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Abstract. We discuss the adoption of a three-valued setting for inductive concept learning.

Distinguishing between what is true, what is false and what is unknown can be useful in situations

where decisions have to be taken on the basis of scarce, ambiguous, or downright contradictory

information. In a three-valued setting, we learn a de�nition for both the target concept and

its opposite, considering positive and negative examples as instances of two disjoint classes. To
this purpose, we adopt Extended Logic Programs (ELP) under a Well-Founded Semantics with

explicit negation (WFSX ) as the representation formalism for learning, and show how ELPs can

be used to specify combinations of strategies in a declarative way also coping with contradiction

and exceptions.

Explicit negation is used to represent the opposite concept, while default negation is used to

ensure consistency and to handle exceptions to general rules. Exceptions are represented by

examples covered by the de�nition for a concept that belong to the training set for the opposite

concept.

Standard Inductive Logic Programming techniques are employed to learn the concept and its
opposite. Depending on the adopted technique, we can learn the most general or the least general

de�nition. Thus, four epistemological varieties occur, resulting from the combination of most

general and least general solutions for the positive and negative concept. We discuss the factors

that should be taken into account when choosing and strategically combining the generality levels

for positive and negative concepts.

In the paper, we also handle the issue of strategic combination of possibly contradictory learnt

de�nitions of a predicate and its explicit negation.

All in all, we show that extended logic programs under well-founded semantics with explicit
negation add expressivity to learning tasks, and allow the tackling of a number of representation

and strategic issues in a principled way.

Our techniques have been implemented and examples run on a state-of-the-art logic program-

ming system with tabling which implements WFSX.

Keywords: Inductive Logic Programming, Non-monotonic Learning, Multi-strategy Learning,
Explicit Negation, Contradiction Handling.

1. Introduction

Most work on inductive concept learning considers a two-valued setting. In such a

setting, what is not entailed by the learned theory is considered false, on the basis

of the Closed World Assumption (CWA) (Reiter, 1978). However, in practice, it

is more often the case that we are con�dent about the truth or falsity of only

a limited number of facts, and are not able to draw any conclusion about the
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remaining ones, because the available information is too scarce. Like it has been

pointed out in (De Raedt and Bruynooghe, 1990, De Raedt, 1992), this is typically

the case of an autonomous agent that, in an incremental way, gathers information

from its surrounding world. Such an agent needs to distinguish between what is

true, what is false and what is unknown, and therefore needs to learn within a

richer setting.

To this purpose, we adopt the class of Extended Logic Programs (ELP, for short,

in the sequel) as the representation language for learning in a three-valued set-

ting. ELP contains two kinds of negation: default negation plus a second form

of negation, called explicit, whose combination has been recognized elsewhere as a

very expressive means of knowledge representation. The adoption of ELP allows

one to deal directly in the language with incomplete and contradictory knowledge,

with exceptions through default negation, as well as with truly negative information

by means of explicit negation (Pereira and Alferes, 1992, Alferes and Pereira, 1996,

Alferes et al., 1998). For instance, in (Alferes and Pereira, 1996, Dix et al., 1997,

Baral and Gelfond, 1994, Dam�asio and Pereira, 1998, Leite and Pereira, 1998) it is

shown how ELP is applicable to such diverse domains of knowledge representation

as concept hierarchies, reasoning about actions, belief revision, counterfactuals,

diagnosis, updates and debugging.

In this work, we show, that various approaches and strategies can be adopted in

Inductive Logic Programming (ILP, henceforth) for learning with ELP under an

extension of well-founded semantics. As in (Inoue and Kudoh, 1997, Inoue, 1998),

where answer-sets semantics is used, the learning process starts from a set of pos-

itive and negative examples plus some background knowledge in the form of an

extended logic program. Positive and negative information in the training set

are treated equally, by learning a de�nition for both a positive concept p and its

(explicitly) negated concept :p. Coverage of examples is tested by adopting the

SLX interpreter for ELP under the Well-Founded Semantics with explicit negation

(WFSX ) de�ned in (Alferes and Pereira, 1996, Dix et al., 1997), and valid for its

paraconsistent version (Dam�asio and Pereira, 1998).

Default negation is used in the learning process to handle exceptions to general

rules. Exceptions are examples covered by the de�nition for the positive concept

that belong to the training set for the negative concept or examples covered by the

de�nition for the negative concept that belong to the training set for the positive

concept.

In this work, we adopt standard ILP techniques to learn a concept and its oppo-

site. Depending on the technique adopted, one can learn the most general or the

least general de�nition for each concept. Accordingly, four epistemological varieties

occur, resulting from the mutual combination of most general and least general

solutions for the positive and negative concepts. These possibilities are expressed

via ELP, and we discuss some of the factors that should be taken into account

when choosing the level of generality of each, and their combination, to de�ne a

speci�c learning strategy, and how to cope with contradictions. (In the paper, we

concentrate on single predicate learning, for the sake of simplicity.)



3

Indeed, separately learned positive and negative concepts may conict and, in

order to handle possible contradiction, contradictory learned rules are made de-

feasible by making the learned de�nition for a positive concept p depend on the

default negation of the negative concept :p, and vice-versa, i.e., each de�nition is

introduced as an exception to the other. This way of coping with contradiction

can be even generalized for learning n disjoint classes, or modi�ed in order to take

into account preferences among multiple learning agents or information sources (see

(Lamma et al., 1999a)).

The paper is organized as follows. We �rst motivate the use of ELP as target and

background language in Section 2, and introduce the new ILP framework in Section

3. We then examine, in Section 4, factors to be taken into account when choosing

the level of generality of learned theories. Section 5 proposes how to combine the

learned de�nitions within ELP in order to avoid inconsistencies on unseen atoms

and their opposites, through the use of mutually defeating (\non-deterministic")

rules, and how to incorporate exceptions through negation by default. A descrip-

tion of our algorithm for learning ELP follows next, in Section 6, and the overall

system implementation in Section 7. Section 8 evaluates the obtained classi�cation

accuracy. Finally, we examine related works in Section 9.

2. Logic Programming and Epistemic Preliminaries

In this Section, we �rst discuss the motivation for three-valuedness and two types

of negation in knowledge representation, and we provide basic notions of extended

logic programs and WFSX.

2.1. Three-valuedness, default and explicit negation

Arti�cial Intelligence (AI) needs to deal with knowledge in less than perfect condi-

tions by means of more dynamic forms of logic than classical logic. Much of this

has been the focus of research in Logic Programming (LP), a �eld of AI which uses

logic directly as a programming language1, and provides speci�c implementation

methods and e�cient working systems to do so 2.

