
Exploiting Abduction for Learning from Incomplete
Interpretations

Evelina Lamma1 Paola Mello2 Fabrizio Riguzzi1
1Dipartimento di Ingegneria, Università di Ferrara, Via Saragat 1, 44100 Ferrara, Italy,

{elamma,friguzzi }@ing.unife.it
2DEIS,Universit̀a di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

pmello@deis.unibo.it

SOMMARIO/ABSTRACT

In this paper we describe an approach for integrating ab-
duction and induction in the ILP setting of learning from
interpretations with the aim of solving the problem of in-
complete information both in the background knowledge
and in the interpretations. The approach is inspired by the
techniques developed in the learning from entailment set-
ting for performing induction from an incomplete back-
ground knowledge. Similarly to those techniques, we
exploit an abductive proof procedure for completing the
available background knowledge and input interpretations.

The approach has been implemented in a system called
AICL that is based on the ILP system ICL. Preliminary
experiments have been performed on a toy domain where
knowledge has been gradually removed. The experiments
show that AICL has an accuracy that is superior to the one
of ICL for levels of incompleteness between 5% and 25%.

1 Introduction

The integration of abduction and induction has recently re-
ceived a lot of attention in the field of Inductive Logic Pro-
gramming (ILP) [12]. A number of ILP systems combine
abduction and induction in various ways: LAP [11], ACL
[10], Progol 5.0 [13], SOLDR [15], CF-Induction [7] and
HAIL [14].

However, all these systems are relative to the ILP setting
of learning from entailment [12]. To the best of our knowl-
edge, no attempt has been performed to integrate abduction
and induction in the setting of learning from interpretations
[4].

In this paper we propose an approach for integrating ab-
duction and induction in the latter setting. In particular,we
tackle a problem similar to the one examined in [11, 10]:
the incompleteness of available knowledge.

This is an important problem because in practice the
knowledge acquisition process is rarely perfect: the ac-
quired knowledge is very often incomplete in the sense that

some facts and rules may be missing.
In [11, 10] the authors consider a learning problem

where the background knowledge may be incomplete and
they exploit abduction in order to complete the available
knowledge. In practice, when testing the coverage of an
example by a clause, the Prolog derivation is substituted
by an abductive derivation. In this way, a positive exam-
ple may be covered by abducing some positive or negative
facts. Similarly, the system may avoid the coverage of a
negative example by abducing some positive or negative
facts.

When learning from interpretations, we can face the
same incompleteness problem. In this case, the incom-
pleteness may reside either in the background knowledge
or in the interpretations or in both. This may cause a good
clause to uncover a positive example or to cover a negative
example. To this purpose, we exploit an abductive proof
procedure in the testing of the coverage of interpretations
by a clause, in order to abduce the facts that are missing
from either the background and/or the interpretation. The
asymmetry with respect the learning from entailment set-
ting where only the background knowledge is incomplete
is due to the fact that in that setting the information regard-
ing each example is contained in the background knowl-
edge together with the general knowledge that applies to
all examples. In the learning from interpretation setting the
specific information regarding an example is stored in the
associated interpretation, while general rules are storedin
the background. So in practice both approaches complete
the same kind of knowledge.

We thus present the algorithm AICL (Abductive ICL)
that is based on ICL [5] and improves its ability of learning
from incomplete interpretations. AICL is experimentally
compared with ICL on a dataset regarding digital multi-
plexers. The comparison shows that for low incomplete-
ness levels AICL outperforms ICL.

The paper is organized as follows. In section 2 we re-
call some preliminaries. In section 3 we briefly describe
the ICL system. Section 4 presents an example that will be

used to explain AICL and will be the subject of the experi-
ments. In section 5 we illustrate the AICL system. Section
6 reports on a set of preliminaries experiments for compar-
ing the two systems. In section 7 we discuss future works
and in section 8 we conclude.

2 Preliminaries

A disjunctive clauseis a formula of the form

h1 ∨ h2 ∨ . . . ∨ hn ← b1, b2, . . . , bm

where thehi are logical atoms andbi are logical literals.
The disjunctionh1∨h2∨ . . .∨hn is called theheadof the
disjunctive clause and the conjunctionb1 ∧ b2 ∧ . . . ∧ bm

is the called thebody. Let us define the functionshead(C)
andbody(C) that, given a disjunctive clauseC, return re-
spectively the head and the body ofC. In some cases, we
will use the functionshead(C) andbody(C) to denote the
set of the atoms in the head or of the set of literals of the
body respectively. The meaning ofhead(C) andbody(C)
will be clear from the context.

