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Abstract

We show that the adoption of a three-valued setting

for inductive concept learning is particularly useful for

learning in single and multiple agent systems.

Distinguishing between what is true, what is false

and what is unknown can be useful in situations where

decisions have to be taken on the basis of scarce infor-

mation. Such situation occurs, for example, when an

agent incrementally gathers information from the sur-

rounding world and has to select its own actions on

the basis of such acquired knowledge.

In a three-valued setting, we learn a de�nition for

both the target concept and its opposite, consider-

ing positive and negative examples as instances of two

disjoint classes. To this purpose, we adopt Extended

Logic Programs (ELP) under a Well-Founded Seman-

tics with explicit negation (WFSX ) as the representa-

tion formalism for learning. Standard Inductive Logic

Programming techniques are then employed to learn

the concept and its opposite.

The learnt de�nitions of the positive and negative

concepts may overlap, both when learning conicting

rules for a predicate and its explicit negation by a sin-

gle agent or when combining the knowledge learned by

multiple agents. In the paper, we handle the issue of

strategic combination of possibly contradictory learnt

de�nitions.

1 Introduction

Most work on inductive concept learning considers a

two-valued setting. In such a setting, what is not en-

tailed by the learned theory is considered false, on the

basis of the Closed World Assumption (CWA) [27].

However, in practice, it is more often the case that we

are con�dent about the truth or falsity of only a limited

number of facts, and are not able to draw any conclu-

sion about the remaining ones, because the available

information is too scarce. Like it has been pointed out

in [8, 7], this is typically the case of an autonomous

agent that, in an incremental way, gathers informa-

tion from its surrounding world. Such an agent needs

to distinguish between what is true, what is false and

what is unknown, and therefore needs to learn within

a richer three-valued setting.

For this purpose, we adopt the class of Extended

Logic Programs (ELP, for short, in the sequel) as the

representation language for learning in a three-valued

setting. ELP contain two kinds of negation: default

negation plus a second form of negation, called ex-

plicit, whose combination has been recognized as a

very expressive means of knowledge representation.

The adoption of ELP allows one to deal directly in the

language with incomplete knowledge, with exceptions

through default negation, as well as with truly negative

information through explicit negation [23, 2, 3]. For in-

stance, in [2, 5, 18] it is shown how ELP are applicable

to such diverse domains of knowledge representation

as concept hierarchies, reasoning about actions, belief

revision, counterfactuals, diagnosis, updates and de-

bugging.

In this work, we �rst discuss various approaches and

strategies that can be adopted in Inductive Logic Pro-

gramming (ILP, henceforth) for learning with a three-

valued settings by a single agent. Then, we discuss

how the knowledge learned by separate agents can be

combined to obtain a common knowledge base.

As in [13, 12], the learning process in a single agent

starts from a set of positive and negative examples

plus some background knowledge in the form of an ex-
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tended logic program. Positive and negative informa-

tion in the training set are treated equally, by learning

a de�nition for both a positive concept p and its (ex-

plicitly) negated concept :p by means of standard ILP

techniques. Coverage of examples is tested by adopting

the SLX interpreter for ELP under the Well-Founded

Semantics with explicit negation (WFSX ) de�ned in

[2, 10].

Indeed, separately learned positive and negative

concepts may conict and, in order to handle possible

contradiction, contradictory learned rules are defused

by making the learned de�nition for a positive con-

cept p depend on the default negation of the negative

concept :p, and vice-versa. I.e., each de�nition is in-

troduced as an exception to the other. This way of

coping with contradiction can be generalized in order

to combine knowledge learned by di�erent agents, by

taking also into account preferences among multiple

learning agents or information sources.

The paper is organized as follows. We �rst provide

some preliminaries on the language of ELP in 2. Then

we motivate the use of ELP as target and background

language and we introduce the new ILP framework in

section 3. Section 4 proposes how to avoid inconsisten-

cies on unseen atoms and their opposites, through the

use of mutually defusing (\non-deterministic") rules,

for the case of single and multiple learning agents, and

how to incorporate exceptions through negation by de-

fault. Finally, we examine related works in section 5

and conclude in section 6.