Various extensions of LP have been introduced to cope with knowledge represen-

tation issues. For instance, default negation of an atom P , \not P", was introduced

by AI to deal with lack of information, a common situation in the real world. It

introduces non-monotonicity into knowledge representation. Indeed, conclusions

might not be solid because the rules leading to them may be defeasible. For in-

stance, we don't normally have explicit information about who is or is not the

lover of whom, though that kind of information may arrive unexpectedly. Thus we

write3:

faithful(H;K)  married(H;K); not lover(H;L);

i.e., if we have no evidence to conclude lover(H;L) for some L given H , we can

assume it false for all L given H .
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Notice that the connective not should grant positive and negative information

equal standing. That is, we should equally be able to write:

:faithful(H;K)  married(H;K); not :lover(H;L)

to model instead a world where people are unfaithful by default or custom, and

where it is required to explicitly prove that someone does not take any lover before

concluding that person not unfaithful.

Since information is normally expressed positively, by dint of mental and linguistic

economics, through Closed World Assumption (CWA), the absent, non explicitly

obtainable information, is usually the negation of positive information. Which

means, when no information is available about lovers, that :lover(H;L) is true by

CWA, whereas lover(H;L) is not. Indeed, whereas the CWA is indispensable in

some contexts, viz. at airports ights not listed are assumed non-existent, in others

that is not so: though one's residence might not be listed in the phone book, it may

not be ruled out that it exists and has a phone.

These epistemologic requisites can be reconciled by reading ':' above not as

classical negation, which complies with the excluded middle provision, but as

yet a new form of negation, dubbed in Logic Programming \explicit negation"

(Pereira and Alferes, 1992) (which ignores that provision), and adopted in ELP.

This requires the need for revising assumptions and for introducing a third truth-

value, named \unde�ned", into the framework. In fact, when we combine, for

instance, the viewpoints of the two above worlds about faithfulness we become

confused: assuming married(H;K) for some H and K; it now appears that both

faithful(H;K) and :faithful(H;K) are contradictorily true. Indeed, since we

have no evidence for lover(H;L) nor :lover(H;L) because there simply is no in-

formation about them, we make two simultaneous assumptions about their falsity.

But when any assumption leads to contradiction one should retract it, which in a

three-valued setting means making it unde�ned.

The imposition of unde�nedness for lover(H;L) and :lover(H;L) can be achieved

simply, by adding to our knowledge the clauses:

:lover(H;L)  not lover(H;L)

lover(H;L)  not :lover(H;L)

thereby making faithful(H;K) and :faithful(H;K) unde�ned too. Given no

other information, we can now prove neither of lover(H;L) nor :lover(H;L) true,

or false. Any attempt to do it runs into a self-referential circle involving default

negation, and so the safest, skeptical, third option is to take no side in this marital

dispute, and abstain from believing either.

Even in presence of self-referential loops involving default negations, the well-

founded semantics of logic programs (WFS) assigns to the literals in the above two

clauses the truth value unde�ned, in its knowledge skeptical well-founded model,

but allows also for the other two, incompatible non truth-minimal, more credulous

models.
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2.2. Extended Logic Programs

An extended logic program is a �nite set of rules of the form:

L0  L1; : : : ; Ln

with n � 0, where L0 is an objective literal, L1; : : : ; Ln are literals and each rule

stands for the sets of its ground instances. Objective literals are of the form A

or :A, where A is an atom, while a literal is either an objective literal L or its

default negation not L. :A is said the opposite literal of A (and vice versa),

where ::A = A, and not A the complementary literal of A (and vice versa).

By not fA1; : : : ; Ang we mean fnot A1; : : : ; not Ang where Ais are literals. By

: fA1; : : : ; Ang we mean f:A1; : : : ;:Ang. The set of all objective literals of a

program P is called its extended Herbrand base and is represented as HE(P ). An

interpretation I of an extended program P is denoted by T [ not F , where T and

F are disjoint subsets of HE(P ). Objective literals in T are said to be true in I ,

objective literals in F are said to be false in I and those in HE(P )�I are said to be

unde�ned in I . We introduce in the language the proposition u that is unde�ned

in every interpretation I .

WFSX extends the well founded semantics (WFS ) (Van Gelder et al., 1991) for

normal logic programs to the case of extended logic programs. WFSX is obtained

from WFS by adding the coherence principle relating the two forms of negation:

\if L is an objective literal and :L belongs to the model of a program, then also

not L belongs to the model", i.e., :L! not L.

Notice that, thanks to this principle, any interpretation I = T [ not F of an

extended logic program P considered by WFSX semantics is non-contradictory,

i.e., there is no pair of objective literals A and :A of program P such that A

belongs to T and :A belongs to T (Alferes and Pereira, 1996). The de�nition of

WFSX is reported in Appendix. If an objective literal A is true in the WFSX of

an ELP P we write P j=WFSX A.

Let us now show an example of WFSX in the case of a simple program.

Example: Consider the following extended logic program:

:a  : b not b:

a  b:

A WFSX model of this program is M = f:a; not :b; not ag: :a is true, a is false,

:b is false (there are no rules for :b) and b is unde�ned. Notice that not a is in the

model since it is implied by :a via the coherence principle.

One of the most important characteristic of WFSX is that it provides a semantics

for an important class of extended logic programs: the set of non-strati�ed pro-

grams, i.e., the set of programs that contain recursion through default negation.

An extended logic program is strati�ed if its dependency graph does not contain

any cycle with an arc labelled with �. The dependency graph of a program P is

a labelled graph with a node for each predicate of P and an arc from a predicate
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p to a predicate q if q appears in the body of clauses with p in the head. The arc

is labelled with + if q appears in an objective literal in the body and with � if it

appears in a default literal.

Non-strati�ed programs are very useful for knowledge representation because

the WFSX semantics assigns the truth value unde�ned to the literals involved

in the recursive cycle through negation, as shown in Section 2.1 for lover(H;L)

and :lover(H;L). In Section 5 we will employ non strati�ed programs in order to

resolve possible contradictions.

WFSX was chosen among the other semantics for ELP, three-valued strong

negation (Alferes et al., 1998) and answer-sets (Gelfond and Lifschitz, 1990), be-

cause none of the others enjoy the property of relevance (Alferes and Pereira, 1996,

Alferes et al., 1998) for non-strati�ed programs, i.e., they cannot have top-down

querying procedures for non-strati�ed programs. Instead, for WFSX there exists a

top-down proof procedure SLX (Alferes and Pereira, 1996), which is correct with

respect to the semantics.

Cumulativity is also enjoyed by WFSX, i.e., if you add a lemma then the seman-

tics does not change (see (Alferes and Pereira, 1996)). This property is important

for speeding-up the implementation. By memorizing intermediate lemmas through

tabling, the implementation of SLX greatly improves. Answer-set semantics, how-

ever, is not cumulative for non-strati�ed programs and thus cannot use tabling.

