
A System for Abductive Learning of Logic

Programs

Evelina Lamma1, Paola Mello2, Michela Milano1, Fabrizio Riguzzi1

1 DEIS, Universit�a di Bologna,

Viale Risorgimento 2, I-40136 Bologna, Italy,

felamma,mmilano,friguzzig@deis.unibo.it
2 Dip. di Ingegneria, Universit�a di Ferrara,

Via Saragat 1, I-44100 Ferrara, Italy

pmello@ing.unife.it

Abstract. We present the system LAP (Learning Abductive Programs)

that is able to learn abductive logic programs from examples and from a

background abductive theory. A new type of induction problem has been

de�ned as an extension of the Inductive Logic Programming framework.

In the new problem de�nition, both the background and the target the-

ories are abductive logic programs and abductive derivability is used as

the coverage relation.

LAP is based on the basic top-down ILP algorithm that has been suit-

ably extended. In particular, coverage of examples is tested by using the

abductive proof procedure de�ned by Kakas and Mancarella [24]. As-

sumptions can be made in order to cover positive examples and to avoid

the coverage of negative ones, and these assumptions can be used as

new training data. LAP can be applied for learning in the presence of

incomplete knowledge and for learning exceptions to classi�cation rules.

Keywords: Abduction, Learning.

1 Introduction

Abductive Logic Programming (ALP) has been recognized as a powerful knowl-

edge representation tool [23]. Abduction [22, 36] is generally understood as rea-

soning from e�ects to causes or explanations. Given a theory T and a formula

G, the goal of abduction is to �nd a set of atoms � (explanation) that, together

with T , entails G and that is consistent with a set of integrity constraints IC.

The atoms in � are abduced: they are assumed true in order to prove the goal.

Abduction is specially useful to reason in domains where we have to infer causes

from e�ects, such as diagnostic problems [3]. But ALP has many other applica-

tions [23]: high level vision, natural language understanding, planning, knowledge

assimilation and default reasoning. Therefore, it is desirable to be able to au-

tomatically produce a general representation of a domain starting from speci�c

knowledge about single instances. This problem, in the case of standard Logic

Programming, has been deeply studied in Inductive Logic Programming (ILP)

[7], the research area covering the intersection of Machine Learning [33] and

Logic Programming. Its aim is to devise systems that are able to learn logic

programs from examples and from a background knowledge. Recently, in this re-

search area, a number of works have begun to appear on the problem of learning

non-monotonic logic programs [4, 16, 8, 32].

Particular attention has been given to the problem of learning abductive

logic programs [21, 26, 29, 30, 27] and, more generally, to the relation existing

between abduction and induction and how they can integrate and complement

each other [15, 17, 2]. Our work addresses this topic as well. The approach for

learning abductive logic programs that we present in this paper is doubly useful.

On one side, we can learn abductive theories for the application domains men-

tioned above. For example, we can learn default theories: in Section 5.1 we show

an example in which we learn exceptions to classi�cation rules. On the other

side, we can learn theories in domains in which there is incomplete knowledge.

This is a very frequent case in practice, because very often the data available is

incomplete and/or noisy. In this case, abduction helps induction by allowing to

make assumptions about unknown facts, as it is shown in the example in Sec-

tion 5.2. In [29] we de�ned a new learning problem called Abductive Learning

Problem. In this new framework we generate an abductive logic program from

an abductive background knowledge and from a set of positive and negative ex-

amples of the concepts to be learned. Moreover, abductive derivability is used

as the example coverage relation instead of Prolog derivability as in ILP.

We present the system LAP (Learning Abductive Programs) that solves this

new learning problem. The system is based on the theoretical work developed

in [21, 29] and it is an extension of a basic top-down algorithm adopted in ILP

[7]. In the extended algorithm, the proof procedure de�ned in [24] for abductive

logic programs is used for testing the coverage of examples in substitution of

the deductive proof procedure of logic programming. Moreover, the abduced

literals can be used as new training data for learning de�nitions for the abducible

predicates.

The paper is organized as follows: in Section 2 we recall the main concepts of

Abductive Logic Programming, Inductive Logic Programming, and the de�nition

of the abductive learning framework. Section 3 presents the learning algorithm

while its properties are reported in Section 4. In Section 5 we apply LAP to

the problem of learning exceptions to rules and learning from incomplete knowl-

edge. Related works are discussed in Section 6. Section 7 concludes and presents

directions for future works.

2 Abductive and Inductive Logic Programming

2.1 Abductive Logic Programming

An abductive logic program is a triple hP;A; ICi where:

{ P is a normal logic program;

{ A is a set of abducible predicates;

{ IC is a set of integrity constraints in the form of denials, i.e.:

 A1; : : : ; Am; not Am+1; : : : ; not Am+n:

Abducible predicates (or simply abducibles) are the predicates about which as-

sumptions (or abductions) can be made. These predicates carry all the incom-

pleteness of the domain, they can have a partial de�nition or no de�nition at

all, while all other predicates have a complete de�nition.

Negation as Failure is replaced, in ALP, by Negation by Default and is ob-

tained by transforming the program into its positive version: each negative literal

not p(t), where t is a tuple of terms, is replaced by a literal not p(t), where not p

is a new predicate symbol. Moreover, for each predicate symbol p in the program,

a new predicate symbol not p is added to the set A and the integrity constraint

 p(X); not p(X) is added to IC, whereX is a tuple of variables. Atoms of the

form not p(t) are called default atoms. In the following, we will always consider

the positive version of programs. This allows us to abduce either the truth or

the falsity of atoms.

Given an abductive theory AT = hP;A; ICi and a formula G, the goal of

abduction is to �nd a (possibly minimal) set of ground atoms � (abductive

explanation) of predicates in A which, together with P , entailsG, i.e., P[� j= G.

It is also required that the program P [� be consistent with respect to IC, i.e.

P [� j= IC. When there exists an abductive explanation for G in AT , we say

that AT abductively entails G and we write AT j=A G.

