
Logic Aided Lamarckian EvolutionEvelina LammaDEIS, Universit�a di Bologna,Viale Risorgimento 2,40136 Bologna, Italy,elamma@deis.unibo.it Lu��s Moniz PereiraCentro de Inteligência Arti�cial (CENTRIA),Faculdade de Ciências e Tecnologia,Universidade Nova de Lisboa,2825-114 Caparica, Portugallmp@di.fct.unl.ptFabrizio RiguzziDipartimento di Ingegneria,Universit�a di Ferrara, Via Saragat 1,44100 Ferrara, Italy,friguzzi@ing.unife.itAbstractWe propose a multi-strategy genetic algorithm for performing belief revision. The algorithm implements a newevolutionary strategy which is a combination of the theories of Darwin and Lamarck. Therefore, the algorithmnot only includes the Darwinian operators of selection, mutation and crossover but also a Lamarckian operatorthat changes the individuals so that they perform better in solving the given problem. This is achieved throughbelief revision directed mutations, oriented by tracing logical derivations.The algorithm, with and without the Lamarckian operator, is tested on a number of belief revision problems,and the results show that the addition of the Lamarckian operator improves the e�ciency of the algorithm.We believe that the combination of Darwinian and Lamarckian operators will be useful not only for standardbelief revision problems but especially for problems where the chromosomes may be exposed to di�erent constraintsand observations. In these cases, the Lamarckian and Darwinian operators would play a di�erent role: theLamarckian one would be used in order to bring a chromosome closer to a solution or to �nd an exact solutionof the current belief revision problem, while Darwinian ones will have the aim of preparing chromosomes to dealwith new situations by exchanging genes among them.1 IntroductionWe consider a belief revision problem that consists in removing contradiction from an extended logic program[16, 2, 3] by changing the truth value of a set of literals called revisables. The program contains as well clauseswith false (?) in the head representing integrity constraints. Any model of the program must make the bodyof integrity constraints false for the program to be non-contradictory. Contradiction may arise as well in theextended logic program because both a literal L and its opposite :L are derivable in the theory. Such a problemhas been widely studied in the literature and various solutions have been proposed [4, 9] that are based on logicproof procedures.In this paper, we use evolutionary computation in order to solve the problem of belief revision. Such a1



problem can be modeled by means of a genetic algorithm by assigning to each revisable of the theory a gene inthe chromosome. In the case of a two valued revision, the gene will have the value 1 if the corresponding revisableis true and the value 0 if the revisable is false. The �tness function that is used in this case is represented by thepercentage of integrity constraints that are satis�ed by a chromosome.History of science has seen two evolution theories compete: Darwin's theory and Lamarck's theory. Darwin'stheory is based on the concept of natural selection: only the individuals that are better for their environmentsurvive, and are able to generate new individuals by means of reproduction. Moreover, during their life theindividuals may be subject to random mutations of their genes that they can transmit to their o�spring. Lamarck'stheory, instead, states that evolution is due to the process of adaptation to the environment that an individualperforms in his/her life. The abilities learned during the life of an individual modify his/her genes and are thereforetransmitted to their o�spring.Experimental evidence in the biological kingdom has shown Darwin's theory to be correct and Lamarck's to bewrong, even if the more recently evolved concept of \meme" supports Lamarckian evolution (cf. [5]). However, inthe �eld of genetic computation, Lamarckian evolution has proven to be a powerful concept and various authorshave investigated the combination of Darwinian and Lamarckian evolution [12, 1, 14, 11].In this paper, we propose a genetic algorithm for solving the problem of belief revision that includes, besidesDarwin's operators of selection, mutation and crossover [15], a Lamarckian operator as well. This operatorconsists in modifying a chromosome (i.e., a set of revisables) so that it satis�es a higher number of constraints.This is achieved through belief revision directed mutations, oriented by tracing logical derivations. We then show,experimentally, that the resulting algorithm performs better than the same algorithm does without Lamarck'soperator.We believe the combination of Darwinian and Lamarckian operators will be useful not only for standard beliefrevision problems but especially for problems where the chromosomes may be exposed to di�erent constraintsand