The SLX top-down procedure for WFSX relies on two independent kinds of

derivations: T-derivations, proving truth, and TU-derivations proving non-falsity,

i.e., truth or unde�nedness. Shifting from one to the other is required for proving a

default literal not L: the T-derivation of not L succeeds if the TU-derivation of L

fails; the TU-derivation of not L succeeds if the T-derivation of L fails. Moreover,

the T-derivation of not L also succeeds if the T-derivation of :L succeeds, and

the TU-derivation of L fails if the T-derivation of :L succeeds (thus taking into

account the coherence principle). Given a goal G that is a conjunction of literals,

if G can be derived by SLX from an ELP P , we write P `SLX G

The SLX procedure is amenable to a simple pre-processing implementation, by

mapping WFSX programs into WFS programs through the T-TU transformation

(Dam�asio and Pereira, 1997). This transformation is linear and essentially doubles

the number of program clauses. Then, the transformed program can be executed

in XSB, an e�cient logic programming system which implements (with polynomial

complexity) the WFS with tabling, and subsumes Prolog. Tabling in XSB consists

in memoizing intermediate lemmas, and in properly dealing with non-strati�cation

according to WFS. Tabling is important in learning, where computations are often

repeated for testing the coverage or otherwise of examples, and allows computing

the WFS with simple polynomial complexity on program size.

3. Learning in a Three-valued Setting

In real-world problems, complete information about the world is impossible to

achieve and it is necessary to reason and act on the basis of the available partial
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information. In situations of incomplete knowledge, it is important to distinguish

between what is true, what is false, and what is unknown or unde�ned.

Such a situation occurs, for example, when an agent incrementally gathers infor-

mation from the surrounding world and has to select its own actions on the basis

of such acquired knowledge. If the agent learns in a two-valued setting, it can

encounter the problems highlighted in (De Raedt and Bruynooghe, 1990). When

learning in a speci�c to general way, it will learn a cautious de�nition for the tar-

get concept and it will not be able to distinguish what is false from what is not

yet known (see Figure 1a). Supposing the target predicate represents the allowed

actions, then the agent will not distinguish forbidden actions from actions with an

outcome and this can restrict the agent acting power. If the agent learns in a gen-

eral to speci�c way, instead, it will not know the di�erence between what is true and

what is unknown (Figure 1b) and, therefore, it can try actions with an unknown

outcome. Rather, by learning in a three-valued setting, it will be able to distinguish

between allowed actions, forbidden actions, and actions with an unknown outcome

(Figure 1c). In this way, the agent will know which part of the domain needs to

be further explored and will not try actions with an unknown outcome unless it is

trying to expand its knowledge.

Figure 1. (Taken from (De Raedt and Bruynooghe, 1990))(a,b): two-valued setting, (c): three-

valued setting.

We therefore consider a new learning problem where we want to learn an ELP from

a background knowledge that is itself an ELP and from a set of positive and a

set of negative examples in the form of ground facts for the target predicates. A

learning problem for ELP's was �rst introduced in (Inoue and Kudoh, 1997) where

the notion of coverage was de�ned by means of truth in the answer-set semantics.

Here the problem de�nition is modi�ed to consider coverage as truth in the preferred

WFSX semantics

De�nition 1. [Learning Extended Logic Programs]

Given:

� a set P of possible (extended logic) programs

� a set E+ of positive examples (ground facts)

� a set E� of negative examples (ground facts)

� a non-contradictory extended logic program B (background knowledge4)
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Find:

� an extended logic program P 2 P such that

� 8e 2 E+
[ :E�, B [ P j=WFSX e (completeness)

� 8e 2 :E+
[E�, B [ P 6j=WFSX e (consistency)

where :E = f:eje 2 Eg.

We suppose that the training sets E+ and E� are disjoint. However, the system is

also able to work with overlapping training sets.

The learned theory will contain rules of the form:

p( ~X)  Body+( ~X)

:p( ~X)  Body�( ~X)

for every target predicate p, where ~X stands for a tuple of arguments. In order to

satisfy the completeness requirement, the rules for p will entail all positive examples

while the rules for :p will entail all (explicitly negated) negative examples. The

consistency requirement is satis�ed by ensuring that both sets of rules do not entail

instances of the opposite element in either of the training sets.

Note that, in the case of extended logic programs, the consistency with respect

to the training set is equivalent to the requirement that the program is non-

contradictory on the examples. This requirement is enlarged to require that the

program be non-contradictory also for unseen atoms, i.e., B[P 6j= L^:L for every

atom L of the target predicates.

We say that an example e is covered by program P if P j=WFSX e. Since the

SLX procedure is correct with respect to WFSX, even for contradictory programs,

coverage of examples is tested by verifying whether P `SLX e.

Our approach to learning with extended logic programs consists in initially ap-

plying conventional ILP techniques to learn a positive de�nition from E+ and E�

and a negative de�nition from E� and E+. In these techniques, the SLX procedure

substitutes the standard Logic Programming proof procedure to test the coverage

of examples.

The ILP techniques to be used depend on the level of generality that we want to

have for the two de�nitions: we can look for the Least General Solution (LGS) or

the Most General Solution (MGS) of the problem of learning each concept and its

complement. In practice, LGS and MGS are not unique and real systems usually

learn theories that are not the least nor most general, but closely approximate one

of the two. In the following, these concepts will be used to signify approximations

to the theoretical concepts.

LGSs can be found by adopting one of the bottom-up methods such as rela-

tive least general generalization (rlgg) (Plotkin, 1970) and the GOLEM system

(Muggleton and Feng, 1990), inverse resolution (Muggleton and Buntine, 1992) or

inverse entailment (Lapointe and Matwin, 1992). Conversely, MGSs can be found

by adopting a top-down re�ning method (cf. (Lavra�c and D�zeroski, 1994)) and a

system such as FOIL (Quinlan, 1990) or Progol (Muggleton, 1995).
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4. Strategies for Combining Di�erent Generalizations

The generality of concepts to be learned is an important issue when learning in a

three-valued setting. In a two-valued setting, once the generality of the de�nition is

chosen, the extension (i.e., the generality) of the set of false atoms is automatically

decided, because it is the complement of the true atoms set. In a three-valued

setting, rather, the extension of the set of false atoms depends on the generality of

the de�nition learned for the negative concept. Therefore, the corresponding level

of generality may be chosen independently for the two de�nitions, thus a�ording

four epistemological cases. The adoption of ELP allows case combination to be

expressed in a declarative and smooth way.

Furthermore, the generality of the solutions learned for the positive and negative

concepts clearly inuences the interaction between the de�nitions. If we learn the

MGS for both a concept and its opposite, the probability that their intersection is

non-empty is higher than if we learn the LGS for both. Accordingly, the decision

as to which type of solution to learn should take into account the possibility of

interaction as well: if we want to reduce this possibility, we have to learn two LGS,

if we do not care about interaction, we can learn two MGS. In general, we may learn

di�erent generalizations and combine them in distinct ways for di�erent strategic

purposes within the same application problem.

The choice of the level of generality should be made on the basis of available

knowledge about the domain. Two of the criteria that can be taken into account

are the damage or risk that may arise from an erroneous classi�cation of an unseen

object, and the con�dence we have in the training set as to its correctness and

representativeness.