A definite clauseis a clause wheren = 1 and where
all the literals in the body are positive. Afact is a definite
clause with an empty body (n = 1,m = 0). A disjunctive
clause isrange-restrictedif all variables in the head also
appear in the body.

A term (clause) isgroundif it does not contain variables.
The Herbrand universeHU (P) of a clausal theoryP is
the set of all the ground terms that can be constructed with
the constant and function symbols appearing inP . The
Herbrand baseHB(P) of a clausal theoryP is the set of
all the atoms constructed with the predicates appearing in
P and the terms ofHU (P). A Herbrand interpretationis
a subset ofHB(P). In this paper we will consider only
Herbrand interpretations and in the following we will drop
the word Herbrand.

Let us now discuss how to ascertain the truth of disjunc-
tive clauses in an interpretation. A disjunctive clauseC is
true in an interpretationI if for all grounding substitutions
θ of C: I |= body(C)θ → head(C)θ∩I 6= ∅. We also say
I is a model forC, orC makes the interpretationI true, or
evenI is a true interpretation forC. If a clauseC is not
true in an interpretationI, we say thatC is false in inter-
pretation I or thatI is not a model forC. A clausal theory
T is true in an interpretationI if and only if it every clause
of T is true inI. We also say thatI is a true interpretation
for T . Therefore, it is sufficient for a single clause fromT
to be false inI in order forT to be false inI.

As observed by [3], the truth of a range-restricted dis-
junctive clauseC in a finite interpretationI can be tested
by running the query? − body(C), not head(C) on a
database containingI, wherehead(C) is interpreted as a
disjunction (thusnot head(C) is a conjunction of nega-
tions). If the query succeeds,C is false inI. If the query
fails, C is true inI.

A Herbrand modelfor a definite clause theoryP is an
interpretation where each clause ofP is true. The intersec-
tion of a set of Herbrand models is also a Herbrand model.
The intersection of all the Herbrand models forP is the
least Herbrand model. The semantics of definite clause
theories is given in terms of the least Herbrand model. We
denote the least Herbrand model of a definite clause theory
P asM(P).

Note that if P is a definite clause theory andI is a
finite interpretation,P ∪ I is still a definite clause the-
ory. The truth of a range-restricted disjunctive clauseC

in the interpretationM(P ∪ I) where all the clauses of
P are range-restricted can be tested by running the query
?−body(C), not head(C) against the logic programP∪I.
If the query succeeds,C is false inM(P ∪ I). If the query
finitely fails, C is true inM(P ∪ I).

3 ICL

ICL solves the following learning problem:
Given

• a space of possible clausal theoriesH

• a setP of interpretations;

• a setN of interpretations;

• a definite clause background theoryB.

Find: a clausal theoryH ∈ H such that

• for all p ∈ P , M(B ∪ p) is a true interpretation for
H;

• for all n ∈ N , M(B ∪ n) is a false interpretation for
H;

Given a disjunctive clauseC (theory H) we say thatC
(H) coversthe interpretationI iff M(B ∪ I) is a true in-
terpretation forC (H). We say thatC (H) rules outan
interpretationI iff C (H) does not coverI.

ICL [5] performs a covering loop (procedure Learn, Fig-
ure 1) in which negative interpretations are progressively
ruled out and removed from the setN . At each iteration
of the loop a new clause is added to the theory. Each
clause rules out some negative interpretations. The loop
ends whenN is empty or when no clause is found.

The clause to be added in every iteration of the cover-
ing loop is returned by the procedure FindBestClause (Fig-
ure 2). It looks for a clause by using beam search with
p(⊖|C) as a heuristic function, wherep(⊖|C) is the prob-
ability that an example interpretation is negative given that
is ruled out by the clauseC. This heuristic is computed
as the number of ruled out negative interpretations over
the total number of ruled out interpretations (positive and
negative). Thus we look for clauses that cover as many
positive interpretations as possible and rule out as many
negative interpretations as possible. The search starts from

the clausefalse ← true that rules out all the negative in-
terpretations but also all the positive interpretations. The
clauses in the beam are gradually refined by adding liter-
als to the body and atoms to the head. Refining a clause
makes it cover more interpretations. The aim is to obtain
clauses that cover all (or many of) the positive interpreta-
tions while while still ruling out some negative interpreta-
tions. The best clause found during the search is returned
by FindBestClause.