observations. For example, this may happen if an agent gathers information incrementally and has imperfectmemory: in this case new data may arrive over time and old data may disappear. Or, alternatively, the availabledata may change because the external world is changing. Moreover, di�erent agents may explore di�erent parts ofthe world where constraints and observations are di�erent. In this case, the Darwinian and Lamarckian operatorsmay play di�erent roles. Lamarckian operators may be used in order to get closer to solution of the belief revisionproblem given a �xed problem de�nition. Darwinian operators, instead, may be used in order to exchange geneticmaterial among chromosomes of di�erent agents so that they may be prepared in advance to new situations. Forexample, chromosomes exposed to constraints that disappeared may provide genes to new chromosomes that willbecome useful if the constraints reappear. Moreover, chromosomes belonging to an agent exploring a certain partof the world contain information that is useful for agents that will explore that part in the future.In these cases, we could consider as well Lamarckian operators that not only bring a chromosome closer to asolution but actually �nd an exact solution of the belief revision problem: when a new constraint is presented toan agent, it �rst applies a Lamarckian operator to �nd a chromosome satisfying the new constraint and then itapplies a Darwinian operator to distribute the \knowledge" so acquired to other chromosomes in the same agentor other agents. In this way chromosomes may be prepared in advance for meeting new constraints.It is not our purpose to propose here a competitor to extant classical belief revision methods [4, 9], in particularas they apply to diagnosis. More ambitiously, we do propose a new approach for allowing belief revision {any assumption based belief revision { to deal with time/space distributed, and possibly intermittent or noisy2



observations about an albeit varying artifact or environment, by a multiplicity of agents which exchange geneticallyencoded diversi�ed experience. About which more in the �nal section.At the same time, we are employing belief revision, and accepted logic programming techniques, simply toillustrate an approach. The latter can be generally applied to accomplished Lamarckian learning, in settingswhere the trace of logical derivations can be used in order to backpropagate constraint violations into gene codedassumptions.The paper is organized as follows. We �rst review some logic programming fundamentals and give a de�nitionof a belief revision problem in section 2. Then, we describe the algorithm together with the Lamarckian operatorin section 3. The results of experiments with the algorithm are shown in section 4. We examine related works insection 5, and we conclude in section 6.2 Logic Programming BasisIn this section we �rst provide some logic programming fundamentals, and then we give a de�nition of the beliefrevision problem adapted from [19].2.1 LanguageGiven a �rst order language Lang, an extended logic program [16, 2, 3] is a set of rules and integrity constraintsof the form H  B1; : : : ; Bn; not C1; : : : ; not Cm (m � 0; n � 0)where H;B1; : : : ; Bn; C1; : : : ; Cm are objective literals, and in integrity constraints H is ? (contradiction). Anobjective literal is either an atom A or its explicit negation :A, where ::A = A. not L is called a default ornegative literal. Literals are either objective or default ones. The default complement of objective literal L isnot L, and of default literal not L is L. A rule stands for all its ground instances with respect to Lang. Thenotation H  B is also used to represent a rule, where set B contains the literals in its body. For every pair ofobjective literals fL;:Lg in Lang, we implicitly assume the constraint ? L;:L.The set of all objective literals of a program P is called its extended Herbrand base and is represented asHE(P ). An interpretation I of an extended program P is denoted by T [ not F , where T and F are disjointsubsets of HE(P ). Objective literals in T are said to be true in I, objective literals in F are said to be false inI and those in HE(P )� I are said to be unde�ned in I. We introduce in the language the proposition u that isunde�ned in every interpretation I.For Extended Logic Programs we consider the Extended Well Founded Semantics (WFSX ) that extends thewell founded semantics (WFS) [20] for normal logic programs to the case of extended logic programs. WFSXis obtained from WFS by adding the Coherence Principle (CP) relating the two forms of negation: \if L is anobjective literal and :L belongs to the model of a program, then also not L belongs to the model", i.e., :L! not L.See [2, 10] for a de�nition of WFSX.We say that a set of literals S is contradictory i� ? 2 S.