When classifying an as yet unseen object as belonging to a concept, we may later

discover that the object belongs to the opposite concept. The more we generalize

a concept, the higher is the number of unseen atoms covered by the de�nition and

the higher is the risk of an erroneous classi�cation. Depending on the damage that

may derive from such a mistake, we may decide to take a more cautious or a more

con�dent approach. If the possible damage from an over extensive concept is high,

then one should learn the LGS for that concept, if the possible damage is low then

one can generalize the most and learn the MGS. The overall risk will depend as well

on the use of the learned concepts within other rules: we need to take into account

as well the damage that may derive from mistakes made on concepts depending on

the target one.

The problem of selecting a solution of an inductive problem according to the cost

of misclassifying examples has been studied in a number of works. PREDICTOR

(Gordon and Perlis, 1989) is able to select the cautiousness of its learning opera-

tors by means of metaheuristics. These metaheuristics make the selection based

on a user-input penalty for prediction error. (Provost and Fawcett, 1997) provides

a method to select classi�ers given the cost of misclassi�cations and the prior dis-

tribution of positive and negative instances. The method is based on the Receiver

Operating Characteristic (ROC) graph from signal theory that depicts classi�ers as

points in a graph with the number of false positives on the X axis and the number
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of true positive on the Y axis. In (Pazzani et al., 1994) it is discussed how the

di�erent costs of misclassifying examples can be taken into account into a number

of algorithms: decision tree learners, Bayesian classi�ers and decision list learn-

ers. The Reduced Cost Algorithm is presented that selects and order rules after

they have been learned in order to minimize misclassi�cation costs. Moreover, an

algorithm for pruning decision lists is presented that attempts to minimize costs

while avoiding over�tting. In (Greiner et al., 1996) it is discussed how the penalty

incurred if a learner outputs the wrong classi�cation can be used in order to decide

whether to acquire additional information in an active learner.

As regards the con�dence in the training set, we can prefer to learn the MGS for

a concept if we are con�dent that examples for the opposite concept are correct and

representative of the concept. In fact, in top-down methods, negative examples are

used in order to delimit the generality of the solution. Otherwise, if we think that

examples for the opposite concept are not reliable, then we should learn the LGS.

In the following, we present a realistic example of the kind of reasoning that can

be used to choose and specify the preferred level of generality, and discuss how to

strategically combine the di�erent levels by employing ELP tools to learning.

Example: Consider a person living in a bad neighbourhood in Los Angeles. He

is an honest man and to survive he needs two concepts, one about who is likely to

attack him, on the basis of appearance, gang membership, age, past dealings, etc.

Since he wants to take a cautious approach, he maximizes attacker and minimizes

:attacker, so that his attacker1 concept allows him to avoid dangerous situations.

attacker1(X) attackerMGS(X)

:attacker1(X) :attackerLGS(X)

Another concept he needs is the type of beggars he should give money to (he is

a good man) that actually seem to deserve it, on the basis of appearance, health,

age, etc. Since he is not rich and does not like to be tricked, he learns a beggar1

concept by minimizing beggar and maximizing :beggar, so that his beggar concept

allows him to give money strictly to those appearing to need it without faking.

beggar1(X) beggarLGS(X)

:beggar1(X) :beggarMGS(X)

However, rejected beggars, especially malicious ones, may turn into attackers, in

this very bad neighbourhood. Consequently, if he thinks a beggar might attack

him, he had better be more permissive about who is a beggar and placate him with

money. In other words, he should maximize beggar and minimize :beggar in a

beggar2 concept.

beggar2(X) beggarMGS(X)

:beggar2(X) :beggarLGS(X)

These concepts can be used in order to minimize his risk taking when he carries, by

his standards, a lot of money and meets someone who is likely to be an attacker,

with the following kind of reasoning:

run(X) lot of money(X);meets(X;Y ); attacker1(Y ); not beggar2(Y )

:run(X) lot of money(X); give money(X;Y )

give money(X;Y ) meets(X;Y ); beggar1(Y )
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give money(X;Y ) meets(X;Y ); attacker1(Y ); beggar2(Y )

If he does not have a lot of money on him, he may prefer not to run as he risks

being beaten up. In this case he has to relax his attacker concept into attacker2,

but not relax it so much that he would use :attackerMGS .

:run(X) little money(X);meets(X;Y ); attacker2(Y )

attacker2(X) attackerLGS(X)

:attacker2(X) :attackerLGS(X)

The various notions of attacker and beggar are then learnt on the basis of previous

experience the man has had (see (Lamma et al., 1999b)).

5. Strategies for Eliminating Learned Contradictions

The learnt de�nitions of the positive and negative concepts may overlap. In this

case, we have a contradictory classi�cation for the objective literals in the intersec-

tion. In order to resolve the conict, we must distinguish two types of literals in

the intersection: those that belong to the training set and those that do not, also

dubbed unseen atoms (see Figure 2).

In the following we discuss how to resolve the conict in the case of unseen literals

and of literals in the training set. We �rst consider the case in which the training

sets are disjoint, and we later extend the scope to the case where there is a non-

empty intersection of the training sets, when they are less than perfect. From now

onwards, ~X stands for a tuple of arguments.

For unseen literals, the conict is resolved by classifying them as unde�ned, since

the arguments supporting the two classi�cations are equally strong. Instead, for

literals in the training set, the conict is resolved by giving priority to the classi�ca-

tion stipulated by the training set. In other words, literals in a training set that are

covered by the opposite de�nition are considered as exceptions to that de�nition.

Figure 2. Interaction of the positive and negative de�nitions on exceptions.

Contradiction on Unseen Literals For unseen literals in the intersection, the

unde�ned classi�cation is obtained by making opposite rules mutually defeasible,
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or \non-deterministic" (see (Baral and Gelfond, 1994, Alferes and Pereira, 1996)).

The target theory is consequently expressed in the following way:

p( ~X)  p+( ~X); not :p( ~X)

:p( ~X)  p�( ~X); not p( ~X)

where p+( ~X) and p�( ~X) are, respectively, the de�nitions learned for the positive

and the negative concept, obtained by renaming the positive predicate by p+ and its

explicit negation by p�. From now onwards, we will indicate with these superscripts

the de�nitions learned separately for the positive and negative concepts.

We want both p( ~X) and :p( ~X) to act as an exception to the other. In case

of contradiction, this will introduce mutual circularity, and hence unde�nedness

according to WFSX. For each literal in the intersection of p+ and p�, there are

two stable models, one containing the literal, the other containing the opposite

literal. According to WFSX, there is a third (partial) stable model where both

literals are unde�ned, i.e., no literal p( ~X), :p( ~X), not p( ~X) or not :p( ~X) belongs

to the well-founded (or least partial stable) model. The resulting program contains

a recursion through negation (i.e., it is non-strati�ed) but the top-down SLX pro-

cedure does not go into a loop because it comprises mechanisms for loop detection

and treatment, which are implemented by XSB through tabling.

