
Learning with Extended Logic ProgramsEvelina Lamma and Fabrizio RiguzziDEIS, Universit�a di Bologna,Viale Risorgimento 240136 Bologna, Italy,felamma,friguzzig@deis.unibo.it Lu��s Moniz PereiraCentro de Inteligência Arti�cial (CENTRIA),Departamento de Inform�atica,Universidade Nova de Lisboa,2825 Monte da Caparica, Portugallmp@di.fct.unl.ptAbstractWe discuss the adoption of a three-valued setting forinductive concept learning. Distinguishing betweenwhat is true, what is false and what is unknown can beuseful in situations where decisions have to be takenon the basis of scarce information. In a three-valuedsetting, we want to learn a de�nition for both the tar-get concept and its opposite, considering positive andnegative examples as instances of two disjoint classes.To this purpose, we adopt extended logic programsunder a well-founded semantics as the representationformalism for learning. In this way, we are able torepresent both the concept and its opposite and dealwith incomplete or unknown information.We discuss various approaches to be adopted in orderto handle possible inconsistencies. Default negation isused to ensure consistency and to handle exceptionsto general rules. Exceptions to a positive concept areidenti�ed from negative examples, whereas exceptionsto a negative concept are identi�ed from positive ex-amples. Exceptions can be generalized, in their turn,by learning within a hierarchy of defaults.IntroductionMost work on inductive concept learning considers atwo-valued setting. In such a setting, what is not en-tailed by the learned theory is considered as false, byusing the Closed World Assumption (CWA) (Reiter1978). However, in practice, it is more often the casethat we know with certainty the truth or falsity of alimited number of facts and we are not able to draw anyconclusion on the remaining facts, because the infor-mation available is too scarce. As it has been pointedout in (De Raedt & Bruynooghe 1990), this is typi-cally the case of an autonomous agent that incremen-tally gathers information from its surrounding world.The agent has to choose its actions on the basis of theknowledge it possesses and knowing that an action cer-tainly leads to a failure is di�erent from not knowinganything about its outcome. It will never try an actionwhen it is sure of its negative e�ect, but it may try anaction with an unknown outcome in situations where

no other action can be taken or in order to expand itsknowledge.Therefore, for such an agent, it would be much betterto be able to distinguish between what is certainly true,what is certainly false and what is unknown. To thispurpose, the agent should adopt a three-valued set-ting and learn a de�nition for both the concept and itscomplement, using positive examples for the conceptas negative examples for its complement and vicev-ersa. The learned theory will then classify instancesin three ways: instances covered by the positive de�-nition are positive, instances covered by the negativede�nition are negative and instances not covered byany de�nition are unknown.In order to represent three-valued theories of thiskind, we adopt Extended Logic Programs (ELP forshort) under the well-founded semantics with explicitnegationWFSX (Pereira & Alferes 1992). In (Pereira,Apar��cio, & Alferes 1993; Alferes & Pereira 1996) itis shown how ELP can be applied to domains wherenegative information is made symmetric to positiveone, e.g., concept hierarchies, reasoning about actions,counterfactuals, diagnosis, and debugging.In this work, we consider an extension of Induc-tive Logic Programming (ILP for short) in order tolearn ELP under WFSX. As in (Inoue & Kudoh 1997;De Raedt & Bruynooghe 1990), we learn a de�nitionfor both a positive concept p and its (explicit) negation:p. Coverage of examples is tested by adopting theSLX interpreter for ELP, de�ned in (Alferes, Dam�asio,& Pereira 1994; Alferes & Pereira 1996).When learning both positive and negative concepts,we may have interaction between the two: their de�ni-tions may have a non-empty intersection. We must dis-tinguish two types of atoms in the intersection. Unseenatoms, i.e., atoms of target predicates not present inthe training set, should be assigned an unknown value,while atoms in the training set should be assigned thetruth value of the training set to which they belong andbe considered as exceptions for the opposite de�nition.