The refinement process is performed according to the
language bias that is a collection of statements in an ad hoc
language that specify which refinements have to be consid-
ered. Two languages are possible for ICL: dlab and rmode
(see [1] for details).

The refinements of clauses in the beam can also be
pruned: a refinement is pruned if it can not possibly pro-
duce a value of the heuristic function higher than that of
the best clause (the best refinement that can be obtained is
a clause that covers all the positive examples and the same
negative examples as the original clause) or if it cannot be-
come statistically significant.

When a new clause is returned by FindBestClause it is
added to the current theory. The negative interpretations
that it rules out are ruled out as well by the updated theory,
so they can be removed fromN .

4 Running Example

In this section we introduce a running example that will
be used to explain the behaviour of AICL and that will
provide a dataset for comparing ICL and AICL.

Consider a two bit multiplexer: it has two input pins and
four output pins. The four output pins are numbered from
0 to 3. The behaviour of the multiplexer is the following:
given values for the input pins, the output pin whose num-
ber is represented by the input pins is at 1, while the other
output pins may assume either 0 or 1.

The aim is to learn how to distinguish a working mul-
tiplexer configuration from a faulty one. Each multiplexer
configuration is completely described by the state of the
six pins. Each pin can be at 0 or at 1. In total, we have
64 examples, 32 of which are positive (configurations of a
working multiplexer) and 32 of which are negative (con-
figurations of a faulty multiplexer).

We represent a multiplexer configuration using 12
nullary predicates, obtained by renumbering the pins from
1 to 6 (pins 1 and 2 are the input pins, pins 3, 4, 5 and 6
are the output pins). For example, the multiplexer configu-
ration described by the bit string 010110 can be described
by the following interpretation:

pin1at0. pin2at1. pin3at0.
pin4at1. pin5at1. pin6at0.

This is a positive example because output pin 4 is at 1.
A correct theory for distinguishing positive from nega-

tive configurations is the following:

pin3at1:-pin1at0,pin2at0.
pin4at1:-pin1at0,pin2at1.
pin5at1:-pin1at1,pin2at0.
pin6at1:-pin1at1,pin2at1.

For example, the first clause will rule out interpretations
wherepin1at0 andpin2at0 are true butpin3at1 is
false. In fact such interpretations would represent a faulty
multiplexer.

Incompleteness in the interpretations in this case means
that an interpretation does not contain any fact for some of
the pins.

5 Abductive ICL

We modify the way in which ICL tests for the truth
of a clause in an interpretation. Instead of using a
standard Prolog proof procedure for testing the query
body(C), not head(C), we use an abductive proof proce-
dure.

Consider a clause of the form

h1 ∨ h2 ∨ . . . ∨ hn ← b1, b2, . . . , bm

The query that is tested is thus:

b1, b2, . . . , bm, not h1, not h2, . . . , not hn

Suppose this query is tested againstB ∪ p wherep is a
positive interpretation. If the interpretation is incomplete,
it may happen that the query succeeds because one of the
head atoms is false inB ∪ p when it should in fact be true.
Supposehi is false becauseB and/orp are incomplete.
By using an abductive proof procedure, we may abduce
facts that makehi true so that the query fails and the clause
is true in the interpretation. The abduction is performed
only if the abduced atoms are consistent with the integrity
constraints.

Now consider an incomplete negative interpretationn.
The query may fail againstB ∪ n because one of body lit-
erals is false, so the clause is considered erroneously true
in the interpretation. Suppose thatbj is false inB ∪ n

because of the incompleteness ofB and/orn. Then it
could be useful to abduce facts that makebj true so that
the query succeeds and the clause is false in the interpre-
tation. Again, the abduction of facts for makingbj true
can be performed only if the facts are consistent with the
integrity constraints.

More formally, ICL is modified in two points. The first
is point (1) in function FindBestClause: in order to com-
pare the current refinement with the best clause found so
far, the refinement must be tested on the positive and nega-
tive interpretations, so that the heuristic and the likelihood
ratio can be computed. The new function for testing a
clause is represented in Figure 3.