As model-theoretic semantics for ALP, we adopt the abductive model seman-

tics de�ned in [9]. We do not want to enter into the details of the de�nition,

we will just give the following proposition which will be useful throughout the

paper.

We indicate with LA the set of all atoms built from the predicates of A

(called abducible atoms), including also default atoms.

Proposition 1. Given an abductive model M for the abductive program AT =

hP;A; ICi, there exists a set of atoms H � LA such that M is the least Herbrand

model of P [H.

Proof. Straightforward from the de�nition of abductive model (de�nition 5.7 in

[9]).

In [24] a proof procedure for abductive logic programs has been de�ned. This

procedure starts from a goal and a set of initial assumptions �i and results in

a set of consistent hypotheses (abduced literals) �o such that �o � �i and �o

together with the program P allow deriving the goal. The proof procedure uses

the notion of abductive and consistency derivations. Intuitively, an abductive

derivation is the standard Logic Programming derivation suitably extended in

order to consider abducibles. As soon as an abducible atom � is encountered,

it is added to the current set of hypotheses, and it must be proved that any

integrity constraint containing � is satis�ed. For this purpose, a consistency

derivation for � is started. Since the constraints are denials only (i.e., goals), this

corresponds to proving that every such goal fails. Therefore, � is removed from

all the constraints containing it, and we prove that all the resulting goals fail.

In this consistency derivation, when an abducible is encountered, an abductive

derivation for its complement is started in order to prove the abducible's failure,

so that the initial constraint is satis�ed. When the procedure succeeds for the

goal G and the initial set of assumptions �i, producing as output the set of

assumptions �o, we say that T abductively derives G or that G is abductively

derivable from T and we write T `�o

�i
G.

In [9] it has been proved that the proof procedure is sound and weakly com-

plete with respect to the abductive model semantics de�ned in [9] under a number

of restrictions. We will present these results in detail in Section 4.

2.2 Inductive Logic Programming

The ILP problem can be de�ned as [6]:

Given:

{ a set P of possible programs
{ a set E+ of positive examples
{ a set E� of negative examples
{ a logic program B (background knowledge)

Find:

{ a logic program P 2 P such that
� 8e+ 2 E+, B [P ` e+ (completeness)
� 8e� 2 E�, B [P 6` e� (consistency).

Let us introduce some terminology. The program P that we want to learn is the

target program and the predicates which are de�ned in it are target predicates.

The sets E+ and E� are called training sets and contain ground atoms for the

target predicates. The program B is called background knowledge and contains

the de�nitions of the predicates that are already known. We say that the pro-

gram P covers an example e if P [B ` e1, i.e. if the theory \explains" the

example. Therefore the conditions that the program P must satisfy in order to

be a solution to the ILP problem can be expressed as \P must cover all positive

examples and must not cover any negative example". A theory that covers all

positive examples is said to be complete while a theory that does not cover any

negative example is said to be consistent. The set P is called the hypothesis

space. The importance of this set lies in the fact that it de�nes the search space

of the ILP system. In order to be able to e�ectively learn a program, this space

must be restricted as much as possible. If the space is too big, the search could

result infeasible.

The language bias (or simply bias in this paper) is a description of the hy-

pothesis space. Many formalisms have been introduced in order to describe this

space [7], we will consider only a very simple bias in the form of a set of literals

which are allowed in the body of clauses for target predicates.

1 In the ILP literature, the derivability relation is often used instead of entailment be-

cause real systems adopt the Prolog interpreter for testing the coverage of examples,

that is not sound nor complete.

Initialize H := ;
repeat (Covering loop)

Generate one clause c

Remove from E+ the e+ covered by c

Add c to H

until E+ = ; (Su�ciency stopping criterion)

Generate one clause c:

Select a predicate p that must be learned

Initialize c to be p(X) :

repeat (Specialization loop)

Select a literal L from the language bias

Add L to the body of c

if c does not cover any positive example

then backtrack to di�erent choices for L

until c does not cover any negative example (Necessity stopping criterion)

return c

(or fail if backtracking exhausts all choices for L)

Fig. 1. Basic top-down ILP algorithm

There are two broad categories of ILP learning methods: bottom-up methods

and top-down methods. In bottom-up methods clauses in P are generated by

starting with a clause that covers one or more positive examples and no nega-

tive example, and by generalizing it as much as possible without covering any

negative example. In top-down methods clauses in P are constructed starting

with a general clause that covers all positive and negative examples and by spe-

cializing it until it does no longer cover any negative example while still covering

at least one positive. In this paper, we concentrate on top-down methods. A ba-

sic top-down inductive algorithm [7, 31] learns programs by generating clauses

one after the other. A clause is generated by starting with an empty body and

iteratively adding literals to the body. The basic inductive algorithm, adapted

from [7] and [31], is sketched in Figure 1.

2.3 The New Learning Framework

We consider a new de�nition of the learning problem where both the background

and target theory are abductive theories and the notion of deductive coverage

above is replaced by abductive coverage.

Let us �rst de�ne the correctness of an abductive logic program T with

respect to the training set E+; E�. This notion replaces those of completeness

and consistency for logic programs.

De�nition 1 (Correctness). An abductive logic program T is correct, with

respect to E+ and E�, i� there exists � � LA such that

T `�; E+; not E�

where not E� = fnot e�je� 2 E�g and E+; not E� stands for the conjunction

of each atom in E+ and not E�

De�nition 2 (Abductive Learning Problem).

Given:

{ a set T of possible abductive logic programs

{ a set of positive examples E+

{ a set of negative examples E�

{ an abductive program T = hP;A; ICi as background theory

Find:

A new abductive program T 0 = hP [P 0; A; ICi such that T 0 2 T and T 0 is

correct wrt E+ and E�.

We say that a positive example e+ is covered if T `�; e+. We say that a

negative example e� is not covered (or ruled out) if T `�; not e�. By employing

the abductive proof procedure for the coverage of examples, we allow the system

to make assumptions in order to cover positive examples and to avoid the cover-

age of negative examples. In this way, the system is able to complete a possibly

incomplete background knowledge. Integrity constraints give some con�dence in

the correctness of the assumptions made.

