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Abstract

We show that the adoption of a three-valued setting for inductive concept learning is particularly useful for

learning. Distinguishing between what is true, what is false and what is unknown can be useful in situations

where decisions have to be taken on the basis of scarce information.

In order to learn in a three-valued setting, we adopt Extended Logic Programs (ELP) under a Well-Founded

Semantics with explicit negation (WFSX ) as the representation formalism for learning. Standard Inductive Logic

Programming techniques are then employed to learn the concept and its opposite.

The learnt de�nitions of the positive and negative concepts may overlap. In the paper, we handle the issue of

combination of possibly contradictory learnt de�nitions, and we show strategies for theory re�nement.

1 Introduction

Most work on inductive concept learning considers a two-valued setting. In such a setting, what is not entailed

by the learned theory is considered false, on the basis of the Closed World Assumption (CWA) [21]. However,

in practice, it is more often the case that we are con�dent about the truth or falsity of only a limited number

of facts, and are not able to draw any conclusion about the remaining ones, because the available information is

too scarce. Like it has been pointed out in [5, 4], this is typically the case of an autonomous agent that, in an

incremental way, gathers information from its surrounding world. Such an agent needs to distinguish between

what is true, what is false and what is unknown, and therefore needs to learn within a richer three-valued setting.

For this purpose, we adopt the class of Extended Logic Programs (ELP, for short, in the sequel) as the rep-

resentation language for learning in a three-valued setting. ELP contain two kinds of negation: default negation

plus a second form of negation, called explicit, whose combination has been recognized as a very expressive means

of knowledge representation. The adoption of ELP allows one to deal directly in the language with incomplete

knowledge, with exceptions through default negation, as well as with truly negative information through explicit

negation [17, 1, 2]. For instance, in [1, 3, 12] it is shown how ELP are applicable to such diverse domains of knowl-

edge representation as concept hierarchies, reasoning about actions, belief revision, counterfactuals, diagnosis,

updates and debugging.

In this work, we �rst discuss various approaches and strategies that can be adopted in Inductive Logic Pro-

gramming (ILP, henceforth) for learning with a three-valued settings.

As in [7], the learning process starts from a set of positive and negative examples plus some background

knowledge in the form of an extended logic program. Positive and negative information in the training set are

treated equally, by learning a de�nition for both a positive concept p and its (explicitly) negated concept :p by

means of standard ILP techniques. Coverage of examples is tested by adopting the SLX interpreter for ELP under

the Well-Founded Semantics with explicit negation (WFSX ) de�ned in [1].

Indeed, separately learned positive and negative concepts may con
ict and, in order to handle possible contra-

diction, contradictory learned rules are defused by making the learned de�nition for a positive concept p depend on

the default negation of the negative concept :p, and vice-versa. I.e., each de�nition is introduced as an exception

to the other. Moreover, the intersection of the solutions learned can provide useful hints for theory re�nement.
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2 Extended Logic Programs

An extended logic program is a �nite set of rules of the form:

L0 L1; : : : ; Ln

with n � 0, where L0 is an objective literal, L1; : : : ; Ln are literals and each rule stands for the sets of its ground

instances. Objective literals are of the form A or :A, where A is an atom, while a literal is either an objective

literal L or its default negation not L. :A is said the opposite literal of A (and vice versa), where ::A = A, and

not A the complementary literal of A (and vice versa). By not fa1; : : : ; ang we mean fnot a1; : : : ; not ang where

ais are literals. By : fa1; : : : ; ang we mean f:a1; : : : ;:ang. The set of all objective literals of a program P is

called its extended Herbrand base and is represented as HE(P ). An interpretation I of an extended program P is

denoted by T [ not F , where T and F are disjoint subsets of HE(P ). Objective literals in T are said to be true

in I, objective literals in F are said to be false in I and those in HE(P )� I are said to be unde�ned in I. We

introduce in the language the proposition u that is unde�ned in every interpretation I.

The WFSX extends the well founded semantics (WFS) [22] for normal logic programs to the case of extended

logic programs. WFSX is obtained fromWFS by adding the coherence principle relating the two forms of negation:

\if L is an objective literal and :L belongs to the model of a program, then also not L belongs to the model", i.e.,

:L! not L. See [1, 6] for a de�nition of WFSX.

Let us now show an example of the WFSX semantics in the case of a simple program.