In Figure 3 Derivation(Goal, P) implements the Pro-
log derivation of a goalGoal from a programP . It

Learn(P,N,B)
Initialize H := ∅
while best clauseC found andN is not empty

FindBestClause(P,N,B)
if best clauseC found then

(2) addC to H

remove fromN all interpretations that are false forC

returnH

Figure 1: ICL covering algorithm

FindBestClause(P,N,B)
Initialize Beam := {false← true}
Initialize BestClause := ∅
while Beam is not empty do

Initialize NewBeam := ∅
for each clauseC in Beam do

for each refinementRef of C do
(1) if Ref is better thanBestClause andRef

is statistically significant thenBestClause := Ref

if Ref is not to be pruned then
addRef to NewBeam

if size ofNewBeam > MaxBeamSize then
remove worst clause fromNewBeam

Beam := NewBeam

returnBestClause

Figure 2: ICL beam search algorithm

TestClause(P,N,B,C)
NP := 0 * number of positive interpretations covered (C is true in them)*\
P ′ := ∅ * set of covered positive interpretations *\
for each interpretationp ∈ P

find the setΘ of all the substitutionsθ such that
Derivation(body(C), p ∪B) succeeds

∆ := ∅
covered := true

while Θ is not empty andcovered

remove the first elementθ from Θ
Head := head(C)θ
covered := false

while there are literals inHead andnot covered

remove the first literalL in Head

if AbductiveDerivation(L, p ∪B,∆) succeeds returning∆′ then
covered := true

∆ := ∆′

if covered then
NP := NP + 1
P ′ := P ′ ∪ {(p,∆)}

NN := 0 * number of negative interpretations not covered (C is false in them) *\
N ′ := ∅ * set of non covered negative intepretations *\
for each interpretationn ∈ N

find the setE of all the couples(θ,∆) such that
AbductiveDerivation(body(C), n ∪B, ∅) succeeds
returningθ as a substitution forBody and∆
as the set of abduced literals

covered := true

while E is not empty andcovered

remove the first element(θ,∆) from E

Head := head(C)θ
add the facts of∆ to n

call Derivation((not Head), n ∪B)
remove the facts of∆ from n

if the derivation succeeds then
covered := false

∆′ = ∆
if not covered then

NN := NN + 1
N ′ := N ′ ∪ {(n,∆′)}

return(NP,P ′, NN,N ′)

Figure 3: AICL test function

may succeed or fail, if it succeeds it returns a substitution
θ for Goal. AbductiveDerivation(Goal, P,∆in) imple-
ments the abductive derivation defined in [8]. It may suc-
ceed or fail, if it succeeds returns a substitutionθ for Goal

and a set of abduced literals∆out such that∆out ⊇ ∆in.
In order to explain the behaviour of TestClause, consider

the following example in which we want to test the clause
C:

pin3at1 :- pin1at0,pin2at0.

over the incomplete positive interpretationp

pin1at0. pin2at0.
pin4at1. pin5at1. pin6at0.

In this case the background knowledgeB does not con-
tain any clause. However, it contains some integrity con-
straints, that are used by the abductive proof procedure: it
contains the constraints that state that a pin can not be at the
same time 0 and 1. One of these constraints is for example

:- pin3at0,pin3at1.

We first find the substitutions with whichbody(C) is
true inp∪B. There is only one such substitution, the empty
one. ThusΘ = {∅}. covered is set to true and the middle
cycle is entered.Head is set topin3at1 andcovered

to false. Then the inner cycle is entered and an abductive
derivation is started for the goalpin3at1 from the theory
p ∪ B. Remember that the theoryB contains the integrity
constraints. The abductive proof procedure tries to ab-
ducepin3at1 and succeeds because it is consistent with
the integrity constraint:- pin3at0,pin3at1 since
pin3at0 is not true inp ∪B.

Thuscovered is set to true and∆ to {pin3at1 }. The
inner cycle terminates and the middle cycle is terminated
as well since there are no more substitutions to consider.

The value ofcovered at the end of the middle cycle in-
dicates that the example is covered.

Let us now consider the test of the same clauseC over
the negative interpretationn represented by

pin1at0. pin3at0.
pin4at1. pin5at1. pin6at0.

In this case, an abductive derivation is started for the goal
pin1at0,pin2at0 . The derivation succeeds return-
ing the empty substitution and∆ = {pin2at0 }. Thus
E = {(∅, {pin2at0 })}. covered is set to true. Then
the inner cycle is entered.Head is set topin3at1 .
The fact contained in∆ is added ton and a derivation
for not pin3at1 is started. The derivation succeeds,
covered is set to false, the facts from∆ are removed from
n, the inner cycle is terminated and the interpretation is not
covered.