Example: Let us consider the Example of Section 4. In order to avoid contradic-

tions on unseen atoms, the learned de�nitions must be:

attacker1(X)  attacker+
MGS

(X); not :attacker1(X)

:attacker1(X)  attacker�
LGS

(X); not attacker1(X)

beggar1(X)  beggar+
LGS

(X); not :beggar1(X)

:beggar1(X)  beggar�
MGS

(X); not beggar1(X)

beggar2(X)  beggar+
MGS

(X); not :beggar2(X)

:beggar2(X)  beggar�
LGS

(X); not beggar2(X)

attacker2(X)  attacker+
LGS

(X); not :attacker2(X)

:attacker2(X)  attacker�
LGS

(X); not attacker2(X)

Note that p+( ~X) and p�( ~X) can display as well the unde�ned truth value, either

because the original background is non-strati�ed or because they rely on some

de�nition learned for another target predicate, which is of the form above and

therefore non-strati�ed. In this case, three-valued semantics can produce literals

with the value \unde�ned", and one or both of p+( ~X) and p�( ~X) may be unde�ned.

If one is unde�ned and the other is true, then the rules above make both p and :p

unde�ned, since the negation by default of an unde�ned literal is still unde�ned.

However, this is counter-intuitive: a de�ned value should prevail over an unde�ned

one.

In order to handle this case, we suppose that a system predicate undefined(X)

is available5, that succeeds if and only if the literal X is unde�ned. So we add the
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following two rules to the de�nitions for p and :p:

p( ~X)  p+( ~X); undefined(p�( ~X))

:p( ~X)  p�( ~X); undefined(p+( ~X))

According to these clauses, p( ~X) is true when p+( ~X) is true and p�( ~X) is unde�ned,

and conversely.

Contradiction on Examples Theories are tested for consistency on all the lit-

erals of the training set, so we should not have a conict on them. However, in

some cases, it is useful to relax the consistency requirement and learn clauses that

cover a small amount of counterexamples. This is advantageous when it would

be otherwise impossible to learn a de�nition for the concept, because no clause is

contained in the language bias that is consistent, or when an overspeci�c de�nition

would be learned, composed of very many speci�c clauses instead of a few general

ones. In such cases, the de�nitions of the positive and negative concepts may cover

examples of the opposite training set. These must then be considered exceptions,

which are then due to abnormalities in the opposite concept.

Let us start with the case where some literals covered by a de�nition belong

to the opposite training set. We want of course to classify these according to

the classi�cation given by the training set, by making such literals exceptions. To

handle exceptions to classi�cation rules, we add a negative default literal of the form

not abnormp( ~X) (resp. not abnorm:p( ~X)) to the rule for p( ~X) (resp. :p( ~X)), to

express possible abnormalities arising from exceptions. Then, for every exception

p(~t), an individual fact of the form abnormp(~t) (resp. abnorm:p(~t)) is asserted

so that the rule for p( ~X) (resp. :p( ~X)) does not cover the exception, while the

opposite de�nition still covers it. In this way, exceptions will �gure in the model of

the theory with the correct truth value. The learned theory thus takes the form:

p( ~X)  p+( ~X); not abnormp( ~X); not :p( ~X) (1)

:p( ~X)  p�( ~X); not abnorm:p( ~X); not p( ~X) (2)

p( ~X)  p+( ~X); undefined(p�( ~X)) (3)

:p( ~X)  p�( ~X); undefined(p+( ~X)) (4)

Abnormality literals have not been added to the rules for the unde�ned case because

a literal which is an exception is also an example, and so must be covered by its

respective de�nition; therefore it cannot be unde�ned.

Notice that if E+ and E� overlap for some example p(~t), then p(~t) is classi�ed

false by the learned theory. A di�erent behaviour would be obtained by slightly

changing the form of learned rules, in order to adopt, for atoms of the training set,

one classi�cation as default and thus give preference to false (negative training set)

or true (positive training set)

Individual facts of the form abnormp( ~X) might be then used as examples for

learning a de�nition for abnormp and abnorm:p, as in (Inoue and Kudoh, 1997,

Esposito et al., 1998). In turn, exceptions to the de�nitions of the predicates

abnormp and abnorm:p might be found and so on, thus leading to a hierarchy
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of exceptions (for our hierarchical learning of exceptions, see (Lamma et al., 1988,

Vere, 1975)).

Example: Consider a domain containing entities a; b; c; d; e; f and suppose the

target concept is flies. Let the background knowledge be:

bird(a) has wings(a)

jet(b) has wings(b)

angel(c) has wings(c) has limbs(c)

penguin(d) has wings(d) has limbs(d)

dog(e) has limbs(e)

cat(f) has limbs(f)

and let the training set be:

E+ = fflies(a)g E� = fflies(d); f lies(e)g

A possible learned theory is:

flies(X)  flies+(X); not abnormalflies(X); not :flies(X)

:flies(X)  flies�(X); not flies(X)

flies(X)  flies+(X); undefined(flies�(X))

:flies(X)  flies�(X); undefined(flies+(X))

abnormalflies(d)

where flies+(X) has wings(X) and flies(X)�  has limbs(X).

Figure 3. Coverage of de�nitions for opposite concepts.

The example above and Figure 3 show all the possible cases for a literal when

learning in a three-valued setting. a and e are examples that are consistently covered

by the de�nitions. b and f are unseen literals on which there is no contradiction.

c and d are literals where there is contradiction, but c is classi�ed as unde�ned

whereas d is considered as an exception to the positive de�nition and is classi�ed

as negative.

Identifying contradictions on unseen literals is useful in interactive theory revi-

sion, where the system can ask an oracle to classify the literal(s) leading to con-

tradiction, and accordingly revise the least or most general solutions for p and
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for :p using a theory revision system such as REVISE (Dam�asio et al., 1994) or

CLINT (De Raedt and Bruynooghe, 1989, De Raedt and Bruynooghe, 1992). De-

tecting uncovered literals points to theory extension.

Extended logic programs can be used as well to represent n disjoint classes

p1; : : : ; pn. When one has to learn n disjoint classes, the training set contains a

number of facts for a number of predicates p1; : : : ; pn. Let p+
i

be a de�nition

learned by using, as positive examples, the literals in the training set classi�ed as

belonging to pi and, as negative examples, all the literals for the other classes. Then

the following rules ensure consistency on unseen literals and on exceptions:

p1( ~X)  p+
1
( ~X); not abnormalp1(

~X); not p2( ~X); : : : ; not pn( ~X)

p2( ~X)  p+
2
( ~X); not abnormalp2(

~X); not p1( ~X); not p3( ~X); : : : ; not pn( ~X)

� � �  � � �

pn( ~X)  p+
n
( ~X); not abnormalpn(

~X); not p1( ~X); : : : ; not pn�1( ~X)

p1( ~X)  p+
1
( ~X); undefined(p+

2
( ~X)); : : : ; undefined(p+

n
( ~X))

p2( ~X)  p+
2
( ~X); undefined(p+

1
( ~X)); undefined(p+

3
( ~X)); : : : ; undefined(p+

n
( ~X))

� � �  � � �

pn( ~X)  p+
n
( ~X); undefined(p+

1
( ~X)); : : : ; undefined(p+

n�1(
~X))

regardless of the algorithm used for learning the p+
i
.

