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Abstract

We propose a multi-strategy genetic algorithm for performing belief revision. The algorithm implements a new
evolutionary strategy which is a combination of the theories of Darwin and Lamarck. Therefore, the algorithm
not only includes the Darwinian operators of selection, mutation and crossover but also a Lamarckian operator
that changes the individuals so that they perform better in solving the given problem. This is achieved through
belief revision directed mutations, oriented by tracing logical derivations.

The algorithm, with and without the Lamarckian operator, is tested on a number of belief revision problems,
and the results show that the addition of the Lamarckian operator improves the efficiency of the algorithm.

We believe that the combination of Darwinian and Lamarckian operators will be useful not only for standard
belief revision problems but especially for problems where the chromosomes may be exposed to different constraints
and observations. In these cases, the Lamarckian and Darwinian operators would play a different role: the
Lamarckian one would be used in order to bring a chromosome closer to a solution or to find an exact solution
of the current belief revision problem, while Darwinian ones will have the aim of preparing chromosomes to deal

with new situations by exchanging genes among them.

1 Introduction

We consider a belief revision problem that consists in removing contradiction from an extended logic program
[16, 2, 3] by changing the truth value of a set of literals called revisables. The program contains as well clauses
with false (L) in the head representing integrity constraints. Any model of the program must make the body
of integrity constraints false for the program to be non-contradictory. Contradiction may arise as well in the
extended logic program because both a literal L and its opposite =L are derivable in the theory. Such a problem
has been widely studied in the literature and various solutions have been proposed [4, 9] that are based on logic
proof procedures.

In this paper, we use evolutionary computation in order to solve the problem of belief revision. Such a



problem can be modeled by means of a genetic algorithm by assigning to each revisable of the theory a gene in
the chromosome. In the case of a two valued revision, the gene will have the value 1 if the corresponding revisable
is true and the value 0 if the revisable is false. The fitness function that is used in this case is represented by the
percentage of integrity constraints that are satisfied by a chromosome.

History of science has seen two evolution theories compete: Darwin’s theory and Lamarck’s theory. Darwin’s
theory is based on the concept of natural selection: only the individuals that are better for their environment
survive, and are able to generate new individuals by means of reproduction. Moreover, during their life the
individuals may be subject to random mutations of their genes that they can transmit to their offspring. Lamarck’s
theory, instead, states that evolution is due to the process of adaptation to the environment that an individual
performs in his/her life. The abilities learned during the life of an individual modify his/her genes and are therefore
transmitted to their offspring.

Experimental evidence in the biological kingdom has shown Darwin’s theory to be correct and Lamarck’s to be
wrong, even if the more recently evolved concept of “meme” supports Lamarckian evolution (cf. [5]). However, in
the field of genetic computation, Lamarckian evolution has proven to be a powerful concept and various authors
have investigated the combination of Darwinian and Lamarckian evolution [12, 1, 14, 11].

In this paper, we propose a genetic algorithm for solving the problem of belief revision that includes, besides
Darwin’s operators of selection, mutation and crossover [15], a Lamarckian operator as well. This operator
consists in modifying a chromosome (i.e., a set of revisables) so that it satisfies a higher number of constraints.
This is achieved through belief revision directed mutations, oriented by tracing logical derivations. We then show,
experimentally, that the resulting algorithm performs better than the same algorithm does without Lamarck’s
operator.

We believe the combination of Darwinian and Lamarckian operators will be useful not only for standard belief
revision problems but especially for problems where the chromosomes may be exposed to different constraints
and observations. For example, this may happen if an agent gathers information incrementally and has imperfect
memory: in this case new data may arrive over time and old data may disappear. Or, alternatively, the available
data may change because the external world is changing. Moreover, different agents may explore different parts of
the world where constraints and observations are different. In this case, the Darwinian and Lamarckian operators
may play different roles. Lamarckian operators may be used in order to get closer to solution of the belief revision
problem given a fixed problem definition. Darwinian operators, instead, may be used in order to exchange genetic
material among chromosomes of different agents so that they may be prepared in advance to new situations. For
example, chromosomes exposed to constraints that disappeared may provide genes to new chromosomes that will
become useful if the constraints reappear. Moreover, chromosomes belonging to an agent exploring a certain part
of the world contain information that is useful for agents that will explore that part in the future.

