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Abstract
A Bayesian network is an appropriate tool to work with the uncertainty that is
typical of real-life applications. Bayesian network arcs represent statistical depen-
dence between different variables and can be automatically elicited from database by
Bayesian network learning algorithms such as K2. In the data mining field, associ-
ation rules can also be interpreted as expressing statistical dependence relations. In
this paper we present an extension of K2 called K2-rules that exploits a parameter
normally defined in relation to association rules for learning Bayesian networks. We
compare K2-rules with K2 and TPDA on the problems of learning four Bayesian
networks. The experiments show that K2-rules improves both K2 and TPDA with
respect to the quality of the learned network and K2 with respect to the execution
time.
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1. Introduction

A Bayesian network [1,2] is an appropriate tool to work with the uncertainty that
is typical of real-life applications. A Bayesian network is a directed, acyclic graph
(DAG) whose nodes represent random variables. In a Bayesian network each node
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is conditionally independent from any subset of nodes that are not its descendants,
given its parents.

By means of Bayesian networks, we can use information about the values of
some variables to obtain probabilities for other variables. A probabilistic inference
takes place once the probabilities functions of each node conditioned to just its par-
ents are given. These are usually represented in a tabular form, called Conditional
Probability Table (CPT).

Given a training set of examples, learning a Bayesian network is the problem of
finding the structure of the direct acyclic graph and the CPT associated with each
node that best match (according to some scoring metric) the dataset. Optimality is
evaluated with respect to a given scoring metric (e.g., description length or posterior
probability [3–10]). A procedure for searching among possible structures is needed.
However, the search space is so vast that any kind of exhaustive search cannot be
considered, and often a greedy approach is followed.

The K2 algorithm [4] is a typical search and score method. It starts by assuming
that a node has no parents, after which, in every step it adds incrementally the
parent whose addition mostly increases the probability of the resulting structure.
K2 stops adding parents to the nodes when the addition of a single parent cannot
increase the probability of the network given the data. Other search and score
methods include the MDL algorithm [10] and the CB algorithm [11].

In this work, we propose the algorithm K2-rules that improves the quality of
learned networks and reduces the computational resources needed. This algorithm
uses data mining techniques, and in particular the computation of parameters nor-
mally defined in relation to association rules [12], to obtain new knowledge to be
used for improving some of the steps of K2. Association rules describe correlation of
events, and can be viewed as probabilistic rules. Two events are “correlated” when
they are frequently observed together. Both Bayesian network arcs and association
rules represent dependence relations among variables so it is natural to integrate
these methodologies in order to improve Bayesian network learning. Each associa-
tion rule is characterized by several parameters which can be used to identify the
absence of dependence among the nodes. In this work, we exploit in particular the
leverage parameter.

The paper presents the results of a comparison between K2, K2-rules and TPDA
[13], another well-known learning algorithm. TPDA computes the mutual informa-
tion of each pair of nodes as a measure of dependence and creates the network using
this information.

The paper is structured as follows. Section 2 describes the K2 algorithm. In
Section 3, we briefly present association rules. Section 4 illustrates the algorithm K2-
rules. In Section 5, we show an experimental comparison between K2, K2-rules and
TPDA considering four of the most known Bayesian networks. Section 6 discusses
related works. Finally, in Section 7, we conclude and present future work.
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2. The K2 algorithm

In the literature, there are different approaches for Bayesian network learning.
Some of them are based on the search and score methodology [3–10], and the others
follow an information theory based approach [11,13].

A procedure frequently used for learning the structure of a Bayesian network from
data is the K2 algorithm [4]. Given a database D, this algorithm searches for the
Bayesian network structure G∗ with maximal Pr(G∗|D), where Pr(G|D) is the prob-
ability of network structure G given the database D. Since Pr(G1|D)/Pr(G2|D) =
Pr(G1, D)/Pr(G2, D) (where G1 and G2 are two Bayesian network structures), the
authors look for a method to compute Pr(G, D). Let V (G) be a set of n discrete
variables, where a variable Vi ∈ V (G) has ri possible value assignments vik k =
1, . . . , ri. Let D be a database of m cases, where each case contains a value assign-
ment for each variable in V (G). Let G denote a directed acyclic graph representing
the structure of a Bayesian network containing just the variables in V (G), and
let GPr be the associated set of conditional probability distributions. Each node
Vi ∈ V (G) has a set of parents π(Vi). Let wij denote the j-th unique instantia-
tion of π(Vi) relative to D. Suppose there are qi unique instantiations of π(Vi), so
j = 1, . . . , qi. Define Nijk to be the number of cases in D in which variable Vi has
the value vik and π(Vi) is instantiated as wij . Let

Nij =
ri∑

k=1

Nijk

Given a Bayesian network structure G, assuming that the cases occur indepen-
dently and the conditional probability density function f(GPr|G) is uniform, then
it follows that

Pr(G, D) = Pr(G)
n∏

i=1

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk!

