
A Hybrid Extensional/Intensional System forLearning Multiple Predicate Learning andNormal Logic ProgramsE. Lamma1, P. Mello2, M. Milano1, F.Riguzzi11 DEIS, Universit�a di BolognaViale Risorgimento 2, 40136 Bologna, Italyfelamma,mmilano,friguzzig@deis.unibo.itTel.+39 51 6443033, Fax. +39 51 64430732 Dipartimento di Ingegneria, Universit�a di FerraraVia Saragat 1, 41100 Ferrara, Italypmello@ing.unife.itAbstract. We present an approach for solving some of the problemsof Inductive Logic Programming systems when learning multiple predi-cates and normal logic programs. The approach extends the algorithmfor learning abductive logic programs proposed in [7] and re�ned in [10]by introducing a hybrid form of coverage in which both the examplesand the theory learned so far are used in the derivation of examples.We show that with hybrid coverage and abduction we are able to solvethe problem of global inconsistency of intensional systems when learningmultiple predicates and of non-monotonic coverage of positive examplewhen learning normal logic programs.1 IntroductionMost logic programs contain the de�nition of several predicates using negativeliterals in clause bodies. However, most Inductive Logic Programming (ILP)systems have been designed for learning de�nite clause de�nitions for a singlepredicate. Learning multiple predicates and learning logic programs with nega-tion (normal logic prgorams) are two di�cult tasks that create problem to mostILP systems.If we synthesize multiple predicates programs by applying single predicatelearners, we �nd two problems [17]. The �rst is that adding a clause to a partialhypothesis can make previous clauses inconsistent. The second is that a veryexpensive backtracking on clause addition to the theory must be performed.When learning normal logic programs, instead, the addition of a clause to apartial hypothesis can reduce the set of positive example covered by the hypoth-esis, thus making impossible to use the covering approach to learning.In order to overcome these problems, most top-down systems (e.g. ICN [14],MULT ICN [13], FOIL [16], FOCL [15], MIS [18] with the lazy strategy) use ex-tensional coverage: the coverage veri�cation of examples is performed by usingonly the current clause, the background knowledge and the training set, but not



previously learned clauses. In this way, clauses are learned independently fromeach other. We will distinguish between extensional and intensional systems de-pending on whether they use extensional coverage or not. However, extensionalcoverage introduces other problems because the learning algorithm can be un-sound: the learned theory can be both inconsistent and incomplete.We propose a learning algorithm that use abduction and a hybrid extensional-intensional coverage in order to overcome the problems of intensional systemwhen learning multiple predicate and normal logic programs while avoiding thepitfalls of extensional systems.The algorithm we propose is obtained by modifying that presented in [7]for learning abductive logic programs. The problem of learning abductive logicprograms is emerging as a promising research direction in the �eld of ILP. Anumber of works [7, 10, 12, 11] have started to appear on the subject, and, moregenerally, on the relation existing between abduction and induction and howthey can integrate and complement each other [5, 6, 1].In our system, abduction plays a double role. First, it is used in order toremember relevant assumptions that are done when learning a clause and thatconstrain successive clauses.Second, abduction is used in order to introduce extensionality: the trainingset is considered as a set of abduced literals that is taken as input by the ab-ductive proof procedure used for deriving examples. The abduced literals areconsidered as additional facts that are true in the theory. By adopting a hybridcoverage, we reduce the need of backtracking on clause addition.The paper is organized as follows: in section 2 we present the various problemsof intensional, when learning multiple predicates and normal logic programs. Insection 3 we discuss the problem of extensional systems. Section 4 desribes theapproach for the integration of abuction and induction. Section 5 presents theabductive inductive algorithm modi�ed in order to introduce extensionality. Insection 6 we show, by means of examples, that the proposed algorithm success-fully solves the above mentioned problems. In section 7 we discuss related worksand in section 8 we conclude and present the directions for future work.2 Intensional SystemsLet us �rst recall the de�nition of ILP problem [2] and the basic top-downalgorithm that is shared by most intensional ILP systems.De�nition1 ILP Problem.Given:a set P of possible programsa set E+ of positive examplesa set E� of negative examplesa consistent logic program B (background knowledge)Find:a logic program P 2 P such that8e+ 2 E+, B [ P j= e+ (P covers e+)8e� 2 E�, B [ P 6j= e� (P does not cover e�).



With a great deal of approximation, top-down ILP systems share a commonbasic algorithm [2]:T := ;while E+ 6= ; do (Covering loop)Generate one clause CRemove from E+ the e+ covered by CAdd C to TGenerate one clause C (specializing loop):Select a predicate p that must be learnedSet clause C to be p(X) :while C covers some negative example doSelect a literal L from the language biasAdd L to the body of CTest coverage of Cif C does not cover any positive examplethen backtrack to di�erent choices for Lreturn C(or fail if backtracking exhausts all choices for L)The algorithm above iteratively adds a clause to the current partial theory.It generates a clause by searching depth-�rst in the space of possible clauses.However, backtracking on clause addition is required, because otherwise thesystem is not garanteed to be complete, i.e. to �nd a solution if it exists. Infact, we may add to the theory a certain number of clauses and then �nd outthat no other clause is available in the language bias for covering the remainingpositive examples, while with a di�erent choice of previous clauses we couldhave had a solution. This problem arises both when learning single recursivepredicates, because clauses depend on each other, and when learning multiplepredicates, both in the case of de�nite or normal logic programs. However, whenlearning multiple predicates the problem is more evident because the dependencyrelations between di�erent clauses are more frequent and complex.2.1 Learning Multiple PredicatesWhen learning multiple predicates, we have to distinguish between two typesof consistency of a clause: relative local and relative global consistency of a newclause with respect to the theory learned so far (hypothesis). These de�nitions arebased on the absolute de�nition of local and global consistency of a clause given in[17]. We will �rst give some terminology and de�ne the function covers(B;H;E)[17], then we will recall the de�nition of local and global consistency as given in[17] and �nally we will give the de�nitions of relative local and relative globalconsistency.Let the training set be E = E+[E� where E+ is the set of positive exampleand E� is the set of negative example. We assume that E contains examplesfor m target predicates p1; : : : ; pm and we partition E+ and E� in E+pi and E�piaccording to these predicates. The hypothesis H is a set of clauses for all thetarget predicates.



