
Belief Revision via Lamarckian Evolution 1

Belief Revision via Lamarckian Evolution

Evelina LAMMA and Fabrizio RIGUZZI

Department of Engineering, University of Ferrara,

Via Saragat 1, 44100 Ferrara, Italy

felamma,friguzzig@ing.unife.it

Lu��s Moniz PEREIRA

Centro de Inteligência Arti�cial (CENTRIA),

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,

2829-516 Caparica, Portugal

lmp@di.fct.unl.pt

Received 14 Jan 2002

Abstract We present a system for performing belief revision in a

multi-agent environment. The system is called GBR (Genetic Belief Re-

visor) and it is based on a genetic algorithm. In this setting, di�erent

individuals are exposed to di�erent experiences. This may happen be-

cause the world surrounding an agent changes over time or because we

allow agents exploring di�erent parts of the world. The algorithm per-

mits the exchange of chromosomes from di�erent agents and combines

two di�erent evolution strategies, one based on Darwin's and the other

on Lamarck's evolutionary theory. The algorithm therefore includes also

a Lamarckian operator that changes the memes of an agent in order to

improve their �tness. The operator is implemented by means of a be-

lief revision procedure that, by tracing logical derivations, identi�es the

memes leading to contradiction. Moreover, the algorithm comprises a

special crossover mechanism for memes in which a meme can be acquired

from another agent only if the other agent has \accessed" the meme, i.e.

2 Lu��s Moniz PEREIRA

if an application of the Lamarckian operator has read or modi�ed the

meme.

Experiments have been performed on the n-queen problem and on a

problem of digital circuit diagnosis. In the case of the n-queen problem,

the addition of the Lamarckian operator in the single agent case improves

the �tness of the best solution. In both cases the experiments show that

the distribution of constraints, even if it may lead to a reduction of the

�tness of the best solution, does not produce a signi�cant reduction.

Keywords Evolutionary Systems, Belief Revision, Learning, Multi-

agent Systems, Multi-agent Communication

x1 Introduction
Darwin's theory is based on the concept of natural selection: only those

individuals that are most �t for their environment survive, and are thus able

to generate new individuals by means of reproduction. Moreover, during their

lifetime, individuals may be subject to random mutations of their genes that they

can transmit to o�spring. Lamarck's theory, instead, states that evolution is due

to the process of adaptation to the environment that an individual performs in

his/her life. The results of this process are then automatically transmitted to

his/her o�spring, via its genes. In other words, the abilities learnt during the

life of an individual can modify his/her genes.

Experimental evidence in the biological kingdom has shown Darwin's

theory to be correct and Lamarck's to be wrong. However, this does not mean

that the process of adaptation (or learning) does not inuence evolution. Bald-

win 7) showed how learning could inuence evolution: if the learned adaptations

improve the organism's chance of survival then the chances for reproduction are

also improved. Therefore there is selective advantage for genetically determined

traits that predisposes the learning of speci�c behaviours. Baldwin moreover

suggests that selective pressure could result in new individuals to be born with

the learned behaviour already encoded in their genes. This is known as the

Baldwin e�ect. Even if there is still debate about it, it is accepted by most

evolutionary biologists.

Lamarckian evolution has recently received a renewed attention because

it can model cultural evolution. In this context, the concept of \meme" has

been developed (cf. 8, 13)). A meme is a gene that stores abilities learned by an

individual during his lifetime, so that they can be transmitted to his o�spring.

Belief Revision via Lamarckian Evolution 3

In the �eld of genetic programming, Lamarckian evolution has proven

to be a powerful concept and various authors have investigated the combination

of Darwinian and Lamarckian evolution 18, 1, 19, 17).

Herein, we propose a genetic algorithm for belief revision that includes,

besides Darwin's operators of selection, mutation and crossover 21), a logic based

Lamarckian operator as well. This operator di�ers from Darwinian ones precisely

because it modi�es a chromosome coding beliefs so that its �tness is improved

by experience rather than in random way.

We venture that the combination of Darwinian and Lamarckian opera-

tors will be useful not only for standard belief revision problems, but especially

for problems where di�erent chromosomes may be exposed to di�erent con-

straints, as in the case of a multi-agent system. In these cases, the Lamarckian

and Darwinian operators play di�erent rôles: the Lamarckian one is employed

to bring a given chromosome closer to a solution (or even �nd an exact one)

to the current belief revision problem, whereas the Darwinian ones exert the

rôle of randomly producing alternative belief chromosomes so as to deal with

unencountered situations, by means of exchanging genes amongst them.

We tested this hypothesis on multi-agent joint belief revision problems.

In such a distributed setting, agents usually take advantage of each other's knowl-

edge and experience by explicitly communicating messages to that e�ect. In our

approach, however, we introduce a new and complementary method, in which

we allow knowledge and experience to be coded as genes in an agent. These

genes are exchanged with those of other agents, not by explicit message passing

but through the crossover genetic operator.

Crucial to this endeavour, we introduce a logic-based technique for mod-

ifying cultural genes, i.e. memes, on the basis of individual agent experience.

The technique amounts to a form of belief revision, where a meme codes for

an agent's belief or assumption about a piece of knowledge, and which is then

diversely modi�ed on the basis of how the present beliefs may be contradicted

by laws (expressed as integrity constraints). These mutations have the e�ect of

attempting to reduce the number of unsatis�ed constraints. They are directed

by a belief revision procedure, which relies on tracing the logical derivations

leading to inconsistency of belief, so as to remove the latter's support on meme

coded assumptions by mutating the memes involved. Each agent possesses a

pool of chromosomes containing such diversely modi�ed memes, or alternative

assumptions, which cross-fertilize Darwinianly amongst themselves. Such an

4 Lu��s Moniz PEREIRA

experience-inuenced genetic evolution mechanism is aptly called Lamarckian.

To illustrate how these mechanisms, of individual agent Lamarckian

evolution and of Darwinian agent genetics, can jointly lead to improved sin-

gle agent population behaviour in collaborative problem-solving, we apply them

to distributed model-based diagnosis, a natural domain in which belief revision

techniques apply 12), and to the n-queen constraint satisfaction problem. But

this is just illustrative. Belief revision is an important functionality that agents

must exhibit: agents should be able to modify their beliefs in order to model the

outside world.

What's more, as the world may be changing, a pool of separately and

jointly evolved chromosomes may code for a variety of distinct belief evolution

potentials that can respond to world changes as they occur and we explored this

dimension with a speci�c experiment to that e�ect.

Mark that it is not our purpose to propose here a competitor to ex-

tant classical belief revision methods, in particular as they apply to diagnosis.

More ambitiously, we do propose a new and complementary methodology, which

can empower belief revision { any assumption based belief revision { to deal

with time/space distributed, and possibly intermittent or noisy laws about an

albeit varying artifact or environment, possibly by a multiplicity of agents which

exchange diversi�ed genetically encoded experience.

We consider a de�nition of the belief revision problem that consists in

removing a contradiction from an extended logic program 22, 4, 5) by modifying

the truth value of a selected set of literals called revisables. The program contains

as well clauses with false (?) in the head, representing integrity constraints. Any

model of the program must ensure the body of integrity constraints false for the

program to be non-contradictory. Contradiction may also arise in an extended

logic program when both a literal L and its opposite :L are obtainable in the

model of the program. Such a problem has been widely studied in the literature,

and various solutions have been proposed 6, 12) that are based on abductive logic

proof procedures.

The problem can be modeled by means of a genetic algorithm, by as-

signing to each revisable of a logic program a gene in a chromosome. In the

case of a two valued revision, the gene will have the value 1 if the corresponding

revisable is true and the value 0 if the revisable is false. The �tness functions

that can be used in this case are based on the percentage of integrity constraints

that are satis�ed by a chromosome.