Therefore, exceptions to a positive concept are identi-�ed from negative examples, whereas exceptions to anegative concept are identi�ed from positive examples.Explicit negation is used to represent the oppositeconcept while default negation is used to ensure con-sistency and to handle exceptions to general rules. Ex-ceptions can be generalized, in their turn, by learningwithin a hierarchy of defaults.Major innovations of the work concern both the ap-plication of ILP to the case of ELP, by integrating stan-dard ILP algorithms with a top-down interpreter forELP under a well-founded semantics and the discus-sion of various approaches to be adopted in order todeal with consistency and exceptions.The paper is organized as follows. We �rst intro-duce the new ILP framework. Then we discuss howto avoid inconsistencies on unseen atoms through theuse of non-deterministic rules and to deal with excep-tions through negation as default. A description of thelearning algorithm follows together with an example ofits behaviour. Finally we discuss related works and weconclude.Learning in a Three-valued SettingIn real world problems, complete information aboutthe world is impossible to achieve and it is necessaryto reason and act on the basis of the available partialinformation. In situations of incomplete knowledge, itis important to distinguish between what is true, whatis false and what is unknown.Such situation is, for example, the one of an agentthat incrementally gathers information from the sur-rounding world and has to select its own actions onthe basis of such knowledge. If the agent learns ina two-valued settings, it can encounter the problemsthat have been highlighted in (De Raedt & Bruynooghe1990). When learning in a speci�c to general way, itwill learn a cautious de�nition for the target conceptand it will not be able to distinguish what is false fromwhat is not yet known (see �gure 1a). Suppose thetarget predicate represents the allowed actions, thenthe agent will not distinguish forbidden actions fromactions with an unknown outcome and this can clearlybe a limitation. If the agent learns in a general tospeci�c way, instead, it will not know the di�erencebetween what is true and what is unknown (�gure 1b)and therefore it can try actions with an unknown out-come. Insted, by learning in a three-valued settings, itwill be able to distinguish between allowed actions, for-bidden actions and actions with an unknown outcome(�gure 1c). In this way, the agent will know whichpart of the domain needs to be further explored andwill not try actions with an unknown outcome unless

Figure 1: (a,b): two-valued settings, (c): three-valuedsetting (taken from (De Raedt & Bruynooghe 1990))it is trying to expand its knowledge.Learning in a three-valued settings requires theadoption of a more expressible class of programs tobe learned. This class can be represented by meansof Extended Logic Programs, under a stable semantics(Gelfond & Lifschitz 1991), or under a well-foundedone (Pereira & Alferes 1992). In the following, we willadopt the well-founded semantics with explicit nega-tion WFSX (Pereira & Alferes 1992). We will denotenegation by default by not and explicit negation by :.:A is said the opposite literal of A (and viceversa) andnot A the complementary literal of A (and viceversa).Starting from a set of positive and negative examplesfor a target predicate p and a background knowledgewhich is itself an extended logic program underWFSX,we apply standard ILP techniques in order to learn ade�nition for both the positive concept p and its oppo-site :p. The ILP learning problem for the case of ELPhas been �rst introduced in (Inoue & Kudoh 1997):Given:� a set P of possible (extended logic) programs� a set E+ of positive examples� a set E� of negative examples� a consistent extended logic program B (backgroundknowledge)Find:� an extended logic program P 2 P such that{ B [ P j= E+;:E� (completeness){ B [ P 6j= E�;:E+ (consistency)where :E = f:eje 2 Eg, and E+;:E� (resp.E�;:E+) stands for the conjunction of each atomin E+ and :E� (resp. in E� and :E+).Note that, in the ILP problem, it is required thatthe program is consistent only with respect to theexamples. We enlarge this condition requiring thatthe program is consistent also for unseen atoms, i.e.,B[P 6j= L;:L for every atom L of the target concept.