6. An Algorithm for Learning Extended Logic Programs

The algorithm LIVE (Learning In a 3-Valued Environment) learns ELPs containing

non-deterministic rules for a concept and its opposite. The main procedure of the

algorithm is given below:

1. algorithm LIVE( inputs : E+; E�: training sets,

2. B: background theory, outputs : H : learned theory)

3. LearnDe�nition(E+; E�; B;Hp)

4. LearnDe�nition(E�; E+; B;H:p)

5. Obtain H by:

6. transforming Hp, H:p into \non-deterministic" rules,

7. adding the clauses for the unde�ned case

8. output H

The algorithm calls a procedure LearnDe�nition that, given a set of positive,

a set of negative examples and a background knowledge, returns a de�nition for

the positive concept, consisting of default rules, together with de�nitions for ab-

normality literals if any. The procedure LearnDe�nition is called twice, once for

the positive concept and once for the negative concept. When it is called for the

negative concept, E� is used as the positive training set and E+ as the negative

one.
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LearnDe�nition �rst calls a procedure Learn(E+; E�; B;Hp) that learns a de�-

nition Hp for the target concept p. Learn consists of an ordinary ILP algorithm,

either bottom-up or top-down, modi�ed to adopt the SLX interpreter for testing

the coverage of examples and to relax the consistency requirement of the solution.

The procedure thus returns a theory that may cover some opposite examples. These

opposite examples are then treated as exceptions, by adding a default literal to the

inconsistent rules and adding proper facts for the abnormality predicate. In partic-

ular, for each rule r = p( ~X)  Body( ~X) in Hp covering some negative examples,

a new non-abnormality literal not abnormalr( ~X) is added to r and some facts for

abnormalr( ~X) are added to the theory. Examples for abnormalr are obtained from

examples for p by observing that, in order to cover an example p(~t) for p, the atom

abnormalr(~t) must be false. Therefore, facts for abnormalr are obtained from the

set E�
r
of opposite examples covered by the rule.

1. procedure LearnDe�nition( inputs : E+: positive examples,

2. E�: negative examples, B: background theory,

3. outputs : H : learned theory)

4. Learn(E+; E�; B;Hp)

5. H := Hp

6. for each rule r in Hp do

7. Find the sets E+

r
; E�

r
of positive and negative examples covered by r

8. if E�
r
is not empty then

9. Add the literal not abnormalr( ~X) to r

10. Obtain Hr = fabnormalr(~t)g from facts in E�
r
by

11. transforming each p(~t) 2 E�
r
into abnormalr(~t)

12. H := H [Hr

13. endif

14. enfor

15. output H

Let us now discuss in more detail the algorithm that implements the Learn pro-

cedure. Depending on the generality of solution that we want to learn, di�er-

ent algorithms must be employed: a top-down algorithm for learning the MGS, a

bottom-up algorithm for the LGS. In both cases, the algorithm must be such that,

if a consistent solution cannot be found, it returns a theory that covers the least

number of negative examples.

When learning with a top-down algorithm, the consistency necessity stopping

criterion must be relaxed to allow clauses that are inconsistent with a small num-

ber of negative examples, e.g., by adopting one of the heuristic necessity stop-

ping criteria proposed in ILP to handle noise, such as the encoding length restric-

tion (Quinlan, 1990) of FOIL (Quinlan, 1990) or the signi�cancy test of mFOIL

(D�zeroski, 1991). In this way, we are able to learn de�nitions of concepts with

exceptions: when a clause must be specialized too much in order to make it consis-
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tent, we prefer to transform it into a default rule and consider the covered negative

examples as exceptions. The simplest criterion that can be adopted is to stop

specializing the clause when no literal from the language bias can be added that

reduces the coverage of negative examples.

When learning with a bottom-up algorithm, we can learn using positive examples

only by using the rlgg operator: since the clause is not tested on negative examples,

it may cover some of them. This approach is realized by using the system GOLEM,

as in (Inoue and Kudoh, 1997).

7. Implementation

A top-down ILP algorithm (cf. (Lavra�c and D�zeroski, 1994)) has been integrated

with the procedure SLX for testing the coverage in order to learn the most general

solutions. The specialization loop of the top-down system consists of a beam search

in the space of possible clauses. At each step of the loop, the system removes the

best clause from the beam and generates re�nements. They are then evaluated

according to an accuracy heuristic function, and their re�nements covering at least

one positive example are added to the beam. The best clause found so far is also

separately stored: this clause is compared with each re�nement and is replaced if

the re�nement is better. The specialization loop stops when either the best clause

in the beam is consistent or the beam becomes empty. Then the system returns the

best clause found so far. The beam may become empty before a consistent clause

is found and in this case the system will return an inconsistent clause.

In order to �nd least general solutions, the GOLEM (Muggleton and Feng, 1990)

system is employed. The �nite well-founded model is computed, through SLX, and

is transformed by replacing literals of the form :A with new predicate symbols of

the form neg A. Then GOLEM is called with the computed model as background

knowledge. The output of GOLEM is then parsed in order to extract the clauses

generated by rlgg before they are post-processed by dropping literals. Thus, the

clauses that are extracted belong to the least general solution. In fact, they are ob-

tained by randomly picking couples of examples, computing their rlgg and choosing

the consistent one that covers the largest number of positive examples. This clause

is further generalized by choosing randomly new positive examples and computing

the rlgg of the previously generated clause and each of the examples. The con-

sistent generalization that covers more examples is chosen and further generalized

until the clause starts covering some negative examples. An inverse model trans-

formation is then applied to the rules thus obtained by substituting each literal of

the form neg A with the literal :A.

8. Classi�cation Accuracy

In this Section, we compare the accuracy that can be obtained by means of a two-

valued de�nition of the target concept with the one that can be obtained by means

of a three-valued de�nition.
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The accuracy of a two-valued de�nition over a set of testing examples is de�ned

as

Accuracy2 =
number of examples correctly classi�ed by the theory

total number of testing examples

The number of examples correctly classi�ed is given by the number of positive

examples covered by the learned theory plus the number of negative examples not

covered by the theory. If Np is the number of positive examples covered by the

learned de�nition, Nn the number of negative examples covered by the de�nition,

Nptot the total number of positive examples and Nntot the total number of negative

examples, then the accuracy is given by:

Accuracy2 =
Np +Nntot �Nn

Nptot +Nntot

When we learn in a three valued setting a de�nition for a target concept and its

opposite, we have to consider a di�erent notion of accuracy. In this case, some atoms

(positive or negative) in the testing set will be classi�ed as unde�ned. Unde�ned

atoms are covered by both the de�nition learned for the positive concept and that

learned for the opposite one. Whichever is the right classi�cation of the atom in

the test set, it is erroneously classi�ed in the learned three-valued theory, but not

so erroneously as if it was covered by the opposite de�nition only. This explains

the weight assigned to unde�ned atoms (i.e., 0.5) in the new, generalized notion of

accuracy:

Accuracy3 =
number of examples correctly classi�ed by the theory

total number of testing examples
+

+0.5 �
number of examples classi�ed as unknown

total number of testing examples

In order to get a formula to calculate the accuracy, we �rst de�ne a number of

�gures that are illustrated in Figure 4:

� Npp is the number of positive examples covered by the positive de�nition only,

� Npn is the number of positive examples covered by the negative de�nition only,

� Npu is the number of positive examples covered by both de�nitions (classi�ed

as unde�ned),

� Nnn is the number of negative examples covered by the negative de�nition only,

� Nnp is the number of negative examples covered by the positive de�nition only,

� Nnu is the number of negative examples covered by both de�nitions (classi�ed

as unde�ned).