2 Extended Logic Programs

An extended logic program is a �nite set of rules of the

form:

L0 L1; : : : ; Ln

with n � 0, where L0 is an objective literal, L1; : : : ; Ln
are literals and each rule stands for the sets of its

ground instances. Objective literals are of the form

A or :A, where A is an atom, while a literal is either

an objective literal L or its default negation not L.

:A is said the opposite literal of A (and vice versa),

where ::A = A, and not A the complementary lit-

eral of A (and vice versa). By not fa1; : : : ; ang we

mean fnot a1; : : : ; not ang where ais are literals. By

: fa1; : : : ; ang we mean f:a1; : : : ;:ang. The set of all

objective literals of a program P is called its extended

Herbrand base and is represented as HE(P ). An in-

terpretation I of an extended program P is denoted

by T [ not F , where T and F are disjoint subsets of

HE(P ). Objective literals in T are said to be true

in I , objective literals in F are said to be false in I

and those in HE(P )� I are said to be unde�ned in I .

We introduce in the language the proposition u that

is unde�ned in every interpretation I .

The WFSX extends the well founded semantics

(WFS ) [28] for normal logic programs to the case of

extended logic programs. WFSX is obtained from

WFS by adding the coherence principle relating the

two forms of negation: \if L is an objective literal and

:L belongs to the model of a program, then also not L

belongs to the model", i.e., :L! not L. See [2, 10] for

a de�nition of WFSX.

Let us now show an example of theWFSX semantics

in the case of a simple program.

Example 1 Consider the following extended logic

program:

:a  : b not b:

a  b:

A WFSX model of this program is M =

f:a; not :b; not ag: :a is true, a is false (i.e.,

both :a and not a are in the well-founded model), :b

is false (there are no rules for :b) and b is unde�ned.

Notice that not a is in the model since it is implied by

:a via the coherence principle.

One of the most important characteristic of WFSX is

that it provides a semantics for an important class of

extended logic programs: the set of non-strati�ed pro-

grams, i.e., the set of programs that contain recursion

through default negation. An extended logic program

is strati�ed if its dependency graph does not contain

any cycle with an arc labelled with �. The depen-

dency graph of a program P is a labelled graph with a

node for each predicate of P and an arc from a pred-

icate p to a predicate q if q appears in the body of

clauses with p in the head. The arc is labelled with

+ if q appears in an objective literal in the body and

with � if it appears in a default literal.

Non-strati�ed programs are very useful for knowl-

edge representation because the WFSX semantics as-

signs the truth value unde�ned to the literals involved

in the recursive cycle through negation. In section 4 we

will employ non strati�ed programs in order to resolve

possible contradictions.

WFSX was chosen among the other semantics for
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extended logic programs, answer-sets [11] and three-

valued strong negation [3], because none of the others

enjoy the property of relevance [2, 3] for non-strati�ed

programs, i.e., they cannot have top-down querying

procedures for non-strati�ed programs. Instead, for

WFSX there exists a top-down proof procedure SLX

[2], which is correct with respect to the semantics1.

Cumulativity is also enjoyed by WFSX, i.e., if you

add a lemma then the semantics does not change (see

[2]). This property is important for speeding-up the

implementation. By memorizing intermediate lemmas

through tabling, the implementation of SLX greatly

improves. Answer-set semantics, however, is not cu-

mulative for non-strati�ed programs and thus cannot

use tabling.

The SLX top-down procedure for WFSX relies on

two independent kinds of derivations: T-derivations,

proving truth, and TU-derivations proving non-falsity,

i.e., truth or unde�nedness. Shifting from one to the

other is required for proving a default literal not L: the

T-derivation of not L succeeds if the TU-derivation of

L fails; the TU-derivation of not L succeeds if the T-

derivation of L fails. Moreover, the T-derivation of

not L also succeeds if the T-derivation of :L succeeds,

and the TU-derivation of L fails if the T-derivation of

:L succeeds (thus taking into account the coherence

principle).

The SLX procedure is amenable to a simple Pro-

log implementation [2] that consists in pre-processing

WFSX programs and mapping them into WFS pro-

grams through the T-TU transformation [6]. This

transformation is linear and essentially doubles the

number of program clauses. To guarantee termination,

suitable rules are introduced that prune the search

space and eliminate both cyclic positive recursion and

cyclic negative recursion. Then, the transformed pro-

gram can be executed in XSB, an e�cient logic pro-

gramming system which implements the WFS with

tabling, and subsumes Prolog. Tabling in XSB con-

sists in memoizing intermediate lemmas, and in prop-

erly dealing with non-strati�cation according to WFS.