Since the SLX procedure is correct (in the sensespeci�ed in (Alferes & Pereira 1996)), coverage of ex-amples is tested by adopting the SLX top-down inter-preter for extended logic programs, de�ned in (Alferes,Dam�asio, & Pereira 1994; Alferes & Pereira 1996). It isimportant to note that neither answer-sets, nor three-valued strong negation, enjoy relevance (Alferes &Pereira 1996; Alferes, Przymusinski, & Pereira 1998),i.e., they cannot have top-down querying procedures,and that is why we use SLX, for WFSX is relevant.We say that an example e is covered by program P ifP ` e according to the SLX procedure.Therefore the conditions that a program P must sat-isfy in order to be a solution to the ILP problem canbe expressed as \P must cover all the positive exam-ples and all explicit negations of the negative ones"and \P must not cover both a literal and its explicitnegation". A theory that satis�es the �rst conditionis said to be complete, while a theory that satis�es thesecond is said to be consistent.The set P is called the hypothesis space. The im-portance of this set lies in the fact that it de�nes thesearch space of the ILP system. In order to be ableto e�ectively learn a program, this space must be re-stricted as much as possible. If the space is too big,the search could result infeasible.There are two broad categories of ILP learningmeth-ods: bottom-up methods, that search the space ofclauses speci�c to general, and top-down methods, thatsearch the space of clauses general to speci�c. Inbottom-up methods, clauses are generated by startingwith a speci�c clause that covers one or more positiveexamples and no negative example, and by iterativelygeneralizing it as much as possible without coveringany negative example. In top-down methods clausesare constructed by starting with a general clause thatcovers all positive and negative examples and by spe-cializing it until it does no longer cover any negativeexample while still covering at least one positive.Relative Least General Generalization (RLGG)(Plotkin 1970), Inverse Resolution (Muggleton & Bun-tine 1992) and Inverse Entailment (Lapointe & Matwin1992) are examples of bottom-up techniques. GOLEM(Muggleton & Feng 1990) is a system that learns the-ories bottom-up by using RLGG. GOLEM generates asingle clause by randomly picking couples of examples,by computing their RLGG and by choosing the onewith the greatest coverage of positive examples. Thisclause is further generalized by randomly choosing newpositive examples and by computing the RLGG of theclause and each of the example. The generalizationthat covers more examples is chosen and is furthergeneralized until the coverage of the clause stops in-

creasing. Covered examples are removed from E+ andthe procedure is iterated until no uncovered positiveexample remains.Top-down systems, instead, share a basic algorithmthat is given as follows (adapted from (Lavra�c &D�zeroski 1994)):algorithm LearnTopDown(inputs : E+; E� : training sets,B : background theory,outputs : H : learned theory)Initialize H := ;repeat (Covering loop)GenerateClause(E+; E�; B; c)Remove from E+ the e+ covered by cAdd c to Huntil E+ = ; (Su�ciency stopping criterion)procedure GenerateClause(inputs : E+; E� : training sets,B : background theory,outputs : c : clause)Select a predicate p that must be learnedInitialize c to be p(X) :repeat (Specialization loop)Generate all the possible re�nements of cby adding a literal L to cFind the re�nement cbest that is bestaccording to some heuristic functionAssign c := cbestuntil c does not cover any negative examplereturn c (Necessity stopping criterion)FOIL (Quinlan 1990) and Progol (Muggleton 1995) areexamples of top-down systems.Our approach to learning ELP consists in applyingordinary ILP techniques to learn de�nitions of the pos-itive and negative concept. The ILP technique to beused depends on the level of generality that we wantto have for the two de�nitions: we can look for theLeast General Solution (LGS for short) or the MostGeneral Solution (MGS for short). LGSs can be foundby adopting a bottom-up method while MGSs can befound by adopting a top-down system.The generality of the solutions should be chosen in-dependently for the two de�nitions, thus leading tofour epistemological cases depending on the combina-tion of solution generality for the positive and negativeconcept. The choice of the level of generality shouldbe made on the basis of available knowledge on thedomain. Two of the criteria that should be taken intoaccount are the damage that can derive from an erro-neous classi�cation of an unseen object and the con�-dence we have in the training set.When classifying an unseen object as belonging to