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2.2 Revising Contradictory Extended Logic ProgramsExtended logic programs are liable to be contradictory because of integrity constraints, either those that areuser-de�ned or those of the form ? L;:L that are implicitly assumed. Let us see an example of a contradictoryprogram.Example 2.1 Consider P = fa;?  a; not bg1. Since we have no rules for b, by the Closed World AssumptionCWA, it is natural to accept not b as true. However, because of the integrity constraint, we can conclude ? andthus have contradiction.It is arguable that the CWA may not be held of atom b since it leads to contradiction. Revising such CWAis the basis of the contradiction removal method of [19]. In order to select a particular contradiction removalprocess, three questions must be answered:1. For which literals is the revision of their truth-value allowed ?2. To what truth values do we change the revisable literals ?3. How to choose among possible revisions ?In section 2.4, two di�erent contradiction removal processes are presented. They both use the same cri-teria to answer 1 and 3, but di�er on the second one. The �rst way of removing contradiction in example2.1 gives fa; not :a; not :bg as the intended meaning of P , where b is revised to unde�ned. The second givesfa; b; not :a; not :bg, by revising b to true.2.3 Contradictory Well Founded ModelTo revise contradictions, we need to identify the contradictory sets of consequences implied by the applicationsof CWA. The main idea is to compute all consequences of the program, even if contradiction is found at somestep. Furthermore, the Coherence Principle is enforced at each step. The following example provides an intuitivepreview of what we intend:Example 2.2 Consider program P:a not b. (i) :a not c. (ii) d a. (iii) e :a. (iv)1. not b and not c hold since there are no rules for either b or c.2. :a and a hold from 1 and rules (i) and (ii).3. ? holds from 2 and implicit constraint  a;:a.4. not a and not :a hold from 2 and inference rule (CP ).5. d and e hold from 2 and rules (iii) and (iv).6. not d and not e hold from 4, the CWA and rules (iii) and (iv), as they are the only rules for d and e.7. not :d and not :e hold from 5 and inference rule (CP ).The whole set of consequences isf?;:a; a; not a; not :a; not b; not c; d; not d; not :d; e; not e; not :egThere exists a paraconsistent version of WFSX, called WFSXp [7, 8], that allows models to contain the atom?.1? a;:a and ? b;:b are implicitly assumed. 4



2.4 Contradiction Removal SetsTo revise contradiction, the �rst issue to consider is which default literals true by CWA are allowed to changetheir truth values. We simplify the approach of [18] along the lines of [17] taking as candidates for change defaultliterals true by CWA in the WFSXp model. By making this simpli�cation we can give a syntactic condition forelecting the revisable literals, in contradistinction to the semantic one of [18].De�nition 2.1 (Revisables) The revisables of a program P are all the default literals not L having no rules forL in P , and so true by CWA. The set of all revisables is called Rev(P ).Thus, all the objective literals that do not appear in rule heads but only in rule bodies, either in a positive ordefault form, are revisable. By the CWA, every revisable R = not A is true, i.e., A is false. Now we identify therevisables that have to be revised to false or unde�ned in order to restore consistency. These are the ones thatsupport contradiction. Intuitively, a support of a literal consists of the literals in nodes of a derivation for it:De�nition 2.2 (Support set of a literal) A support set of a literal L of the WFSXp model MP of a programP , denoted by SS(L), is obtained as follows:1. If L is an objective literal in MP then for each rule L B in P , such that B �MP there is one SS(L) foreach Bi 2 B. If B is empty then SS(L) = fg.2. If L is a default literal not A 2MP :(a) if no rules exist for A in P (i.e., L is a revisable) then a support set of L is fnot Ag.