De�nition2 covers(B;H;E). Given the background theory B, the hypothesisH and the example set E, covers(B;H;E) = fe 2 E j B [H j= egDe�nition3 Global consistency. Clause c is globally consistent if and only ifcovers(B; fcg; E�) = ;.De�nition4 Local consistency. Clause c for the predicate pi is locally con-sistent if and only if covers(B; fcg; E�pi) = ;.De�nition5 Relative global consistency. Given a consistent hypothesis H,clause c is globally consistent with respect to H if and only if covers(B;H [fcg; E�) = ;.De�nition6 Relative local consistency. Given a consistent hypothesis H,clause c for the predicate pi is locally consistent with respect to H if and only ifcovers(B;H [ fcg; E�pi) = ;.The basic top-down algorithm has been designed for learning single predicates:it generates a theory by iteratively adding a relatively locally consistent clause tothe current partial theory. However, when learning multiple predicates, addinga relatively locally consistent clause to a consistent hypothesis can produce aninconsistent hypothesis as it is shown in the next example inspired to [17].Example 1. We want to learn the de�nitions of ancestor and father from theknowledge baseB = fparent(a; b); parent(b; c);male(a); female(b)gand the training setE+ = fancestor(a; b); ancestor(b; c); ancestor(a; c); father(a; b)gE� = fancestor(b; b); ancestor(b; a); ancestor(c; b); father(b; c); father(a; c)gSuppose that the system has �rst generated the rules:ancestor(X;Y ) parent(X;Y ):father(X;Y ) ancestor(X;Y );male(X):Clearly the second rule is incorrect but the system has no mean of discoveringit now, since it is locally and globally consistent with respect to the partialde�nition for ancestor.Then the system learns the recursive rule for ancestor:ancestor(X;Y ) parent(X;Z); ancestor(Z; Y ):This clause is locally consistent with respect to the current hypothesis becausenone of the negative examples for ancestor will be covered, but it is not globallyconsistent because the negative example father(a; c) will be covered.Therefore, in intensional systems, it is not enough to check the local con-sistency of a clause, but the global consistency must be checked, as it is donein the system MPL [17]. This is equivalent to test the coverage of the negativeexamples for all target predicates, that has a high computational cost.



2.2 Learning Normal Logic ProgramsWhen learning normal logic programs, apart from the problem of backtrackingon clause addition and global inconsistency, another problems can arise in inten-sional systems. Adding a clause to a partial hypothesis can reduce the coverageof that hypothesis, as it is shown in the next example. This is the dual problemof global inconsistency for de�nite logic programs. The covering approach of thetop down algorithm is not appropriate since we can not anymore discard coveredexamples.Example 2. Suppose we want to learn the de�nition ofmember and intersectionfrom a background knowledge of de�nitions for null(X), head(X;Y ), tail(X;Y )and assign(X;Y ) and from the training set:E+ = fintersection([]; [1; 2]; []); intersection([2; 3;4]; [2; 3]; [2;3];member(1; [1]);member(3; [2; 3]); : : :gE� = fintersection([3]; [2; 3]; [2;3]); intersection([4; 3; 5]; [4;6]; [4; 6]);intersection([]; [3; 4]; [2]); intersection([3]; []; [4;5]);member(1; []);member(2; [1; 3])gSuppose the system has �rst generated the rules:member(X;Y ) head(X;Y ):intersection(X;Y; Z)  null(X); null(Z):intersection(X;Y; Z)  head(X;XH); not member(XH;Y ); assign(Y; Z):The last rule is clearly incorrect but is consistent with respect to the cur-rent hypothesis and the negative examples. It covers the only positive exampleintersection([2; 3; 4]; [3; 2]; [3;2]) and therefore could be generated by an inten-sional system.Then the system generates the recursive clause for member:member(X;Y ) tail(Y; Y T );member(X;Y T )that of course is locally consistent. When adding this last clause to the the-ory, however, the positive example intersection([2; 3; 4]; [3; 2]; [3; 2]) is no morecovered by the theory.3 Extensional SystemsMany top-down ILP systems use extensional coverage in order to solve the abovementioned problems of intensionality.De�nition7 Extensional coverage. Given the background theory B and theexample e belonging to the example set E, The clause c = l  l1; l2 : : : lnextensionally covers e i� l uni�es with e with substitution � and [li]� 2M(B)[E+ for i = 1 : : :n.Extensional coverage makes the evaluation of a clause independent from pre-vious ones. Therefore we do not need anymore to backtrack on caluse additionand to search the space of possible programs, it is su�cient to iteratively searchthe smaller space of possible clauses.