a concept, we may later discover that the object be-longs to the opposite concept. The more we generalizea concept, the higher number of unseen atoms is cov-ered by the de�nition and the higher is the risk of anerroneous classi�cation. Depending on the of damagethat may derive from such a mistake, we may decide totake a cautious or a con�dent approach. If the possi-ble damage for a concept is high, then we should learnthe LGS for that concept, if the possible damage is lowthen we can generalize the most and learn the MGS.The risk will depend on the use of the learned conceptswithin other rules, and so distinct generalities may beemployed within the same program.As regards the con�dence in the training set, we canlearn the MGS for a concept if we are con�dent thatexamples for the opposite concept are correct and rep-resentative of the concept. In fact, in top-down meth-ods, negative examples are used in order to limit thegenerality of the solution. Otherwise, if we think thatexamples for the opposite concept are not reliable, thenwe should learn the LGS.In order to illustrate the di�erence between the var-ious generalizations, consider the following example.Example 1 The domain contains two entities a; b andthe target concept is flies.bird(a): animal(a):cat(b): animal(b):The training set is:E+ = fflies(a)gE� = fflies(b)gBelow are reported the most general and least generalde�nitions, for both the positive and negative concept,that constitute a solution to the learning problem:flies+MGS(X)  bird(X):f lies+LGS(X)  bird(X); animal(X):f lies�MGS(X)  cat(X):f lies�LGS(X)  cat(X); animal(X):Intersection of Positive and NegativeDe�nitionsThe de�nitions of the positive and negative conceptsmay overlap. In this case, we have a contradictory clas-si�cation for the atoms in the intersection. We proposea representation of the target theory that resolves theconict by distinguishing two types of atoms in the in-tersection: those that belong to the training set andthose that don't, also called unseen atoms (see �gure2).

Figure 2: Interaction of the positive and negative def-initions on exceptions.For unseen atoms, the conict should be resolvedby classifying the atoms as unknown, since the argu-ments for both classi�cations are equally strong. In-stead, for atoms in the training set, the conict shouldbe resolved by assuming the classi�cation given by thetraining set, supposing this information is reliable, i.e.,in the hypothesis of absence of noise. In other words,atoms in the training set that are covered by the op-posite de�nition should be considered as exceptions ofthat de�nition.For unseen atoms in the intersection, the unknownclassi�cation is obtained by making the rules non de-terministic (Pereira, Apar��cio, & Alferes 1991; Baral& Gelfond 1994; Alferes & Pereira 1996). The targettheory is thus expressed in the following way:p( ~X)  p+( ~X); not :p( ~X):p( ~X)  p�( ~X); not p( ~X)where p+( ~X) and p�( ~X) are, respectively, the de�ni-tions learned for the positive and the negative concept.For each atom in the intersection, there are two partialstable models, one containing the atom in its positiveversion, the other containing the opposite literal. Theatom is unknown, according to the well-founded se-mantics for explicit negation (Pereira & Alferes 1992),i.e., in the least partial stable model.Note that the program B [ P can be non-strati�ed,either because the original background is already non-strati�ed or because the learned program is non-strati�ed. In this case, three-valued semantics can pro-duce literals with the value \unknown" and one or bothof p+ and p� may be unknown. If one is unknown andthe other is true, then the rules above make both pand :p unde�ned, since the negation by default of anunde�ned atom is unde�ned. However, this is counter-intuitive: the de�ned value should prevail.In order to handle this case, we suppose that a sys-tem predicate undefined(X) is available that succeedsif and only if the atom X is unde�ned. So we add the