(b) if rules for A exist in P that have a non-empty body, then choose from each such rule a single literalsuch that its default complement belongs to MP . There exists one SS for not A for every SS of eachdefault complement of the chosen literals.(c) if :A belongs to MP then there exist, additionally, support sets SS of not A equal to each SS(:A).Example 2.3 The WFSXp model MP of::p not c. p t.p a,not b. b c, a.b d. :b not e. a.is fa; not :a; not b;:b; not c; not :c; not d; not :d; not e; not :e; not t; not :t; p;:p; not p; not :p;?g. The revisablesare fnot c; not d; not eg. There are two support sets for not b:SS1(not b)=SS(not c) [ SS(not d) by rule 2bSS1(not b)=fnot cg [ fnot dg=fnot c; not dg by rule 2aNotice that the other possibility of choosing literals for SS(not b); i.e. SS1(not b) = SS(not a) [ SS(not d); can'tbe considered because not a doesn't belong to MP . The other support set for not b is obtained using rule 2c:SS2(not b) = SS(:b) by rule 2cSS2(not b) = SS(not e) by rule 1SS2(not b) = fnot eg by rule 2aNow the support sets for the objective literal p are easily computed:SS(p)=SS(a)[SS(not b) by rule 1SS(p)=fg[SS(not b) by rule 1 (the only rule for a is fact a)5



So SS1(p) = SS1(not b) = fnot c; not dg and SS2(p) = SS2(not b) = fnot eg. :p has the unique supportset fnot cg. Consequently, because contradiction is obtained only via ? p;:p, SS1(?) = fnot c; not dg andSS2(?) = fnot e; not cg.Proposition 2.1 (Existence of support sets) Every literal L belonging to the WFSXp model of a program Phas at least one support set SS(L).We de�ne a spectrum of possible revisions using the notion of hitting set:De�nition 2.3 (Hitting set) A hitting set of a collection C of sets is formed by the union of one non-emptysubset from each S 2 C. A hitting set is minimal i� no proper subset is a hitting set. If fg 2 C, C has no hittingsets.De�nition 2.4 (Removal set) A removal set of a literal L of a program P is a hitting set of all support setsSS(L).We can revise contradictory programs by changing the truth value of all the literals of a removal set of ?. Thetruth value can be changed either to unde�ned or false. It can be changed to unde�ned by adding, for each literalnot L in the removal set, the inhibition rule L not L to P , while it can be changed to false by adding L to P .In case the literals are revised to unde�ned, then the contradiction is removed and no new contradiction can arise.In case they are revised to false, a new contradiction may arise and therefore the contradiction removal processmust be iterated. This de�nes the possible revisions of a contradictory program.We answer the third question by preferring to revise minimal sets of revisables:De�nition 2.5 (Contradiction removal set) A contradiction removal set (CRS) of P is a minimal removalset of ?.Example 2.3 (cont.) The assumption support sets of ? are fnot c; not dg and fnot c; not eg. The removal setsare (RS1 and RS4 being minimal):RS1 = fnot cg RS4 = fnot d; not egRS2 = fnot c; not eg RS5 = fnot c; not d; not egRS3 = fnot c; not dgA program is not revisable if ? has a support set without revisable literals.De�nition 2.6 (Revisable program) A program is revisable i� it has a contradiction removal set.The CRSs are minimal hitting sets of the collection of assumptions sets of ?. In [19] an algorithm for solvingthis problem is presented.In this paper, we consider a simpli�ed belief revision problem where the program does not contain explicitnegation and the only default literals that are allowed are revisables, i.e., default literals of predicates that have node�nition. In this case, the WFSXp model of the program is two valued, i.e., it assigns to every literal the truthvalue true or false. Therefore, we change the truth value of revisables from true to false but not to unde�ned. Inthe future, we will consider three-valued revisions of full extended logic programs.