In these cases, we could consider as well Lamarckian operators that not only bring a chromosome closer to a
solution but actually find an exact solution of the belief revision problem: when a new constraint is presented to
an agent, it first applies a Lamarckian operator to find a chromosome satisfying the new constraint and then it
applies a Darwinian operator to distribute the “knowledge” so acquired to other chromosomes in the same agent
or other agents. In this way chromosomes may be prepared in advance for meeting new constraints.

It is not our purpose to propose here a competitor to extant classical belief revision methods [4, 9], in particular
as they apply to diagnosis. More ambitiously, we do propose a new approach for allowing belief revision —

any assumption based belief revision — to deal with time/space distributed, and possibly intermittent or noisy



observations about an albeit varying artifact or environment, by a multiplicity of agents which exchange genetically
encoded diversified experience. About which more in the final section.

At the same time, we are employing belief revision, and accepted logic programming techniques, simply to
illustrate an approach. The latter can be generally applied to accomplished Lamarckian learning, in settings
where the trace of logical derivations can be used in order to backpropagate constraint violations into gene coded
assumptions.

The paper is organized as follows. We first review some logic programming fundamentals and give a definition
of a belief revision problem in section 2. Then, we describe the algorithm together with the Lamarckian operator
in section 3. The results of experiments with the algorithm are shown in section 4. We examine related works in

section 5, and we conclude in section 6.

2 Logic Programming Basis

In this section we first provide some logic programming fundamentals, and then we give a definition of the belief

revision problem adapted from [19].

2.1 Language

Given a first order language Lang, an extended logic program [16, 2, 3] is a set of rules and integrity constraints
of the form

H <« Bi,...,Bp,not Ci1,...,not Cp, (m > 0,n>0)

where H,By,...,By,C1,...,Cy are objective literals, and in integrity constraints H is L (contradiction). An
objective literal is either an atom A or its explicit negation A, where =—=A = A. not L is called a default or
negative literal. Literals are either objective or default ones. The default complement of objective literal L is
not L, and of default literal not L is L. A rule stands for all its ground instances with respect to Lang. The
notation H <« B is also used to represent a rule, where set B contains the literals in its body. For every pair of
objective literals {L, ~L} in Lang, we implicitly assume the constraint L < L, L.

The set of all objective literals of a program P is called its extended Herbrand base and is represented as
HP(P). An interpretation I of an extended program P is denoted by T U not F, where T and F are disjoint
subsets of HZ(P). Objective literals in T are said to be true in I, objective literals in F are said to be false in
I and those in H?(P) — I are said to be undefined in I. We introduce in the language the proposition u that is
undefined in every interpretation I.

For Extended Logic Programs we consider the Extended Well Founded Semantics (WFSX) that extends the
well founded semantics (WFS) [20] for normal logic programs to the case of extended logic programs. WFSX
is obtained from WFS by adding the Coherence Principle (CP) relating the two forms of negation: “if L is an
objective literal and —L belongs to the model of a program, then also not L belongs to the model”, i.e., =L — not L.
See [2, 10] for a definition of WFSX.

We say that a set of literals S is contradictory iff L € S.



2.2 Revising Contradictory Extended Logic Programs

Extended logic programs are liable to be contradictory because of integrity constraints, either those that are
user-defined or those of the form | <— L, —~L that are implicitly assumed. Let us see an example of a contradictory

program.

Example 2.1 Consider P = {a; L < a,not b}'. Since we have no rules for b, by the Closed World Assumption
CWA, it is natural to accept not b as true. However, because of the integrity constraint, we can conclude L and

thus have contradiction.

It is arguable that the CWA may not be held of atom b since it leads to contradiction. Revising such CWA
is the basis of the contradiction removal method of [19]. In order to select a particular contradiction removal

process, three questions must be answered:

1. For which literals is the revision of their truth-value allowed ?
2. To what truth values do we change the revisable literals ?
3. How to choose among possible revisions ?