following two rules to the de�nitions for p and :p:p( ~X)  p+( ~X); undefined(:p( ~X)):p( ~X)  p�( ~X); undefined(p( ~X))According to these clauses, p is true when p+ is trueand :p is unde�ned.Let us consider now the case in which some atomsin the intersection belong to the opposite training set.We want to classify these atoms according to the clas-si�cation given by the training set. To this purpose,we add a non-abnormality literal (using negation asdefault) of the kind not abp( ~X) (not ab:p( ~X)) to therule for p (:p), expressing the default condition. Then,for every exception p(~t), an individual fact of the formabp(~t) (ab:p(~t)) is asserted (and possibly generalized)so that the rule for p (:p) will not cover the exception.In this way, exceptions will be present in the model ofthe theory with the correct de�nition. The rules thustake the following form:p( ~X)  p+( ~X); not abp( ~X); not :p( ~X):p( ~X)  p�( ~X); not ab:p( ~X); not p( ~X)p( ~X)  p+( ~X); undefined(:p( ~X)):p( ~X)  p�( ~X); undefined(p( ~X))Abnormality literals have not been added to the rulesfor the unde�ned case because an atom that is an ex-ception is also an example and it must be covered bythe respective de�nition, therefore it can not be unde-�ned.In this way, we are able to deal both with the case inwhich the two de�nitions are inconsistent and with thecase in which exceptions to rules exist, as it is shownin the next example.Example 2 Consider a domain containing entitiesa; b; c; d; e; f and suppose the target concept is fly. Letthe background knowledge be:bird(a): has wings(a):jet(b): has wings(b):angel(c) has wings(c): has limbs(c):penguin(d) has wings(d): has limbs(d):dog(e): has limbs(e):cat(f): has limbs(f):and let the training set be:E+ = fflies(a)gE� = fflies(d); f lies(e)gThe learned theory is:flies(X)  flies+(X); not abflies(X);not :flies(X):

Figure 3: Coverage of de�nitions for the positive andnegative concept:flies(X)  flies�(X); not flies(X):f lies(X)  flies+(X); undefined(:flies(X))::flies(X)  flies�(X); undefined(flies(X)):abflies+(d)  :where flies+(X)  has wings(X):f lies�(X)  has limbs(X):Moreover, the abnormality fact abflies(d) can be gen-eralized obtainingabflies(X) penguin(X):This example (represented in �gure 3) shows all thevarious cases for an atom when learning in a three-valued setting. a and e are examples that are consis-tently covered by the de�nitions. b and f are unseenatoms on which there is no contradiction. c and d areatoms where there is contradiction, but c is classi�edas unknown whereas d is considered as an exception tothe positive de�nition and is classi�ed as negative.The probability and type of interaction depend onthe level of generality of the de�nitions learned for p+and p�. The higher is the generality, the higher is theprobability of interaction between the two.AlgorithmThe algorithm that follows learns ELP of the form de-scribed in the previous section:algorithm LearnELP(inputs : E+; E� : training sets,B : background theory,outputs : H : learned theory)LearnHierarchy(E+; E�; B;Hp)LearnHierarchy(E�; E+; B;H:p)Obtain H by transforming Hp and H:p intonon-deterministic rules and by addingthe clauses for the unde�ned caseoutput Hprocedure LearnHierarchy(inputs : E+ : positive examples,



E� : negative examples,B : background theory,outputs : H : learned theory)Learn(E+; E�; B;Hp)H := Hpfor each rule r in Hp doFind the sets E+r ; E�r of positive and negativeexamples covered by rif E�r is not empty thenAdd the literal not abr( ~X) to rObtain E+abr and E�abr from E�r and E+r bytransforming each atom p(~t) into abr(~t)LearnHierarchy(E+abr; E�abr ; B;Hr)H := H [Hrendifenforoutput HThe algorithm uses a procedure LearnHierarchy that,given a set of positive, a set of negative examples and abackground knowledge, returns a de�nition for the pos-itive concept, consisting of default rules, together withde�nitions for the abnormality literals. The procedureLearnHierarchy is called twice, once for the positiveconcept and once for the negative concept. In the callfor the negative concept, E� is used as the positivetraining set and E+ as the negative one.LearnHierarchy �rst calls a procedureLearn(E+; E�; B;Hp) that learns a de�nition Hp forthe target concept p. Learn consists of an ordinary ILPalgorithm, either bottom-up or top-down, modi�ed toadopt the SLX interpreter for testing the coverage ofexamples and to relax the consistency requirement ofthe solution. The algorithm thus returns a theory thatmay cover some negative examples. These negativeexamples are then treated as exceptions, by adding adefault literal to the inconsistent rules and learning ade�nition for the abnormality predicate. In particu-lar, for each rule r = p( ~X) Body( ~X) in Hp, a newnon-abnormality literal not abr( ~X) is added to r anda de�nition for abr( ~X) is learned by recursively callingLearnHierarchy. Examples for abr are obtained fromexamples for p by observing that, in order to cover apositive (uncover a negative) example p(~t) for p, theatom abr(~t) must be false (true). Therefore, positive(negative) examples for abr are obtained from the setE�r of negative (E+r of positive) examples covered bythe rule.When learning a de�nition for abr, in turn, Learn-Hierarchy may �nd exceptions to exceptions and callitself recursively again. In this way we are able to learna hierarchy of exceptions.