Di�erently from the ILP problem, we require the conjunction of examples,

instead of each example singularly, to be derivable. In this way we ensure that

the abductive explanations for di�erent examples are consistent with each other.

The abductive program that is learned can contain new rules (possibly con-

taining abducibles in the body), but not new abducible predicates and new

integrity constraints.

3 An algorithm for Learning Abductive Logic Programs

In this section, we present the system LAP that is able to learn abductive logic

programs according to de�nition 2. The algorithm is obtained from the basic

top-down ILP algorithm (Figure 1), by adopting the abductive proof procedure,

instead of the Prolog proof procedure, for testing the coverage of examples.

As the basic inductive algorithm, LAP is constituted by two nested loops: the

covering loop (Figure 2) and the specialization loop (Figure 3). At each iteration

of the covering loop, a new clause is generated such that it covers at least one

positive example and no negative one. The positive examples covered by the rule

are removed from the training set and a new iteration of the covering loop is

started. The algorithm ends when the positive training set becomes empty. The

new clause is generated in the specialization loop: we start with a clause with an

empty body, and we add literals to the body until the clause does not cover any

negative example while still covering at least one positive. The basic top-down

algorithm is extended in the following respects.

procedure LAP(

inputs : E+; E� : training sets,

AT = hT;A; ICi : background abductive theory,

outputs : H : learned theory, � : abduced literals)

H := ;
� := ;
repeat

GenerateRule(in: AT;E+; E�; H;�; out: Rule; E+

Rule
; �Rule)

Add to E+ all the positive literals of target predicates in �Rule

Add to E� all the atoms corresponding to

negative literals of target predicates in �Rule

E+ := E+ �E+

Rule

H := H [fRuleg
� := � [�Rule

until E+ = ; (Su�ciency stopping criterion)

output H

Fig. 2. The covering loop

procedure GenerateRule(

inputs : AT;E+; E�; H;�

outputs : Rule : rule,

E+

Rule
: positive examples covered by Rule,

�Rule : abduced literals

Select a predicate to be learned p

Let Rule = p(X) true:

repeat (specialization loop)

select a literal L from the language bias

add L to the body of Rule

TestCoverage(in: Rule;AT;H;E+; E�; �,

out: E+

Rule
; E�

Rule
; �Rule)

if E+

Rule
= ;

backtrack to a di�erent choice for L

until E�
Rule

= ; (Necessity stopping criterion)

output Rule; E+

Rule
; �Rule

Fig. 3. The specialization loop

procedure TestCoverage(

inputs : Rule;AT;H;E+; E�; �

outputs: E+

Rule
; E
�

Rule
: examples covered by Rule

�Rule : new set of abduced literals

E+

Rule
= E�

Rule
= ;

�in = �

for each e+ 2 E+ do

if AbductiveDerivation(e+; hT [H [fRuleg; A; ICi;�in; �out)

succeeds then Add e+ to E+

Rule
; �in = �out

endfor

for each e� 2 E� do

if AbductiveDerivation(not e�; hT [H [fRuleg; A; ICi; �in; �out)

succeeds then �in = �out

else Add e� to E�
Rule

endfor

�Rule = �out ��

output E+

Rule
; E
�

Rule
; �Rule

Fig. 4. Coverage testing

First, in order to determine the positive examples E+

Rule
covered by the gen-

erated rule Rule (procedure TestCoverage in Figure 4), an abductive derivation

is started for each positive example. This derivation results in a (possibly empty)

set of abduced literals. We give as input to the abductive procedure also the set

of literals abduced in the derivations of previous examples. In this way, we en-

sure that the assumptions made during the derivation of the current example

are consistent with the assumptions for other examples.

Second, in order to check that no negative example is covered (E�
Rule

= ;
in Figure 3) by the generated rule Rule, an abductive derivation is started for

the default negation of each negative example (not e�). Also in this case,

each derivation starts from the set of abducibles previously assumed. The set of

abducibles is initialized to the empty set at the beginning of the computation,

and is gradually extended as it is passed on from derivation to derivation. This

is done as well across di�erent clauses.

Third, after the generation of each clause, the literals of target predicates

that have been abduced are added to the training set, so that they become new

training examples. For each positive abduced literal of the form abd(c+) where

c
+ is a tuple of constants, the new positive example abd(c+) is added to E+

set, while for each negative literal of the form not abd(c�) the negative example

abd(c�) is added to E�.

In order to be able to learn exceptions to rules, we include a number of

predicates of the form not abnormi=n in the bias of each target predicate of

the form p=n. Moreover, abnormi=n and not abnormi=n are added to the set of

abducible predicates and the constraint

 abnormi(X); not abnormi(X):

is added to the background knowledge. In this way, when the current partial rule

in the specialization loop still covers some negative examples and no other literal

can be added that would make it consistent, the rule is specialized by adding the

literal not abnormi(X) to its body. Negative examples previously covered are

ruled out by abducing for them facts of the form abnormi(c
�), while positive

examples will be covered by abducing the facts not abnormi(c
+) and these facts

are added to the training set.

We are now able to learn rules for abnormi=n, thus resulting in a de�nition

for the exceptions to the current rule. For this purpose, predicates abnormi=n

are considered as target predicates, and we de�ne a bias for them. Since we may

have exceptions to exceptions, we may also include a number of literals of the

form not abnormj(X) in the bias for abnormi=n.

The system has been implemented in Prolog using Sicstus Prolog 3#5.

4 Properties of the algorithm

LAP is sound, under some restrictions, but not complete. In this section we give

a proof of its soundness, and we point out the reasons of incompleteness.

Let us �rst adapt the de�nitions of soundness and completeness for an induc-

tive inference machine, as given by [7], to the new problem de�nition. We will

call Abductive Inductive Inference Machine (AIIM) an algorithm that solves the

Abductive Learning Problem. If M is an AIIM, we write M(T ; E+; E�; B) = T

to indicate that, given the hypothesis space T , positive and negative examples

E+ and E�, and a background knowledge B, the machine outputs a program

T . We write M(T ; E+; E�; B) = ? when M does not produce any output.