Example 1 Consider the following extended logic program:

:a  : b not b:

a  b:

A WFSX model of this program is M = f:a; not :b; not ag: :a is true, a is false (i.e., both :a and not a are

in the well-founded model), :b is false (there are no rules for :b) and b is unde�ned. Notice that not a is in the

model since it is implied by :a via the coherence principle.

WFSX provides a semantics for the class of extended logic programs: the set of non-strati�ed programs, i.e., the

set of programs that contain recursion through default negation.

Non-strati�ed programs are very useful for knowledge representation because theWFSX semantics assigns the

truth value unde�ned to the literals involved in the recursive cycle through negation. In section 4 we will employ

non strati�ed programs in order to resolve possible contradictions.

For WFSX there exists a top-down proof procedure SLX [1], which is correct with respect to the semantics.

3 Learning in a Three-valued Setting

In real-world problems, complete information about the world is impossible to achieve and it is necessary to reason

and act on the basis of the available partial information. In situations of incomplete knowledge, it is important

to distinguish between what is true, what is false, and what is unknown or unde�ned.

Learning in a three-valued setting requires the adoption of a more expressive class of programs to be learned.

This class can be represented, we have seen, by means of extended logic programs under the well-founded semantics

extended with explicit negation WFSX [1, 2, 17].

We therefore consider a new learning problem where we want to learn an extended logic program from a

background knowledge that is itself an extended logic program and from a set of positive and a set of negative

examples in the form of ground facts for the target predicates.

Our approach to learning with extended logic programs consists in initially applying conventional ILP tech-

niques to learn a positive de�nition from E+ and E� and a negative de�nition from E� and E+. In these

techniques, the SLX procedure substitutes the standard Logic Programming proof procedure to test the coverage

of examples (see [9]).

The ILP techniques to be used depend on the level of generality that we want to have for the two de�nitions:

we can look for the Least General Solution (LGS) or the Most General Solution (MGS) of the problem of learning

each concept and its complement. In practice, LGS and MGS are not unique and real systems usually learn

theories that are not the least nor most general, but approximate one of the two. In the following, these concepts

will be used to signify approximations of the theoretical concepts.

LGSs can be found by adopting one of the bottom-up methods such as relative least general generalization

(rlgg) [18] and the GOLEM system [16], inverse resolution [15] or inverse entailment [10]. Conversely, MGSs can

be found by adopting a top-down re�ning method (cf. [11]) and a system such as FOIL [20] or Progol [14].

A system has been implemented that is able to solve the above mentioned problem. The system is called

LIVE (Learning in a three-Valued Environment) and is described in detail in [9]. In particular, the system learns
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a de�nition for both the concept and its opposite and is parametric in the procedure used for learning each

de�nition: it can adopt either a top-down algorithm, using beam-search and heuristic necessity stopping criterion,

or a bottom-up algorithm, that exploits the GOLEM system. The code of the overall system can be downloaded

from the site: http://www-lia.deis.unibo.it/Software/LIVE/.

4 Strategies for Eliminating Learned Contradictions

The de�nitions learned for the positive and negative concepts may overlap. In this case, we have a contradictory

classi�cation for the objective literals in the intersection. In order to resolve the con
ict, we must distinguish

two types of literals in the intersection: those that belong to the training set and those that do not, also dubbed

unseen atoms (see �gure 1).

In the following, we discuss how to resolve the con
ict in the case of unseen literals and of literals in the

training set. From now onwards, ~X stands for a tuple of arguments.

Contradiction on Unseen Literals For unseen literals, the con
ict is resolved by classifying them as

unde�ned, since the arguments supporting the two classi�cations are equally strong. Instead, for literals in the

training set, the con
ict is resolved by giving priority to the classi�cation stipulated by the training set. In other

words, literals in a training set that are covered by the opposite de�nition are made as exceptions to that de�nition.

For unseen literals in the intersection, the unde�ned classi�cation is obtained by making opposite rules mutually

Figure 1: Interaction of the positive and negative de�nitions on exceptions.

defeasible, or \non-deterministic" (see [3, 1]). The target theory is consequently expressed in the following way:

p( ~X)  p+( ~X); not :p( ~X)

:p( ~X)  p
�

( ~X); not p( ~X)

where p+( ~X) and p�( ~X) are, respectively, the de�nitions learned for the positive and the negative concept,

obtained by renaming the positive predicate by p+ and its explicit negation by p�. From now onwards, we will

indicate with these superscripts the de�nitions learned separately for the positive and negative concepts.