Let us now discuss in more detail the algorithm thatimplements the Learn procedure. We need an algo-rithm that, if a consistent solution can not be found,returns a theory that covers the least number of nega-tive examples.Two approaches are possible. The �rst consists inlearning the least general clause from positive exam-ples only: since the clause is not tested on negative ex-amples, it may cover some of them. This approach canbe realized by adopting a bottom-up technique such asRLGG, for example by using the system GOLEM thatimplements it, as in (Inoue & Kudoh 1997).The second approach consists in learning from posi-tive and negative examples adopting a top-down learn-ing algorithm where consistency of clauses (necessitystopping criterion in the top-down algorithm) is re-placed by a weaker requirement. The simplest criterionthat can be adopted is to stop specializing the clausewhen no literal can be added that reduces the coverageof negative examples.Other criteria can be used that are based on heuris-tic functions. For example, the algorithm could stopadding literals when the accuracy rises above a cer-tain threshold, where accuracy is de�ned as the ra-tio of covered positive examples over the total numberof examples covered by the clause. In ILP, variousheuristic necessity stopping criteria that relax the con-sistency requirement have been designed in order tohandle noise. In presence of noise, erroneous infor-mation about negative examples may have the e�ectof causing an overspecialization of clauses in order tomake them consistent. Instead, by relaxing the con-sistency requirement, su�ciently general rules may belearned that cover a limited number of negative exam-ples. These heuristic stopping criteria can be useful aswell to learn de�nitions of concepts with exceptions:when a clause should be specialized too much in orderto make it consistent, we prefer to transform it into adefault rule and consider the covered negative exam-ples as exceptions.For example, FOIL (Quinlan 1990) uses a stoppingcriterion that is based on the encoding length restric-tion (Quinlan 1990) which restrict the total length ofan induced clause to the number of bits needed to ex-plicitly enumerate the training examples it covers. Theconstruction of a clause is stopped when adding any lit-eral would cause the length of the clause to exceed thenumber of bits required to encode the set of examples.In order to show the behaviour of the algorithmwhen learning exceptions and to compare it with thoseof LELP, we will consider the learning problem thatis described in example 3.4 in (Inoue & Kudoh 1997)where the de�nition of the concept flies is learned.