Belief Revision via Lamarckian Evolution 5

Each agent keeps a population of chromosomes and �nds a solution to the

revision problem by means of a genetic algorithm. We consider a formulation of

the distributed revision problem where each agent has the same set of revisables

and the same program expressed theory, but is subjected to possibly di�erent

constraints. Constraints may vary over time, and can di�er because agents may

explore di�erent regions of the world.

The genetic algorithm we employ allows each agent to cross over its

chromosomes with chromosomes from other agents. In this way, each agent can

be prepared in advance for situations that it will encounter when moving from

one place to another.

The algorithm has been implemented in a system called GBR (Genetic

Belief Revisor) that is available at http://lia.deis.unibo.it/Software/gbr/

together with instructions of use and examples.

The paper is organized as follows. We �rst review some logic program-

ming fundamentals, and give a de�nition of the belief revision problem in section

2. Then we describe the algorithm together with the Lamarckian operator in

section 3. The results of experiments with the algorithm are shown in section 4.

We examine related works in section 5, and draw conclusions in section 6.

x2 Logic Programming Basis
In this section we �rst provide some logic programming fundamentals,

and then we give a de�nition of the belief revision problem adapted from 23).

2.1 Language

Given a �rst order language Lang, an extended logic program 22, 4, 5) is

a set of rules and integrity constraints of the form

H B1; : : : ; Bn; not C1; : : : ; not Cm (m � 0; n � 0)

where H;B1; : : : ; Bn; C1; : : : ; Cm are objective literals, and in integrity con-

straints H is ? (false). An objective literal is either an atom A or its explicit

negation :A, where ::A = A. not L is called a default or negative literal. Lit-

erals are either objective or default ones. The default complement of objective

literal L is not L, and of default literal not L is L. A rule stands for all its ground

instances with respect to Lang. The notation H B is also used to represent a

rule, where the set B contains the literals in its body. For every pair of objective

literals fL;:Lg in Lang, we implicitly assume the constraint ? L;:L.

6 Lu��s Moniz PEREIRA

The set of all objective literals of a program P is called its extended

Herbrand base and is represented as HE(P).

We consider the Extended Well Founded Semantics (WFSX) that ex-

tends the well founded semantics (WFS) 26) for normal logic programs to pro-

grams extended with explicit negation. WFSX is obtained fromWFS by adding

the coherence principle (CP) relating the two forms of negation: \if L is an ob-

jective literal and :L belongs to the model of a program, then also not L belongs

to the model", i.e., :L ! not L. See 4, 15) or the Appendix for a de�nition of

WFSX.

We say that a set of literals S is contradictory i� ? 2 S. The paracon-
sistent version of WFSX, that allows models to contain the atom ?, is called
WFSXp 10, 11).

2.2 Revising Contradictory Extended Logic Programs

Extended logic programs are liable to be contradictory because of in-

tegrity constraints, either those that are user-de�ned or those of the form ?
L;:L that are implicitly assumed. Let us see an example of a contradictory

program.

Example 2.1

Consider P = fa;? a; not bg�1. Since we have no rules for b, by the Closed

World Assumption (CWA), it is natural to accept not b as true. However, be-

cause of the integrity constraint, we can conclude ? and thus have contradiction.

It is arguable that the CWA may not be held of atom b since it leads

to contradiction. Revising such CWAs is the basis of the contradiction removal

method of 23). In order to select a particular contradiction removal process, three

questions must be answered:

1. For which literals is revision of their truth-value allowed ?
2. To what truth values do we change the revisable literals ?
3. How to choose among possible revisions ?

The options taken here are clari�ed in the discussion in section 2.4,

giving two di�erent answers to these questions. Both use the same criteria to

answer 1 and 3, but di�er on the second one. For example 2.1 the �rst way of

removing contradiction gives fa; not :a; not :bg as the intended meaning of P ,

�1
? a;:a and ? b;:b are implicitly assumed.

Belief Revision via Lamarckian Evolution 7

where b is revised to unde�ned, achievable by adding b not b to P . The second

gives fa; b; not :a; not :bg, by revising b to true, achievable by adding b to P .

2.3 Contradictory Well Founded Model

To revise contradictions, we need to identify the contradictory sets of

consequences implied by the applications of CWA. The main idea is to compute

all consequences of the program, even those leading to contradictions, as well

as those arising from contradictions. Furthermore, the coherence principle is

enforced at each step.

Example 2.2

Consider program P:

a not b. (i) :a not c. (ii) d a. (iii) e :a. (iv)

1. not b and not c hold since there are no rules for either b or c.
2. :a and a hold from 1 and rules (i) and (ii).
3. ? holds from 2 and implicit constraint a;:a.
4. not a and not :a hold from 2 and inference rule (CP).
5. d and e hold from 2 and rules (iii) and (iv).
6. not d and not e hold from 4 and rules (iii) and (iv), as they are the only

rules for d and e.
7. not :d and not :e hold from 5 and inference rule (CP).

The whole set of consequences is the WFSXpmodel:

f?;:a; a; not a; not :a; not b; not c; d; not d; not :d; e; not e; not :eg

2.4 Contradiction Removal Sets

To abolish contradiction, the �rst issue to consider is which default lit-

erals true by CWA are allowed to change their truth values. We adopt the

approach of 23) where the candidates for revision are all the objective literals

that have no rules in the program. By CWA, their default negation is true.

These literals are called revisables.

De�nition 2.1 (Revisables)

The revisables of a program P are the objective literals L having no rules for

them in P and their default complement not L. The set of revisable literals is

indicated by Rev(P).

The revisables thus are literals that do not appear in rule heads but only in rule

8 Lu��s Moniz PEREIRA

bodies, either in a positive or default form. By the CWA, every revisable R is

false, i.e., not R is true. Now we identify the revisables that have to be revised

to true or unde�ned in order to restore consistency. These are the ones that

support contradiction. Intuitively, a support of a literal consists of the revisable

literals in the leaves of a derivation for it in the WFSXp model.

De�nition 2.2 (Set of assumptions supporting a literal)

A support set (of assumptions) of a literal L of the WFSXp model MP of a

program P , denoted by SS(L), with respect to the set of revisables Rev(P) is

obtained as follows:

1. If L is a revisable in MP then SS(L) = fLg.
2. if L is not a revisable literal

a. if L is an objective literal then for each rule L B in P , such that

B � MP , there is one SS(L) formed by the union of a SS for each

Bi 2 B. If B is empty then SS(L) = fg.
b. If L is a default literal not A 2MP :

i if :A belongs to MP then there exist support sets SS for not A

equal to each SS(:A).
ii if no rules for A exist in P that have a non-empty body, then there

is no other support set for L.

iii if rules for A exist in P that have a non-empty body, then choose

from each such rule a single literal such that its default complement

belongs to MP . There exists one SS for not A which is the union

of one SS for the default complement of the chosen literal in each

rule.

The de�nitions of revisable literals and of support sets di�er from those given in
23) because there the revisables are only the default complement of the literals

without de�nition and support sets there contain all the literals in the nodes of

a derivation for L. We have provided these modi�ed de�nitions because they

simplify the introduction of the Lamarckian operator in the next section.

Example 2.3

The WFSXp model MP of:

Belief Revision via Lamarckian Evolution 9

:p not c.
p a,not b.

b c, a.

b d.

:b not e. a.

is fa; not :a; not b;:b; not c; not :c; not d; not :d; not e; not :e; p;:p;
not p; not :p;?g.

Here the revisables are fc; d; eg. There are two support sets for not b:

SS1(not b)=SS(not c) [SS(not d) by rule 2biii

SS1(not b)=fnot cg [fnot dg=fnot c; not dg by rule 1

Notice that the other possibility of choosing literals for SS(not b); i.e.