The second point in which ICL is modified is (2) in func-
tion Learn. The function FindBestClause not only returns
the best clause found so far but it also returns the liter-
als abduced for each interpretation during the test of the

clause. The modified function Learn, besides adding the
best clauseC to the current theoryH in point (2), also adds
to each interpretation the facts abduced during the cover-
age test of the clause on that interpretation.

AICL has been implemented in Sicstus Prolog. In or-
der to execute the function Derivation and AbductiveD-
erivation on a program containing an interpretation and the
background knowledge, the Sicstus Prolog module system
has been used: each interpretation is loaded in a different
module and the clauses of the background are asserted in
all the modules.

In function TestClause the addition of the facts from∆
to the current interpretation is performed by asserting the
facts in the corresponding module. Similarly, the removal
of the facts is performed by using the retract predicate.

6 Experiments

ICL and AICL were applied on the multiplexer dataset,
containing 32 positive interpretations and 32 negative in-
terpretations. A ten-fold cross-validation was performed.
In order to test the performances of the two systems in the
case of missing data, for each fold, facts from the interpre-
tations were randomly chosen and removed. In particular,
for each fold, different percentages of facts were removed
from the training set: from 5% to 85% in steps of 5%. In
this way we have obtained 18 training sets for each fold:
one with the complete data and the other 17 with increas-
ing missing information, from 5% to 85%. ICL and AICL
were trained on the various training sets, the learned theo-
ries were tested on the testing set (from which no informa-
tion was removed) and the accuracy was computed. The
testing was performed by employing a Prolog derivation,
i.e., abductive derivation was not used in testing. The accu-
racy is given by the number of covered positive examples
plus the number of non covered negative examples over the
total number of examples.

When learning with ICL, the background knowledge
was empty. When learning with AICL the background
knowledge contained an abductive theory(T,A, IC)
whereT is empty,A contains all the 12 predicates used
for describing the configurations andIC contains integrity
constraints that state that a pin can not be at the same time
0 and 1.

The learning parameters for ICL were all left to their
default values except the significance level which was set
to 0, meaning that no significance test was performed. The
same values have been used for AICL.

The accuracy on the testing set for each level of incom-
pleteness has then been averaged over the ten folds. Figure
4 shows the value of the average accuracy as a function of
the incompleteness level. As can be seen from the graph
AICL outperforms ICL for the incompleteness levels 5%
and 10%, it is only slightly superior for 15%, it outper-
forms ICL for 20% and 25%, is beated by ICL for 30% and
35%. For higher incompleteness levels the performances

Figure 4: Accuracy as a function of the incompleteness level.

are very similar. This shows that, for low incompleteness
levels, the abductions performed by AICL are frequently
correct and allow AICL to reach a high accuracy. This
means that AICL succeeds in exploiting as much as pos-
sible the available knowledge. Note also that AICL has
a much more graceful degradation of performances, while
ICL shows a more irregular behavior, with spikes for 15%,
35% and 55%,

7 Future Works

The present work can be extended and improved in a num-
ber of ways. One line of future work regards the possibility
of having multiple set of abduced literals: when testing a
clause, the abductive derivations may succeed with more
than one set of abduced literals. At the moment we simply
pick the first set that is returned. However, since the set is
added to the interpretation when a clause is added to the
theory, the set influences the coverage of future clauses.
Thus the choice of a “wrong” set of abduced literals may
hinder the further addition of good rules to the theory.
This could be resolved if we allow backtracking to be per-
formed: when an abductive derivation can succeed in more
than one way, we should leave a choice point open. In the
case that, later, a best clause can not be found, we could
backtrack over the open choice points. This of course can
be computationally quite demanding, therefore trade-offs
should be adopted.

Another line of future work is suggested by the fact that
incomplete interpretations could be better represented by
three-valued interpretations: in them an atom can be true,

false or undefined. In practice a three-valued interpretation
is a consistent set of literals. In order to exploit abduction
in this case, we can use the fact that negation by default
can be expressed abductively by having an abducible of
the formnot a for every atoma and by having constraints
of the form← a, not a. Negative information can be rep-
resented in interpretations by including in them facts of the
form not a.

Moreover, more experiments on larger domains need to
be done in order to draw more general conclusions. In par-
ticular, we plan to apply AICL to the problem of learning
the specification of protocols of interaction among agents
from traces of their execution. In fact, these traces are very
often incomplete due to the impossibility of recording ev-
ery message exchanged between any two agents.

In the future we would also like to investigate the adop-
tion of other abductive proof procedures, as for example
the IFF [6], the SCIFF [2] or theA-system [9], for com-
pleting the interpretations. These proof procedures are in-
teresting because they provide a better handling of non
ground abducibles.