Example 3 Consider the following background knowl-edge and training sets:penguin(1): penguin(2):bird(3): bird(4): bird(5):bird(X) pen(X).animal(6): animal(7). animal(8):animal(9): animal(10): animal(11):animal(12):animal(X) bird(X):E+ = fflies(3); f lies(4); f lies(5)gE� = fflies(1); f lies(2); f lies(6); flies(7); flies(8)flies(9); f lies(10); f lies(11); f lies(12)gWe consider the case in which a top-down method isadopted for the procedure Learn. The stopping crite-rion used is the simplest, i.e., we stop when no literalcan be added to reduce the number of covered negativeexamples.The algorithm �rst learns the positive concept. The�rst call of the Learn procedure produces the rule(1) flies(X) bird(X)that is inconsistent since it covers the negative exam-ples E�1 = fflies(1); f lies(2)g. Therefore, the rule isspecialized by adding a default literal(2) flies(X) bird(X); not ab2(X)and LearnHierarchy is called recursively with trainingsetsE+ = fab2(1); ab2(2)gE� = fab2(3); ab2(4); ab2(5)gThe new call of Learn now returns the rule(3) ab2(X) penguin(X)Since the clause is consistent, both recursive calls ofLearnHierarchy return and the algorithm starts learn-ing the negative concept. It �rst generates the rule(4) :flies(X) animal(X)that covers as well the negative examples E�4 =fflies(3); f lies(4); f lies(5)g: The rule is then trans-formed into the default rule(5) :flies(X) animal(X); not ab5(X)and LearnHierarchy is called with training setsE+ = fab5(3); ab5(4); ab5(5)gE� = fab5(1); ab5(2); ab5(6); ab5(7); ab5(8);ab5(9); ab5(10); ab5(11); ab5(12)gNow the following rule is learned(6) ab5(X) bird(X)The rule covers the negative examples E�6 =fab5(1); ab5(2)g and is thus transformed into(7) ab5(X) bird(X); not ab7(X)Finally, LearnHierarchy is called for learning a de�ni-tion for ab7 with the following training setsE+ = fab7(1); ab7(2)gE� = fab7(3); ab7(4); ab7(5); gFrom this training set, the consistent rule

(8) ab7(X) pen(X)is generated. The algorithm now terminates by makingthe clauses for flies and :flies non-deterministic andby adding the clauses for the unde�ned case.Related WorkThe problems raised by negation and uncertaintyin concept-learning, and Inductive Logic Program-ming in particular, were pointed out in some previ-ous work (e.g., (Bain & Muggleton 1992; De Raedt &Bruynooghe 1990)). For concept learning, the use ofthe CWA for target predicates is no longer acceptablebecause it does not allow to distinguish between whatis false and what is unde�ned. To avoid this problem,De Raedt and Bruynooghe (De Raedt & Bruynooghe1990) proposed to use a three valued logic and anexplicit de�nition of the negated concept in conceptlearning. This technique has been integrated withinthe CLINT system, an interactive concept-learner. Inthe resulting system, both a positive and a negativede�nition are learned for a concept (predicate) p, stat-ing, respectively, the conditions under which p is trueand false. Furthermore, it is required that the conceptdescriptions be consistent.The system LELP (Learning ELP) (Inoue & Kudoh1997) learns ELP under answer-set semantics. As ouralgorithm, LELP is able to learn non-deterministic de-fault rules with a hierarchy of exceptions. From thepoint of view of the learning problems that the two al-gorithms can solve, they are equivalent when the back-ground is a de�nite logic program: all the examplesshown in (Inoue & Kudoh 1997) can be learned by ouralgorithm and, viceversa, example 2 can be learned byLELP.When the background is an ELP, instead, the adop-tion of a well-founded semantics gives a number of ad-vantages with respect to the answer-set semantics. Fornon-strati�ed background theories, answer-sets seman-tics does not enjoy the structural property of relevance(Dix 1995a; 1995b), like our WFSX does, and so theycannot employ top-down proof procedures. For thewell-founded semantics, instead, the top-down SLX in-terpreter is available, that can be used for testing thecoverage of examples in the learning algorithm. More-over, by means ofWFSX, we have introduced a methodto choose one concept when the other is unde�nedwhich they cannot replicate because in the answer-setsemantics one has to compute eventually all answer-sets to �nd out if an atom is unknown. Last but notleast, answer-sets semantics is not cumulative, whichimplies that you cannot assert what you learn withoutthe risk of changing the semantics of what you learned.The structure of the two algorithms is similar: LELP