SS1(not b) = SS(not a) [SS(not d); can't be considered because not a doesn't

belong to MP . The other support set for not b is obtained using rule 2bi:

SS2(not b) = SS(:b) by rule 2bi

SS2(not b) = SS(not e) by rule 2a

SS2(not b) = fnot eg by rule 1

Now the support sets for the objective literal p are easily computed:

SS(p)=SS(a)[SS(not b) by rule 2a

SS(p)=fg[SS(not b) by rule 2a

(the only rule for a is fact a)

So SS1(p) = SS1(not b) = fnot c; not dg and SS2(p) = SS2(not b) =

fnot eg. :p has the unique support set fnot cg. Consequently, because contra-
diction is obtained only via ? p;:p, SS1(?) = fnot c; not dg and SS2(?)=
fnot e; not cg.

Proposition 2.1 (Existence of support sets)
23) Every literal L belonging to the WFSXp model of a program P has at least

one support set SS(L).

We de�ne a spectrum of possible revisions using the notion of hitting

set:

De�nition 2.3 (Hitting set)

A hitting set of a collection C of sets is formed by the union of one non-empty

subset from each S 2 C. A hitting set is minimal i� no proper subset is a hitting

set. If fg 2 C, then C has no hitting sets.

10 Lu��s Moniz PEREIRA

De�nition 2.4 (Removal set)

A removal set of a literal L of a program P is a hitting set of all support sets

SS(L).

We can revise contradictory programs by changing the truth value of

the literals of some removal set of ?. The truth value can be changed either to

unde�ned or false. It can be changed to unde�ned by adding, for each literal

L or not L in the removal set, the inhibition rule L not L to P (making L

e�ectively unde�ned). It can be changed to false by adding, for each literal

not L, the fact L to P , while, for each literal L, nothing needs to be done

because not L is already true by the CWA. In case the literals are revised to

unde�ned, then the contradiction is removed and no new contradiction can arise.

In case they are revised to false, a new contradiction may arise and therefore

this (convergent)23) contradiction removal process must be iterated. This de�nes

the possible revisions of a contradictory program.

We answer the second question in section 2.2 by considering only a two-

valued revisions, i.e. where the truth value of a revisable can only be changed

to true or false. We answer the third question by preferring to revise minimal

sets of revisables:

De�nition 2.5 (Contradiction removal set)

A contradiction removal set (CRS) of P is a minimal removal set of ?.

Example 2.3 (cont.) The support sets of? are fnot c; not dg and fnot c; not eg.
Its removal sets are (RS1 and RS4 being minimal):

RS1(?) = fnot cg RS4(?) = fnot d; not eg
RS2(?) = fnot c; not eg RS5(?) = fnot c; not d; not eg
RS3(?) = fnot c; not dg

De�nition 2.6 (Revisable program)

A program is revisable i� it has a contradiction removal set.

In 23) an algorithm for computing the CRSs is presented.

x3 A genetic algorithm for multi-agent belief re-
vision

The algorithm here proposed for belief revision extends the standard

genetic algorithm (described for example in 21)) in two ways:

Belief Revision via Lamarckian Evolution 11

� crossover is performed among chromosomes belonging to di�erent agents,

� a Lamarckian operator called Learn is added in order to bring a chromo-

some closer to a correct revision by changing the value of revisables.

Each agent executes the following algorithm:

GA(Fitness;max gen; p; r;m; l)

Fitness : a function that assigns an evaluation score

to a hypothesis coded as a chromosome

max gen : the maximum number of generations

before termination

p: the number of individuals in the population

r: the fraction of the population to be replaced by Crossover

at each step

m: the fraction of the population to be mutated

at each step

l: the fraction of the population that should evolve Lamarckianly

at each step

Initialize population: Pop generate p hypotheses at random

Evaluate: for each h in Pop, compute Fitness(h)

gen 0

while gen � max gen

Pops ;
Select: Probabilistically select (1� r)p members of Pop

to add to Pops. The probability Pr(hi) of selecting

hypothesis hi from Pop is given by

Pr(hi) =
Fitness(hi)

�
p

j=1Fitness(hj)

Crossover:

For i=1 to rp

Probabilistically select an hypothesis h1 from Pop,

according to Pr(h1) given above

Obtain an hypothesis h2 from another agent

chosen at random: h2 is also

probilistically selected according to Pr(h2)

in the other agent

Crossover h1 with h2 obtaining h
0

12 Lu��s Moniz PEREIRA

Add h
0 to Pops

Mutate: Choose m percent of the members of Pops with

uniform probability. For each, invert one

randomly selected bit in its representation

Learn: Choose lp hypotheses from Pops with uniform

probability and substitute each of them with the

modi�ed hypotheses returned by the procedure Learn

Update: Pop Pops

gen gen+ 1

endwhile

Return the hypothesis from Pop with the highest �tness

In belief revision, each individual hypothesis is described by the truth value of

all the revisables. Since we consider a two-valued revision, each hypothesis gives

the truth value true or false to every revisable and therefore it can be considered

as a set containing one literal, either positive or default, for every revisable. A

chromosome is obtained by associating a bit to each revisable that has value 1

if the revisable is true and 0 if it is false.

Each agent has the same set of revisables and therefore chromosomes in

di�erent agents are homologous and can be crossed over each other. Moreover

each agent has the same program expressed theory, but is subjected to possibly

di�erent constraints.

Various �tness functions can be used in belief revision. The simplest

�tness function is the following

Fitness(hi) =
ni

n

where ni is the number of integrity constraints satis�ed by hypothesis hi and n

is the total number of integrity constraints. We will call it an accuracy �tness

function. Another possible �tness function is the following

Fitness(hi) =
ni

n
� n

n+ jhij +
fi

jhij �
jhij

n+ jhij
where fi is the number of revisables in hi that are false, and jhij is the total

number of revisables. We will call it a hybrid �tness function. In this way,

the �tness function takes into account both the fraction of constraints that are

satis�ed and the number of revisables whose truth value must be changed to true,

Belief Revision via Lamarckian Evolution 13

preferring hypotheses with a lower number of these, that is minimal revisions

are encouraged.

The Lamarckian operator Learn changes the values of the revisables

in a chromosome H so that a bigger number of constraints is satis�ed, thus

bringing H closer to a solution. Learn di�ers from a normal belief revision

operator because it does not assume that all revisables are false by CWA before

the revision but it starts from the truth values that are given by the chromosome

H . Therefore, it has to revise some revisables from true to false and others from

false to true.

Learn works in the following way: given a chromosome H , it �nds all

the support sets for ? such that they contain literals in H . Therefore, it does

not �nd all support sets for ? but only those that are subsets of H .

The de�nition of support set that is used by the Lamarckian operator is

therefore di�erent from de�nition 2.2 and is given as follows:

De�nition 3.1 (Lamarckian support set of a literal)

A support set of a literal L of the WFSXp model MP of a program P according

to a given set of literals H is denoted by SS(L;H) and is obtained as follows:

1. If L is a revisable in MP then

a. if L belongs to H , then a support set of L is fLg.
b. if the default complement of L belongs to H , then there is no support

set for L.

2. if L is not a revisable literal

a. if L is an objective literal then for each rule L B in P , such that

B � MP there is one SS(L) formed by the union of a SS for each

Bi 2 B. If B is empty then SS(L) = fg.
b. If L is a default literal not A 2MP :

i if rules for A exist in P that have a non-empty body, then choose

from each such rule a single literal such that its default complement

belongs to MP . There exists one SS for not A which is the union

of one SS for the default complement of the chosen literal in each

rule.

ii if :A belongs to MP then there exist, additionally, support sets

SS for not A equal to each SS(:A).