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3 A genetic algorithm for belief revisionThe algorithm we propose extends the standard genetic algorithm (described for example in [15]) by adding aLamarckian operator called Learn. This operator modi�es a fraction of the chromosomes of the population inorder to improve their �tness. The resulting algorithm2 is given as follows:GA(Fitness;max gen; p; r;m; l)input :Fitness : a function that assigns an evaluation score, given a hypothesismax gen : the maximum number of generations before terminationp: number of individuals in the populationr: the fraction of population to be replaced by Crossover at each stepm: the fraction of population to be mutatedl: the fraction of population that should evolve Lamarckianlyoutput :hmax : the hypothesis with the highest �tnessInitialize population: P  generate p hypotheses at randomEvaluate: for each h in P , compute Fitness(h)gen 0While gen � max genCreate a new population Ps:Select: Probabilistically select (1� r)p members of P to add to Ps.The probability Pr(hi) of selecting hypothesis hi from P is given byPr(hi) = Fitness(hi)�pj=1Fitness(hj)Crossover: Probabilistically select rp=2 pairs of hypotheses from P ,according to Pr(hi) given above.For each pair hh1; h2i, produce two o�spring by applyingthe Crossover operator. Add all o�spring to PsMutate: Choose m percent of the members of Ps with uniformprobability. For each, invert one randomly selected bitin its representationLearn: Choose lp hypotheses from Ps with uniform probabilityand substitute each of them with the modi�ed hypothesesreturned by the procedure LearnUpdate: P  PsReturn the hypothesis hmax from P with the highest �tnessIn belief revision, each individual hypothesis is described by the truth value of all the revisables. Since we considertwo valued models, each hypothesis gives the truth value true or false to every revisable and therefore it can beconsidered as a set containing one literal, either objective or default, for every revisable. A chromosome is obtainedby associating a bit to each revisable that has value 1 if the revisable must be true and 0 if it must be false.2The algorithm has been implemented in Sicstus Prolog 3#5. 7



The �tness function that has been used takes the following form:Fitness(hi) = nin + fijhij � 0:5where ni is the number of integrity constraints satis�ed by hypothesis hi, n is the total number of integrityconstraints, fi is the number of revisables in hi that are false, and jhij is the total number of revisables. In thisway, the �tness function takes into account both the fraction of constraints that are satis�ed and the number ofrevisables whose truth value must be changed to true, preferring hypotheses with a lower number of these, thatis minimal revisions are encouraged. The factor 0.5 was chosen in order to give more importance to the accuracy,rather than to the number of unchanged revisables.The Lamarckian operator Learn changes the values of the revisables in a chromosome C so that a biggernumber of constraints is satis�ed, thus bringing C closer to a solution. Learn di�ers from a normal belief revisionoperator because it does not assume that all revisables are true by CWA before the revision but it starts from thetruth values that are given by the chromosome C. Therefore, it has to revise some revisables from true to falseand others from false to true. As a consequence, the support set does not contain only default literals but alsoobjective literals whose default complement is a revisable.Learn works in the following way: given a chromosome C, it �nds all the support sets for ? such that theycontain literals in C. Therefore, it does not �nd all support sets for ? but only those that are subsets of C.The de�nition of support set that is used by the Lamarckian operator is therefore di�erent from de�nition 2.2and is given as follows:De�nition 3.1 (Lamarckian support set of a literal) A support set of a literal L of the WFSXp model MPof a program P according to a given set of literals H is denoted by SS(L;H) and is obtained as follows:1. If L is an objective literal in MP then for each rule L B in P , such that B � MP there is one SS(L;H)for each Bi 2 B. If B is empty then SS(L;H) = fg.2. If L is an objective literal in MP for which there are no rules L B in P and L is the default complementof a revisable, then(a) if L belongs to H, then a support set of L is fLg.(b) if the default complement of L belongs to H, then there is no support set for L.3. If L is a default literal not A 2MP :(a) if no rules exist for A in P (i.e., L is a revisable) then:i. if L belongs to H, then a support set of L is fnot Ag.ii. if A belongs to H, then there is no support set for L.(b) if rules for A exist in P that have a non-empty body, then choose from each such rule a single literalsuch that its default complement belongs to MP . There exists one SS for not A for every SS of eachdefault complement of the chosen literals.(c) if :A belongs to MP then there exist, additionally, support sets SS of not A equal to each SS(:A).Since the Lamarckian support sets for ? represent only a subset of all the support sets for ?, a hitting setgenerated from them is not necessarily a contradiction removal set and therefore it does not represent a solutionto the belief revision problem. However, it eliminates some of the derivation paths to ? and, therefore, mayincrease the number of satis�ed constraints, thus improving the �tness, as required by the notion of Lamarckianoperator. 8