In section 2.4, two different contradiction removal processes are presented. They both use the same cri-
teria to answer 1 and 3, but differ on the second one. The first way of removing contradiction in example
2.1 gives {a, not —a,not —b} as the intended meaning of P, where b is revised to undefined. The second gives

{a, b, not ~a, not —b}, by revising b to true.

2.3 Contradictory Well Founded Model

To revise contradictions, we need to identify the contradictory sets of consequences implied by the applications
of CWA. The main idea is to compute all consequences of the program, even if contradiction is found at some
step. Furthermore, the Coherence Principle is enforced at each step. The following example provides an intuitive

preview of what we intend:
Example 2.2 Consider program P:
a<notb. (i) —a¢mnotc. (ii) d¢a (ili) e<+—a. (iv)

not b and not ¢ hold since there are no rules for either b or c.

—a and a hold from 1 and rules (i) and (ii).

1 holds from 2 and implicit constraint < a, —a.

not a and not —a hold from 2 and inference rule (CP).

d and e hold from 2 and rules (iii) and (iv).

not d and not e hold from 4, the CWA and rules (iii) and (iv), as they are the only rules for d and e.
not ~d and not —e hold from 5 and inference rule (C'P).

NS ok W

The whole set of consequences is
{1, —a,a,not a,not ~a, not b, not ¢, d, not d, not ~d, e, not e, not —e}

There exists a paraconsistent version of WFSX, called WFSXp [7, 8], that allows models to contain the atom
1.

11 « a,—a and L < b,—b are implicitly assumed.



2.4 Contradiction Removal Sets

To revise contradiction, the first issue to consider is which default literals true by CWA are allowed to change
their truth values. We simplify the approach of [18] along the lines of [17] taking as candidates for change default
literals true by CWA in the WFSXp model. By making this simplification we can give a syntactic condition for

electing the revisable literals, in contradistinction to the semantic one of [18].

Definition 2.1 (Revisables) The revisables of a program P are all the default literals not L having no rules for

L in P, and so true by CW A. The set of all revisables is called Rev(P).

Thus, all the objective literals that do not appear in rule heads but only in rule bodies, either in a positive or
default form, are revisable. By the CWA, every revisable R = not A is true, i.e., A is false. Now we identify the
revisables that have to be revised to false or undefined in order to restore consistency. These are the ones that

support contradiction. Intuitively, a support of a literal consists of the literals in nodes of a derivation for it:
Definition 2.2 (Support set of a literal) A support set of a literal L of the WESXp model Mp of a program
P, denoted by SS(L), is obtained as follows:
1. If L is an objective literal in Mp then for each rule L <— B in P, such that B C Mp there is one SS(L) for
each B; € B. If B is empty then SS(L) = {}.
2. If L is a default literal not A € Mp:
(a) if no rules exist for A in P (i.e., L is a revisable) then a support set of L is {not A}.

(b) if rules for A exist in P that have a non-empty body, then choose from each such rule a single literal
such that its default complement belongs to Mp. There exists one SS for not A for every SS of each

default complement of the chosen literals.
(c) if =A belongs to Mp then there exist, additionally, support sets SS of not A equal to each SS(—A).
Example 2.3 The WFSXp model Mp of:

—p<not c. p<t. b<—c, a. —b<—not e. a.

p<a,not b. b<d.

is {a, not —a, not b, =b, not ¢, not —c, not d, not —d, not e, not —e, not t, not —t, p, =p, not p, not —p, L}. The revisables

are {not ¢, not d,not e}. There are two support sets for not b:

SS1(not b) =5S(not ¢) U SS(not d) by rule 2b
SS1(not b) ={not c} U {not d} ={not c,not d} by rule 2a

Notice that the other possibility of choosing literals for SS(not b), i.e. SSi(notb) = SS(not a) U SS(not d), can’t

be considered because not a doesn’t belong to Mp. The other support set for not b is obtained using rule 2c:

SS2(not b) = SS(—b) by rule 2¢
S5S2(not b) = SS(note) by rulel
583 (not b) = {not e} by rule 2a

Now the support sets for the objective literal p are easily computed:

SS(p)=5S(a)USS(notd) by rule 1
SS(p)={}USS(notb) by rule 1 (the only rule for a is fact a)



So SSi(p) = SSi(notd) = {notc,not d} and SSz(p) = SS2(notb) = {note}. -p has the unique support
set {not c}. Consequently, because contradiction is obtained only via L < p,—p, SSi1(L) = {not c,not d} and
S5S2(L) = {not e, not c}.