Extensional coverage solves the problem of globally inconsistency when learn-ing multiple predicates. In fact, by using extensional coverage, in example 1 thesecond rule would not be generated because all the positive examples for ancestorwould be used in the testing of negative examples for father.Extensional coverage solves also the problem of coverage reduction whenlearning normal logic programs. In fact in example 2 the incorrect clause forintersection would not be generated, since it would cover the negative exampleintersection([3]; [2; 3]; [2; 3]) because the positive example member(3; [2; 3]) isused in the derivation.However, extensional coverage poses a number of other problems. They aredue to the fact that the learned theory is tested di�erently from the way inwhich it is e�ectively used. In particular, for de�nite logic programs, we canhave the following cases [17]: (i) extensional consistency, intensional inconsis-tency; (ii) intensional completeness, extensional incompleteness; (iii) extensionalcompleteness, intensional incompleteness. For normal logic programs we can thisproblems (but for dual causes) plus a new one: extensional inconsistency, inten-sional consistency. Let us illustrate each of these cases with an example, as it isdone in [17].Example 3 Extensional consistency, intensional inconsistency. Consider the prob-lem of learning the concept father andmale ancestor from a background knowl-edge containing facts about parent, male and female. The training set is spec-i�ed as follows: for father, E contains as negative examples only the facts ofthe form father(a; b) for which parent(a; b) is not in the background knowledge;for male ancestor, it contains a su�cient number of positive and negative ex-amples. In this case, the following hypothesis is extensionally consistent but notintensionally consistent:father(X;Y ) parent(X;Y ):male ancestor(X;Y ) father(X;Y ):male ancestor(X;Y ) male ancestor(X;Z); parent(Z; Y ):because negative examples ofmale ancestor(a; b) with female(a) and parent(a; b)in the background will be covered.We have the case of intensional completeness, extensional incompletenesswhen a hypothesis intensionally covers all the positive examples but not exten-sionally because some example needed for covering other examples is missingfrom the training set.Example 4 Intensional completeness, extensional incompleteness. Consider the back-ground knowledge and training set:B = fparent(john; steve); parent(bill; john); parent(john;mike); parent(mike; sue)gE+ = fancestor(john; steve); ancestor(bill; steve); ancestor(john; sue)gThe theory:ancestor(X;Y ) parent(X;Y ):ancestor(X;Y ) ancestor(X;Z); parent(Z; Y ):



is intensionally complete but extensionally incomplete because it does not coverthe example ancestor(john; sue) since the positive example ancestor(john;mike)is missing.The case of extensional completeness, intensional incompleteness occurs whenwe learn a program with an in�nite recursive chain.Example 5 Extensional completeness, intensional incompleteness. Given the train-ing set:E+ = feven(0); odd(1)gand the background predicate succ(X;Y ) that expresses that Y is the successorof X, the program:even(X)  succ(X;Y ); odd(Y ):odd(X) succ(Y;X); even(Y ):is extensionally complete but intensionally incomplete, because the intenesionalderivation of even(0) would leed to a loop.When learning normal logic programs, extensional systems su�er also fromthe problem of extensional inconsistency, intensional consistency.Example 6 Extensional inconsistency, intensional consistency. Suppose you aregiven the training setE+ = fintersection([3]; [2; 4]; []); : : :gE� = fintersection([4; 3]; [2; 4]; []); : : :gwhere E+ does not contain the example member(4; [2; 4]). The programmember(X;Y ) head(X;Y ):member(X;Y ) tail(Y; Y T );member(X;Y T )intersection(X;Y; Z)  null(X); null(Z):intersection(X;Y; Z)  head(X;XH); tail(X;XT );member(XH;Y ); intersection(XT; Y;W ); cons(XH;W;Z):intersection(X;Y; Z)  head(X;XH); tail(X;XT ); not member(XH;Y ); intersection(XT; Y; Z):is intensionally consistent but extensionally inconsistent because the negative ex-ample intersection([4; 3]; [2; 4]; []) is extensionally covered, sincemember(4; [2; 4])is not in E+.Our system does not su�er from the problem of extensional systems apartfrom the problem of extensional completeness, intensional incompleteness. Asolution to this problem has been proposed in [13] with the system MULT ICN.That solution can be easily integrated in our system and is subject for futurework.4 Integrating Abductive and Inductive LogicProgrammingIn this section, we recall the approach for the integration of abduction andinduction that was proposed in [7, 12]. First, we summarize the main conceptsof Abductive Logic Programming (ALP) and then we show how the learningproblem of ILP must be modi�ed in order to integrate abduction.