We want p( ~X) and :p( ~X) each to act as an exception to the other. In case of contradiction, this will introduce

mutual circularity, and hence unde�nedness according to WFSX. For each literal in the intersection of p+ and

p�. According to WFSX, there is a (partial) stable model where no literal p( ~X), :p( ~X), not p( ~X) or not :p( ~X)

belongs to the model. This is the least partial stable model and represents the well-founded model of the theory.

Contradiction on Examples Theories are tested for consistency on all the literals of the training set, so we

should not have a con
ict on them. However, in some cases, it is useful to relax the consistency requirement and

learn clauses that cover a small amount of counter examples. This is advantageous when it would be otherwise

impossible to learn a de�nition for the concept, because no clause is contained in the language bias that is

consistent, or when an overspeci�c de�nition would be learned, composed of very many speci�c clauses instead of

a few general ones. In such cases, the de�nitions of the positive and negative concepts may cover examples of the

opposite training set. These must then be considered exceptions and treated as abnormalities.

Exceptions are due to abnormalities in the opposite concept. To handle exceptions to classi�cation rules, we

add a negative default literal of the form not abnormp( ~X) (resp. not abnorm
:p( ~X)) to the rule for p( ~X) (resp.

:p( ~X)), to express possible abnormalities arising from exceptions. Then, for every exception p(~t), an individual

fact of the form abnormp(~t) (resp. abnorm
:p(~t)) is asserted so that the rule for p( ~X) (resp. :p( ~X)) does not

cover the exception, while the opposite de�nition still covers it. In this way, exceptions will �gure in the model of
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the theory with the correct truth value. The learned theory thus takes the form:

p( ~X)  p
+
( ~X); not abnormp( ~X); not :p( ~X) (1)

:p( ~X)  p
�

( ~X); not abnorm
:p( ~X); not p( ~X) (2)

Individual facts of the form abnormp( ~X) are then used as examples for learning a de�nition for abnormp and

abnorm
:p, as in [7, 8]. In turn, exceptions to the de�nitions of abnormp and abnorm

:p may be found and so on,

thus leading to a hierarchy of exceptions.

These techniques have been implemented in the system LIVE: the system learns a de�nition for a concept and

its opposite and then combines them by means of non-deterministic rules. Moreover, the system is able to identify

exceptions and to learn a hierarchical de�nition for them.

Figure 2: Coverage of de�nitions for opposite concepts

The example above and �gure 2 show all the various cases for a literal when learning in a three-valued setting.

a and e are examples that are consistently covered by the de�nitions. b and f are unseen constants on which there

is no contradiction. c and d are constants where there is contradiction, but c is classi�ed as unde�ned whereas d

is considered as an exception to the positive de�nition and is classi�ed as negative.

5 Strategies for Theory Re�nement

As we have shown, when learning a de�nition for a concept p and its opposite :p (separately or not), it can be

the case that some contradiction arises for an unseen literal. Figure 3 depicts various cases which may occur.

Identifying such contradictions is useful in interactive theory revision, where the system can ask an oracle to

classify the literal(s) leading to contradiction, and accordingly revise the least general solutions (LGS) or most

general solutions (MGS) for p and for :p. Detecting uncovered literals thus points to theory extension.

Figure 3: Intersection of Learnt Solutions

Further information on unseen contradictory literals for the various cases can help in improving learnt rules.

Area A represents contradictions between the two least general solutions, for a concept p and its opposite

:p, i.e., it represents unseen literals satisfying the conjunction p+
LGS

( ~X); p�
LGS

( ~X). This is the strongest form of

contradiction, and unseen literals in region A should be given priority when querying the oracle.

Areas B represent contradictions between most general solutions for concept p+ and p� which are outside the

least general solution for one concept, but inside the least general solution for the other. I.e., they represent unseen

literals satisfying the conjunction p+
MGS

( ~X); p�
LGS

( ~X); not p+
LGS

( ~X) or the conjunction p�
MGS

( ~X); p+
LGS

( ~X);

not p�
LGS

( ~X). For literals satisfying the �rst conjunction, the system has to revise most general solution for p+

if the oracle classi�es the literal as negative and the least and most general solution for p� if the oracle classi�es

the literal as positive; vice-versa for the literals satisfying the second conjunction.