14 Lu��s Moniz PEREIRA

Since the Lamarckian support sets for? represent only a subset of all the support

sets for ?, a hitting set generated from them is not necessarily a contradiction

removal set and therefore it does not represent a solution to the belief revision

problem. However, it eliminates some of the derivation paths to? and, therefore,

may increase the number of satis�ed constraints, thus improving the �tness, as

required by the notion of Lamarckian operator.

To �nd support sets we need to know which literals belong to the model

of a program. This information is obtainable through some sound and correct

procedure for WFSXp such as the one described in 3), or the one in 6).

In the case of the experiments we consider in section 4, the support sets

procedure becomes simpli�ed in that the occurrences of default negated literals

pertain only to revisables. Therefore, point 2b in the above de�nition of support

set can be discharged. Moreover, the WFSXp model of the program coincides

with the least Herbrand model therefore SLD resolution can be employed. This

simpli�cation results in the procedure that is reported below.

When computing the support sets, the Lamarckian operator also mod-

i�es an extra bit associated to each meme each time the meme is considered

in the computation of Lamarckian support sets. This bit indicates whether the

meme has been \accessed" by the operator. This is needed for the crossover

operator that is described below.

procedure Learn(H;H 0)

inputs : A chromosome H translated into a set of revisables

outputs : A revised chromosome H 0

Find the support sets for ?: Support sets([?]; H; fg; fg; SS)
Find a hitting set HS: Hitting set(SS;HS)

Change the value of the literals in the chromosome H

that appear as well in HS

procedure Support sets(GL;H; S; SSin; SSout):

inputs :

GL a list of goals

A chromosome H translated into a set of revisables

The current support set S

The current set of support sets SSin

outputs :

Belief Revision via Lamarckian Evolution 15

A set SSout containing the support sets

for each goal in the list

If GL is empty, then return SSout = SSin

Consider the �rst literal L of the �rst goal G of GL

(GL = [GjRGL] using Prolog notation for lists)

(1) if G is empty then add the current support set to SSin

and call recursively the algorithm on the rest of GL

Support sets(RGL;H; fg; SSin[fSg; SSout)
(2) if G is not empty (G = [LjRG]) then:
(2a) if L is a revisable and is in H , then add it to S,

set to 1 L's access bit

and call the algorithm recursively on the rest of G

Support sets([RGjRGL]; H; S [fLg; SSin; SSout)
(2b) if L is a revisable and it is not in H , or its opposite

is in H , then set to 1 L's access bit, discard S

and call the algorithm recursively on the rest of GL

Support sets(RGL;H; fg; SSin; SSout)
(2c) if it is not a revisable then reduce it with all the rules,

obtaining the new goals G1; :::; Gn, one for each

matching rule, add the goals to GL and call

the algorithm recursively Support sets([[G1jRG]; :::;
[GnjRG]jRGL]; H; S; SSin; SSout)

(2d) if it is not a revisable and there are no rules, then

call the algorithm on the rest of GL

Support sets(RGL;H; fg; SSin; SSout)

procedure hitting set(SS;HS):

inputs : A set SS of support sets

outputs : A hitting set HS

HS ;
Pick a literal from every support set in SS

Add it to HS if it does not lead to contradiction

(i.e. the literal must not be already present

in its complemented form).

16 Lu��s Moniz PEREIRA

If it leads to contradiction pick another literal.

The crossover operator is an extension of a standard uniform crossover operator.

The crossover operator produces a new o�spring from two parent strings by

copying selected bits from each parent. The bit at position i in the o�spring is

copied from the bit in position i in one of the two parents. The choice of which

parent provides the bit for position i is determined by an additional string called

crossover mask. This string is a sequence of bits each of which has the following

meaning: if bit in position i is 0, then the bit in position i in the o�spring is

copied from the �rst parent, otherwise it is copied from the second parent. In

uniform crossover, the mask is generated as a bit string where each bit is chosen

at random and independently of the others.

In our setting, one of the parents comes from the agent local population,

while the other comes from the population of another agent. However, not all the

bits in the chromosome are treated equally. In particular, we distinguish genes

from memes: genes are modi�ed only by Darwinian operators, while memes are

modi�ed by Darwinian and Lamarckian operators. This distinction is performed

by the user before evolution begins and it is not altered by evolution.

Genes in the o�spring can be copied from both parents, while memes

can be copied from the parent coming from another agent only if they have been

\accessed" by the other agent as a result of the application of the Lamarckian

operator.

In this way, an agent can acquire from another agent only memes that

have been checked for consistency. Therefore, the ow of memes is asymmetrical

and goes from a \teacher" to a \learner", but not vice versa. In particular, in the

asymmetrical crossover operator the mask is generated again as a random bit

string and crossover is performed in the following way: if the i-th bit in the mask

is 1 and the i-th bit in the other agent's chromosome has been accessed, then the

i-th bit of the o�spring is copied from the other agent's chromosome, otherwise

it is copied from the local agent's chromosome. An example of application of

the asymmetrical crossover operator is shown in �gure 1: as can be seen, bit 1 of

the o�spring is copied from the local agent (Ag1) chromosome even if the mask

bit is set to 1 because its access bit in agent Ag2 is set to 0.

This crossover mechanism allows the algorithm to compete with collec-

tive or distributed belief revision methods because the o�spring of agents ex-

changing di�erent chromosomes can bene�t from both parents' experience. So

we can have a society of agents improve together without the need for explicit

Belief Revision via Lamarckian Evolution 17

Fig. 1 Example of application of the asymmetrical crossover operator.

message passing mechanisms. The problem with message passing is that one

has to know whom to pass the message to. If you pass it to everyone you get

a lot of overhead. If you write it on a blackboard, everyone can see it. Now

with gene crossover only the agents involved in the crossover pass a "genetic

message", and you cannot know a priori which agents are going to cross-fertilize

which of their genes with which other agents. So in our approach the infor-

mation sharing is on a by need and opportunity basis. Furthermore, message

passing is a high level construct requiring the control of looking out for received

messages and streaming and queuing of messages, whereas gene exchange is a

low level two-way method of exchanging "messages" without such overheads and

concerns.

The decision as to which bits in the chromosome are genes (i.e. sub-

jected to purely Darwinian evolution) or memes (i.e. subjected additionally to

Lamarckian evolution) is made by the user on the basis of his knowledge of

the problem, in both its modelling and engineering requirements. If modeling

requires less dynamic mutability then a gene is called for instead of a meme.

But even if a meme is called for, engineering concerns regarding complexity may

counsel employing a gene instead of a meme. This may be the case where the

assumption being coded occurs within especially complex or non-deterministic

parts of a program, for in that case the support set and revision computations

will originate too many alternatives (and hence Lamarkian mutations), thereby

provoking a combinatorial explosion. The latter may be avoided by resorting to

a gene rather than a meme coding of the assumptions involved. In the problems

we modeled in this paper, only memes were used to code assumptions when

Lamarckism was involved. And only genes were employed when Darwinism was

involved. There was no mixture of the two. However, we could have chosen, for

18 Lu��s Moniz PEREIRA

instance, to code as genes some assumptions about the faultiness or otherwise

of some gates, just in case we almost fully believed them to be non-faulty say,

but nevertheless allowing for a Darwinian mutation of their status.

Simpli�ed versions of this algorithm have also been considered in order

to test the e�ectiveness of the features added to the standard genetic algorithm.

