generate one or more examples from constraints on target

predicates using the abductive proof procedure. This is done by checking the

consistency of available examples with the constraints and by making assump-

tions in order to ensure consistency. Assumptions about target predicates are

considered as new negative or positive examples.

In the previous case, the approach for generating examples is as follows. We

start an abductive derivation for  plays(a); plays(b); rests(e); rests(f). A

consistency derivation is then started for each literal. Suppose the selection

rule selects �rst the literal plays(a), in order to have the consistency with the

constraint  plays(X); rests(X):, the literal not rests(a) is abduced. The

same is done for the other literals in the goal obtaining the set of assumptions

fnot rests(a); not rests(b); not plays(e); not plays(f)g

that is then transformed in the set of negative examples

E� = frests(a); rests(b); plays(e); plays(f)g

Now the learning process applied to the new training sets generates the fol-

lowing correct rules:

plays(X) bird(X); not abnorm1(X).

rests(X) superpenguin(X):

In this way, we have increased the power of the learning process. We can

learn not only from (positive and negative) examples but also from integrity

constraints, as in [11,2,33].
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5.4 Learning Recursive Rules

In this section, we show how abduction can be useful when learning recursive

predicates.

One possible application of LAP to learning recursive predicates is in the case

when no examples for the base case of the recursive de�nition are contained

in the training set. For example:

B = fprec2(3; 1):

prec2(5; 3):

prec2(7; 5):g

E+ =fodd(7); odd(5)g

E� =fodd(2); odd(4)g

In this case, LAP generates the following theory:

odd(X) X = 1:

odd(X) prec2(X; Y ); odd(Y ):

LAP �rst generates the recursive clause and abduces the base case odd(1).

Then the assumption is used as a positive example for learning the base

clause 2 .

To the best of our knowledge, among ILP systems only RUTH would be able

to learn such a theory, because no system is able to complete the training set.

Even systems that employ both the background knowledge and the training

set in the testing of examples, such as MIS [37] with the adaptive strategy,

are not able to learn the above theory unless the base case is in the training

set.

6 Related Work

We will �rst mention our previous work in the �eld, and then we will describe

related work by other authors.

In [21] we have presented a preliminary version of the algorithm for learning

abductive rules.

In [29] we have proposed an algorithm for learning abductive rules obtained

2 Supposing to have predicates of the type X = constant in the bias.
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modifying the extensional ILP system FOIL [36]. Extensional systems di�er

from intensional ones (as that presented in this paper) because they employ

a di�erent notion of coverage, namely extensional coverage. We say that the

program P extensionally covers example e if there exists a clause of P , l  

l1; : : : ; ln such that l = e and for all i, li 2 E
+[lhm(B). Thus examples can be

used also for the coverage of other examples. This has the advantage of allowing

the system to learn clauses independently from each other, eliminating the

need of considering di�erent orders in learning the clauses and the need for

backtracking. However, it has also a number of disadvantages [13]. In [29] we

have shown how the integration of abduction and induction can solve some

of the problems of extensional systems when dealing with recursive predicates

and programs with negation.

As concerns the integration of abduction and induction, a notable work is

that by Dimopoulos and Kakas [17]. In this paper, the authors suggest two

methodologies for the integration of abduction in learning. The �rst consist in

using abduction to explain the training data of a learning problem in order to

generate suitable or relevant background data on which to base the inductive

generalization. The second consists in using abduction in order to cover posi-

tive examples and to avoid the coverage of negative ones, as in our approach.

The main advantage of the integration in [17] is, as in our framework, that

it allows to learn in presence of missing information, and later classify new

examples that may be incompletely described. Di�erently from us, the authors

allow the use of integrity constraints for rule specialization, while we rely only

on the addition of a literal to the body of the clause. Adding integrity con-

straints for specializing rules means that each atom derived by using the rules

must be checked against the constraints, which can be computationally ex-

pensive. Moreover, the results of soundness and weak completeness no longer

hold for the extended proof procedure.

In [1] an integrated abductive and inductive framework is proposed in which

abductive explanations that may include general rules can be generated by

incorporating an inductive learning method into abduction. In particular, the

authors �rst present a general parametric framework based on Bry's work for

intensional knowledge base updating [7] which can describe either abduction

or induction in logic programming according to the instantiation of the pa-

rameters. This framework is used in order to transform a proof procedure for

abduction, namely SLDNFA, in a proof procedure for induction, called SLD-

NFAI. Informally, SLDNFA is extended in order to be able to abduce not only

ground facts but also rules. However, the authors obtain a learning framework

which is equivalent to the ILP one, they are not able to learn a rule and,

at the same time, make assumptions about missing data for the coverage of

examples.