Proposition 2.1 (Existence of support sets) Ewvery literal L belonging to the WFSXp model of a program P
has at least one support set SS(L).

We define a spectrum of possible revisions using the notion of hitting set:

Definition 2.3 (Hitting set) A hitting set of a collection C of sets is formed by the union of one non-empty
subset from each S € C. A hitting set is minimal iff no proper subset is a hitting set. If {} € C, C has no hitting

sets.

Definition 2.4 (Removal set) A removal set of a literal L of a program P is a hitting set of all support sets
SS(L).

We can revise contradictory programs by changing the truth value of all the literals of a removal set of L. The
truth value can be changed either to undefined or false. It can be changed to undefined by adding, for each literal
not L in the removal set, the inhibition rule L < not L to P, while it can be changed to false by adding L to P.
In case the literals are revised to undefined, then the contradiction is removed and no new contradiction can arise.
In case they are revised to false, a new contradiction may arise and therefore the contradiction removal process
must be iterated. This defines the possible revisions of a contradictory program.

We answer the third question by preferring to revise minimal sets of revisables:

Definition 2.5 (Contradiction removal set) A contradiction removal set (CRS) of P is a minimal removal

set of L.

Example 2.3 (cont.) The assumption support sets of L are {not ¢, not d} and {not ¢, not e}. The removal sets

are (RS: and RSy being minimal):

RS, = {not ¢} RSy = {not d,not e}
RS> = {not ¢,not e} RS5 = {not ¢, not d, not e}
RS3 = {not ¢, not d}

A program is not revisable if L has a support set without revisable literals.
Definition 2.6 (Revisable program) A program is revisable iff it has a contradiction removal set.

The CRS's are minimal hitting sets of the collection of assumptions sets of L. In [19] an algorithm for solving
this problem is presented.

In this paper, we consider a simplified belief revision problem where the program does not contain explicit
negation and the only default literals that are allowed are revisables, i.e., default literals of predicates that have no
definition. In this case, the WFSXp model of the program is two valued, i.e., it assigns to every literal the truth
value true or false. Therefore, we change the truth value of revisables from true to false but not to undefined. In

the future, we will consider three-valued revisions of full extended logic programs.



3 A genetic algorithm for belief revision

The algorithm we propose extends the standard genetic algorithm (described for example in [15]) by adding a
Lamarckian operator called Learn. This operator modifies a fraction of the chromosomes of the population in

order to improve their fitness. The resulting algorithm? is given as follows:

GA(Fitness, mazx_gen,p,r,m,l)

input :
Fitness : a function that assigns an evaluation score, given a hypothesis
maz_gen : the maximum number of generations before termination
p: number of individuals in the population
r: the fraction of population to be replaced by Crossover at each step
m: the fraction of population to be mutated
l: the fraction of population that should evolve Lamarckianly

output :
hmaz : the hypothesis with the highest fitness

Initialize population: P < generate p hypotheses at random
Evaluate: for each h in P, compute Fitness(h)
gen <0
While gen < max_gen
Create a new population P;:
Select: Probabilistically select (1 — r)p members of P to add to Ps.
The probability Pr(h;) of selecting hypothesis h; from P is given by

N Fitness(h;)
P'f‘(hz) - Ej?:lFitness(hj)

Crossover: Probabilistically select rp/2 pairs of hypotheses from P,
according to Pr(h;) given above.
For each pair (h1, ha), produce two offspring by applying
the Crossover operator. Add all offspring to Ps

Mutate: Choose m percent of the members of Ps with uniform
probability. For each, invert one randomly selected bit
in its representation

Learn: Choose Ip hypotheses from P; with uniform probability
and substitute each of them with the modified hypotheses
returned by the procedure Learn

Update: P+ P

Return the hypothesis hpqq from P with the highest fitness

In belief revision, each individual hypothesis is described by the truth value of all the revisables. Since we consider
two valued models, each hypothesis gives the truth value true or false to every revisable and therefore it can be
considered as a set containing one literal, either objective or default, for every revisable. A chromosome is obtained

by associating a bit to each revisable that has value 1 if the revisable must be true and 0 if it must be false.