In particular, four algorithms have been considered named in the sequel algo-

rithms 1, 2, 3 and 4. Algorithm 1 is a standard single agent genetic algorithm:

crossover is performed only among chromosomes of the same agent and the

Lamarckian operator is not used. Algorithm 2 adds to algorithm 1 the use of

the Lamarckian operator, with a parameter l (percentage of the population to

be mutated Lamarckianly) equal to 0.6 and the special treatment of memes in

crossover. Algorithm 3 is a multi-agent algorithm without the Lamarckian op-

erator, i.e., crossover is performed between chromosomes of di�erent agents but

the operator Learn is not applied to them. Algorithm 4 extends algorithm 3

by adding the Lamarckian operator, with a parameter l equal to 0.6, and the

special treatment of memes in crossover. For all the algorithms, the mutation

rate (parameter m) has been set to 0.0125 and the crossover rate (parameter r)

have been set to 0.75.

As regards the distinction between genes and memes, in the case of

algorithms 1 and 3 all the bits in the chromosome are considered genes, while

in the case of algorithms 2 and 4 all the bits in the chromosome are considered

memes.

Mark that in algorithms 3 and 4 the agents share the same set of program

clauses but have di�erent sets of constraints. Each agent scores the chromosomes

according to the constraints it has, thus using a local �tness function. At the end

of the computation, in order to �nd a single solution for the revision problem,

the best chromosome in each agent is considered and is scored with a �tness

function that considers all the constraints (global �tness function). Then the

chromosome with the highest global �tness is returned as the solution. In this

way the multi-agent system �nds a solution for the global belief revision problem.

These algorithms have been used in order to experimentally investigate

the truth of the following theses:

1. Lamarckism plus Darwinism outperforms Darwinism alone in the single

agent case;

2. the distributed algorithm (with or without the Lamarckian operator)

has a performance that is comparable (and, in particular, not signi�-

Belief Revision via Lamarckian Evolution 19

cantly inferior) to that of the non-distributed one, in the same number

of generations and the same overall number of individuals;

As regards thesis 2, we require only that the di�erence is not signi�cant because

we can not expect an improvement from distributing constraints with respect to

the centralized case where all the information is available. Therefore our aim is

to prove that the decrease in �tness is not signi�cant.

Moreover, we investigated the behaviour of our system in a dynamic

situation where not all of the constraints are known at the start and we compare

it with a situation where all are given initially.

The advantage of applying a genetic algorithm to belief revision lies

especially in the possibility of dealing with dynamicity in the data. Since a

population of individuals is kept, when a change in the world occurs it is more

probable that there exist an individual that is �t for the new situation.

x4 Experiments
The algorithms have been run on a number of belief revision problems.

In particular, we have considered the n-queen problem and problems of digital

circuit diagnosis, as per 12).

4.1 Experiment Methodology

In order to evaluate if the accuracy di�erences between algorithms are

signi�cant or not, we have computed a 5-fold cross-validated paired t test for

every pair of algorithms (see 14) for an overview of statistical tests for the com-

parison of machine learning algorithms). This test is computed as follows. Given

two algorithms A and B, let pA(i) (respectively pB(i)) be the maximum �tness

achieved by algorithmA (respectively B) in trial i. If we assume that the 5 di�er-

ences p(i) = pA(i)� pB(i) are drawn independently from a normal distribution,

then we can apply the Student t-test by computing the statistic

t =
�p
p
nrP

n

i=1
(p(i)��p)2

n�1

where n is the number of folds (5) and �p is

�p =
1

n

nX
i=1

p
(i)

20 Lu��s Moniz PEREIRA

In the null hypothesis, i.e. that A and B obtain the same �tness, this statistic

has a t distribution with n�1 (4) degrees of freedom. If we consider a probability

of 90%, then the null hypothesis can be rejected if

jtj > t4;0:90 = 1:533

4.2 n-queen Problem

The n-queen problem consists in positioning n queens over a n�n check-

board so that no two queens attack each other. This problem can be seen as a

Constraint Satisfaction Problem (CSP) where the constraints are: the total num-

ber of queens must be n; for each row, the total number of queens must not be

bigger than one; for each column, the total number of queens must not be bigger

than one and for each diagonal, the total number of queens must not be bigger

than one. This problem can be seen as a belief revision problem by assigning a

revisable of the form queen(Row,Column) to each position (Row,Column) in the

checkboard. Then, each constraint of the CSP can be written as an integrity

constraint.

Algorithms 1, 2, 3 and 4 have been tested on the n-queen problem. Each

algorithm was run 5 times. The parameters that have been used for the runs are:

20 maximum generations, 80 individuals for algorithms 1 and 2 (single agent),

20 individuals per agent and 4 agents for algorithms 3 and 4. The accuracy

�tness function was adopted.

We have considered a problem with n = 8. In this case there is a total

of 43 constraints: 1 constraint for the total number of queens, 8 constraints for

the rows, 8 for the columns and 26 for the diagonals. For multi-agent exper-

iments each agent has the same set of program clauses, while the constraints

were divided amongst them: 2 constraints on the rows and 2 on the columns

have been assigned to each agent, while the constraints on diagonals have been

divided in groups of 6, 6, 7 and 7 and correspondingly assigned to the agents.

The constraint on the total number of queens has been assigned to one of the

agents with only 6 constraints on the diagonals. Therefore, three agents have 11

constraints and one agent has only 10.

Table 1 shows, for each algorithm, the value of the �tness function for

the best hypothesis averaged over the 5 runs while table 2 shows the value of

the t statistics for the various couples of algorithms.

As can be seen, in this case both theses 1 and 2 are con�rmed. As

regards thesis 1, there is a signi�cant increment of �tness between algorithms 1

Belief Revision via Lamarckian Evolution 21

Algorithm Fitness Standard Deviation

1 0.6698 0.0705

2 0.7302 0.0127

3 0.7162 0.0624

4 0.7581 0.0127

Table 1 n-queen experiments with algorithms 1, 2, 3 and 4

Comparison jtj value
1-2 2.151

1-3 2.000

2-4 6.000

Table 2 Result of the t-test for di�erent couples of algorithms on the n-queen dataset.

and 2. As regards thesis 2, the �tness signi�cantly increases from algorithm 1

to 3 and from algorithm 2 to 4, thus proving a stronger thesis with respect to

thesis 2, that requires only the �tness not to signi�cantly decrease.

The low values for the standard deviation in all cases show the robustness

of the approach: no matter what is the initial random population, similar results

are obtained.

4.3 Digital Circuit Diagnosis

In problems of digital circuit diagnosis there is a di�erence between the

observed and the predicted outputs of a circuit. Figure 2 shows a sample circuit

together with the observed inputs and outputs of the circuit and the predicted

outputs of each gate. The aim of the diagnosis is to �nd which components are

faulty.

A problem of digital circuit diagnosis can be modeled as a belief revision

problem by describing it with a logic program consisting of �ve groups of clauses:

one that allows to compute the predicted output of each component, one that

describes the topology of the circuit, one that employs the topology description

to compute the values at the input pins of the gates, one that describes the ob-

served inputs and outputs, and one that consists of integrity constraints stating

that the predicted value for an output of the system cannot be di�erent from

the observed value. The representation formalism we use is the one of 12). As

regards the clauses for computing the predicted output of a gate, let us consider

the case of a two-input NAND:

22 Lu��s Moniz PEREIRA

Fig. 2 c17 circuit from ISCAS85's set of benchmark circuits.

val(out(nand2,Name), V) :-

not ab(Name),

val(in(nand2,Name,1), W1),

val(in(nand2,Name,2), W2),

nand2_table(W1,W2,V).

val(out(nand2,Name), V) :-

ab(Name),

val(in(nand2,Name,1), W1),

val(in(nand2,Name,2), W2),

and2_table(W1,W2,V).

In these clauses Name is the name of the component and the de�nitions of

nand2 table and and2 table consist of facts describing the input/output re-

lation of, respectively, a two-input NAND gate and a two-input AND gate.

ab(Name) is a revisable that can be assumed true or false. If it is assumed

true, it expresses a faulty behaviour of a component of the circuit, described in

this case by the second clause above. If it is assumed false, it expresses a cor-

rect behaviour of a component of the circuit, being described by the �rst clause

above.