The following algorithm implements the Lamarckian operator. For simplicity, we present a restricted version ofthe algorithm that deals with programs that contain neither explicitly negated literals nor the default negation ofnon revisable literals. This restricted version will however be su�cient for dealing with the experiments presentedin section 4.procedure Learn(C;C0)input :a chromosome C translated into a set of revisablesoutput :a revised chromosome C0Find the support sets for ?: Support sets([?];C; fg; fg; SS)Find a hitting set HS: Hitting set(SS;HS)Change the value of the literals in the chromosome Cthat appear as well in HS obtaining C0procedure Support sets(GL;C; S; SSin; SSout):input :a list of goals GLa chromosome C translated into a set of revisablesthe current support set Sthe current set of support sets SSinoutput :a set SSout containing the support setsfor the �rst goal in the listIf GL is empty, then return SSout = SSinConsider the �rst literal L of the �rst goal G of GL(GL = [[LjRG]jRGL] using Prolog notation for lists)(1) if G is empty then add the current support set to SSin and callrecursively the algorithm on the rest of GLSupport sets(RGL;C; fg; SSin [ fSg; SSout)(2) if L is a revisable or is the default complement of a revisable and is in C, then add it to S and call thealgorithm recursively on the rest of GSupport sets([RGjRGL]; C; S [ fLg; SSin; SSout)(3) if L is a revisable or is the default complement of a revisable and it is not in C, or its opposite is in C, thendiscard S and call the algorithm recursively on the rest of GLSupport sets(RGL;C; fg; SSin; SSout)(4) if L is not a revisable nor the default complement of a revisable then reduce it with all the rules obtainingthe new goals G1; :::; Gn, one for each matching rule,add the goals to GL and call the algorithm recursivelySupport sets([[G1jRG]; :::; [GnjRG]jRGL]; C; S; SSin; SSout)9



(5) if L is not a revisable nor the default complement of a revisable and there are no rules for it, thendiscard S and call the algorithm recursively on the rest of GLSupport sets(RGL;C; fg; SSin; SSout)procedure hitting set(SS;HS):input :a set of support sets SSoutput :a hitting set HSpick a literal from every support set in SSand add it to HS if it does not lead to contradiction(i.e. the literal must not be already present in its complemented form).If it leads to contradiction pick another literal.Thus the Lamarckian operator di�ers both from a full belief revision operator and from a purely Darwinianoperator. It di�ers from a full belief revision operator because it does not directly �nd a solution of the givenbelief revision problem but rather �nds a hypothesis that is closer to a solution than the starting one. It di�ersfrom a purely Darwinian operator because it does not change the current hypothesis blindly but changes it inorder to improve its �tness. In the next section, after having introduced the application of belief revision to digitalcircuit diagnosis, the di�erence between a full belief revision operator and the Lamarckian operator will be furtherexplained by means of an example.4 ExperimentsThe system has been tested on a number of belief revision problems in order to show the e�ectiveness of theLamarckian operator. In particular, we have considered problems of digital circuit diagnosis, as it is done in[9]. Figure 1 shows a sample circuit. In problems of digital circuit diagnosis, we have a di�erence between the

Figure 1: c17 benchmark circuit from ISCAS85 [6].observed and the predicted outputs. Figure 1 shows the observed inputs and outputs of the circuit together with10