Tabling is important in learning, where computations

are often repeated for testing the coverage or otherwise

of examples.

1Though WFSX is not truth-functional (i.e., the truth-value

of any formula does not depend only on the truth-value of its

subformulas as expressed by the truth table of the logical connec-

tives) any extended logic program under WFSX can be trans-

formed into an equivalent program under WFS through the T-

TU transformation [6, 2] which is truth-functional. This trans-

formation is used for the implementation.

3 Learning in a Three-valued

Setting

In real-world problems, complete information about

the world is impossible to achieve and it is necessary

to reason and act on the basis of the available partial

information. In situations of incomplete knowledge, it

is important to distinguish between what is true, what

is false, and what is unknown or unde�ned.

Such situation occurs, for example, when an agent

incrementally gathers information from the surround-

ing world and has to select its own actions on the basis

of such acquired knowledge. If the agent learns in a

two-valued setting, it can encounter the problems that

have been highlighted in [8]. When learning in a spe-

ci�c to general way, it will learn a cautious de�nition

for the target concept and it will not be able to dis-

tinguish what is false from what is not yet known (see

�gure 1a). Supposing the target predicate represents

the allowed actions, then the agent will not distinguish

forbidden actions from actions with an unknown out-

come and this can restrict the agent acting power. If

the agent learns in a general to speci�c way, instead, it

will not know the di�erence between what is true and

what is unknown (�gure 1b) and, therefore, it can try

actions with an unknown outcome. Rather, by learn-

ing in a three-valued setting, it will be able to distin-

guish between allowed actions, forbidden actions, and

actions with an unknown outcome (�gure 1c). In this

way, the agent will know which part of the domain

needs to be further explored and will not try actions

with an unknown outcome unless it is trying to expand

its knowledge.

Figure 1: (taken from [8])(a,b): two-valued setting,

(c): three-valued setting

Learning in a three-valued setting requires the adop-

tion of a more expressive class of programs to be

learned. This class can be represented, we have seen,

by means of extended logic programs under the well-

founded semantics extended with explicit negation

WFSX [2, 3, 23].

We therefore consider a new learning problem where

we want to learn an extended logic program from a
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background knowledge that is itself an extended logic

program and from a set of positive and a set of nega-

tive examples in the form of ground facts for the target

predicates. A learning problem for extended logic pro-

grams was �rst introduced in [13] where the notion of

coverage was de�ned by means of truth in the answer-

set semantics. Here the problem de�nition is modi�ed

to consider coverage as truth in the WFSX semantics

De�nition 2 (Learning ELP)

Given:

� a set P of possible (extended logic) programs

� a set E+ of positive examples (ground facts)

� a set E� of negative examples (ground facts)

� a non-contradictory extended logic program B

(background knowledge)

Find:

� an extended logic program P 2 P such that

� 8e 2 E+
[:E�, B[P j=WFSX e (complete-

ness)

� 8e 2 :E+
[ E�, B [ P 6j=WFSX e (consis-

tency)

where :E = f:eje 2 Eg.

We suppose that the training sets E+ and E� are dis-

joint. The theory that is learned will contain rules of

the following form:

p( ~X) Body+( ~X)

:p( ~X) Body�( ~X)

for every target predicate p, where ~X stands for a tu-

ple of arguments. In order to satisfy the completeness

requirement, the rules for p will entail all positive ex-

amples while the rules for :p will entail all (explicitly

negated) negative examples. The consistency require-

ment is satis�ed by ensuring that both sets of rules do

not entail instances of the opposite element in either

of the training sets.

Note that, in the case of extended logic programs,

the consistency with respect to the training set is

equivalent to the requirement that the program is

non-contradictory on the examples. This require-

ment is enlarged to require that the program be non-

contradictory also for unseen atoms, i.e., B [ P 6j=

L ^ :L for every atom L of the target predicates.

We say that an example e is covered by program P if

P j=WFSX e. Since the SLX procedure is correct with

respect to WFSX, even for contradictory programs,

coverage of examples is tested by verifying whether

P `SLX e.