With respect to the abductive learning problem (de�nition 2), the de�nitions

of soundness and completeness are:

De�nition 3 (Soundness). An AIIM M is sound i� if M(T ; E+; E�; B) = T ,

then T 2 T and T is correct with respect to E+ and E�.

De�nition 4 (Completeness).An AIIMM is complete i� ifM(T ; E+; E�; B) =

?, then there is no T 2 T that is correct with respect to E+ and E�.

The proof of LAP soundness is based on the theorems of soundness and weak

completeness of the abductive proof procedure given in [9]. We will �rst present

the results of soundness and completeness for the proof procedure and then we

will prove the soundness of our algorithm.

The theorems of soundness and weak completeness (theorems 7.3 and 7.4 in

[9]) have been extended by considering the goal to be proved as a conjunction of

abducible and non-abducible atoms (instead of a single non-abducible atom) and

by considering an initial set of assumptions �i. The proofs are straightforward,

given the original theorems.

Theorem 1 (Soundness). Let us consider an abductive logic program T . Let

L be a conjunction of atoms. If T `�o

�i
L, then there exists an abductive model

M of T such that M j= L and �o �M \ LA.

Theorem 2 (Weak completeness). Let us consider an abductive logic pro-

gram T . Let L be a conjunction of atoms. Suppose that every selection of rules in

the proof procedure for L terminates with either success or failure. If there exists

an abductive model M of T such that M j= L, then there exists a selection of

rules such that the derivation procedure for L succeeds in T returning �, where

� �M \ LA.

We need as well the following lemma.

Lemma 1. Let us consider an abductive logic program T = hP;A; Ii. Let L be

a conjunction of atoms. If T `�; L then lhm(P [�) j= L, where lhm(P [�) is

the least Herbrand model of P [�.

Proof. Follows directly from theorem 5 in [18].

The theorems of soundness and weak completeness for the abductive proof pro-

cedure are true under a number of assumptions:

{ the abductive logic program must be ground

{ the abducibles must not have a de�nition in the program

{ the integrity constraints are denials with at least one abducible in each con-

straint.

Moreover, the weak completeness theorem is limited by the assumption that the

proof procedure for L always terminates.

The soundness of LAP is limited as well by these assumptions. However, they

do not severely restrict the generality of the system. In fact, the requirement that

the program is ground can be met for programs with no function symbols. In this

case the Herbrand universe is �nite and we obtain a �nite ground program from

a non-ground one by grounding in all possible ways the rules and constraints

in the program. This restriction is also assumed in many ILP systems (such as

FOIL [37], RUTH [1], [11]).

The restriction on the absence of a (partial) de�nition for the abducible does

not reduce the generality of the results since, when abducible predicates have

de�nitions in T , we can apply a transformation to T so that the resulting program

T 0 has no de�nition for abducible predicates. This is done by introducing an

auxiliary predicate �a=n for each abducible predicate a=n and by adding the

clause:

a(x) �a(x):

The predicate a=n is no longer abducible, whereas �a=n is now abducible. In this

way, we are able to deal as well with partial de�nitions for abducible predicates,

and this is particularly important when learning from incomplete data, because

the typical situation is exactly to have a partial de�nition for some predicates,

as will be shown in Section 5.2.

The requirement that each integrity constraint contains an abducible literal

is not restrictive because we use constraints only for limiting assumptions and

therefore a constraint without an abducible literal would be useless.

The most restrictive requirement is the one on the termination of the proof

procedure. However, it can be proved that the procedure always terminates for

call-consistent programs, i.e. if no predicate depends on itself through an odd

number of negative recursive calls (e.g., p not p).

We need as well the following theorem. It expresses a restricted form of

monotonicity that holds for abductive logic programs.

Theorem 3. Let T = hP;A; Ii and T 0 = hP [P 0; A; Ii be abductive logic pro-

grams. If T `�1

; L1 and T 0 `�2

�1
L2, where L1 and L2 are two conjunctions of

atoms, then T `�2

;
L1 ^ L2.

Proof. From T `�1

; L1 and lemma 1 we have that

lhm(P [�1) j= L1

From the de�nition of abductive proof procedure we have that �1 � �2. Since

we consider the positive version of programs, P [�1 and P [P
0[�2 are de�nite

logic programs. From the monotonicity of de�nite logic programs lhm(P [�1) �
lhm(P [P 0 [�2) therefore

lhm(P [P 0 [�2) j= L1

From T 0 `�2

�1
L2, by the soundness of the abductive proof procedure, we have

that there exists an abductive modelM2 such thatM2 j= L2 and �2 �M2\L
A.

From proposition 1, there exists a setH2 � L
A such thatM2 = lhm(P[P 0[H2).

Since abducible and default predicates have no de�nition in P [P 0, we have that

M2 \ L
A = H2 and �2 � H2. Therefore M2 � lhm(P \ P 0 \�2) and

M2 j= L1

From M2 j= L2 and from the weak completeness of the abductive proof proce-

dure, we have that

T 0 `�2

�1
L1 ^ L2

We can now give the soundness theorem for our algorithm.

Theorem 4 (Soundness). The AIIM LAP is sound.

Proof. Let us consider �rst the case in which the target predicates are not ab-

ducible and therefore no assumption is added to the training set during the

computation. In order to prove that the algorithm is sound, we have to prove

that, for any given sets E+ and E�, the program T 0 that is output by the

algorithm is such that

T 0 `�; E+; not E�

LAP learns the program T 0 by iteratively adding a new clause to the current

hypothesis, initially empty. Each clause is tested by trying an abductive deriva-

tion for each positive and for the complement of each negative example. Let

E+
c
= fe+1 : : : e+

nc
g be the set of positive examples whose conjunction is covered

by clause c and let E� = fe�1 : : : e�
m
g. Clause c is added to the current hypothesis

H when:

9E+
c
� E+ : E+

c
6= ;; 8i 2 f1 : : : ncg : P [H [fcg `

�
+

i

�
+

i�1

e+
i

8j 2 f1 : : :mg : P [H [fcg `
�
�

j

�
�

j�1

not e�
j

where �+

0 = �H , �
+

i�1 � �+

i
and ��

0 = �+
nc
. By induction on the examples

and by theorem 3 with P 0 = ;, we can prove that

hP [H [fcg; A; ICi `
�H[fcg

�H
E+
c
; not E�

where �H[fcg = ��
m
. At this point, it is possible to prove that

T 0 `�; E+
c1
[: : : [E+

ck
; not E�

by induction on the clauses and by theorem 3. From this and from the su�ciency

stopping criterion (see Figure 2) we have that E+
c1
[: : : [E+

ck
= E+.