the predicted outputs of each gate. The aim of the diagnosis is to �nd which components are faulty.A problem of digital circuit diagnosis can be modelled as a belief revision problem by describing it with alogic program consisting of four groups of clauses: one that allows to compute the predicted output of eachcomponent, one that describes the topology of the circuit, one that describes the observed inputs and outputs,and one that consists of integrity constraints stating that the predicted value for an output of the system can notbe di�erent from the observed value. The representation formalism we use is the one of [9]. As regards the clausesfor computing the predicted output of a gate, let us consider the case of a two-input NAND:val( out(nand2,Name), V ) :-not ab(Name),val( in(nand2,Name,1), W1),val( in(nand2,Name,2), W2),nand2_table(W1,W2,V).val( out(nand2,Name), V ) :-ab(Name),val( in(nand2,Name,1), W1),val( in(nand2,Name,2), W2),and2_table(W1,W2,V).In these clauses Name is the name of the component and the de�nition of nand2 table, and2 table consist offacts describing the input/output relation of, respectively, a two-input NAND gate and a two-input AND gate.ab(Name) is a revisable that can be assumed true or false. If it is assumed true, it expresses a faulty behaviour ofa component of the circuit, described in this case by the second clause above. If it is assumed false, it expressesa correct behaviour of a component of the circuit, being described by the �rst clause above.The topology of the circuit is described by a set of facts for the predicate conn/2. For example, consider thefact conn(in(nand2, g10, 1), out(inpt0, g1)) describing a part of the circuit shown in �gure 1. This factstates that the input 1 of gate g10 of type nand2 is connected to the output of gate g1 of type inpt0. The gatesof type inpt0 are the input pins of the circuit.The clauses that describe the observed values for the input and for the output of the circuit are facts for theobs/2 predicate. obs(out(inpt0, g1), 0) states that the input g1 has value 0.As regards the integrity constraints, we have two constraints for each output of the circuit, one stating thatthe output can not be 0 if it was observed to be 1 and the other stating that the output can not be 1 if it wasobserved to be 0. For example, the constraint ic([obs(out(nand2, g22), 0), val(out(nand2, g22), 1)]).states that the value of the output of g22 cannot be 1 if it was observed to be 0.In case the circuit is faulty, one or more of the constraints will be violated. By means of belief revision, thevalues of the revisables are changed in order to restore consistency. The literals of the form ab(Name) that areassigned the value true identify the faulty components.In order to show the di�erence between a belief revision operator and the Lamarckian operator, let us showtheir behaviour on the c17 circuit supposing the following hypothesis is given:C={ab(g10), not ab(g11), ab(g16), not ab(g19), not ab(g22), not ab(g23)}In this case, two out of four constraints are violated because the predicted output of g22 is 1 and of g23 is 0.A belief revision operator, as for example REVISE, �nds a solution where the only abnormality literal that istrue is ab(g22) while all the others are false. This solution is found independently of the initial starting hypothesis11



Circuit l Fitness Standard Deviation Correct solutionvoter 0 1.295 0.00634 100 %0.6 1.312 0.01728 100 %alu4 flat 0 1.193 0.03939 20 %0.6 1.213 0.01765 33 %Table 1: Experiments on digital circuits debuggingbecause the support sets for ? are found independently of the initial values of the revisables. This new hypothesiseliminates both constraint violations.The Lamarckian operator, instead, will modify C into the following hypothesis:C'={ab(g10), ab(g11), ab(g16), not ab(g19), not ab(g22), not ab(g23)}that di�ers from C only in the values of ab(g11). This new hypothesis eliminates only one constraint violationbecause the output of g22 is still di�erent from the observed value.The system has been tested on some real world problems taken from the ISCAS85 benchmark circuits [6] thathas been used as well for testing the belief revision system REVISE [9].3 Our aim was to prove that the Lamarckianoperator provides an improvement over a purely Darwinian algorithm. Moreover, we wanted to investigate howthe initial population inuences the computation. In fact, since the Lamarckian operator has an e�ect that greatlydepends on the initial hypothesis on which it is applied, our algorithm may run the risk of being highly dependenton the initial population. In the worst case, it could happen that the algorithm, guided by the greediness of theLamarckian operator, �nds a local optimum and does not move from there.We have considered the voter and alu4 flat circuits: voter has 59 gates and 4 outputs, correspondingrespectively to 59 revisables and 8 constraints, while alu4 flat has 100 gates and 8 outputs, correspondingrespectively to 100 revisables and 16 constraints. The system was �rst run without the Lamarckian operator(l = 0), and then using it (l = 0:6). The other parameters of the genetic algorithms were 30 for the populationand 10 for the number of generations. For each case, the system was run �ve times and the resulting maximum�tness averaged. In table 1 the Fitness column shows the value of the �tness function for the best hypothesisafter ten generations averaged over the �ve runs together with its standard deviation, while the Correct solutioncolumn shown the percentage of times in which a