2The algorithm has been implemented in Sicstus Prolog 3#5.



The fitness function that has been used takes the following form:

Fitness(h;) = L fi

" Thi] x 0.5

where n; is the number of integrity constraints satisfied by hypothesis h;, n is the total number of integrity
constraints, f; is the number of revisables in h; that are false, and |h;| is the total number of revisables. In this
way, the fitness function takes into account both the fraction of constraints that are satisfied and the number of
revisables whose truth value must be changed to true, preferring hypotheses with a lower number of these, that
is minimal revisions are encouraged. The factor 0.5 was chosen in order to give more importance to the accuracy,
rather than to the number of unchanged revisables.

The Lamarckian operator Learn changes the values of the revisables in a chromosome C so that a bigger
number of constraints is satisfied, thus bringing C closer to a solution. Learn differs from a normal belief revision
operator because it does not assume that all revisables are true by CWA before the revision but it starts from the
truth values that are given by the chromosome C. Therefore, it has to revise some revisables from true to false
and others from false to true. As a consequence, the support set does not contain only default literals but also
objective literals whose default complement is a revisable.

Learn works in the following way: given a chromosome C, it finds all the support sets for L such that they
contain literals in C. Therefore, it does not find all support sets for L but only those that are subsets of C.

The definition of support set that is used by the Lamarckian operator is therefore different from definition 2.2

and is given as follows:
Definition 3.1 (Lamarckian support set of a literal) A support set of a literal L of the WFSXp model Mp
of a program P according to a given set of literals H is denoted by SS(L, H) and is obtained as follows:
1. If L is an objective literal in Mp then for each rule L < B in P, such that B C Mp there is one SS(L, H)
for each B; € B. If B is empty then SS(L,H) = {}.
2. If L is an objective literal in Mp for which there are no rules L <~ B in P and L is the default complement
of a revisable, then
(a) if L belongs to H, then a support set of L is {L}.
(b) if the default complement of L belongs to H, then there is no support set for L.
3. If L is a default literal not A € Mp:
(a) if no rules exist for A in P (i.e., L is a revisable) then:
i. if L belongs to H, then a support set of L is {not A}.
1. if A belongs to H, then there is no support set for L.
(b) if rules for A exist in P that have a non-empty body, then choose from each such rule a single literal
such that its default complement belongs to Mp. There exists one SS for not A for every SS of each
default complement of the chosen literals.

(c¢) if 7 A belongs to Mp then there exist, additionally, support sets SS of not A equal to each SS(—A).

Since the Lamarckian support sets for L represent only a subset of all the support sets for L, a hitting set
generated from them is not necessarily a contradiction removal set and therefore it does not represent a solution
to the belief revision problem. However, it eliminates some of the derivation paths to L and, therefore, may
increase the number of satisfied constraints, thus improving the fitness, as required by the notion of Lamarckian

operator.



The following algorithm implements the Lamarckian operator. For simplicity, we present a restricted version of
the algorithm that deals with programs that contain neither explicitly negated literals nor the default negation of
non revisable literals. This restricted version will however be sufficient for dealing with the experiments presented

in section 4.

procedure Learn(C,C")
input :
a chromosome C translated into a set of revisables
output :

a revised chromosome C'