We now have to prove soundness when the target predicates are abducible

as well and the training set is enlarged during the computation. In this case, if

the �nal training sets are E+

F
and E�

F
, we have to prove that

T 0 `�; E+

F
; not E�

F

If a positive assumption is added to E+, then the resulting program will contain

a clause that will cover it because of the su�ciency stopping criterion. If a

negative assumption not e� is added toE� obtainingE0�, clauses that are added

afterwards will derive not E0�. We have to prove also that clauses generated

before allow not E0� to be derived. Consider a situation where not e� has been

assumed during the testing of the last clause added to H . We have to prove that

hP [H;A; ICi `�; E+

H
; not E�) hP [H;A; ICi `�; E+

H
; not E0�

where not e� 2 � and e� 2 E0�. From the left part of the implication and for

the soundness of the abductive proof procedure, we have that there exists an

abductive model M such that � � M \ LA. From not e� 2 �, we have that

not e� 2M and therefore by weak completeness

hP [H;A; ICi `�; not e�

By induction and by theorem 3, we have the right part of the implication.

We turn now to the incompleteness of the algorithm. LAP is incomplete because

a number of choice points have been overlooked in order to reduce the computa-

tional complexity. The �rst source of incompleteness comes from the fact that,

after a clause is added to the theory, it is never retracted. Thus, it can be the

case that a clause not in the solution is learned and the restrictions imposed on

the rest of the learning process by the clause (through the examples covered and

their respective assumptions) prevent the system from �nding a solution even if

there is one. In fact, the algorithm performs only a greedy search in the space

of possible programs, exploring completely only the smaller space of possible

clauses. However, this source of incompleteness is not speci�c to LAP because

most ILP systems perform such a greedy search in the programs space.

The following source of incompleteness, instead, is speci�c to LAP. For each

example, there may be more than one explanation and, depending on the one

we choose, the coverage of other examples can be inuenced. An explanation�1

for the example e1 may prevent the coverage of example e2, because there may

not be an explanation for e2 that is consistent with �1, while a di�erent choice

for �1 would have allowed such a coverage. Thus, in case of a failure in �nding

a solution, we should backtrack on example explanations.

We decided to overlook these choice points in order to obtain an algorithm

that is more e�ective in the average case, but we might not have done so. In

fact, these choice points have a high computational cost, and they must be

considered only when a high number of di�erent explanations is available for

each example. However, this happens only for the cases in which examples are

highly interrelated, i.e., there are relations between them or between objects

(constants) related to them. This case is not very common in concept learning,

where examples represent instances of a concept and the background represents

information about each instance and its possible parts. In most cases, instances

are separate entities that have few relations with other entities.

5 Examples

5.1 Learning exceptions

In this section, we show how LAP learns exceptions to classi�cation rules. The

example is taken from [16].

Let us consider the following abductive background theory B = hP;A; ICi
and training sets E+ and E�:

P = fbird(X) penguin(X):

penguin(X) superpenguin(X):

bird(a): bird(b): penguin(c): penguin(d):

superpenguin(e): superpenguin(f):g
A = fabnorm1=1; abnorm2=1; not abnorm1=1; not abnorm2=1g
IC =f abnorm1(X); not abnorm1(X):

 abnorm2(X); not abnorm2(X):g
 flies(X); not flies(X):g

E+ = fflies(a); f lies(b); f lies(e); f lies(f)g
E� = fflies(c); f lies(d)g

Moreover, let the bias be:

flies(X) � where � � fsuperpenguin(X); penguin(X); bird(X);

not abnorm1(X); not abnorm2(X)g
abnorm1(X) � and abnorm2(X) � where

� � fsuperpenguin(X); penguin(X); bird(X)g

The algorithm �rst generates the following rule (R1):

flies(X) superpenguin(X):

which covers flies(e) and flies(f) that are removed from E+. Then, in the

specialization loop, the ruleR2 = flies(X) bird(X): is generated which covers

all the remaining positive examples flies(a) and flies(b), but also the negative

ones. In fact, the abductive derivations for not flies(c) and not flies(d) fail.

Therefore, the rule must be further specialized by adding a new literal. The

abducible literal not abnorm1 is added to the body of R2 obtaining R3:

flies(X) bird(X); not abnorm1(X):

Now, the abductive derivations for the negative examples flies(a) and flies(b)

succeed abducing fnot abnorm1(a); not abnorm1(b)g and the derivations

not flies(c) and not flies(d) succeed abducing fabnorm1(c); abnorm1(d)g.
At this point the system adds the literals abduced to the training set and

tries to generalize them, by generating a rule for abnorm1=1. Positive abduced

literals for abnorm1=1 form the set E+, while negative abduced literals form the

set E�. The resulting induced rule is (R4):

abnorm1(X) penguin(X):

No positive example is now left in the training set therefore the algorithm ends

by producing the following abductive rules:

flies(X) superpenguin(X):

f lies(X) bird(X); not abnorm1(X):

abnorm1(X) penguin(X):

A result similar to ours is obtained in [16], but exploiting \classical" negation and

priority relations between rules rather than abduction. By integrating induction

and abduction, we obtain a system that is more general than [16].