Our approach to learning with extended logic pro-

grams consists in initially applying conventional ILP

techniques to learn a positive de�nition from E+ and

E� and a negative de�nition from E� and E+. In

these techniques, the SLX procedure substitutes the

standard Logic Programming proof procedure to test

the coverage of examples.

The ILP techniques to be used depend on the level of

generality that we want to have for the two de�nitions:

we can look for the Least General Solution (LGS) or

the Most General Solution (MGS) of the problem of

learning each concept and its complement. In practice,

LGS and MGS are not unique and real systems usually

learn theories that are not the least nor most general,

but approximate one of the two. In the following, these

concepts will be used to signify approximations of the

theoretical concepts.

LGSs can be found by adopting one of the bottom-

up methods such as relative least general generaliza-

tion (rlgg) [24] and the GOLEM system [22], inverse

resolution [21] or inverse entailment [16]. Conversely,

MGSs can be found by adopting a top-down re�ning

method (cf. [17]) and a system such as FOIL [26] or

Progol [20].

A system has been implemented that is able to solve

the above mentioned problem. The system is called

LIVE (Learning in a three-Valued Environment) and

is described in details in [15]. In particular, the system

learns a de�nition for both the concept and its opposite

and is parametric in the procedure used for learning

each de�nition: it can adopt either a top-down algo-

rithm, using beam-search and heuristic necessity stop-

ping criterion, or a bottom-up algorithm, that exploits

the GOLEM system.

4 Strategies for Eliminating

Learned Contradictions

Even for a single agent, the de�nitions of the posi-

tive and negative concepts may overlap. In this case,

we have a contradictory classi�cation for the objec-

tive literals in the intersection. In order to resolve the

conict, we must distinguish two types of literals in
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the intersection: those that belong to the training set

and those that do not, also dubbed unseen atoms (see

�gure 2).

In the following, we discuss how to resolve the con-

ict in the case of unseen literals and of literals in the

training set. From now onwards, ~X stands for a tuple

of arguments.

Contradiction on Unseen Literals For unseen

literals, the conict is resolved by classifying them

as unde�ned, since the arguments supporting the two

classi�cations are equally strong. Instead, for literals

in the training set, the conict is resolved by giving

priority to the classi�cation stipulated by the training

set. In other words, literals in a training set that are

covered by the opposite de�nition are made as excep-

tions to that de�nition. For unseen literals in the in-

Figure 2: Interaction of the positive and negative def-

initions on exceptions.

tersection, the unde�ned classi�cation is obtained by

making opposite rules mutually defeasible, or \non-

deterministic" (see [5, 2]). The target theory is conse-

quently expressed in the following way:

p( ~X)  p+( ~X); not :p( ~X)

:p( ~X)  p�( ~X); not p( ~X)

where p+( ~X) and p�( ~X) are, respectively, the de�ni-

tions learned for the positive and the negative concept,

obtained by renaming the positive predicate by p+ and

its explicit negation by p�. From now onwards, we will

indicate with these superscripts the de�nitions learned

separately for the positive and negative concepts.

We want p( ~X) and :p( ~X) each to act as an excep-

tion to the other. In case of contradiction, this will

introduce mutual circularity, and hence unde�nedness

according toWFSX. For each literal in the intersection

of p+ and p�, there are two stable models, one con-

taining the literal in its three-valued version, the other

containing the opposite literal. According to WFSX,

there is a third (partial) stable model where both liter-

als are unde�ned, i.e., no literal p( ~X), :p( ~X), not p( ~X)

or not :p( ~X) belongs to the model. This is the least

partial stable model and represents the well-founded

model of the theory. The resulting program contains

a recursion through negation (i.e., it is non-strati�ed)

but the top-down SLX procedure does not go into a

loop because it comprises mechanisms for loop detec-

tion and treatment, which are implemented by XSB

through tabling.

Note that p+( ~X) and p�( ~X) can display as well the

unde�ned truth value, either because the original back-

ground is non-strati�ed or because they rely on some

de�nition learned for another target predicate, which

is of the form above and therefore non-strati�ed. In

this case, three-valued semantics can produce literals

with the value \unde�ned", and one or both of p+( ~X)

and p�( ~X) may be unde�ned. If one is unde�ned and

the other is true, then the rules above make both p

and :p unde�ned, since the negation by default of an

unde�ned literal is still unde�ned. However, this is

counter-intuitive: a de�ned value should prevail over

an unde�ned one.