The topology of the circuit is described by a set of facts for the predicate

conn/2. For example, consider the fact conn(in(nand2, g10, 1), out(inpt0,

g1)) describing a part of the circuit shown in �gure 2. This fact states that the

input 1 of gate g10 of type nand2 is connected to the output of gate g1 of type

inpt0. The gates of type inpt0 are the input pins of the circuit.

The clause that employs the topology description to compute the values

at the input pins of the gates is the following:

val(in(Type,Name,Nr), V) :-

Belief Revision via Lamarckian Evolution 23

conn(in(Type,Name,Nr), out(Type2,Name2)),

val(out(Type2,Name2), V).

The clauses that describe the observed values for the input and for the output of

the circuit are facts for the obs/2 predicate. obs(out(inpt0, g1), 0) states

that the input g1 has value 0.

As regards the integrity constraints, we have two constraints for each

output of the circuit, one stating that the output can not be 0 if it was observed to

be 1 and the other stating that the output can not be 1 if it was observed to be 0.

For example, the constraint ic([obs(out(nand2, g22), 0), val(out(nand2,

g22), 1)]). states that the value of the output of g22 cannot be 1 if it was

observed to be 0.

In case the circuit is faulty, one or more of the constraints will be vio-

lated. By means of belief revision, the values of the revisables are changed in

order to restore consistency. The literals of the form ab(Name) that are assigned

the value true identify the faulty components.

Usually, the number of faulty components is very small, very often one

or two. This means that only one or two revisables of the form ab(Name) will be

true, while all the other will be false. Therefore, the hybrid �tness function is

used, in order to take into account not only the number of satis�ed constraints

but also the number of false literals in the solution.
In order to show the di�erence between a belief revision operator and the

Lamarckian operator, let us show their behaviour on the c17 circuit supposing

the following hypothesis is given:

C={ab(g10), not ab(g11), ab(g16), not ab(g19), not ab(g22),

not ab(g23)}

In this case, two out of four constraints are violated because the predicted output

of g22 is 1 and of g23 is 0.

A belief revision operator, as for example REVISE 12), �nds a solution

where the only abnormality literal that is true is ab(g22) while all the others

are false. This solution is found independently of the initial starting hypothesis

because the support sets for ? are found independently of the initial values of

the revisables. This new hypothesis eliminates both constraint violations.

The Lamarckian operator, instead, will modify C into the following hy-

pothesis:

C'={ab(g10), ab(g11), ab(g16), not ab(g19), not ab(g22),

not ab(g23)}

24 Lu��s Moniz PEREIRA

Algorithm Fitness Standard Deviation

1 0.7791 0.0267

2 0.7612 0.0000

3 0.8060 0.0334

4 0.7463 0.0409

Table 3 voter experiments with algorithms 1, 2, 3 and 4

Comparison jtj value
1-2 1.500

1-3 9.000

2-4 0.817

Table 4 Result of the t-test for di�erent couples of algorithms in the voter dataset.

that di�ers from C only in the values of ab(g11). This new hypothesis eliminates

only one constraint violation because the output of g22 is still di�erent from the

observed value.

The GBR system has been tested on some real world problems taken

from the ISCAS85 benchmark circuits 9) that has been used as well for testing

the belief revision system REVISE 12).�2

We have considered the voter circuit that has 59 gates and 4 outputs,

corresponding respectively to 59 revisables and 8 constraints.

Algorithms 1, 2, 3 and 4 have been tested on the voter circuit with the

same parameters as for the n-queen problem: each algorithm was run 5 times,

each run had 20 maximum generations, 80 individuals for algorithms 1 and 2

(single agent), 20 individuals per agent and 4 agents for algorithms 3 and 4. In

algorithms 3 and 4 each agent has the same set of program clauses, while the

integrity constraints are distributed among the agents so that each agent knows

only the constraints that are related to one same output. The hybrid �tness

function was adopted.

Table 3 shows, for each algorithm, the value of the �tness function and

of its standard deviation for the best hypothesis after 20 generations averaged

over the 5 runs, while table 4 shows the value of the t statistics for the various

couples of algorithms.

As can be seen, in this case thesis 1 is not con�rmed since algorithm

�2 These examples can be found at http://www.soi.city.ac.uk/�msch/revise/.

Belief Revision via Lamarckian Evolution 25

Algorithm Time (s) Standard Deviation (s)

1 1138 8.51

2 1963 61.56

3 897 10.59

4 1153 38.72

Table 5 CPU times in seconds for the n-queen experiments

1 has a higher �tness than algorithm 2. However, the �tness di�erence is not

signi�cant according to the t test. The reduction of the �tness from algorithm 1

to 2 means that in in this case it is not possible to get closer to the solution by

a number of partial belief revision steps but the stochastic search performed by

the Darwinian operators is more e�ective. Thesis 2 instead is con�rmed since

there is a signi�cant �tness increment between algorithms 1 and 3 and a not

signi�cant �tness decrement between algorithms 2 and 4.

The low values for the standard deviation in all cases again show that the

approach is robust with respect to variations in the initial random population.

4.4 Time Complexity and Scalability

Tables 5 and 6 shows the CPU time consumed by each experiment av-

eraged over the 5 runs together with the corresponding standard deviation. In

the case of the multi-agent algorithms, the times are referred to sequentialized

versions of the algorithms where the population of each agent is updated in turn

in each generation, i.e., no parallelism was exploited. As can be seen, the com-

putation time varies from a minimum of 19 minutes to a maximum of 33 minutes

for the n-queen experiments and from a minimum of 10 minutes to a maximum

of 21 minutes for the voter experiments. The computation times have been

obtained on a SUN Ultra Enterprise 450 with 4 CPU Ultra Sparc II at 400 MHz

and 512 MB of RAM.

These computation times are superior to those of state of the art belief

revision systems like REVISE 12). However, it was not our purpose to compete

with state of the art classical belief revision methods. Our aim was rather to

propose a new methodology for belief revision that can be easily adapted to work

in a multi-agent environment.

Comparing the computation time of algorithms with and without the

Lamarckian operator, it must be noted that the addition of the Lamarckian

operator increases the computation time both in the single agent and in the

26 Lu��s Moniz PEREIRA

Algorithm Time (s) Standard Deviation (s)

1 895 176.01

2 1281 398.42

3 625 233.13

4 617 244.20

Table 6 CPU times in seconds for the voter experiments

multi-agent case in all cases but one, with a maximum increment of 72%. This

is reasonable given the complexity of the Lamarckian mutation operator.

In order to investigate the scalability of the approach, we have run al-

gorithm 4 on a series of instances of the n-queen problem with n varying from 4

to 8. The computation time with respect to the number of queens is plotted in

�gure 3. As can be seen from the graph, the relationship is more than quadratic

Fig. 3 Computation time as a function of the number of queens.

but less than cubic. From this relationship, we can obtain also information on

the behaviour of the CPU time with respect to the number of constraints and

to the number of revisables. The relationship between the number of queens n

Belief Revision via Lamarckian Evolution 27

Algorithm Fitness Standard Deviation

One stage 0.7581 0.0127

Two stages 0.8419 0.0416

Table 7 Experiments on dynamicity, two stages case

and the number of constraints c is in fact c = 6n � 5 and between n and the

number of revisables r is r = n
2. Therefore, the CPU time is O(c3) and O(r

3
2).