The K2 algorithm looks for a network structure G that maximizes Pr(G, D). In
particular, assuming that an ordering on the variables is available and that all
structures are equally similar, it adopts a greedy method for maximizing Pr(G, D).
This method consists in searching, for each node Vi, for the set of parent nodes that
maximizes the function:

g(i, π(Vi)) =
qi∏

j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk! (1)

K2 starts by assuming that a node lacks parents, after which in every step it adds in-
crementally the parent whose addition mostly increases g(i, π(Vi)). K2 stops adding
parents to a node when the addition of a single parent cannot increase g(i, π(Vi)).

A pseudo code representation of K2 algorithm is shown in Figure 1.
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1 For i = 1 to n
{

1.1 π(Vi) = ∅
1.2 Repeat
{

1.2.1 Select Vj ∈ {V1, . . . , Vi−1} − π(Vi) that
maximizes g(i, π(Vi) ∪ {Vj})

1.2.2 ∆ = g(i, π(Vi) ∪ {Vj})− g(i, π(Vi))
1.2.3 If ∆ > 0 then π(Vi) = π(Vi) ∪ {Vj}

} until ∆ < 0 or π(Vi) = {V1, . . . , Vi−1}
}

Fig. 1. Pseudo code representation of the K2 algorithm

3. Association Rules

Association rules [12] describe co-occurrence of events, and can be regarded as
probabilistic rules. A good example of association rules is taken from the domain of
sale transactions: an association rule in this domain expresses what items are usu-
ally bought together, information that is used for developing successful marketing
strategies.

Consider a database D consisting of a single table. An association rule [12] is a
rule of the form

A1 = vA1 , A2 = vA2 , . . . , Aj = vAj
⇒ B1 = vB1 , B2 = vB2 , . . . , Bk = vBk

where A1, A2, . . . , Aj , B1, B2, . . . , Bk are attribute names and vA1 , vA2 , . . . , vAj , vB1 ,
vB2 , . . . , vBk

are values such that vAi
(vBh

) belongs to the domain of the attribute
Ai(Bh) for i = 1, . . . , j (h = 1, . . . , k).

More formally, an association rule can be defined as follows.
An item is a literal of the form Attributei = vAttributei

where vAttributei
belongs

to the domain of Attributei. Let M be the set of all the possible items. A transaction
T is a record of the database.

An itemset X is a set of items that is consistent, that is a set X such that X ⊆ M
and an attribute Attributei does not appear twice in X. We say that a transaction
T contains an itemset X if X ⊆ T or, alternatively, if T satisfies all the literals in
X.

The support of an itemset X (indicated by support(X)) is the fraction of trans-
actions in D that contain X.

An association rule is an implication of the form X ⇒ Y , where X and Y are
itemsets and X ∩ Y = ∅. For each association rule X ⇒ Y we define the following
parameters:
– The support of X ⇒ Y (represented by support(X ⇒ Y )) is defined as support(X∪

Y );
– The leverage [14] of X ⇒ Y (represented by leverage(X ⇒ Y )) is defined as
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leverage(X ⇒ Y ) = support(X∪Y )−support(X)×support(Y ). (this parameter
is similar to the Absolute Confidence Difference to Prior defined in [15]). It can
assume positive and negative values. Since support(X) can be interpreted as
Pr(X), the leverage can be interpreted as Pr(X, Y )− Pr(X)× Pr(Y ). Therefore
the more the leverage is close to 0 the more X and Y are statistically independent
from each other.
In this paper we consider association rules where both X and Y contain a single

item. In this way the leverage of the rule can be interpreted as a measure of the
dependence between the two items contained respectively in X and Y .

4. K2-rules algorithm

In this section we describe the K2-rules algorithm which improves the K2 algo-
rithm described in Section 2 by exploiting the leverage parameter of association
rules. In order to work, the K2 algorithm requires the total ordering of the nodes.
K2 has a high computational cost and produces a significant number of extra arcs
in the learned network.

The high computational cost is due to Formula 1 (see Section 2) which requires
many computational resources especially for nodes characterized by a great number
of parents.

The extra arc problem arises especially when the network is characterized by a lot
of root nodes (nodes without parents). During network learning, the algorithm tries
to add parents to each of these nodes until it maximizes g(i, π(Vi)). The algorithm
will add at least one arc to a root node because the value of the heuristic for this
new structure is always better than the value of the previous structure.

The new proposed approach considers all the association rules containing a single
item in the body and a single item in the head. In order to obtain the leverage of
these rules, we do not employ an algorithm that learns association rules (such as
APRIORI [16]), but we consider all the possible two items rules and for each we
compute the leverage. The K2-rules algorithm first computes, for each stochastic
variable Vi, the maximum and the minimum of the leverage of the association rules
that have an item that refers to Vi. Let MaxLev(Vi) and MinLev(Vi) be these
figures.