correct solution was found.From these results we can state that the use of a Lamarckian operator improves the �tness of the besthypothesis. Moreover, the algorithm does not heavily depend on the initial population, as it is shown by the lowvalues for the standard deviation. Finally, the Lamarckian operator does not greatly inuence the dependency onthe initial population, as can be seen from the fact that in one case (voter) the use of the Lamarckian operatorhas increased the standard deviation but in the other case (alu4 flat) it has decreased it.5 Related WorkVarious authors have investigated the integration of Darwinian and Lamarckian evolution in genetic algorithm[1, 11, 12, 14]. A Lamarckian operator �rst translates a genotype into its corresponding phenotype and performs3These examples can be found at http://www.soi.city.ac.uk/�msch/revise/.12



a local search in the phenotype's space. The local optimum that is obtained is then translated back into its corre-sponding genotype and added to the population for further evolution. [12] has shown that the traditional geneticalgorithm performs well for searching widely separated portions of the search space caused by a scattered popu-lation, while Lamarckism is more pro�cient for exploring localized areas of the population that would otherwisebe missed by the global search of the genetic algorithm. Therefore, Lamarckism can play an important role whenthe population has converged to areas of local maxima that would not be thoroughly explored by the standardgenetic algorithm. The adoption of a Lamarckian operator provides a signi�cant speedup in the performance ofthe genetic algorithm.Similarly to the approaches in [1, 11, 12, 14], we adopt a procedure for Lamarckian evolution that �rst translatethe chromosome into its phenotype and then modi�es it in order to improve its �tness. In our case as well theLamarckian operator improves the performance of the genetic algorithm. Di�erently from [1, 11, 12, 14], theprocedure does not perform a local search but �nds an improvement by tracing logical derivations.6 Conclusions and Future WorkWe have presented a multistrategy genetic algorithm for performing belief revision. The algorithm combinestwo di�erent evolution strategies, one based on Darwin's theory and the other based on Lamarck's theory. Thealgorithm therefore includes, besides Darwin's evolutionary operators of selection, mutation and crossover, also aLamarckian operator that changes the genes of an individual in order to improve his/her �tness.While Darwin's operators are independent of the task at hand, Lamarck's operator necessarily depends on thetask. In this case, we have considered the problem of revising the beliefs of a contradictory theory in order torestore consistency. The beliefs to be revised are those generated by means of the CWA. In this case the process ofbelief revision consists in assigning a truth value to the default literals notL having no rule for L in the program.In this paper the operator is implemented by means of a belief revision procedure that, by tracing logicalderivations, identi�es the genes leading to contradiction. The overall algorithm has been tested on a number ofproblems of circuit diagnosis. The results of the tests show that the Lamarckian operator improves the �tness ofthe hypothesis that is found by the algorithm after a �xed number of generations.In this paper, we have considered only two valued belief revisions of a restricted set of extended logic programs,i.e. programs that do not contain explicit negation and that allow only default literals that are revisable. In thefuture, we will consider three valued revisions of full extended logic programs.Moreover, we will investigate the case in which di�erent individuals are exposed to di�erent experiences. Thismay happen because the world surrounding an agent changes over time or because we consider agents exploringdi�erent parts of the world. In this case, Lamarckian and Darwinian operators will have complementary functions:Lamarckian operators will be used to get closer to a solution of a given belief revision problem, while Darwinianoperators will be used in order to distribute the acquired knowledge among various individuals. We could consideras well Lamarckian operators that not only bring a chromosome closer to a solution but actually turn it into asolution. In this case, when a new constraint is presented to an agent, it �rst applies a Lamarckian operatorto �nd a chromosome satisfying the new constraint and then it applies a Darwinian operator to distribute the\knowledge" so acquired to other chromosomes in the same agent or other agents. In this way chromosomes maybe prepared in advance for meeting new constraints.An example of this would be that of a group of scientists that decides to classify living forms in nature by13
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