4.5 Dynamicity

In order to test the ability of the system to adapt to a dynamic situa-

tion, we compared the behaviour of the system on the n-queen problem when all

the constraints are known initially with the behaviour of the system when the

constraints are dynamically made known in two separate stages. In the latter

case, we �rst ran algorithm 4 for 20 generations on the n-queen problem without

a constraint on one of the longest diagonals, then we ran it for 20 more genera-

tions with all the constraints starting from the population obtained in the �rst

step. Our conjecture was that starting from a population optimized for a subset

of the constraints allows to achieve a high �tness more quickly with respect to

the case of starting from scratch from a random population.

Table 7 shows the �tness obtained with the two methods averaged over

�ve runs. The fact that in the two stages case we obtain a higher �tness shows

that in that case the �tness of the one stage case has been reached in less

generations.

In order to show that the process can be iterated, we considered an

experiment where the constraints are added in three separate stages. First, we

considered a problem with half of the column and of the row constraints and

without a constraint on one of the longest diagonals. Then we considered a

problem where the constraint on one of the longest diagonals is present but half

of the constraints on rows and columns are still missing. Finally, we considered

the problem with all the constraints.

Table 8 shows the �tness obtained with the three stages method averaged

over �ve runs compared with the �tness obtained from a one stage application

of the algorithm. The higher �tness obtained in the three stages case shows that

the process of constraint addition can be iterated.

x5 Related Work

28 Lu��s Moniz PEREIRA

Algorithm Fitness Standard Deviation

One stage 0.7581 0.0127

Three stages 0.8790 0.0299

Table 8 Experiments on dynamicity, three stages case

Various authors have investigated the integration of Darwinian and Lamar-

ckian evolution into a genetic algorithm 18, 1, 19, 17). A Lamarckian operator �rst

translates a genotype into its corresponding phenotype and performs a local

search in the phenotype's space. The local optimum that is obtained is then

translated back into its corresponding genotype and added to the population

for further evolution. 18) has shown that the traditional genetic algorithm per-

forms well for searching widely separated portions of the search space caused

by a scattered population, while Lamarckism is more pro�cient for exploring

localized areas of the population that would otherwise be missed by the global

search of the genetic algorithm. Therefore, Lamarckism can play an important

rôle when the population has converged to areas of local maxima that would not

be thoroughly explored by the standard genetic algorithm. The adoption of a

Lamarckian operator provides a signi�cant speedup in the performance of the

genetic algorithm.

Similarly to the approaches in 18, 1, 19, 17), we adopt a procedure for

Lamarckian evolution that �rst translates the chromosome into its phenotype

and then modi�es it in order to improve its �tness. Di�erently from 18, 1, 19, 17),

the procedure does not perform a local search but �nds an improvement by

tracing logical derivations causally supporting the undesired behaviour.

Cultural evolution is a form of evolution that is related to Lamarckian

evolution 25, 24). In cultural evolution, the population of individuals shares a

common memory where each individual can read or store beliefs. In particular,

the authors assume that each chromosome represents a program, i.e., a series of

actions. When the chromosome must be scored the program is executed and the

e�ect on the world is evaluated. The authors assume that, among the actions

that these programs can perform, there are also the actions READ and WRITE

that allow the programs to read from and write to a shared persistent memory.

In this way, experiences can be communicated among di�erent individuals, thus

realizing a mechanism similar to the transmission of culture in human societies.

Our approach for the transmission of knowledge di�ers from this one because no

global shared memory is kept, rather, the knowledge acquired by each individual

Belief Revision via Lamarckian Evolution 29

during its lifetime is transmitted by crossover.

In 20) the authors propose an approach for performing belief revision in

a multi-agent context. In their approach, each agent exploits an Assumptions

Based Truth Maintenance (ATMS) system in order to perform the revision of

beliefs. As in our approach, each agent has a di�erent repository for knowledge

and its beliefs may not be consistent with those of other agents, consistency is

enforced only locally inside each agent. Di�erently from us, in 20) the authors

consider an exchange of beliefs by means of a number of communications prim-

itives. Communication happens in three cases. The �rst is when an agent can

not establish by itself the truth value of an assumption or a goal: in this case, it

asks it to its acquaintances. The second case is when an agent �nds a conclusion

or an assumption that it knows being of interest for another agent: in this case it

communicates the results. The third case is when an agent has revised the truth

value of a belief that it had previously communicated to other agents: in this

case the agent communicates the other agents the new truth value for the belief.

Therefore, in 20) the cooperation among agents is explicit, while in our work the

cooperation emerges as the result of the continuous exchange of chromosomes

among agents.

In 20) the system is able to answer uniquely to queries posed to the

system by means of a meta-level algorithm that works in the following way: a

fact is false if it is considered false by at least one agent, a fact is true if no

agent considers it false and there is at least one agent that considers it true.

In our system, instead, the global result of the belief revision process is given

by the chromosome with the best global accuracy, also computed by means of a

meta-level algorithm that considers all the constraints. Mark that in our case we

consider only approximate belief revision, i.e., we do not ensure the consistency

of all the constraints.

x6 Conclusions and Future Work
We have presented a genetic algorithm for performing belief revision in

a multi-agent environment. The algorithm has been implemented in a system

called GBR that is available at http://lia.deis.unibo.it/Software/gbr/.

We consider a distributed belief revision problem where each agent has the same

knowledge base but di�erent integrity constraints. The standard genetic algo-

rithm is extended in two ways: �rst the algorithm combines two di�erent evolu-

tion strategies, one based on Darwin's and the other on Lamarck's evolutionary

30 Lu��s Moniz PEREIRA

theory and, second, chromosomes from di�erent agents can be crossed over with

each other.

The Lamarckian evolution strategy is obtained by means of an operator

that changes the genes (or, better, the memes) of an agent in order to improve

their �tness. The operator consists of a (partial) belief revision procedure that,

by tracing logical derivations, identi�es the memes leading to contradiction.

Experiments have been performed in order to investigate the e�ect of

the addition of the Lamarckian operator and of the distribution of constraints

on the solution of problems. We have considered the n-queen problem and a

digital circuit diagnosis problem. The result of the experiments do not provide

a de�nitive answer as regards the usefulness of the Lamarckian operator: in the

n-queen problem the Lamarckian operator provides a signi�cant increase of the

�tness, while on the voter case this is not true. As regards the distribution

of constraints, instead, in both cases there is not a signi�cant reduction of the

�tness, thus showing that the distribution does not heavily impact the accuracy

while allowing to solve a wider class of problems. As regards the Lamarckian

operator, further investigation is needed in order to identify more clearly the

cases where it leads to signi�cant increments of the �tness.

Lamarckian and Darwinian operators have complementary functions:

Lamarckian operators are used to get closer to a solution of a given belief re-

vision problem, while Darwinian operators are used in order to distribute the

acquired knowledge amongst agents. We could consider as well Lamarckian op-

erators that not only bring a chromosome closer to a solution but actually turn

it into a solution. In this case, when a new constraint is presented to an agent, it

�rst applies a Lamarckian operator to �nd a chromosome satisfying the new con-

straint and then it applies a Darwinian operator to distribute the \knowledge"

so acquired to other chromosomes in the same or other agents. In this way chro-

mosomes may be prepared in advance for meeting new constraints. Moreover, by

means of the Lamarckian operator, low values for the percentage of individuals

to be mutated and crossed-over could be used, thus saving computation time.

The exchange of genetic material is useful also in the case in which

the chromosomes do not have all the relevant revisables to start with (three-

valued revision). When they acquire new revisables from other chromosomes

they are obtaining specialized knowledge from others. This is for example the

case of the diagnosis of a car fault performed by di�erent experts: the expert

mechanic, the expert electrician, the expert car designer, etc. Each of them

Belief Revision via Lamarckian Evolution 31

makes a diagnosis about the part of the car that concerns their speciality. Next

they all have to come to a joint diagnosis by exchanging information about each

others' revisables.