4.1 Abductive Logic ProgrammingWe �rst give the de�nition of Abductive Logic Program.De�nition8 Abductive Logic Program. An abductive logic program is a triplehP;A; ICi where{ P is a normal logic program,{ A is a set of abducible predicates,{ IC is a set of integrity constraints in the form of denials, i.e.: A1; : : : ; Am; not Am+1; : : : ; not Am+n:Abducible predicates are used to model incompleteness: these are predicatesfor which a de�nition may be missing or for which the de�nition may be in-complete. This are the predicates about which we can make assumptions isorder to explain the current goal. More formally, given an abductive programAT = hP;A; ICi and a formula G, the goal of abduction is to �nd a (possi-bly minimal) set of ground atoms � (abductive explanation) for predicates in Awhich together with P entails G, i.e. P [ � j= G. It is also required that theprogram P [� is consistent with respect to IC, i.e. P [� j= IC. We say thatAT abductively entails e (AT j=A e) when there exists an abductive explanationfor e from AT . We adopt the three-valued semantics for ALP de�ned in [4] inwhich an atom can be true, false or unknown. In particular, the semanticsMATof a program AT is de�ned in terms of three sets:{ M+AT , the set of ground atoms true for AT ,{ M�AT , the set of ground atoms false for AT ,{ MuAT =M+AT [M�AT , the set of ground atoms unknown for AT .The semantics MAT is the set of ground literals true for AT and is given byMAT =M+AT [notM�AT where notM�AT = fnot aja 2 M�ATg. In this way wecan model domains where the knowledge is not complete.Negation as Failure is replaced, in ALP, by Negation by Default and is ob-tained, through abduction, in this way: for each predicate symbol p, a newpredicate symbol not p is added to the set A and the integrity constraint  p(X); not p(X) is added to IC, where X is a tuple of variables. We de�ne theopposite l of a literal l asl = �not p(X) if l = p(X)p(X) if l = not p(X)Operationally, we rely on the proof procedure de�ned by Kakas and Man-carella [9]. This procedure starts from a goal and a set of abduced literals �inand results in a set of consistent assumptions �out (abduced literals) such that�out � �in and �out together with the program allow to derive the goal. Wewrite AT `�out�in GThe correctness of this proof procedure with respect to the abductive semanticsde�ned in [4] is established by soundness and completeness theorems in [4]. We



have extended this proof procedure in order to allow for abducible predicatesto have a partial de�nition. Some rules may be available for them, and we canmake assumptions about missing facts.The proof procedure consists of two parts: an abductive and a consistencyphase (see Appendix for the detailed algorithm). Basically, the abductive phasedi�ers from a standard Prolog derivation when the literal to be reduced is ab-ducible. First checks to see if the abducible literal has already been assumed (i.e.,it is in the � set), in this case the literal is reduced or the derivation fails if theopposite of the literal is in the �. If it has not yet been abduced, the proceduretries to abduce it and checks that it is consistent with the integrity constraintsand with the current � by adding the it to � and by starting a consistencyderivation.The �rst step of the consistency derivation consist in �nding all the integrityconstraints (denials for simplicity) in which the literal is contained. In order toabduce the literal, all these constraints must be satis�ed. A denial fails only ifall its conjuncts are true, therefore at least one conjunct must be false. Since onewants to assume the literal true, the algorithm removes it from the constraintsand checks that all the remaining goals fail. The goals are reduced literal byliteral: if a literal is abducible, �rst it is checked if the literal itself is already in� (in that case the literal is dropped) or if its opposite is already in � (in thatcase the constraint is satis�ed and is no more considered). If the literal is not in�, an abductive derivation for its opposite is started, so that if it succeeds theconstraint is satis�ed.In order to illustrate the behaviour of the abductive proof procedure, let usconsider a classic example inspired to [?].Example 7. Suppose to have the following abductive theory:P = fshoes are wet grass is wet:grass is wet sprinkler was on:grass is wet rained last night:electrical black out:gA = frained last night; sprinkler was on:gIC = f electrical black out; sprinkler was on:gThe observation shoes are wet can be only explained by the set of assumptionsfrained last nightg. Let us see in some detail how the abductive proof procedureworks. An abductive phase is started for the goal shoes are wet with � = ;.Then the goal is unfolded with the �rst rule giving the resolvent: sprinkler was on.Since there are no rules for predicate sprinkler was on and this predicate is ab-ducible, a consistency derivation is started for it with � = fsprinkler was ong.First all the constraints containing the literal are considered (respectively,  sprinkler was on; not sprinkler was on3 and electrical black out; sprinkler was on:)and then the goal is unfolded with the constraint giving not sprinkler was on3 This constraint was added when transforming Negation as Failure literals in Negationas Default literals.



and  electrical black out. Now, both these goals must fail for the consistencyto succeed. The �rst goal clearly fails since the opposite of the literal is in�, but the second goal succeeds. Therefore the consistency fails and in bac-tracking the initial goal shoes are wet is unfolded with the second rule, giving rained last night: This time the consistency derivation for rained last nightsucceeds and therefore the outer abductive derivation succeeds as well with� = frained last nightg.Let us now see how default negation goals are treated. The goal: not grass is wetsucceeds with the abduction of� = fnot rained last night; not sprinkler was ong.In fact, the abductive derivation for  not grass is wet immediately starts aconsistency for not grass is wet (since all default literals are abducible) with� = fnot grass is wetg. Unfolding it with the only relevant constraint gives grass is wet that is solved in all possible ways giving the goals: sprinkler was on: rained last night:that must all fail. Since they both contain abducible literals, an abductive deriva-tion is started �rst for not sprinkler was on: and then for not rained last night:.Both of them succeed abducing:� = fnot rained last night; not sprinkler was ong4.2 New Learning ProblemWe consider a new de�nition of the ILP learning problem similar to AbductiveConcept Learning (ACL) [6]. In this extended learning problem both the back-ground and target theory are abductive theories and the notion of deductiveentailment is replaced by abductive entailment.Givena set P of possible abductive programsa set of positive examples E+,a set of negative examples E�,an abductive theory AT = hT;A; ICi as background theory.FindA new abductive theory AT 0 = hT 0; A; ICi 2 P with T 0 � T , such thatlet E = E+ [ fnot e j e 2 E�g8e 2 E; AT 0 `�e; eS8e2E�e [ T 0 j= IC (consistency of the assumptions w.r.t. IC)When AT `�e; e we say that AT abductively covers e under hypotheses �e.The abductive program that is learned can contain new rules (possibly withabducibles in the body) but not new abducible predicates and new integrityconstraints.In order to introduce extensional coverage in this framework, we require alltarget predicates to be abducible and we change the condition that the learnedprogram must satisfy in this way:



8e 2 E; AT 0 `�eEnfeg eS8e2E�e [ T 0 j= ICDi�erently from def. 7 for extensional coverage, here also negative examplesare used because of the three-valued semantics of abduction [4]. The literal l isproved true if l 2 E and is proved false if l 2 E.5 The hybrid algorithmIn this section, we present an intensional algorithm that is able to learn abductivelogic programs [11] and we show how it can be extended, by exploiting abduction,to incorporate extensional coverage. The algorithm is reported in �gures 1, 2,3 and is obtained from the basic top-down ILP algorithm [2] (see also section[11]), by substituting the usual notion of coverage of examples with the notionof abductive coverage.procedure LAP(inputs : E+; E� : training sets,AT = hT; A; ICi : background abductive theory,outputs : H : learned theory, � : abduced literals)H := ;� := ;while E+ 6= ; do (covering loop)GenerateRule(input: AT;H;E+; E�; �; output: Rule;E+Rule;�Rule)Move to E+ all the positive literals of target predicates in �RuleMove to E� all the atoms corresponding tonegative literals of target predicates in �RuleE+ := E+ �E+RuleH := H [ fRuleg� := � [�Ruleendwhileoutput H Fig. 1. The covering loopThe basic top-down algorithm is extended in the following respects in orderto learn abductive logic programs. First, in order to test the coverage of thegenerated rule, (procedure TestCoverage in �gure 3) an abductive derivationis started for each positive example and the default negation (not e�) of eachnegative (e�). Each derivation starts from the set of literals abduced in thederivations of the previously covered examples. In this way, we ensure that theassumptions made during the derivation of the current example (positive ornegative) are consistent with the assumptions previously raised for deriving otherexamples.



procedure GenerateRule(inputs : AT;E+; E�; H;�outputs : Rule : rule,E+Rule : positive examples covered by Rule,�Rule : abduced literals )Select a predicate p to be learnedLet Rule = p(X) true:repeat (specialization loop)select a literal L from the language biasadd L to the body of RuleTestCoverage(input: Rule;AT;H;E+; E�; �,output: E+Rule; E�Rule;�Rule)if E+Rule = ;backtrack to a di�erent choice for Luntil E�Rule = ;output Rule; E+Rule;�RuleFig. 2. The specialization loopSecond, after the generation of each clause, the abduced literals of targetpredicates are added to the training set, so that they become new training ex-amples (�gure 1).In order to introduce extensional coverage in the algorithm, each abductivederivation of an example does not starts only with the set of literals alreadyabduced but also with the training set itself (see also �gure 3). In particular, theinput abducibles are augmented with all the positive examples and the defaultnegation of each negative. In order to avoid the trivial derivation of e+ based one+ itself, e+ is taken out from the input abducibles. The same is done for not e�when trying to derive not e�. The modi�cations to the procedure TestCoverageare shown in �gure 3 as framed formulae.We now show an example of the behaviour of the algorithm in the case oflearning the predicate member. Let the background knowledge and training setbe:B = fcomponents([HjT ];H; T ) gE+ = fmember(2; [2]);member(2; [1; 2; 3]);member(3; [1;2;3])gE� = fmember(2; []);member(2; [3]);member(1; [2; 3])gSuppose the system �rst generates the clausemember(A;B)  components(B;C;D);member(A;D)Then the clause is tested. The abductive derivation  member(2; [2]) fails be-cause member(2; []) can not be derived nor abduced, since it is a negative exam-ple. In the abductive derivation of member(2; [1; 2; 3]), �rst the system unfoldstwo times the clause and tries to abduce member(2; [3]). Since it is a nega-tive example, the derivation fails and, in backtracking, it succeeds with theabduction of member(2; [2; 3]). Finally, the positive example member(3; [1; 2; 3])is covered with the abduction of member(3; [3]). Then negative examples are



procedure TestCoverage(inputs : Rule : rule, AT = hT;A; ICi : background abductive theory,H : current hypothesis, E+; E� : training sets,� : current set of abduced literalsoutputs: E+Rule; E�Rule: positive and negativeexamples covered by Rule�Rule : new set of abduced literalsE+Rule = E�Rule = ;; �in = �; E = E+ [ fnot e j e 2 E�gfor each e+ 2 E+ doif AbdDer(e+; hT [H [ fRuleg; A; ICi;�in [E n fe+g ; �out)succeeds then add e+ to E+Rule; �in = �outfor each e� 2 E� doif AbdDer(not e�; hT [H [ fRuleg; A; ICi;�in [E n fnot e�g ;�out)succeeds then �in = �outelse add e� to E�Rule�Rule = �out n�output E+Rule; E�Rule;�RuleFig. 3. Hybrid coverage testingtested: not member(2; []), not member(2; [3]) and not member(1; [2; 3])all succeeds. In the last case, not member(1; [3]) is abduced. Therefore the ruleis consistent and is added to the hypothesis. Covered positive examples are re-moved and assumptions about target predicates are added to the training set,that becomes:E+ = fmember(2; [2]);member(2; [2; 3]);member(3; [3])gE� = fmember(2; []);member(2; [3]);member(1; [2; 3]);member(1; [3])gThen the system generates the clausemember(A;B)  components(B;A;D)that covers all the remaining positive examples and the negation of the negativeones without abducing anything. The clause is added to the hypothesis and thealgorithm terminates.6 Properties of the AlgorithmIn this section, we illustrate by means of examples the way in which the algo-rithm satis�es the above mentioned properties. We will �rst show that the hybridsystem does not su�er from the problem of extensional consistency, intensionalinconsistency and intensional completeness, extensional incompleteness of ex-tensional system. Then we will demonstrate that the system does not generateglobally inconsistent hypothesis and does reduce the coverage of the currenthypothesis.