5.2 Learning from incomplete knowledge

Abduction is particularly suitable for modelling domains in which there is incom-

plete knowledge. In this example, we want to learn a de�nition for the concept

father from a background knowledge containing facts about the concepts parent

and male. Knowledge about male is incomplete and we can make assumptions

about it by considering it as an abducible. We have the abductive background

theory B = hP;A; ICi and training set:

P = f parent(john;mary): male(john):

parent(david; steve): parent(kathy; ellen):

female(kathy):g
A = fmale=1; female=1g
IC = f male(X); female(X):g
E+ = ffather(john;mary); father(david; steve)g
E� = ffather(john; steve); father(kathy; ellen)g

Moreover, let the bias be

father(X;Y) � where � � fparent(X;Y); parent(Y;X);

male(X);male(Y); female(X); female(Y)g

At the �rst iteration of the specialization loop, the algorithm generates the rule

father(X;Y) :

which covers all the positive examples but also all the negative ones. Therefore

another iteration is started and the literal parent(X;Y) is added to the rule

father(X;Y) parent(X;Y):

This clause also covers all the positive examples but also the negative example

father(kathy; ellen).

Note that up to this point no abducible literal has been added to the rule,

therefore no abduction has been made and the set � is still empty. Now, an

abducible literal is added to the rule, male(X), obtaining

father(X;Y) parent(X;Y);male(X):

At this point the coverage of examples is tested. father(john;mary) is covered

abducing nothing because we have the fact male(john) in the background. The

other positive example, father(david; steve), is covered with the abduction of

fmale(david); not female(david)g.
Then the coverage of negative examples is tested by starting the abductive

derivations

 not father(john; steve).

 not father(kathy; ellen).

The �rst derivation succeeds with an empty explanation while the second suc-

ceeds abducing not male(kathy) which is consistent with the fact female(kathy)

and the constraint male(X); female(X). Now, no negative example is cov-

ered, therefore the specialization loop ends. No atom from � is added to the

training set because the predicates of abduced literals are not target. The pos-

itive examples covered by the rules are removed from the training set which

becomes empty. Therefore also the covering loop terminates and the algorithm

ends, returning the rule

father(X;Y) parent(X;Y);male(X):

and the assumptions

� = fmale(david); not female(david); not male(kathy)g.

6 Related Work

We will �rst mention our previous work in the �eld, and then related work by

other authors.

In [29] we have presented the de�nition of the extended learning problem and

a preliminary version of the algorithm for learning abductive rules.

In [30] we have proposed an algorithm for learning abductive rules obtained

modifying the extensional ILP system FOIL [37]. Extensional systems di�er

from intensional ones (as the one presented in this paper) because they employ

a di�erent notion of coverage, namely extensional coverage. We say that the

program P extensionally covers example e if there exists a clause of P , l
l1; : : : ; ln such that l = e and for all i, li 2 E+ [lhm(B). Thus examples can

be used also for the coverage of other examples. This has the advantage of

allowing the system to learn clauses independently from each other, avoiding

the need for considering di�erent orders in learning the clauses and the need for

backtracking on clause addition. However, it has also a number of disadvantages

(see [13] for a discussion about them). In [30] we have shown how the integration

of abduction and induction can solve some of the problems of extensional systems

when dealing with recursive predicates and programs with negation.

In [17] the authors discuss various approaches for the integration of abduc-

tion and induction. They examine how abduction can be related to induction

speci�cally in the case of Explanation Based Learning, Inductive Learning and

Theory Revision. The authors introduce the de�nition of a learning problem

integrating abduction (called Abductive Concept Learning) that has much in-

spired our work. Rather than considering it as the de�nition of a problem to be

solved and presenting an algorithm for it, they employ the de�nition as a general

framework where to describe speci�c cases of integration.

Our de�nition di�ers from Abductive Concept Learning on the condition

that is imposed on negative examples: in [17] the authors require that negative

examples not be abductively entailed by the theory. Our condition is weaker

because it requires that there be an explanation for not e�, which is easier to

be met than requiring that there is no explanation for e�. In fact, if there is

an explanation for not e�, this does not exclude that there is an explanation

also for e�, while if there is no explanation for e� then there is certainly an

explanation for not e�. We consider a weaker condition on negative examples

because the strong condition is di�cult to be satis�ed without learning integrity

constraints. For example, in section 5.2, the learned program also satis�es the

stronger condition of [17], because for the negative example father(kathy; ellen)

the only abductive explanation fmale(kathy)g is inconsistent with the integrity

constraint male(X); female(X). However, if that constraint was not available

in the background, the stronger condition would not be satis�able.

Moreover, in [17] the authors suggest another approach for the integration of

abduction in learning that consists in explaining the training data of a learning

problem in order to generate suitable or relevant background data on which to

base the inductive generalization. Di�erently from us, the authors allow the use

of integrity constraints for rule specialization, while we rely only on the addition

of a literal to the body of the clause. Adding integrity constraints for specializing

rules means that each atom derived by using the rules must be checked against

the constraints, which can be computationally expensive. Moreover, the results

of soundness and weak completeness can not be used anymore for the extended

proof procedure.

In [2] an integrated abductive and inductive framework is proposed in which

abductive explanations that may include general rules can be generated by incor-

porating an inductive learning method into abduction. The authors transform

a proof procedure for abduction, namely SLDNFA, into a proof procedure for

induction, called SLDNFAI. Informally, SLDNFA is modi�ed so that abduction

is replaced by induction: when a goal can not be proven, instead of adding it

to the theory as a fact, an inductive procedure is called that generates a rule

covering the goal. However, the resulting learning is not able to a learn a rule

and, at the same time, make speci�c assumptions about missing data in order

to cover examples.

The integration of induction and abduction for knowledge base updating

has been studied in [11] and [1]. Both systems proposed in these papers perform

incremental theory revision: they automaticallymodify a knowledge base when it

violates a newly supplied integrity constraint. When a constraint is violated, they

�rst extract an uncovered positive example or a covered negative example from

the constraint and then they revise the theory in order to make it consistent with

the example, using techniques from incremental concept learning. The system

in [11] di�ers from the system in [1] (called RUTH) because it relies on an

oracle for the extraction of examples from constraints, while RUTH works non

interactively. Once the example has been extracted from the constraint, both

systems call similar inductive operators in order to update the knowledge base.