In order to handle this case, we suppose that a sys-

tem predicate undef (X ) is available2, that succeeds if

and only if the literal X is unde�ned. So we add the

following two rules to the de�nitions for p and :p:

p( ~X)  p+( ~X); undef (p�( ~X))

:p( ~X)  p�( ~X); undef (p+( ~X))

According to these clauses, p( ~X) is true when p+( ~X)

is true and p�( ~X) is unde�ned, and conversely.

Contradiction on Examples Theories are tested

for consistency on all the literals of the training set,

so we should not have a conict on them. However,

in some cases, it is useful to relax the consistency re-

quirement and learn clauses that cover a small amount

of counter examples. This is advantageous when it

would be otherwise impossible to learn a de�nition for

the concept, because no clause is contained in the lan-

guage bias that is consistent, or when an overspeci�c

de�nition would be learned, composed of very many

speci�c clauses instead of a few general ones. In such

cases, the de�nitions of the positive and negative con-

cepts may cover examples of the opposite training set.

2The undef predicate can be implemented through nega-

tion NOT under CWA (NOT P means that P is false

whereas not means that P is false or unde�ned), i.e.,

undef (P ) NOT P;NOT (not P ).
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These must then be considered exceptions and treated

as abnormalities.

Exceptions are due to abnormalities in the opposite

concept. In the latter case, if exceptions form a class,

it may be possible to learn a de�nition for it, provided

that we have data on their common properties and the

language bias so allows.

Let us start with the case where some literals cov-
ered by a de�nition belong to the opposite training
set. We want of course to classify these according to
the classi�cation given by the training set, by mak-
ing such literals exceptions. To handle exceptions to
classi�cation rules, we add a negative default literal of

the form not abnormp( ~X) (resp. not abnorm
:p( ~X))

to the rule for p( ~X) (resp. :p( ~X)), to express possi-
ble abnormalities arising from exceptions. Then, for
every exception p(~t), an individual fact of the form

abnormp(~t) (resp. abnorm
:p(~t)) is asserted so that

the rule for p( ~X) (resp. :p( ~X)) does not cover the ex-
ception, while the opposite de�nition still covers it. In
this way, exceptions will �gure in the model of the the-
ory with the correct truth value. The learned theory
thus takes the form:

p( ~X)  p
+( ~X); not abnormp( ~X); not :p( ~X) (1)

:p( ~X)  p
�( ~X); not abnorm

:p( ~X); not p( ~X) (2)

p( ~X)  p
+( ~X); undef (p�( ~X)) (3)

:p( ~X)  p
�( ~X); undef (p+( ~X)) (4)

Abnormality literals have not been added to the rules

for the unde�ned case because a literal which is an ex-

ception is also an example, and so must be covered by

its respective de�nition; therefore it cannot be unde-

�ned.

Notice that if E+ and E� overlap for some example

p(~t), then p(~t) is classi�ed false by the learned theory.

Individual facts of the form abnormp( ~X) are then

used as examples for learning a de�nition for abnormp

and abnorm
:p, as in [13, 14]. In turn, exceptions to the

de�nitions of abnormp and abnorm
:p may be found

and so on, thus leading to a hierarchy of exceptions.

These techniques have been implemented in the sys-

tem LIVE: the system learns a de�nition for a concept

and its opposite and then combines them by means of

non-deterministic rules. Moreover, the system is able

to identify exceptions and to learn a hierarchical de�-

nition for them.

Example 3 Consider a domain containing entities

a; b; c; d; e; f and suppose the target concept is flies.