The integration of induction and abduction for knowledge base updating has

24



been studied in [11] and [2]. Both systems proposed in these papers perform

incremental theory revision: they automatically modify a knowledge base when

it violates a newly supplied integrity constraint. When a constraint is violated,

they �rst extract an uncovered positive example or a covered negative example

from the constraint (as we do) and then they revise the theory in order to

make it coherent with the example, using techniques from incremental concept

learning. The system in [11] di�ers from the system in [2] (called RUTH)

because it relies on an oracle for the extraction of examples from constraints,

while RUTH works non interactively. In [11] the user is asked about the truth

value of each literal in the constraint in order to identify the one whose value

should be changed for restoring consistency. The identi�ed literal corresponds

to an uncovered positive example or to a covered negative one depending on

whether it is in the head or in the body of the constraint. Instead, RUTH

avoids asking questions to the user by automatically selecting an erroneous

literal from the constraint.

Once the example has been extracted from the constraint, the systems in [11]

and [2] call similar inductive operators in order to update the knowledge base.

In [11] the authors use the inductive operators of Shapiro's MIS system [37].

For handling an uncovered positive example, they call Shapiro's generalization

procedure that �rst computes, in an abductive manner, the predicate(s) that is

responsible for the true fact not being entailed. Then, it generates a clause (if

it is an intensional predicate) or a fact (if it is an extensional predicate) so that

the positive example is covered. For handling a negative example, they call

Shapiro's specialization procedure that identi�es an incorrect clause by asking

questions to the user and then retracts it. RUTH's operator for handling

negative examples is the same as Shapiro's, except for the fact that no query

is asked to the user and the incorrect clause is hypothesized. In order to handle

positive examples, RUTH has three operators: (i) adding an example as a fact

in the database, or (ii) building a maximally general clause that covers the

example using Shapiro's generalization operator, or (iii) abducing one or more

new facts, that are considered as new training examples.

Let us highlight now the di�erences between our system and the systems in [11]

and [2]. As regards the way in which examples are generated from constraints,

we exploit the abductive proof procedure in order to extract new examples

from a constraint on target predicates. The new examples are generated as

assumptions that allow for the satisfaction of the constraint. The abductive

proof procedure exploits all the information available in the knowledge base

thus avoiding to ask questions to the users, as in [11]. The procedure ensures

the consistency of the generated examples with respect to other integrity con-

straints, while both systems in [11,2] can generate examples that violate other

integrity constraints and new inconsistencies have to be recovered at the next

iteration of the learning loop. Instead, we are able to select the examples that

allow the minimum revision of the theory. Moreover, it must be observed that,
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even if we consider only integrity constraints in the form of denials, we are

able to generate not only negative examples but also positive ones because we

can have negative literals in the constraints.

Another di�erence is that our system is a batch learner while the systems

in [11,2] are incremental learners: since we have all the examples available at

the beginning of the learning process, we generate only clauses that do not

cover negative examples and therefore we do not have to revise the theory

to handle covered negative examples, i.e., to retract clauses. As regards the

operators that are used in order to handle uncovered positive examples, we are

able to generate a clause that covers a positive example by also making some

assumptions, while in [11] they can cover an example either by generating a

clause or by assuming a fact for covering it, but not the two things at the same

time. RUTH, instead, is able to do this, and therefore would be able to solve the

problem presented in sections 5.1. Moreover, RUTH considers abduced literals

as new examples, therefore it would be able to solve as well the problems in

sections 5.2 and 5.4. However, we di�er from both systems because, by using

the abductive proof procedure, we search for the set of assumptions that are

consistent with the available information and the integrity constraints, and

therefore we do not have to revise again the theory as a consequence of these

assumptions. Instead, the systems in [11,2] can abduce facts that, even if

they allow to cover the current example, can violate other constraints and the

systems have to deal with the arisen inconsistency at the next iteration of the

learning loop. Both approaches have advantages and disadvantages. By making

only consistent assumptions, as we do, we avoid the need for further revision

of the theory, but this may result in a failure of the learning process when

no assumption is possible. Instead, in [11,2], the systems are able to update

the theory in any case, but the revisions may introduce further inconsistency

and therefore further iterations are necessary to �nd a solution. Our approach

re
ects the fact that we are more concerned with inductive learning rather

than with theory revision, and we make assumptions such that the available

theory is consistent and must not be updated.