Let us consider �rst de�nite logic programs. For them, we do not have theproblem of extensional consistency, intensional inconsistency, as shown in exam-ple 3, because each negative example is tested also against the current hypothesis.We do not have neither the problem of intensional completeness, extensionalincompleteness, as shown in example 5. If a positive example is not coveredbecause a needed literal for a target predicate is missing in training set, theintensional de�nition for the target predicate will be used instead.As regards normal logic programs, with similar reasoning it is possible toshow that a hybrid system do not su�er from the same problems, apart from theproblem of extensional completeness, intensional incompleteness due to loopsthrough recursion.6.1 Learning Multiple PredicatesLet us now turn to the problem of global inconsistency. There are mainly twocases in which we can incur in this problem. The �rst is the one shown in example1, in which the rule at fault is in the hypothesis before the addition of the newlygenerated rule, while the second case is the one in which the rule at fault is thenew one.The �rst case is dealt with by using a hybrid system. In example 1 therule about father would not be generated using a hybrid system because itwould have used as well the examples to complete the de�nition for ancestor,thus discovering that the rule for father would cover some negative example.Therefore, with a hybrid system the situation in example 1 would never occur.However, another situation may occour, in which we have a \correct" partialhypothesis (in the sense that it is part of the �nal solution) that is made globallyinconsistent by a newly added rule. In this case, we prevent the system fromlearning a globally inconsistent hypothesis by using abduction. Let us illustratethe point by considering a more general case. Suppose the system has learnedthe following clauses in the order in which they are listed:q(X) Body1(X):p(X) Body2(X); q(X):q(X) Body3(X):Suppose that the second clause is consistent since it rules out all the negativeexamples e�p for p because for them q(e�p ) is always false, either because it is inE� or because it is not derivable. When we add the third clause, this can coveras well some of the atoms q(e�p ), because they may not be in E�q .We avoid this problem in the following way. When we test the clause:p(X) Body2(X); q(X):against a negative example p(e�p ), we start an abductive derivation for not p(e�p ).If q(e�p ) is not derivable, the derivation succeeds with the abduction of not q(e�p )that is added in the � set. After the clause is added to the theory, all the abducedliterals regarding target predicates are moved to the training set: thus q(e�p ) willbe added to E�. In this way the system will not be able to generate a clauseq(X)  Body3(X): that covers q(e�p ) and makes the previous clauses globallyinconsistent.



Therefore, in our system both abduction and hybrid coverage play an im-portant role in the solution of the problem of global inconsistency. Thanks tohybrid coverage we avoid the generation of \incorrect" clause based on a partialde�nition of a subpredicate, that should later be retracted, thus avoiding the useof an expensive backtracking. Besides being used to implement hybrid coverage,abduction prevents also from learning apparently \correct" clauses that wouldotherwise be very di�cult to identify, later on, as the source of inconsistency.6.2 Learning Normal Logic ProgramsLet us now turn to the problem of coverage reduction. This problem as well canappear in two cases: the �rst is the one shown in example 2, in which the rule atfault is already in the hypothesis while the second is the one in which the ruleat fault is the new one.The �rst case is dealt with by using a hybrid system. In example 2 the �rstrule about intersection would not be generated using a hybrid system becauseit would have used as well the examples to complete the de�nition for it.As regards the second case, consider an example in which the system haslearned the following clauses in the order in which they are listed:q(X) Body1(X):p(X) Body2(X); not q(X):q(X) Body3(X):After the addition of the third clause, some of the positive examples covered bythe second may not be covered anymore. A similar problem can arise also insingle predicate learning, in the case of negative recursive clauses:p(X) Body1(X):p(X) Body2(X;Y ); not p(Y ):p(X) Body3(X):The problem arise because the set of positive examples is gradually reduced andcovered positive examples are no longer tested. This is the dual problem of theone seen before for de�nite programs (see section 6.1). The learning process isagain non-monotonic but this time with respect to coverage instead of consis-tency. Therefore, we can not take out the positive examples from E+ when theyare covered by a clause, but after the addition of each clause all the previouslycovered e+ must be checked again.When testing the positive example p(e+p ), the system records assumptionsabout negative literals not p(e+p ) being true (or p(e+p ) being false) by storingthem in the � set. These assumption will then be moved to the training set sothat clauses generated afterwards will not cover the example p(e+p ).The system avoids the problem of global inconsistency also for normal logicprogram because (positive or negative) assumptions made during the testing ofpositive examples are recorded and added to the training set.Per la negazione, provare ad imparare hamilton (vedi tracynot).