The accuracy for the three-valued case can thus be de�ned as follows:

Accuracy3 =
Npp +Nnn + 0:5�Npu + 0:5�Nnu

Nptot +Nntot
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Figure 4. Sets of examples for evaluating the accuracy of a three-valued hypothesis.

It is interesting to compare this notion of accuracy with that obtained by testing

the theory in a two-valued way. In that case the accuracy would be given by:

Accuracy2 =
Npp +Npu +Nntot �Nnp �Nnu

Nptot +Nntot

We are interested in situations where the accuracy for the three-valued case is higher

than the one for the two-valued case, i.e., those for which Accuracy3 > Accuracy2.

By rewriting this inequation in terms of the �gures above, we get:

Npp + 0:5�Npu +Nnn + 0:5�Nnu > Npp +Npu +Nntot �Nnp �Nnu

This inequation can be rewritten as:

Nntot �Nnn �Nnp < 1:5�Nnu � 0:5�Npu

where the expressionNntot�Nnn�Nnp represents the number of negative examples

not covered by any de�nition (call it Nn not covered). Therefore, the accuracy that

results from testing the theory in a three-valued way improves the two-valued one

when most of the negative examples are covered by any of the two de�nitions, the

number of negative examples on which there is contradiction is particularly high,

and the number of positive examples on which there is contradiction is low.

When there is no overlap between the two de�nitions, and no unde�nedness, the

accuracy is the same.

9. Related Work

The adoption of negation in learning has been investigated by many authors. Many

propositional learning systems learn a de�nition for both the concept and its op-

posite. For example, systems that learn decision trees, as c4.5 (Quinlan, 1993),
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or decision rules, as the AQ family of systems (Michalski, 1973), are able to solve

the problem of learning a de�nition for n classes, which generalizes the problem of

learning a concept and its opposite. However, in most cases the de�nitions learned

are assumed to cover the whole universe of discourse: no unde�ned classi�cation

is produced, any instance is always classi�ed as belonging to one of the classes.

Instead, we classify as unde�ned the instances for which the learned de�nitions do

not give a unanimous response.

When learning multiple concepts, it may be the case that the descriptions learned

are overlapping. We have considered this case as non-desirable: this is reasonable

when learning a concept and its opposite but it may not be the case when learning

more than two concepts (see (Drobnic and Gams, 1993)). As it has been pointed

out by (Michalski, 1984), in some cases it is useful to produce more than one clas-

si�cation for an instance: for example if a patient has two diseases, his symptoms

should satisfy the descriptions of both diseases. A subject for future work will be

to consider classes of paraconsistent logic programs where the overlap of de�nitions

for p and :p (and, in general, multiple concepts) is allowed.

The problems raised by negation and uncertainty in concept-learning, and Induc-

tive Logic Programming in particular, were pointed out in some previous work (e.g.

(Bain and Muggleton, 1992, De Raedt and Bruynooghe, 1990, De Raedt, 1992)).

For concept learning, the use of the CWA for target predicates is no longer accept-

able because it does not allow what is false and what is unde�ned to be distin-

guished. De Raedt and Bruynooghe (De Raedt and Bruynooghe, 1990) proposed

to use a three-valued logic (later on formally de�ned in (De Raedt, 1992)) and an

explicit de�nition of the negated concept in concept learning. This technique has

been integrated within the CLINT system, an interactive concept-learner. In the

resulting system, both a positive and a negative de�nition are learned for a concept

(predicate) p, stating, respectively, the conditions under which p is true and those

under which it is false. The de�nitions are learned so that they do not produce

an inconsistency on the examples. Furthermore, CLINT does not produce incon-

sistencies also on unseen examples because of its constraint handling mechanism,

since it would assert the constraint p; not p! false , and take care that it is never

violated. Distinctly from this system, we make sure that the two de�nitions do not

produce inconsistency on unseen atoms by making learned rules non-deterministic.

This way, we are able to learn de�nitions for exceptions to both concepts so that

the information about contradiction is still available. Another di�erence is that we

cope with and employ simultaneously two kinds of negation, the explicit one, to

state what is false, and the default (defeasible) one, to state what can be assumed

false.

The system LELP (Learning Extended Logic Programs) (Inoue and Kudoh, 1997)

learns ELPs under answer-set semantics. LELP is able to learn non-deterministic

default rules with a hierarchy of exceptions. Hierarchical learning of exceptions can

be easily introduced in our system (see (Lamma et al., 1988)). From the viewpoint

of the learning problems that the two algorithms can solve, they are equivalent

when the background is a strati�ed extended logic program, because then our and

their semantics coincide. All the examples shown in (Inoue and Kudoh, 1997) are
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strati�ed and therefore they can be learned by our algorithm and, viceversa, ex-

ample in Section 5 can be learned by LELP. However, when the background is a

non-strati�ed extended logic program, the adoption of a well-founded semantics

gives a number of advantages with respect to the answer-set semantics. For non-

strati�ed background theories, answer-sets semantics does not enjoy the structural

property of relevance (Dix, 1995), like our WFSX does, and so they cannot employ

any top-down proof procedure. Furthermore, answer-set semantics is not cumula-

tive (Dix, 1995), i.e., if you add a lemma then the semantics can change, and thus

the improvement in e�ciency given by tabling cannot be obtained. Moreover, by

means of WFSX, we have introduced a method to choose one concept when the

other is unde�ned which they cannot replicate because in the answer-set semantics

one has to compute eventually all answer-sets to �nd out if a literal is unde�ned.