Both our system and [2] are able to generalize the assumptions, as it is shown in

section 5.2, because assumptions about target predicates are considered as new

training examples. Instead, in [11], when an assumption is made, it is added

only to the knowledge base, regardless of the predicate, and no generalization

is made on it. Therefore they would not be able to learn exceptions as we have

shown in section 5.2.

The ILP system Progol [33] is able to learn from integrity constraints in the

form of denials as we do. In fact, in Progol negative examples and integrity

constraints are represented in the same way using headless Horn clauses and

they are stored internally as clauses with head `false'. The testing of negative

examples and constraints is uniform as well: it is done by seeing whether `false'
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is provable. If `false' is provable, it means that either a negative example is

covered or a constraint is violated, and therefore the clause under test must

be re�ned.

As concerns the treatment of exceptions to induced rules, in [4] the authors

have shown that is not possible, in general, to preserve correct information

when incrementally specializing within a classical logic framework. They avoid

this empass by using learning algorithms which employ a nonmonotonic knowl-

edge representation. Several other authors have also addressed this problem,

in the context of Logic Programming, by allowing for exceptions to (possibly

induced) rules [16,10]. In these frameworks, nonmonotonicity and exceptions

are dealt with by learning logic programs with negation. Our approach in the

treatment of exceptions is very related to [16]. They rely on a language which

uses a limited form of \classical" (or, better, syntactic) negation together with

a priority relation among the sentences of the program [27]. Nonetheless, a pro-

gram written in this language can be easily transformed into a normal logic

program, by introducing new predicates and capturing the priority between

rules into the notion of negation by default. In this respect, when the starting

background knowledge is a (de�nite) logic program, their and our approach

coincide. On the other hand, in [20] the authors have argued that negation by

default can be seen as a special case of abduction. Thus, in our framework,

relying on ALP [23], we can achieve greater generality than [16]. In [16], the

authors also proved that their algorithm terminates under proper conditions.

In particular, they consider a hierarchy language bias (which corresponds to

impose that more general rules have lower priority) plus a single clause bias

(which imposes to generate a single clause covering all the given examples).

In our case, we do not have this restriction, we can generate more than one

clause to cover positive examples. We avoid the problem of non-termination

by considering only a �nite number of predicates abnormi.

As concerns learning from incomplete information, many ILP systems include

facilities in order to handle this problem, for example FOIL [36], Progol [33],

mFOIL [19]. The approach that is followed by all these systems is fundamen-

tally di�erent with respect to ours: they are all based on the use of heuristic

necessity and su�ciency stopping criteria and of special heuristic functions for

guiding the search. The heuristic stopping criteria relax the requirements of

consistency and completeness of the learned theory, allowing the system to deal

with imperfect data in general, comprehending noisy data (data with random

errors in training examples and in the background knowledge) and incomplete

data. In this sense, they are more general than our approach, because we are

not able to deal with noisy data. Their approach is equivalent to discarding

some examples, considering them as noisy or insu�ciently speci�ed, while in

our approach no example is discarded, the theory must be complete and con-

sistent (in the abductive sense) with each example. We relax the completeness

and consistency requirements by substituting it with correctness. The e�ect is
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that we do not have the requirements of having \most" examples covered and

we are able to learn rules that would cover no example if abduction were not

used, as the rule wobbly wheel(X)  broken spokes(X): in section 5.1, that

would be impossible for the above mentioned ILP systems.

7 Conclusions and Future Work

We have presented an approach for the integration of abduction and induction

in logic programming. We have de�ned a new learning problem, called Abduc-

tive Learning Problem, that extends the ILP problem by considering both the

background and target theory as abductive theories and by using abductive

derivability as the coverage relation in substitution of deductive derivability.

By integrating abduction and induction, we obtain two results: we increase

the expressive power of the background and target theories and we make it

possible to learn in presence of incomplete information.