In [11] the authors use the inductive operators of Shapiro's MIS system [38].

In [28], we have shown that LAP can be used to perform the knowledge

base updating tasks addressed by the systems in [11] and [1], by exploiting the

abductive proof procedure in order to extract new examples from a constraint

on target predicates. While systems in [11, 1] can generate examples that violate

other integrity constraints and new inconsistencies have to be recovered at the

next iteration of the learning loop, in [28] we are able to select the examples that

allow the minimal revision of the theory. Another relevant di�erence is that our

system is a batch learner while the systems in [11, 1] are incremental learners:

since we have all the examples available at the beginning of the learning process,

we generate only clauses that do not cover negative examples and therefore

we do not have to revise the theory to handle covered negative examples, i.e.,

to retract clauses. As regards the operators that are used in order to handle

uncovered positive examples, we are able to generate a clause that covers a

positive example by also making some assumptions, while in [11] they can cover

an example either by generating a clause or by assuming a fact for covering it,

but not the two things at the same time. RUTH, instead, is able to do this, and

therefore would be able to solve the problem presented in Section 5.2. Moreover,

RUTH considers abduced literals as new examples, therefore it would be able to

solve as well the problems in Section 5.1.

As concerns the treatment of exceptions to induced rules, it is worth men-

tioning that our treatment of exceptions by means of the addition of a non-

abnormality literal to each rule is similar to the one in [35]. The di�erence is

that the system in [35] performs declarative debugging, not learning, therefore

no rule is generated. In order to debug a logic program, in [35] the authors �rst

transform it by adding a di�erent default literal to each rule in order to cope with

inconsistency, and add a rule (with an abducible in the body) for each predicate

in order to cope with predicate incompleteness. These literals are then used as

assumptions of the correctness of the rule, to be possibly revised in the face of

a wrong solution. The debugging algorithm determines, by means of abduction,

the assumptions that led to the wrong solution, thus identifying the incorrect

rules.

In [5] the authors have shown that is not possible, in general, to preserve cor-

rect information when incrementally specializing within a classical logic frame-

work, and when learning exceptions in particular. They avoid this drawback by

using learning algorithms which employ a nonmonotonic knowledge represen-

tation. Several other authors have also addressed this problem, in the context

of Logic Programming, by allowing for exceptions to (possibly induced) rules

[16, 10]. In these frameworks, nonmonotonicity and exceptions are dealt with by

learning logic programs with negation. Our approach in the treatment of excep-

tions is very related to [16]. They rely on a language which uses a limited form

of \classical" (or, better, syntactic) negation together with a priority relation

among the sentences of the program [25]. However, in [20] it has been shown

that negation by default can be seen as a special case of abduction. Thus, in

our framework, by relying on ALP, we can achieve greater generality than [16]:

besides learning exceptions, LAP is able to learn from incomplete knowledge and

to learn theories for abductive reasoning.

In what concerns learning from incomplete information, many ILP systems

include facilities in order to handle this problem, for example FOIL [37], Progol

[34], mFOIL [19]. The approach that is followed by all these systems is funda-

mentally di�erent with respect to ours: they are all based on the use of heuristic

necessity and su�ciency stopping criteria and of special heuristic functions for

guiding the search. The heuristic stopping criteria relaxes the requirements of

consistency and completeness of the learned theory: the theory must cover (not

cover) \most" positive (negative) examples, where the exact amount of \most" is

determined heuristically. These techniques allow the systems to deal with imper-

fect data in general, including noisy data (data with random errors in training

examples and in the background knowledge) and incomplete data. In this sense,

their approach is more general than ours, because we are not able to deal with

noisy data. Their approach is equivalent to discarding some examples, consider-

ing them as noisy or insu�ciently speci�ed, while in our approach no example is

discarded, the theory must be complete and consistent (in the abductive sense)

with each example.

7 Conclusions and Future Work

We have presented the system LAP for learning abductive logic programs. We

consider an extended ILP problem in which both the background and target the-

ory are abductive theories and coverage by deduction is replaced with coverage

by abduction.

In the system, abduction is used for making assumptions about incomplete

predicates of the background knowledge in order to cover the examples. In this

way, general rules are generated together with speci�c assumptions relative to

single examples. If these assumptions regard an abnormality literal, they can be

used as examples for learning a de�nition for the class of exceptions.

LAP is obtained from the basic top-down ILP algorithm by substituting,

for the coverage testing, the Prolog proof procedure with an abductive proof

procedure. LAP has been implemented in Sicstus Prolog 3#5: the code of the

system and of the examples shown in the paper are available at

http://www-lia.deis.unibo.it/Staff/FabrizioRiguzzi/LAP.html

In the future, we will test the algorithm on real domains where there is incom-

pleteness of the data. As regards the theoretical aspects, we will investigate the

problem of extending the proposed algorithm in order to learn full abductive

theories, including integrity constraints as well. The integration of the algorithm

with other systems for learning constraints, such as Claudien [12] and ICL [14],

as proposed in [27], seems very promising in this respect.

Our approach seems also promising for learning logic programs with two

kinds of negation (e.g., default negation and explicit negation), provided that

positive and negative examples are exchanged when learning a de�nition for the

(explicit) negation of a concept, and suitable integrity constraints are added to

the learned theory so as to ensure non-contradictoriness. This is also subject for

future work.

Acknowledgment

We would like to thank the anonymous referees and participants of the post-

ILPS97 Workshop on Logic Programming and Knowledge Representation for

useful comments and insights on this work. Fabrizio Riguzzi would like to thank

Antonis Kakas for many interesting discussions on the topics of this paper they

had while he was visiting the University of Cyprus.