Let the background knowledge be:

bird(a) has wings(a)

jet(b) has wings(b)

angel(c) has wings(c) has limbs(c)

penguin(d) has wings(d) has limbs(d)

dog(e) has limbs(e)

cat(f) has limbs(f)

and let the training set be:

E+ = fflies(a)g E� = fflies(d); f lies(e)g

A possible learned theory is:

flies(X)  flies+(X); not abflies(X);

not :flies1(X)

:flies(X)  flies�(X); not flies(X)

flies(X)  flies+(X); undef(flies�(X))

:flies(X)  flies�(X); undef(flies+(X))

abflies(d)

where flies+(X) has wings(X) and

flies(X)� has limbs(X) Moreover, the abnor-

mality fact abflies(d) can be generalized to obtain

abflies(X) penguin(X)

Figure 3: Coverage of de�nitions for opposite concepts

The example above and �gure 3 show all the various

cases for a literal when learning in a three-valued set-

ting. a and e are examples that are consistently cov-

ered by the de�nitions. b and f are unseen literals on

which there is no contradiction. c and d are literals

where there is contradiction, but c is classi�ed as un-

de�ned whereas d is considered as an exception to the

positive de�nition and is classi�ed as negative.

Extended logic programs can be used as well to rep-
resent n disjoint classes p1; : : : ; pn. When one has to
learn n disjoint classes, the training set contains a
number of facts for a number of predicates p1; : : : ; pn.
Let p+

i
be a de�nition learned by using, as positive ex-

amples, the literals in the training set classi�ed as be-
longing to pi and, as negative examples, all the literals
for the other classes. Then the following rules ensure
consistency on unseen literals and on exceptions:
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p1( ~X)  p+1 (
~X); not abp1( ~X); not p2( ~X); : : : ; not pn( ~X)

p2( ~X)  p+2 (
~X); not abp2( ~X); not p1( ~X); not p3( ~X);

: : : ; not pn( ~X)
� � �  � � �

pn( ~X)  p+n ( ~X); not abpn( ~X); not p1( ~X);

: : : ; not pn�1( ~X)

p1( ~X)  p+1 (
~X); undef(p+2 (

~X)); : : : ; undef(p+n ( ~X))

p2( ~X)  p+2 (
~X); undef(p+1 (

~X)); undef(p+3 (
~X));

: : : ; undef(p+n ( ~X))
� � �  � � �

pn( ~X)  p+n ( ~X); undef(p+1 (
~X)); : : : ; undef(p+

n�1(
~X))

regardless of the algorithm used for learning the p+
i
.

4.1 Multiple Source Contradiction

In the single source case above, we showed how to deal

with contradictions arising from learning conicting

rules for a predicate and its explicit negation, origi-

nating in the same knowledge source. Here we con-

sider and handle contradictions arising from combin-

ing rules obtained from distinct knowledge sources or

on distinct occasions. Let us dub it multiple source

contradiction. This kind of situation may occur in the

settings of:

� multiple, separately learning agents with dis-

tinct background knowledge, or multiple, cloned,

agents with the same background knowledge;

� one agent learning separate rules from heteroge-

nous data sources;

� one agent learning rules from uniform but sepa-

rate data sets, (either because of their size, or in

order to bene�t from parallelism, or both);

� one agent learning separate sets of rules on di�er-

ent occasions;

� one agent learning separate sets of rules by em-

ploying multiple strategies or systems;

� a combination of these settings.

Generalizing the Single Source Technique The

single source technique of section 4 can be easily gen-

eralized to multiple sources for learning p and :p. Let

there be s sources for p and :p. We now have clauses

1-4 previously introduced, and for i from 1 to s:

p+( ~X)  p+
i
( ~X) (5)

p�( ~X)  p�
i
( ~X) (6)

abnormp( ~X)  abnorm
p
+

i

( ~X) (7)

abnorm
:p( ~X)  abnorm

p
�

j

( ~X) (8)

This means that whenever any two sources conict on

p for ~X, both p( ~X) and :p( ~X) become unde�ned.

Also, any abnormality found by one source is, ipso

facto, an abnormality for them all. Note that some

sources may provide information only about positive

or negative information, thus the de�nition for only

one of p+
i
or p�

i
may be available.

Conicts and Preferences However, a new situa-

tion may now arise which could not do so in the single

source case: we may prefer one knowledge source over

another, e.g., we may trust one source all the more

because of its learning method, or because it has more

recent or more trustworthy information.