7 Related WorkThis work was inspired by [10] where the algorithm for learning abductive logicprograms was introduced and its main properties studied. We improved on thatwork by adding the hybrid coverage to the system, that has the important prop-erty of avoiding backtracking and thus rendering practically feasible the learningof multiple predicates and normal logic programs.On the problem of learning multiple predicates a notable work is [17] wherethe authors thoroughly analyze the problem and the solutions proposed bothby intensional and extensional systems. Moreover, they present the clear andextensive analisys of the various problems of extensional systems that we haverecalled in section 3. In order to overcome the problem of global incompleteness,they propose the system MPL that takes a di�erent approach with respect toours. Being an intensional system, it can not avoid the case described in example1 as we do. Also in the other case of global inconsistency, it solves the problem byretracting one of the globally inconsistent clauses previously learned. However,if the clause at fault is the last one, MPL would retract the wrong clause andwould not be able to learn the desired theory because retracted clauses cannotbe added again to the hypothesis.Our system still su�ers from the problem of extensional completeness, inten-sional incompleteness. This problem has been deeply studied, both for de�niteand normal logic program, in [14]. The authors propose the system ICN in whichthey solve the problem by keeping explicit track of the recursive dependencyamong clauses. An interesting direction for future work would be to incorporatetheir solution into our system.Hybrid coverage is used as well in the system FOIL-I [8]. However, FOIL-I's authors especially concentrate on learning recursive predicates from a sparsetraining set and they do not investigate the properties of such a system withrespect to multiple predicate learning and learning normal logic programs.The approach we adopted to avoid the problem of coverage restriction whenlearning normal logic program is similar to the one followed in TRACYnot [3].When learning de�nite logic programs, TRACY �nds a hypothesis by consideringthe trace of the derivation of the �rst positive example against the set of allpossible clauses. Then the clauses involved in the derivation of the example aretested against all the other examples, positive and negative. They will be part ofthe solution if they do not cover any negative example. This approach is basedon the fact that de�nite logic programs are monotonic and therefore having allthe clauses together does not constitute a problem because the irrelevant clauseswill not interfere with the relevant ones. When learning normal logic programs,instead, irrelevant clauses may constitute a problem to relevant ones, becauseNegation As Failure (NAF) literals may fail because of an irrelevant clause.Therefore it is not possible to consider a trace as a possible solution. In order toovercome this problem, TRACYnot modi�es the proof procedure of the exampleso that each time a NAF literal is encountered, it is removed from the resolventand its positive version is added to the training set: it is added to E� if theexample under test was positive or to E+ if the example was negative. In the



case in which one of the negative examples is covered by the trace, TRACYnotperforms a backtracking on the trace for the original positive examples. This isvery similar to our approach, the only di�erence is the technique that is used forimplementing it: by using abduction, we use a general technique that allows usto learn also multiple predicate and learning from incomplete information.Since we gradually add negative examples, our approach may seem similarto the one adopted in incremental systems such as MIS [18]. However, while inincremental systems a consistency check must be done after the addition of eache� to the training set, we do not have to do this because we add an e� onlyafter having tested that it is not covered by any clause.8 Conclusions and Future WorkWe have shown how abduction can be used in order to introduce extensionalityin intensional systems. In particular, we have taken the intensional system forlearning abductive logic programs proposed in [10] and we have extended it inorder to include extensional coverage. In this way, we get a hybrid system thatovercomes two problems of intensional systems: the problem of global inconsis-tency when learning multiple predicates and the problem of coverage reductionwhen learning normal logic programs. Moreover, we do not incur in the problemsof completeness and consistency of extensional systems, apart from the one ofextensional completeness, intensional incompleteness. This problem is relevantonly when learning (mutually) recursive predicates, that was not our main aim.Subject for future work will be to integrate into our systems the techniquesproposed in [14] for learning recursive predicates.AcknowledgmentThe authors would like to thank the anonymous referees and the participantto the workshop for their useful comments and suggestions. Fabrizio Riguzziwould like to thank Tony Kakas for having invited him to spend a period at theUniversity of Cyprus and for the many helpful discussions has together.References1. H. Ad�e and M. Denecker. AILP: Abductive inductive logic programming. In Pro-ceedings of the 14th International Joint Conference on Arti�cial Intelligence, 1995.2. F. Bergadano and D. Gunetti. Inductive Logic Programming. MIT press, 1996.3. F. Bergadano and D. Gunetti. Learning Logic Programs with Negation as Failure.In Advances in Inductive Logic Programming. IOS Press, 1996.4. A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logic pro-gramming with non-monotonic reasoning. To appear on the Journal of TheoreticalComputer Science.