Find the support sets for L: Support_sets([L],C,{},{},SS)
Find a hitting set HS: Hitting_set(SS, HS)
Change the value of the literals in the chromosome C

that appear as well in HS obtaining C’

procedure Support_sets(GL,C, S, SSin, SSout):

input :
a list of goals GL
a chromosome C translated into a set of revisables
the current support set S
the current set of support sets SSin

output :
a set SSout containing the support sets

for the first goal in the list

If GL is empty, then return SSout = SSin
Consider the first literal L of the first goal G of GL
(GL = [[L|RG]|RGL] using Prolog notation for lists)
(1) if G is empty then add the current support set to SSin and call
recursively the algorithm on the rest of GL
Support_sets(RGL,C,{}, SSin U {S}, SSout)
(2) if L is a revisable or is the default complement of a revisable and is in C, then add it to S and call the
algorithm recursively on the rest of G
Support_sets([RG|RGL],C,S U{L}, SSin, SSout)
(3) if L is a revisable or is the default complement of a revisable and it is not in C, or its opposite is in C, then
discard S and call the algorithm recursively on the rest of GL
Support_sets(RGL,C,{}, SSin, SSout)
(4) if L is not a revisable nor the default complement of a revisable then reduce it with all the rules obtaining
the new goals G4, ..., Gy, one for each matching rule,
add the goals to GL and call the algorithm recursively
Support_sets([[G1|RG], ..., [Gn|RG]|RGL], C, S, SSin, SSout)



(5) if L is not a revisable nor the default complement of a revisable and there are no rules for it, then
discard S and call the algorithm recursively on the rest of GL
Support_sets(RGL,C,{}, SSin, SSout)

procedure hitting-set(SS, HS):
input :
a set of support sets SS
output :
a hitting set HS

pick a literal from every support set in S§
and add it to HS if it does not lead to contradiction
(i.e. the literal must not be already present in its complemented form).

If it leads to contradiction pick another literal.

Thus the Lamarckian operator differs both from a full belief revision operator and from a purely Darwinian
operator. It differs from a full belief revision operator because it does not directly find a solution of the given
belief revision problem but rather finds a hypothesis that is closer to a solution than the starting one. It differs
from a purely Darwinian operator because it does not change the current hypothesis blindly but changes it in
order to improve its fitness. In the next section, after having introduced the application of belief revision to digital
circuit diagnosis, the difference between a full belief revision operator and the Lamarckian operator will be further

explained by means of an example.

4 Experiments

The system has been tested on a number of belief revision problems in order to show the effectiveness of the
Lamarckian operator. In particular, we have considered problems of digital circuit diagnosis, as it is done in

[9]. Figure 1 shows a sample circuit. In problems of digital circuit diagnosis, we have a difference between the

obs
l obs
0 gl ———— 1 l
1
gl0
o 93 4|: g22 0
1
0 g6 gll
] 0
1 g2 gle
L -
1 923 O 1
gl9
0 g7

Figure 1: c17 benchmark circuit from ISCAS85 [6].

observed and the predicted outputs. Figure 1 shows the observed inputs and outputs of the circuit together with

10



the predicted outputs of each gate. The aim of the diagnosis is to find which components are faulty.

A problem of digital circuit diagnosis can be modelled as a belief revision problem by describing it with a
logic program consisting of four groups of clauses: one that allows to compute the predicted output of each
component, one that describes the topology of the circuit, one that describes the observed inputs and outputs,
and one that consists of integrity constraints stating that the predicted value for an output of the system can not
be different from the observed value. The representation formalism we use is the one of [9]. As regards the clauses

for computing the predicted output of a gate, let us consider the case of a two-input NAND:

val( out(nand2,Name), V ) :-
not ab(Name),
val( in(nand2,Name,1), W1),
val( in(nand2,Name,2), W2),
nand2_table(W1,W2,V).

val( out(nand2,Name), V ) :-
ab(Name) ,
val( in(nand2,Name,1), Wi1),
val( in(nand2,Name,2), W2),
and2_table(W1,W2,V).

In these clauses Name is the name of the component and the definition of nand2_table, and2_table consist of
facts describing the input/output relation of, respectively, a two-input NAND gate and a two-input AND gate.
ab(Name) is a revisable that can be assumed true or false. If it is assumed true, it expresses a faulty behaviour of
a component of the circuit, described in this case by the second clause above. If it is assumed false, it expresses
a correct behaviour of a component of the circuit, being described by the first clause above.