The structure of the two algorithms is similar: LELP �rst generates candidate rules

from a concept using an ordinary ILP framework. Then exceptions are identi�ed

(as covered examples of the opposite set) and rules specialized through negation as

default and abnormality literals, which are then assumed to prevent the coverage

of exceptions. These assumptions can be, in their turn, generalized to generate

hierarchical default rules. One di�erence between us and (Inoue and Kudoh, 1997)

is in the level of generality of the de�nitions we can learn. LELP learns a de�ni-

tion for a concept only from positive examples of that concept and therefore it can

only employ a bottom-up ILP technique and learn the LGS. Instead, we can choose

whether to adopt a bottom-up or a top-down algorithm, and we can learn theories

of di�erent generality for di�erent target concepts by integrating, in a declarative

way, the learned de�nitions into a single ELP. Another di�erence consists in that

LELP learns a de�nition only for the concept that has the highest number of ex-

amples in the training set. It learns both positive and negative concepts only when

the number of positive examples is close to that of negative ones (in 60 %-40 %

range), while we always learn both concepts.

Finally, many works have considered multi-strategy learners or multi-source learn-

ers. A multi-strategy learner combines learning strategies to produce e�ective hy-

potheses (see (Jenkins, 1993)). A multi-source learner implements an algorithm

for integrating knowledge produced by the separate learners. Multi-strategy learn-

ing has been adopted, for instance, for the improvement of classi�cation accuracy

(Drobnic and Gams, 1993), and to equip an autonomous agent with capabilities to

survive in an hostile environment (De Raedt et al., 1993).

Our approach considers two separate concept-based learners, in order to learn

a de�nition for a concept and its opposite. Multiple (opposite) target concepts

constitute part of the learned knowledge base, and each learning element is able

to adopt a bottom-up or a top-down strategy in learning rules. This can be easily

generalized to learn de�nitions for n disjoint classes of concepts or for multiple

agent learning (see our (Lamma et al., 1999a)). Very often, the hypothesis can be

more general than what is required. The second step of our approach, devoted to

the application of strategies for eliminating learned contradictions, can be seen as

a multi-source learner (Jenkins, 1993) or a meta-level one (Chan and St9lfo, 1993),

where the learned de�nitions are combined to obtain a non-contradictory extended
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logic program. ELPs are used to specify combinations of strategies in a declarative

way, and to recover, in the the process, the consistency of the learned theory.

10. Conclusions

The two-valued setting that has been adopted in most work on ILP and Inductive

Concept Learning in general is not su�cient in many cases where we need to rep-

resent real world data. This is for example the case of an agent that has to learn

the e�ect of the actions it can perform on the domain by performing experiments.

Such an agent needs to learn a de�nition for allowed actions, forbidden actions

and actions with an unknown outcome, and therefore it needs to learn in a richer

three-valued setting.

In order to achieve that in ILP, the class of extended logic programs under the

well-founded semantics with explicit negation (WFSX ) is adopted by us as the rep-

resentation language. This language allows two kinds of negation, default negation

plus a second form of negation called explicit, that is mustered in order to ex-

plicitly represent negative information. Adopting extended logic programs in ILP

prosecutes the general trend in Machine Learning of extending the representation

language in order to overcome the recognized limitations of existing systems.

The programs that are learned will contain a de�nition for the concept and its

opposite, where the opposite concept is expressed by means of explicit negation.

Standard ILP techniques can be adopted to separately learn the de�nitions for the

concept and its opposite. Depending on the adopted technique, one can learn the

most general or the least general de�nition.

The two de�nitions learned may overlap and the inconsistency is resolved in a dif-

ferent way for atoms in the training set and for unseen atoms: atoms in the training

set are considered exceptions, while unseen atoms are considered unknown. The

di�erent behaviour is obtained by employing negation by default in the de�nitions:

default abnormality literals are used in order to consider exceptions to rules, while

non-deterministic rules are used in order to obtain an unknown value for unseen

atoms. We have shown how the adoption of extended logic programs in ILP allows

to tackle both learning in a three-valued setting and specify the combination of

strategies in a declarative way, also coping with contradiction and exceptions in the

process.

The system LIVE (Learning in a three-Valued Environment) has been developed

to implement the above mentioned techniques6. In particular, the system learns a

de�nition for both the concept and its opposite and is able to identify exceptions and

treat them through default negation. The system is parametric in the procedure

used for learning each de�nition: it can adopt either a top-down algorithm, using

beam-search and a heuristic necessity stopping criterion, or a bottom-up algorithm,

that exploits the GOLEM system.
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Notes

1. For de�nitions and foundations of LP, refer to (Dix et al., 1997). For a recent state-of-the art

of LP extensions for non-monotonic reasoning, refer to (Alferes and Pereira, 1996).

2. For the most advanced, incorporating more recent theoretical developments, see the XSB
system at: htpp://www.cs.sunysb.edu/~sbprolog/xsb-page.html.

3. Notice that in the formula not lover(H;L) variable H is universally quanti�ed, whereas L is

existentially quanti�ed.

4. By non-contradictory program we mean a program which admits at least one WFSX model.

5. The unde�ned predicate can be implemented through negation NOT under CWA (NOT P

means that P is false whereas not means that P is false or unde�ned), i.e., undefined(P )  

NOT P;NOT (not P ).

6. LIVE was implemented in XSB Prolog (Sagonas et al., 1997) and the code of the system can

be found at: http://www-lia.deis.unibo.it/Software/LIVE/.
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Appendix : De�nition of WFSX

The de�nition of WFSX that follows is taken from (Alferes et al., 1994) and is

based on the alternating �x points of Gelfond-Lifschitz �-like operators.

De�nition 2. [The �-operator] Let P be an extended logic program and let I be

an interpretation of P . �P (I) is the program obtained from P by performing in

the sequence the following four operations:

� Remove from P all rules containing a default literal L = not A such that A 2 I .

� Remove from P all rules containing in the body an objective literal L such that

:L 2 I .

� Remove from all remaining rules of P their default literals L = not A such that

not A 2 I .

� Replace all the remaining default literals by proposition u.

In order to impose the coherence requirement, we need the following de�nition.

De�nition 3. [Seminormal Version of a Program] The seminormal version of a

program P is the program Ps obtained from P by adding to the (possibly empty)

Body of each rule L Body the default literal not:L, where :L is the complement

of L with respect to explicit negation.

In the following, we will use the following abbreviations: �(S) for �P (S) and

�s(S) for �Ps(S).
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De�nition 4. [Partial Stable Model] An interpretation T [not F is called a partial

stable model of P i� T = ��sT and F = HE(P )� �sT .

Partial stable models are an extension of stable models (Gelfond and Lifschitz, 1988)

for extended logic programs and a three-valued semantics. Not all programs have

a partial stable model (e.g., P = fa;:ag) and programs without a partial stable

model are called contradictory.

Theorem 1 (WFSX Semantics) Every non-contradictory program P has a least

(with respect to �) partial stable model, the well-founded model of P denoted by

WFM(P ). To obtain an iterative \bottom-up" de�nition for WFM(P ) we de�ne

the following trans�nite sequence fI�g:

I0 = fg; I�+1 = ��SI�; I� =
[
fI�j� < �g

where � is a limit ordinal. There exists a smallest ordinal � for the sequence above,

such that I� is the smallest �x point of ��S. Then, WFM(P ) = I�[not (H
E(P )�

�SI�).