To achieve this, and inspired by the program update

method of [1], we generalize clause 5 and 6 above to

the combination rules :

p+( ~X)  p+
i
( ~X); not reject(p+

i
( ~X))

p�( ~X)  p�
i
( ~X); not reject(p�

i
( ~X))

Predicate reject expresses when one knowledge source,

say i, is rejected by another, say j, with respect to p,

through the reject rules3:

reject(p+
i
( ~X))  p�

j
( ~X)

reject(p�
i
( ~X))  p+

j
( ~X)

It may as well be the case that the positive and neg-

ative information provided by source i are rejected by

two di�erent sources k and l.

reject(p+
i
( ~X))  p�

k
( ~X)

reject(p�
i
( ~X))  p+

l
( ~X)

It can also be the case that only one or even none

of these clauses is present for source i, in the case in

which no source is preferred to i.

But, naturally, rejection may be made to occur for a

variety of reasons, and the bodies of clauses for reject

will then observe the corresponding conditions.

As for the case of a single source, two or more knowl-

edge sources may reject one another's conicting con-

clusions. Instead of treating mutually contradictory

3If we want rejection to be as strong as what is rejected we

may qualify these rules by appealing to the non unde�nedness

of the rejector.
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information as unde�ned, as done by means of clauses

1-4, we can treat mutually contradictory information

as false by means of appropriate reject rules, both in

the single source case and in the multiple source case.

Preferring false to unde�ned in removing a contradic-

tion amounts to ignoring the clause instances leading

to it, so that the usual CWA is adopted symmetrically

with respect to positive and negative information [3].

Conicting conclusions of two knowledge sources i

and j can be made mutually false instead of unde�ned

by means of the following instances of reject rules:

reject(p+
i
( ~X))  p�

j
( ~X)

reject(p�
i
( ~X))  p+

j
( ~X)

reject(p+
j
( ~X))  p�

i
( ~X)

reject(p�
j
( ~X))  p+

i
( ~X)

If symmetry is not desired, one can remove self-

contradiction by opting for only some of these clauses.

Let us now consider an example where a knowledge

source is preferred over another.

Example 4 Suppose k is the boss of i, and that they

may have distinct, separately learnt, opinions about p.

We may combine together their knowledge, by adding

reject(p+
i
( ~X))  p�

k
( ~X)

reject(p�
i
( ~X))  p+

k
( ~X)

to ensure that a conclusion arrived at by the boss wins

over that of a contrary conclusion by the subordinate.

For the case of a colleague j of i, we may choose to

eliminate all mutual contradictions, by means of:

reject(p+
i
( ~X))  p�

j
( ~X)

reject(p�
i
( ~X))  p+

j
( ~X)

reject(p�
j
( ~X))  p+

i
( ~X)

reject(p+
j
( ~X))  p�

i
( ~X)

Notice that, when learning, an agent has access only to

its background knowledge but, when the knowledge is

combined, it may access as well the de�nitions of back-

ground or target predicates of other agents. In some

cases it may happen that a contradiction arises exactly

because, after the combination of the learned rules, an

agent may use the knowledge learned by another agent

as background knowledge.

Example 5 Suppose agent i has non-contradictorily

learned from examples that

p+
i
( ~X)  a( ~X)

p�
i
( ~X)  b( ~X)

Recall that, before knowledge sources are combined,

only access to self knowledge is possible.

Further, suppose next that j has learned the rules

aj( ~X)  :c( ~X)

bj( ~X)  :c( ~X)

and that the background acknowledges the fact

:c(golem)

When the rules from i and j are combined, i and j may

access each conclusion and the background knowledge

too. Now a contradiction arises in the knowledge of

i regarding p+
i
(golem) and p�

i
(golem). If we want to

resolve this contradiction by preferring false over un-

de�ned, we can use the following reject rules

reject(p+
i
( ~X))  p�

i
( ~X)

reject(p�
i
( ~X))  p+

i
( ~X)

5 Related Work

The adoption of negation in learning has been investi-

gated by many authors. Many propositional learning

systems learn a de�nition for both the concept and

its opposite. For example, systems that learn decision

trees, as c4.5 [25], or decision rules, as the AQ family of

systems [19], are able to solve the problem of learning a

de�nition for n classes, that generalizes the problem of

learning a concept and its opposite. However, in most

cases the de�nitions learned are assumed to cover the

whole universe of discourse: no unde�ned classi�ca-

tion is produced, any instance is always classi�ed as

belonging to one of the classes. Instead, we classify as

unde�ned the instances for which the learned de�ni-

tions do not give an unanimous response.