We have presented the system LAP (Learning Abductive Programs) that

solves the extended problem and is obtained from the basic top-down algo-

rithm of ILP by using the abductive proof procedure in substitution of the

Prolog proof procedure for testing the coverage of examples. We have shown,

by means of examples, four di�erent tasks that can be performed by the sys-

tem: learning from incomplete information, learning exceptions, learning from

integrity constraints on target predicates and learning recursive predicates.

LAP has been implemented in Sicstus Prolog 3#5.

In the future, we will test the algorithm on real domains where the incom-

pleteness of the data causes problems to others ILP systems. As regards the

theoretical aspects, we will investigate the problem of extending the algorithm

proposed for learning full abductive theories, comprehending as well integrity

constraints. The integration of the algorithm with other systems for learning

constraints, such as Claudien [12] and ICL [14], proposed in [28], seems very

promising and more work is needed to reach the objective of a system for

learning full abductive theories.
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Appendix

In the following we recall the abductive proof procedure used by our algorithm. The

procedure is taken from [26]. It is composed by two phases: abductive derivation

and consistency derivation.

Abductive derivation

An abductive derivation from (G1 �1) to (Gn �n) in hP;Ab; ICi via a selection

rule R is a sequence

(G1 �1); (G2 �2); : : : ; (Gn �n)

such that each Gi has the form  L1; : : : ; Lk, R(Gi) = Lj and (Gi+1 �i+1) is

obtained according to one of the following rules:

(A1) If Lj is not abducible or default, then Gi+1 = C and �i+1 = �i where C is the

resolvent of some clause in P with Gi on the selected literal Lj ;
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(A2) If Lj is abducible or default and Lj 2 �i thenGi+1 = L1; : : : ; Lj�1; Lj+1; : : : ; Lk

and �i+1 = �i;

(A3) If Lj is abducible or default, Lj 62 �i and Lj 62 �i and there exists a consistency

derivation from (Lj �i[fLjg) to (fg�
0) thenGi+1 = L1; : : : ; Lj�1; Lj+1; : : : ; Lk

and �i+1 = �0.

Steps (A1) and (A2) are SLD-resolution steps with the rules of P and abductive or

default hypotheses, respectively. In step (A3) a new abductive or default hypotheses

is required and it is added to the current set of hypotheses provided it is consistent.

Consistency derivation

A consistency derivation for an abducible or default literal � from (�; �1) to

(Fn �n) in hP;Ab; ICi is a sequence

(� �1); (F1 �1); (F2 �2); : : : ; (Fn �n)

where :

(Ci) F1 is the union of all goals of the form  L1; : : : ; Ln obtained by resolving the

abducible or default � with the denials in IC with no such goal been empty,  ;

(Cii) for each i > 1, Fi has the form f L1; : : : ; Lkg [ F
0

i
and for some j = 1; : : : ; k

(Fi+1 �i+1) is obtained according to one of the following rules:

(C1) If Lj is not abducible or default, then Fi+1 = C 0 [ F 0

i
where C 0 is the set of all

resolvents of clauses in P with  L1; : : : ; Lk on the literal Lj and  62 C
0, and

�i+1 = �i;

(C2) If Lj is abducible or default, Lj 2 �i and k > 1, then

Fi+1 = f L1; : : : ; Lj�1; Lj+1; : : : ; Lkg [ F
0

i

and �i+1 = �i;

(C3) If Lj is abducible or default, Lj 2 �i then Fi+1 = F 0

i
and �i+1 = �i;

(C4) If Lj is abducible or default, Lj 62 �i and Lj 62 �i, and there exists an abductive

derivation from ( Lj �i) to ( �0) then Fi+1 = F 0

i
and �i+1 = �0.

In case (C1) the current branch splits into as many branches as the number

of resolvents of L1; : : : ; Lk with the clauses in P on Lj. If the empty clause

is one of such resolvents the whole consistency check fails. In case (C2) the

goal under consideration is made simpler if literal Lj belongs to the current

set of hypotheses �i. In case (C3) the current branch is already consistent

under the assumptions in �i, and this branch is dropped from the consistency

checking. In case (C4) the current branch of the consistency search space can

be dropped provided  Lj is abductively provable.

Given a query L, the procedure succeeds, and returns the set of abducibles

� if there exists an abductive derivation from ( L fg) to ( �). With

abuse of terminology, in this case, we also say that the abductive derivation

succeeds.
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