We conjecture that in this new problem setting, where there is dynamic-

ity in the data, the integration of the Lamarckian and Darwinian operators will

fully exhibit, and be extolled in, its potential.

x7 Acknowledgements
L. M. Pereira acknowledges the support of POCTI project 40958 \FLUX

- FleXible Logical Updates". E. Lamma and F. Riguzzi acknowledge the support

of the EU-funded project IST-2001-32530 SOCS.

References

1) D. H. Ackely and M. L. Littman. A case for lamarckian evolution. In C. G.

Langton, editor, Arti�cial Life III. Addison Wesley, 1994.

2) J. J. Alferes, C. V. Dam�asio, and L. M. Pereira. SLX - A top-down derivation

procedure for programs with explicit negation. In M. Bruynooghe, editor, Proc.

Int. Symp. on Logic Programming. The MIT Press, 1994.

3) J. J. Alferes, C. V. Dam�asio, and L. M. Pereira. A logic programming system for

non-monotonic reasoning. Journal of Automated Reasoning, 14:93{147, 1995.

4) J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume

1111 of LNAI. Springer-Verlag, 1996.

5) J. J. Alferes, L. M. Pereira, and T. C. Przymusinski. \Classical" negation

in non-monotonic reasoning and logic programming. Journal of Automated

Reasoning, 20:107{142, 1998.

6) J. J. Alferes, L. M. Pereira, and T. Swift. Well-founded abduction via tabled

dual programs. In D. De Schreye, editor, Procs. of the 16th International Con-

ference on Logic Programming, pages 426{440, Las Cruces, New Mexico, 1999.

MIT Press.

7) J.M. Baldwin. A new factor in evolution. American Naturalist, 30:441{451,

1896.

8) Susan Blackmore. The Meme Machine. Oxford U.P., Oxford, UK, 1999.

9) F. Brglez, P. Pownall, and R. Hum. Accelerated ATPG and fault grading via

testability analysis. In Proceedings of IEEE Int. Symposium on Circuits and

Systems, pages 695{698, 1985. The ISCAS85 benchmark netlist are available

via ftp mcnc.mcnc.org.

10) C. V. Dam�asio and L. M. Pereira. Abduction on 3-valued extended logic pro-

grams. In V. W. Marek, A. Nerode, and M. Trusczynski, editors, Logic Pro-

gramming and Non-Monotonic Reasoning - Proc. of 3rd International Confer-

ence LPNMR'95, volume 925 of LNAI, pages 29{42, Germany, 1997. Springer-

Verlag.

32 Lu��s Moniz PEREIRA

11) C. V. Dam�asio and L. M. Pereira. A survey on paraconsistent semantics for

extended logic programs. In D.M. Gabbay and Ph. Smets, editors, Handbook

of Defeasible Reasoning and Uncertainty Management Systems, volume 2, pages

241{320. Kluwer Academic Publishers, 1998.

12) C. V. Dam�asio, L. M. Pereira, and M. Schroeder. REVISE: Logic program-

ming and diagnosis. In Proceedings of Logic-Programming and Non-Monotonic

Reasoning, LPNMR'97, volume 1265 of LNAI, Germany, 1997. Springer-Verlag.

13) Richard Dawkins. The Sel�sh Gene. Oxford University Press, 1989.

14) T. Dietterich. Approximate satistical tests for comparing supervised classi�ca-

tion learning algorithms. Neural Computation, in press (draft version available

at http://www.cs.orst.edu/ tgd/projects /supervised.html), 2000.

15) J. Dix, L. M. Pereira, and T. Przymusinski. Prolegomena to logic programming

and non-monotonic reasoning. In J. Dix, L. M. Pereira, and T. Przymusinski,

editors, Non-Monotonic Extensions of Logic Programming - Selected papers from

NMELP'96, number 1216 in LNAI, pages 1{36, Germany, 1997. Springer-Verlag.

16) M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.

In R. Kowalski and K. A. Bowen, editors, Proceedings of the 5th Int. Conf. on

Logic Programming, pages 1070{1080. MIT Press, 1988.

17) J. J. Grefenstette. Lamarckian learning in multi-agent environment. In Proc.

4th Intl. Conference on Genetic Algorithms. Morgan Kau�man, 1991.

18) W. E. Hart and R. K. Belew. Optimization with genetic algorithms hybrids that

use local search. In R. K. Belew and M. Mitchell, editors, Adaptive Individuals

in Evolving Populations. Addison Wesley, 1996.

19) Y. Li, K. C. Tan, and M. Gong. Model reduction in control systems by means

of global structure evolution and local parameter learning. In D. Dasgupta and

Z. Michalewicz, editors, Evolutionary Algorithms in Engineering Applications.

Springer Verlag, 1996.

20) B. Malheiro, N. R. Jennings, and E. Oliveira. Belief revision in multiagent sys-

tems. In Proceedings of the 11th European Conference on Arti�cial Intelligence,

1994.

21) T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

22) L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs

with explicit negation. In Proceedings of the European Conference on Arti�cial

Intelligenece ECAI92, pages 102{106. John Wiley and Sons, 1992.

23) L. M. Pereira, C. V. Dam�asio, and J. J. Alferes. Diagnosis and debugging as

contradiction removal. In L. M. Pereira and A. Nerode, editors, Proceedings

of the 2nd International Workshop on Logic Programming and Non-monotonic

Reasoning, pages 316{330. MIT Press, 1993.

24) Lee Spector and Sean Luke. Cultural transmission of information in genetic

programming. In Genetic Programming 1996: Proceedings of the First Annual

Conference, pages 209{214. The MIT Press, 1996.

25) Lee Spector and Sean Luke. Culture enhances the evolvability of cognition. In

Proceedings of the 1996 Cognitive Science Society Meeting, 1996.

26) A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for

general logic programs. Journal of the ACM, 38(3):620{650, 1991.

Belief Revision via Lamarckian Evolution 33

Appendix
The de�nition of WFSX that follows is taken from 2) and is based on the alter-

nating �x points of Gelfond-Lifschitz �-like operators.

De�nition 7.1 (The �-operator)

Let P be an extended logic program and let I be an interpretation of P . �P (I)

is the program obtained from P by performing in the sequence the following four

operations:

� Remove from P all rules containing a default literal L = not A such that

A 2 I .
� Remove from P all rules containing in the body an objective literal L such

that :L 2 I .
� Remove from all remaining rules of P their default literals L = not A such

that not A 2 I .
� Replace all the remaining default literals by proposition u.

In order to impose the coherence requirement, we need the following de�nition.

De�nition 7.2 (Seminormal Version of a Program)

The seminormal version of a program P is the program Ps obtained from P by

adding to the (possibly empty) Body of each rule L Body the default literal

not:L, where :L is the complement of L with respect to explicit negation.

In the following, we will use the following abbreviations: �(S) for �P (S) and

�s(S) for �Ps(S).

De�nition 7.3 (Partial Stable Model)

An interpretation T [not F is called a partial stable model of P i� T = ��sT

and F = H
E(P)� �sT .

Partial stable models are an extension of stable models 16) for extended logic

programs and a three-valued semantics. Not all programs have a partial stable

model (e.g., P = fa;:ag) and programs without a partial stable model are called

contradictory.

Theorem 7.1 (WFSX Semantics)

Every non-contradictory program P has a least (with respect to �) partial stable
model, the well-founded model of P denoted by WFM(P). To obtain an iter-

34 Lu��s Moniz PEREIRA

ative \bottom-up" de�nition for WFM(P) we de�ne the following trans�nite

sequence fI�g:

I0 = fg; I�+1 = ��SI�; IÆ =
[
fI�j� < Æg

where Æ is a limit ordinal. There exists a smallest ordinal � for the sequence

above, such that I� is the smallest �x point of ��S . Then, WFM(P) = I� [
not (HE(P)� �SI�).