The problems raised by negation and uncertainty in

concept-learning, and Inductive Logic Programming in

particular, were pointed out in some previous work

(e.g., [4, 8, 7]). For concept learning, the use of

the CWA for target predicates is no longer accept-

able because it does not allow to distinguish between

what is false and what is unde�ned. De Raedt and

Bruynooghe [8] proposed to use a three-valued logic

8



(later on formally de�ned in [7]) and an explicit de�-

nition of the negated concept in concept learning. This

technique has been integrated within the CLINT sys-

tem, an interactive concept-learner. In the resulting

system, both a positive and a negative de�nition are

learned for a concept (predicate) p, stating, respec-

tively, the conditions under which p is true and those

under which it is false. The de�nitions are learned

so that they do not produce an inconsistency on the

examples. In order to take care of consistency on un-

seen examples, CLINT asserts an integrity constraint

pandnot p! false and takes care that the constraint

is never violated. Di�erently from this system, we are

able to learn de�nitions for exceptions to both con-

cepts. Furthermore, we are able to cope with two kinds

of negation, the explicit one used to state what is false,

and the default (defeasible) one used to state what can

be assumed false.

The system LELP (Learning Extended Logic Pro-

grams) [13] learns extended logic programs under

answer-set semantics. LELP is able to learn non-

deterministic default rules with a hierarchy of excep-

tions. The learning problem that is presented in [13]

is equivalent to the one presented in this paper when

the background is a strati�ed extended logic program.

However, when the background is a non-strati�ed ex-

tended logic program, the adoption of a well-founded

semantics gives a number of advantages with respect

to the answer-set semantics. For non-strati�ed back-

ground theories, answer-sets semantics does not enjoy

the structural property of relevance [9], like ourWFSX

does, and so they cannot employ any top-down proof

procedure. Furthermore, answer-set semantics is not

cumulative [9], i.e., if you add a lemma then the se-

mantics can change, and thus the improvement in e�-

ciency given by tabling cannot be obtained. Moreover,

by means of WFSX, we have introduced a method to

choose one concept when the other is unde�ned which

they cannot replicate because in the answer-set seman-

tics one has to compute eventually all answer-sets to

�nd out if a literal is unde�ned.

Another di�erence consists in the fact that LELP

learns a de�nition only for the concept that has the

highest number of examples in the training set. It

learns both positive and negative concepts only when

the number of positive examples is close to that of

negative ones (in 60 %-40 % range), while we always

learn both concepts.

6 Conclusions

The two-valued setting that has been considered in

most work on ILP and Inductive Concept Learning in

general is not su�cient in many cases where we need

to represent real world data. This is for example the

case of an agent that has to learn the e�ect of the

actions it can perform on the domain by performing

experiments. Such an agent needs to learn a de�nition

for allowed actions, forbidden actions and actions with

an unknown outcome and therefore it needs to learn

in a richer three-valued setting.

In order to adopt such a setting in ILP, the class

of extended logic programs under the well-founded se-

mantics with explicit negation (WFSX ) is adopted as

the representation language. This language allows two

kinds of negation, default negation plus a second form

of negation called explicit, that is used in order to rep-

resent explicitly negative information. Adopting ex-

tended logic programs in ILP prosecutes the general

trend in Machine Learning of extending the represen-

tation language in order to overcome the limits of ex-

isting systems.

Contradictions may arise in the programs that are

learned. We consider two cases: in the �rst the con-

tradiction arises in the rules coming from a single

source or agent, while in the second the contradiction

arises when combining the rules coming from multiple

sources or agents.

In the case of a single source, the de�nition for the

positive and negative concept may overlap and the in-

consistency is resolved in a di�erent way for atoms in

the training set and for unseen atoms: atoms in the

training set are considered as exceptions, while un-

seen atoms are considered as unknown. The di�erent

behaviour is obtained by employing negation by de-

fault in the de�nitions: default abnormality literals

are used in order to consider exceptions to rules, while

non-deterministic rules are used in order to obtain an

unknown value for unseen atoms.

The techniques used for removing contradiction

from the single source case are generalized for the case

of multiple sources. In this case, a predicate reject is

used that expresses when a knowledge source, say i, is

rejected by another, say j.
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