The topology of the circuit is described by a set of facts for the predicate conn/2. For example, consider the
fact conn(in(nand2, g10, 1), out(inptO, gl1)) describing a part of the circuit shown in figure 1. This fact
states that the input 1 of gate g10 of type nand2 is connected to the output of gate g1 of type inpt0. The gates
of type inpt0 are the input pins of the circuit.

The clauses that describe the observed values for the input and for the output of the circuit are facts for the
obs/2 predicate. obs(out (inpt0, gl), 0) states that the input g1 has value 0.

As regards the integrity constraints, we have two constraints for each output of the circuit, one stating that
the output can not be 0 if it was observed to be 1 and the other stating that the output can not be 1 if it was
observed to be 0. For example, the constraint ic([obs(out(nand2, g22), 0), val(out(nand2, g22), 1)1).
states that the value of the output of g22 cannot be 1 if it was observed to be 0.

In case the circuit is faulty, one or more of the constraints will be violated. By means of belief revision, the
values of the revisables are changed in order to restore consistency. The literals of the form ab(Name) that are
assigned the value true identify the faulty components.

In order to show the difference between a belief revision operator and the Lamarckian operator, let us show

their behaviour on the c17 circuit supposing the following hypothesis is given:
C={ab(gl0), not ab(gll), ab(gl6), not ab(gl9), not ab(g22), not ab(g23)}

In this case, two out of four constraints are violated because the predicted output of g22 is 1 and of g23 is 0.
A belief revision operator, as for example REVISE, finds a solution where the only abnormality literal that is

true is ab(g22) while all the others are false. This solution is found independently of the initial starting hypothesis

11



Circuit ! | Fitness | Standard Deviation | Correct solution
voter 0 1.295 0.00634 100 %
0.6 | 1312 0.01728 100 %
alud flat | 0 1.193 0.03939 20 %
0.6 | 1.213 0.01765 33 %

Table 1: Experiments on digital circuits debugging

because the support sets for L are found independently of the initial values of the revisables. This new hypothesis
eliminates both constraint violations.

The Lamarckian operator, instead, will modify C into the following hypothesis:
C’={ab(gl10), ab(gll), ab(gl6), not ab(gl9), not ab(g22), not ab(g23)}

that differs from C only in the values of ab(gl1). This new hypothesis eliminates only one constraint violation
because the output of g22 is still different from the observed value.

The system has been tested on some real world problems taken from the ISCAS85 benchmark circuits [6] that
has been used as well for testing the belief revision system REVISE [9].> Our aim was to prove that the Lamarckian
operator provides an improvement over a purely Darwinian algorithm. Moreover, we wanted to investigate how
the initial population influences the computation. In fact, since the Lamarckian operator has an effect that greatly
depends on the initial hypothesis on which it is applied, our algorithm may run the risk of being highly dependent
on the initial population. In the worst case, it could happen that the algorithm, guided by the greediness of the
Lamarckian operator, finds a local optimum and does not move from there.

We have considered the voter and alu4_flat circuits: voter has 59 gates and 4 outputs, corresponding
respectively to 59 revisables and 8 constraints, while alu4_flat has 100 gates and 8 outputs, corresponding
respectively to 100 revisables and 16 constraints. The system was first run without the Lamarckian operator
(I = 0), and then using it (I = 0.6). The other parameters of the genetic algorithms were 30 for the population
and 10 for the number of generations. For each case, the system was run five times and the resulting maximum
fitness averaged. In table 1 the Fitness column shows the value of the fitness function for the best hypothesis
after ten generations averaged over the five runs together with its standard deviation, while the Correct solution
column shown the percentage of times in which a correct solution was found.

From these results we can state that the use of a Lamarckian operator improves the fitness of the best
hypothesis. Moreover, the algorithm does not heavily depend on the initial population, as it is shown by the low
values for the standard deviation. Finally, the Lamarckian operator does not greatly influence the dependency on
the initial population, as can be seen from the fact that in one case (voter) the use of the Lamarckian operator

has increased the standard deviation but in the other case (alu4_flat) it has decreased it.