�rst generates candidate rules from a concept using anordinary ILP framework. Then exceptions are iden-ti�ed (as covered examples of the opposite set) andrules specialized through negation as default and ab-normality atoms, which are then assumed to preventthe coverage of exceptions. These assumptions can be,in their turn, generalized to generate hierarchical de-fault rules.A di�erence between us and Inoue & Kudoh isin the level of generality of the de�nitions they canlearn. LELP generate clauses from positive examplesonly therefore it can only employ a bottom-up ILPtechnique and learn the LGS. Instead, we can choosewhether to adopt a bottom-up or a top-down algorithmand we can learn theories of di�erent generality for dif-ferent target concepts.Another di�erence consists in the fact that LELPlearns a de�nition only for the concept that has thehighest number of examples in the training set. Itlearns both positive and negative concepts only whenthe number of positive examples is close to that of neg-ative ones, while we always learn both concepts.LELP also di�ers from our approach because it addsto the theory a clause for the negative concept givenin terms of the abnormality literals for the positiveconcept. For example, in the case of example 2, LELPwould produce the following theory:(9) flies(X) has wings(X); not ab1(X):(10) ab1(X) penguin(X):(11) :flies(X) has limbs(X):(12) :flies(X) ab1(X):We do not generate clause (12) since, when learning ade�nition for both flies and :flies, the examples itcovers are already covered by clause (11) and thereforesuch a clause is redundant.Several other authors have also addressed the taskof learning rules with exceptions (Dimopoulos & Kakas1995; De Raedt & Bruynooghe 1990). In these frame-works, nonmonotonicity and exceptions are dealt withby learning logic programs with negation. In (Di-mopoulos & Kakas 1995) the authors rely on a lan-guage which uses a limited form of \classical" (or, bet-ter, syntactic) negation together with a priority rela-tion among the sentences of the program (Kakas, Man-carella, & Dung 1994) which can be easily mapped intonegation as default.It is worth mentioning that the treatment of excep-tions by means of the addition of a non-abnormalityliteral to each rule (as we and (Inoue & Kudoh 1997)do) is similar to the approach for declarative debuggingfollowed in (Pereira, Dam�asio, & Alferes 1993). In or-der to debug a logic program, in (Pereira, Dam�asio, &Alferes 1993) the authors �rst transform it by adding a

di�erent default literal to each rule. These literals arethen used as assumptions of the correctness of the rule,to be possibly revised in the face of a wrong solution.The debugging algorithm determines the assumptionsthat led to the wrong solution, thus identifying the in-correct rules.Non-abnormality literals can also be viewed as newabducible predicates, as done for instance in (Espos-ito et al. 1996; 1998; Inoue 1998). In particular, in(Esposito et al. 1996; 1998) the authors have consid-ered the integration and cooperation of induction andabduction in order to learn Abductive Logic Programs(ALP) from (possibly) incomplete background knowl-edge expressed as ALP in its turn. In order to make arule for a target predicate p consistent, the rule is spe-cialized by adding a new abducible literal not abi( ~X).Exceptions are ruled out by abducing abi(~t) for them.These assumptions are then used to learn a de�nitionfor abi that describes the class of exceptions. In thisway, they are able to learn hierarchies of exceptions.ConclusionsWe have shown that Extended Logic Programs are anappropriate representation formalism for learning in athree-valued setting. In this case, one has to learn ade�nition for both the target and the opposite con-cept, by considering positive and negative examples asinstances of two disjoint classes.With ELP we are able to represent opposite conceptsand to deal with their interaction. Inconsistencies aredealt with di�erently according to the type of atomcausing them. Unseen atoms are classi�ed as unknownthrough the adoption of non-deterministic rules, whileexceptions are dealt with by non-abnormality defaults.We have presented an algorithm that learns ELP ofthe form above and to learn hierarchies of exceptions.The algorithm incorporates a standard ILP algorithmsuitably extended to adopt the SLX interpreter forELP and to relax the consistency requirement. De-pending on the type of ILP algorithm, either bottom-up or top-down, we can learn the most general solutionor the least general solution for the concept and its op-posite. The generality of solutions should be chosenindependently for the two concepts on the basis of thedamage that can derive from an erroneous classi�ca-tion and of the con�dence in the training set.AcknowledgmentsThis research was partially funded by the PRAXISXXI project MENTAL, and a NATO sabbatical schol-arship to L. M. Pereira.
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