8 Conclusions

We have proposed the algorithm AICL that modifies ICL in
order to achieve a better performance on incomplete data.
The modification is based on the use of an abductive proof
procedure for testing the truth of clauses in the example
interpretations.

AICL has been tested against ICL on the problem of dis-
tinguishing working multiplexers from faulty ones. Differ-

ent levels of incompleteness of the data have been consid-
ered, from 5% to 85%. For the levels of incompleteness
from 5% to 25% AICL reached a higher accuracy. More-
over AICL showed a more graceful degradation of perfor-
mances.

9 Acknowledgments

This work was partially funded by the Ministero
dell’Istruzione, della Ricerca e dell’Università under the
PRIN project 2005011293 “Specification and verification
of agent interaction protocols”.

The authors would also like to thank Dino Coltelli for
his help in performing the experiments.

REFERENCES

[1] ICL manual. http://www.cs.kuleuven.be/
˜ml/ACE/Doc/ACEuser.pdf

[2] Marco Alberti, Marco Gavanelli, Evelina Lamma,
Paola Mello, and Paolo Torroni. Abduction with
hypothesis confirmation. In G. Rossi, editor,Pro-
ceedings of the Convegno Italiano di Logica Com-
putazionale (CILC-2004). University of Parma, June
2004.

[3] L. De Raedt and L. Dehaspe. Clausal discovery.Ma-
chine Learning, 26(2–3):99–146, 1997.

[4] L. De Raedt and S. Ďzeroski. First orderjk-clausal
theories are PAC-learnable.Artificial Intelligence,
70:375–392, 1994.

[5] L. De Raedt and W. Van Laer. Inductive constraint
logic. In Proceedings of the 6th Conference on
Algorithmic Learning Theory, volume 997 ofLec-
ture Notes in Artificial Intelligence. Springer-Verlag,
1995.

[6] T. H. Fung and R. A. Kowalski. The IFF proof pro-
cedure for abductive logic programming.Journal
of Logic Programming, 33(2):151–165, November
1997.

[7] K. Inoue. Induction, abduction, and consequence-
finding. In Ćeline Rouveirol and Mich̀ele Sebag, ed-
itors, Proceedings of the 11th International Confer-
ence on Inductive Logic Programming, volume 2157
of Lecture Notes in Artificial Intelligence, pages 65–
79. Springer-Verlag, September 2001.

[8] A. C. Kakas and P. Mancarella. On the relation be-
tween truth maintenance and abduction. InProceed-
ings of the 2nd Pacific Rim International Conference
on Artificial Intelligence, 1990.

[9] A. C. Kakas, B. van Nuffelen, and M. Denecker.
A-System: Problem solving through abduction. In
B. Nebel, editor,Proceedings of the Seventeenth
International Joint Conference on Artificial Intelli-
gence, Seattle, Washington, USA (IJCAI-01), pages
591–596, Seattle, Washington, USA, August 2001.
Morgan Kaufmann Publishers.

[10] Antonis C. Kakas and Fabrizio Riguzzi. Abductive
concept learning.New Generation Computing, 18(3),
May 2000.

[11] Evelina Lamma, Paola Mello, Michela Milano, and
Fabrizio Riguzzi. Integrating induction and abduc-
tion in logic programming. Information Sciences,
116(1):25–54, May 1999.

[12] S. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods.Journal of Logic
Programming, 19/20:629–679, 1994.

[13] Stephen Muggleton and Christopher Bryant. Theory
completion using inverse entailment. In J. Cussens
and A. Frisch, editors,Proceedings of the 10th In-
ternational Conference on Inductive Logic Program-
ming, volume 1866 ofLecture Notes in Artificial In-
telligence, pages 130–146. Springer-Verlag, 2000.

[14] O. Ray, K. Broda, and A. Russo. Hybrid abductive
inductive learning: a generalisation of Progol. In
T. Horváth and A. Yamamoto, editors,Proceedings of
the 13th International Conference on Inductive Logic
Programming, volume 2835 ofLecture Notes in Ar-
tificial Intelligence, pages 311–328. Springer-Verlag,
2003.

[15] A. Yamamoto. Using abduction for induction based
on bottom generalization. In P. A. Flach and A. C.
Kakas, editors,Abductive and Inductive Reasoning,
Essays on their Relation and Integration, volume 18
of Pure and Applied Logic. Kluwer, 2000.