5 Related Work

Various authors have investigated the integration of Darwinian and Lamarckian evolution in genetic algorithm

[1, 11, 12, 14]. A Lamarckian operator first translates a genotype into its corresponding phenotype and performs

3These examples can be found at http://www.soi.city.ac.uk/~msch/revise/.
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a local search in the phenotype’s space. The local optimum that is obtained is then translated back into its corre-
sponding genotype and added to the population for further evolution. [12] has shown that the traditional genetic
algorithm performs well for searching widely separated portions of the search space caused by a scattered popu-
lation, while Lamarckism is more proficient for exploring localized areas of the population that would otherwise
be missed by the global search of the genetic algorithm. Therefore, Lamarckism can play an important role when
the population has converged to areas of local maxima that would not be thoroughly explored by the standard
genetic algorithm. The adoption of a Lamarckian operator provides a significant speedup in the performance of
the genetic algorithm.

Similarly to the approaches in [1, 11, 12, 14], we adopt a procedure for Lamarckian evolution that first translate
the chromosome into its phenotype and then modifies it in order to improve its fitness. In our case as well the
Lamarckian operator improves the performance of the genetic algorithm. Differently from [1, 11, 12, 14], the

procedure does not perform a local search but finds an improvement by tracing logical derivations.

6 Conclusions and Future Work

We have presented a multistrategy genetic algorithm for performing belief revision. The algorithm combines
two different evolution strategies, one based on Darwin’s theory and the other based on Lamarck’s theory. The
algorithm therefore includes, besides Darwin’s evolutionary operators of selection, mutation and crossover, also a
Lamarckian operator that changes the genes of an individual in order to improve his/her fitness.

While Darwin’s operators are independent of the task at hand, Lamarck’s operator necessarily depends on the
task. In this case, we have considered the problem of revising the beliefs of a contradictory theory in order to
restore consistency. The beliefs to be revised are those generated by means of the CWA. In this case the process of
belief revision consists in assigning a truth value to the default literals notL having no rule for L in the program.

In this paper the operator is implemented by means of a belief revision procedure that, by tracing logical
derivations, identifies the genes leading to contradiction. The overall algorithm has been tested on a number of
problems of circuit diagnosis. The results of the tests show that the Lamarckian operator improves the fitness of
the hypothesis that is found by the algorithm after a fixed number of generations.

In this paper, we have considered only two valued belief revisions of a restricted set of extended logic programs,
i.e. programs that do not contain explicit negation and that allow only default literals that are revisable. In the
future, we will consider three valued revisions of full extended logic programs.

Moreover, we will investigate the case in which different individuals are exposed to different experiences. This
may happen because the world surrounding an agent changes over time or because we consider agents exploring
different parts of the world. In this case, Lamarckian and Darwinian operators will have complementary functions:
Lamarckian operators will be used to get closer to a solution of a given belief revision problem, while Darwinian
operators will be used in order to distribute the acquired knowledge among various individuals. We could consider
as well Lamarckian operators that not only bring a chromosome closer to a solution but actually turn it into a
solution. In this case, when a new constraint is presented to an agent, it first applies a Lamarckian operator
to find a chromosome satisfying the new constraint and then it applies a Darwinian operator to distribute the
“knowledge” so acquired to other chromosomes in the same agent or other agents. In this way chromosomes may
be prepared in advance for meeting new constraints.

An example of this would be that of a group of scientists that decides to classify living forms in nature by
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travelling each to a different part of the world. Each of them has a partial view of nature, with a limited set of
(noisy) observations, and he/she can come up with a consistent life taxonomy by exchanging chromosomes with
the other scientists.

The exchange of genetic material is useful also in the case in which the chromosomes do not have all the relevant
revisables to start with (three valued revision). When they acquire new revisables from other chromosomes, they
are obtaining specialized knowledge from others. This, is for example, the case of the diagnosis of a car fault
performed by different experts: the expert mechanic, the expert electrician, the expert car designer, etc. Each of
them makes a diagnosis about the part of the car that concerns their speciality. Next they all have to come to a
joint diagnosis by exchanging information about each other’s revisables.

We conjecture that in this new problem setting, where there is dynamicity in the data, the integration of the
Lamarckian and Darwinian operators will fully exhibit, and be extolled, in its potential. A first study of this

approach can be found in [13].
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