Though less strongly contradictory than area A, areas B are more strongly so than areas C, and so merit

attention next when querying the oracle.
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Areas C represent contradictions between most general solutions for concept p and its opposite which are outside

both the least general solutions. I.e., it represents literals satisfying the conjunction p+
MGS

( ~X); not p+
LGS

( ~X);

p�
MGS

( ~X); not p�
LGS

( ~X). Identifying such contradictions can be useful in re�ning knowledge and bridging the gap

between most and least general solution for a concept. The system has to revise the most general solution for p+

if the oracle classi�es the atom as negative and for p� if the oracle classi�es the atom as positive, and vice-versa.

Finally, it is worth mentioning that other regions where a contradiction does not arise, namely D and E,

can be useful in guiding knowledge acquisition. New information about an unseen atom always increases knowl-

edge, and thus eventually requires knowledge re�nement or knowledge extension. However, among unseen lit-

erals not leading to contradiction, we can identify class D which can be more useful than E in bridging the

gap between least and most general solution. This area represents instances which satisfy the conjunction

p+
MGS

( ~X); not p+
LGS

( ~X); not p�
MGS

( ~X) or the conjunction p�
MGS

( ~X); not p�
LGS

( ~X); not p+
MGS

( ~X). If a literal

satisfying the former condition is classi�ed as negative by an oracle, then the most general solution for p+ has to

be revised, whereas if a literal satisfying the latter condition is classi�ed as positive by an oracle, then the most

general solution for p has to be revised.

It may be that learnt rules do not cover atoms and their negations for legitimate argument tuples. Accordingly,

a further area exists (the one outside the areas in �gure 3) which pinpoints cases of interest, leading to theory

extension (and subsequent re�nement where contradictions emerge).

6 Related Work

The adoption of negation in learning has been investigated by many authors. Many propositional learning systems

learn a de�nition for both the concept and its opposite. For example, systems that learn decision trees, as c4.5

[19], or decision rules, as the AQ family of systems [13], are able to solve the problem of learning a de�nition for n

classes, that generalizes the problem of learning a concept and its opposite. However, in most cases the de�nitions

learned are assumed to cover the whole universe of discourse: no unde�ned classi�cation is produced, any instance

is always classi�ed as belonging to one of the classes. Instead, we classify as unde�ned the instances for which the

learned de�nitions do not give an unanimous response.

For concept learning, the use of the CWA for target predicates is no longer acceptable because it does not

allow to distinguish between what is false and what is unde�ned [5, 4]: De Raedt and Bruynooghe [5] proposed

to use a three-valued logic (later on formally de�ned in [4]) and an explicit de�nition of the negated concept

in concept learning. This technique has been integrated within the CLINT system, an interactive concept-

learner. In the resulting system, both a positive and a negative de�nition are learned for a concept (predicate) p,

stating, respectively, the conditions under which p is true and those under which it is false. The de�nitions are

learned so that they do not produce an inconsistency on the examples. In order to take care of consistency on

unseen examples, CLINT asserts an integrity constraint pandnot p ! false and takes care that the constraint

is never violated. Di�erently from this system, we are able to learn de�nitions for exceptions to both concepts.

Furthermore, we are able to cope with two kinds of negation, the explicit one used to state what is false, and the

default (defeasible) one used to state what can be assumed false.

The system LELP (Learning Extended Logic Programs) [7] also learns extended logic programs. We di�er

from the system LELP [7] in two respects: �rst, we always learn a de�nition for a concept and its opposite from

examples, while LELP does so only when there is a near even number of positive and negative examples, second,

we adopt a well-founded semantics.

7 Conclusions

The two-valued setting that has been considered in most work on ILP and Inductive Concept Learning in general

is not su�cient in many cases where we need to represent real world data. This is for example the case of an

agent that has to learn the e�ect of the actions it can perform on the domain by performing experiments. Such

an agent needs to learn a de�nition for allowed actions, forbidden actions and actions with an unknown outcome

and therefore it needs to learn in a richer three-valued setting.

In order to adopt such a setting in ILP, the class of extended logic programs under the well-founded semantics

with explicit negation (WFSX ) is adopted as the representation language. This language allows two kinds of

negation, default negation plus a second form of negation called explicit, that is used in order to represent explicitly

negative information. Adopting extended logic programs in ILP prosecutes the general trend in Machine Learning

of extending the representation language in order to overcome the limits of existing systems.

Contradictions may arise in the programs that are learned. We consider two cases: in the �rst the contradiction

arises for unseen literals and is solved via non-deterministic rules, while in the second the contradiction arises on
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examples and is solved via default literals added as non-abnormality conditions to rules.
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