References

1. H. Ad�e and M. Denecker. RUTH: An ILP theory revision system. In Proceedings of

the 8th International Symposium on Methodologies for Intelligent Systems, 1994.
2. H. Ad�e and M. Denecker. AILP: Abductive inductive logic programming. In

Proceedings of the 14th International Joint Conference on Arti�cial Intelligence,

1995.
3. J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume 1111

of LNAI. SV, Heidelberg, 1996.
4. M. Bain and S. Muggleton. Non-monotonic learning. In S. Muggleton, editor,

Inductive Logic Programming, chapter 7, pages 145{161. Academic Press, 1992.
5. M. Bain and S. Muggleton. Non-monotonic learning. In S. Muggleton, editor,

Inductive Logic Programming, pages 145{161. Academic Press, 1992.
6. F. Bergadano and D. Gunetti. Learning Clauses by Tracing Derivations. In Pro-

ceedings 4th Int. Workshop on Inductive Logic Programming, 1994.
7. F. Bergadano and D. Gunetti. Inductive Logic Programming. MIT press, 1995.

8. F. Bergadano, D. Gunetti, M. Nicosia, and G. Ru�o. Learning logic programs

with negation as failure. In L. De Raedt, editor, Advances in Inductive Logic

Programming, pages 107{123. IOS Press, 1996.

9. A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logic

programming with non-monotonic reasoning. Theoretical Computer Science, 184:1{

59, 1997.

10. L. De Raedt and M. Bruynooghe. On negation and three-valued logic in interactive

concept learning. In Proceedings of the 9th European Conference on Arti�cial

Intelligence, 1990.

11. L. De Raedt and M. Bruynooghe. Belief updating from integrity constraints and

queries. Arti�cial Intelligence, 53:291{307, 1992.

12. L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Proceedings of

the 13th International Joint Conference on Arti�cial Intelligence, 1993.

13. L. De Raedt, N. Lavra�c, and S. D�zeroski. Multiple predicate learning. In S. Mug-

gleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic

Programming, pages 221{240. J. Stefan Institute, 1993.

14. L. De Raedt and W. Van Lear. Inductive constraint logic. In Proceedings of the

5th International Workshop on Algorithmic Learning Theory, 1995.

15. M. Denecker, L. De Raedt, P. Flach, and A. Kakas, editors. Proceedings of ECAI96

Workshop on Abductive and Inductive Reasoning. Catholic University of Leuven,

1996.

16. Y. Dimopoulos and A. Kakas. Learning Non-monotonic Logic Programs: Learning

Exceptions. In Proceedings of the 8th European Conference on Machine Learning,

1995.

17. Y. Dimopoulos and A. Kakas. Abduction and inductive learning. In Advances in

Inductive Logic Programming. IOS Press, 1996.

18. P.M. Dung. Negation as hypothesis: An abductive foundation for logic program-

ming. In K. Furukawa, editor, Proceedings of the 8th International Conference on

Logic Programming, pages 3{17. MIT Press, 1991.

19. S. D�zeroski. Handling noise in inductive logic programming. Master's thesis,

Faculty of Electrical Engineering and Computer Science, University of Ljubljana,

1991.

20. K. Eshghi and R.A. Kowalski. Abduction compared with Negation by Failure. In

Proceedings of the 6th International Conference on Logic Programming, 1989.

21. F. Esposito, E. Lamma, D. Malerba, P. Mello, M. Milano, F. Riguzzi, and G. Se-

meraro. Learning abductive logic programs. In Denecker et al. [15].

22. C. Hartshorne and P. Weiss, editors. Collected Papers of Charles Sanders Peirce,

1931{1958, volume 2. Harvards University Press, 1965.

23. A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive logic programming. Journal

of Logic and Computation, 2:719{770, 1993.

24. A.C. Kakas and P. Mancarella. On the relation between truth maintenance and

abduction. In Proceedings of the 2nd Paci�c Rim International Conference on

Arti�cial Intelligence, 1990.

25. A.C. Kakas, P. Mancarella, and P.M. Dung. The acceptability semantics for logic

programs. In Proceedings of the 11th International Conference on Logic Program-

ming, 1994.

26. A.C. Kakas and F. Riguzzi. Learning with abduction. Technical Report TR-96-15,

University of Cyprus, Computer Science Department, 1996.

27. A.C. Kakas and F. Riguzzi. Learning with abduction. In Proceedings of the 7th

International Workshop on Inductive Logic Programming, 1997.

28. E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating induction and abduc-

tion in logic programming. To appear on Information Sciences.

29. E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating Induction and Ab-

duction in Logic Programming. In P. P. Wang, editor, Proceedings of the Third

Joint Conference on Information Sciences, volume 2, pages 203{206, 1997.

30. E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Introducing Abduction into

(Extensional) Inductive Logic Programming Systems. In M. Lenzerini, editor,

AI*IA97, Advances in Arti�cial Intelligence, Proceedings of the 5th Congress of

the Italian Association for Arti�cial Intelligence, number 1321 in LNAI. Springer-

Verlag, 1997.

31. N. Lavra�c and S. D�zeroski. Inductive Logic Programming: Techniques and Appli-

cations. Ellis Horwood, 1994.

32. L. Martin and C. Vrain. A three-valued framework for the induction of general

logic programs. In Advances in Inductive Logic Programming. IOS Press, 1996.

33. R. Michalski, J.G. Carbonell, and T.M. Mitchell (eds). Machine Learning - An

Arti�cial Intelligence Approach. Springer-Verlag, 1984.

34. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special

issue on Inductive Logic Programming, 13(3-4):245{286, 1995.

35. L. M. Pereira, C. V. Dam�asio, and J. J. Alferes. Diagnosis and debugging as con-

tradiction removal. In L. M. Pereira and A. Nerode, editors, Proceedings of the

2nd International Workshop on Logic Programming and Non-monotonic Reason-

ing, pages 316{330. MIT Press, 1993.

36. D.L. Poole. A logical framework for default reasoning. Arti�cial Intelligence, 32,

1988.

37. J. R. Quinlan and R.M. Cameron-Jones. Induction of Logic Programs: FOIL and

Related Systems. New Generation Computing, 13:287{312, 1995.

38. E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