5. M. Denecker, L. De Raedt, P. Flach, and A. Kakas, editors. Proceedings of ECAI96Workshop on Abductive and Inductive Reasoning. Catholic University of Leuven,1996.6. Y. Dimopoulos and A. Kakas. Abduction and learning. In Advances in InductiveLogic Programming. IOS Press, 1996.7. F. Esposito, E. Lamma, D. Malerba, P. Mello, M. Milano, F. Riguzzi, andG. Semeraro. Learning abductive logic programs. In Denecker et al. [5].8. N. Inuzuka, M. Kamo, N. Ishii, H. Seki, and H. Itoh. Top-down induction of logicprograms from incomplete samples. In S. Muggleton, editor, Proceedings of the 6thInternational Workshop on Inductive Logic Programming, pages 119{136. Stock-holm University, Royal Institute of Technology, 1996.9. A.C. Kakas, R.A. Kowalski, and F. Toni. The role of abduction in logic program-ming. In D. et al. Gabbay, editor, Handbook of Logic in AI and Logic Programming.1997. to appear.10. A.C. Kakas and P. Mancarella. On the relation between truth maintenance andabduction. In Proceedings of the 2nd Paci�c Rim International Conference onArti�cial Intelligence, 1990.11. A.C. Kakas and F. Riguzzi. Learning with abduction. Technical Report TR-96-15,University of Cyprus, Computer Science Department, 1996.12. A.C. Kakas and F. Riguzzi. Learning with abduction. In Proceedings of the 7thInternational Workshop on Inductive Logic Programming, 1997.13. E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating Induction and Ab-duction in Logic Programming. In P. P. Wang, editor, Prooceedings of the ThirdJoint Conference on Information Sciences, volume 2, pages 203{206, 1997.14. L. Martin and C. Vrain. MULT ICN: An empirical multiple predicate learner. InL. De Raedt, editor, Proceedings of the 5th International Workshop on InductiveLogic Programming, pages 129{144. Department of Computer Science, KatholiekeUniversiteit Leuven, 1995.15. L. Martin and C. Vrain. A three-valued framework for the induction of generalprogram. In L. De Raedt, editor, Proceedings of the 5th International Workshopon Inductive Logic Programming, pages 109{128. Department of Computer Science,Katholieke Universiteit Leuven, 1995.16. M.J. Pazzani and D. Kibler. The utility of knowledge in inductive learning. Ma-chine Learning, 9(1):57{94, 1992.17. J. R. Quinlan and R.M. Cameron-Jones. Induction of Logic Programs: FOIL andRelated Systems. New Generation Computing, 13:287{312, 1995.18. L. De Raedt, N. Lavra�c, and S. D�zeroski. Multiple predicate learning. In Proceed-ings of the 3rd International Workshop on Inductive Logic Programming, 1993.19. E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.AppendixIn the following we recall the abductive and consistency derivation used by our algo-rithm, which are taken from [9].Abductive derivationAn abductive derivation from (G1 �1) to (Gn �n) in hP;Ab; ICi via a selection ruleR is a sequence (G1 �1); (G2 �2); : : : ; (Gn �n)



such that each Gi has the form L1; : : : ; Lk, R(Gi) = Lj and (Gi+1 �i+1) is obtainedaccording to one of the following rules:(1) If it exist a resolvent C of some clause in P with Gi on the selected literal Lj, thenGi+1 = C and �i+1 = �i;(2) If Lj is abducible or default and Lj 2 �i then Gi+1 = L1; : : : ; Lj�1; Lj+1; : : : ; Lkand �i+1 = �i;(3) If Lj is abducible or default, Lj 62 �i and Lj 62 �i and there exists a consistencyderivation from (fLjg�i[fLjg) to (fg�0) thenGi+1 = L1; : : : ; Lj�1; Lj+1; : : : ; Lkand �i+1 = �0.Steps (1) is SLD-resolution. Step (2) consider the case in which the literal has alreadybeen abduced. In step (3) a new abductive or default hypotheses is required and it isadded to the current set of hypotheses provided it is consistent.Consistency derivationA consistency derivation for an abducible or default literal � from (�; �1) to (Fn �n)in hP;Ab; ICi is a sequence(� �1); (F1 �1); (F2 �2); : : : ; (Fn �n)where :(i) F1 is the union of all goals of the form  L1; : : : ; Ln obtained by resolving theabducible or default � with the denials in IC with no such goal been empty,  ;(ii) for each i > 1, Fi has the form f L1; : : : ; Lkg [ F 0i and for some j = 1; : : : ; k(Fi+1 �i+1) is obtained according to one of the following rules:(C1) If the set C 0 of all resolvents of clauses in P with  L1; : : : ; Lk on the literalLj is not empty and  62 C 0, then Fi+1 = C 0 [ F 0i and �i+1 = �i;(C2) If Lj is abducible or default, Lj 2 �i and k > 1, thenFi+1 = f L1; : : : ; Lj�1; Lj+1; : : : ; Lkg [ F 0iand �i+1 = �i;(C3) If Lj is abducible or default, Lj 2 �i then Fi+1 = F 0i and �i+1 = �i;(C4) If Lj is abducible or default, Lj 62 �i and Lj 62 �i, and there exists anabductive derivation from ( Lj �i) to ( �0) then Fi+1 = F 0i and �i+1 =�0.In case (C1) the current branch splits into as many branches as the number of resolventsof  L1; : : : ; Lk with the clauses in P on Lj. If the empty clause is one of suchresolvents the whole consistency check fails. In case (C2) the goal under considerationis made simpler if literal Lj belongs to the current set of hypotheses �i. If k = 1 theconsistency derivation fails. In case (C3) the current branch is already consistent underthe assumptions in �i, and this branch is dropped from the consistency checking Incase (C4) the current branch of the consistency search space can be dropped provided Lj is abductively provable.Given a query L (atomic, for the sake of simplicity), the procedure succeeds, andreturns the set of abducibles � if there exists an abductive derivation from ( L fg)to ( �). With abuse of terminology, in this case, we also say that the abductivederivation succeeds.This article was processed using the LATEX macro package with LLNCS style