Then K2-rules finds the minimum of all the MaxLev(Vi) and the maximum of
all the MinLev(Vi). Let MaxLeverage and MinLeverage be these figures. Using
these parameters, K2-rules deletes nodes from the list of possible parents of a node
Q (those that precede it in the order). These parameters are used as thresholds
for considering a couple of nodes statistically independent: if the leverage of a rule
involving the two nodes is between MinLeverage and MaxLeverage, then the two
variables are considered independent. Therefore the node that precedes the other
in the given order can be removed from the list of parents of the other node.

This method is implemented by the function FindAllowableParents that, given
a node, returns the set of allowable parents. We have also considered a more con-
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Given the set of network nodes V and the set of learned association rules AR:
1 For i = 1 to n
{

1.1 Select the subset AR(Vi) of association rules from AR
which involve Vi;

1.2 Find the minimum and maximum value of leverage of rules in AR(Vi)
and call them MinLev(Vi) and MaxLev(Vi);

}
2 Find the global minimum and maximum for all the network nodes:

MinLeverage=maxVi∈V {MinLev(Vi)} and
MaxLeverage=minVi∈V {MaxLev(Vi)}

3 For i = 1 to n
{

3.1 π(Vi) = ∅
3.2 Compute FindAllowableParents(Vi) or FindAllowableParents All(Vi)
which return a list AllowableParents of allowable nodes
3.3 Repeat
{

3.3.1 Select Vj ∈ AllowableParents− π(Vi) that
maximizes g(i, π(Vi) ∪ {Vj})

3.3.2 ∆ = g(i, π(Vi) ∪ {Vj})− g(i, π(Vi))
3.3.3 If ∆ > 0 then π(Vi) = π(Vi) ∪ {Vj}

} until ∆ < 0 or π(Vi) = {V1, . . . , Vi−1}
}

Fig. 2. Pseudo code representation of the K2-rules algorithm

Given the ordered list of network nodes L, a node Q and the set of learned
association rules AR, the FindAllowableParents function:

1 Associates a list AllowableParents of possible parents to Q
composed by the nodes that precede Q in the list L

2 Selects the subset AR(Q) of association rules from AR which involve Q
3 For each node P in AllowableParents

3.1 if at least a rule R in AR(Q)
exists that involves P and Q, and that has
MinLeverage < leverage(R) < MaxLeverage then
3.1.1 Removes P from AllowableParents

4 Return AllowableParents

Fig. 3. FindAllowableParents function

servative method to remove nodes from the set of allowable parents.
This method is implemented by the function FindAllowableParents All. This
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Given the ordered list of network nodes L, a node Q and the set of learned
association rules AR, the FindAllowableParents All function:

1 Associates a list AllowableParents of possible parents to Q
composed by the nodes that precede Q in the list L

2 Selects the subset AR(Q) of association rules from AR which involve Q
3 For each node P in AllowableParents

3.1 if all the rules R in AR(Q)
which involve P and Q have
MinLeverage < leverage(R) < MaxLeverage then
3.1.1 Removes P from AllowableParents

4 Return AllowableParents

Fig. 4. FindAllowableParents All function

function deletes a node P from the list of parents of a node Q only if all the
rules involving Q and P are such that their leverage is between MinLeverage and
MaxLeverage. The K2-rules algorithm is described in pseudo code in Figure 2. The
functions FindAllowableParents and FindAllowableParents All are presented in
Figures 3 and 4 respectively.

5. Experimental comparisons

We compared K2 and K2-rules on four different Bayesian networks:
– “Visit to Asia”: a network for a fictitious medical example about whether a

patient has tuberculosis, lung cancer or bronchitis, depending on their X-ray,
dyspnea, visit-to-Asia and smoking status. It has 8 nodes and 8 arcs, and is
described in [17].

– “Car diagnosis”: a network to diagnose the reason why a car does not start, based
on spark plugs, headlights, main fuse, etc. It has 18 nodes and 20 arcs, and is
described in [18];

– “ALARM”: ALARM stands for “A Logical Alarm Reduction Mechanism”. This
is a medical diagnostic network to monitor patients. It is a nontrivial network
with 8 diagnoses, 16 findings and 13 intermediate variables (37 nodes and 46
arcs), and is described in [19].

– “Boelarge92”: A subjective belief network for a particular scenario of neighbor-
hood events, that shows how even distant concepts have some connection. It has
24 nodes and 35 arcs. It is described in [20];

The dataset of examples used for rule learning has been obtained with the NETICA
tool [18]. This tool, given the structure and the CPTs of a Bayesian network is able
to generate automatically a dataset of N examples. Each experiment was conducted
by first generating a dataset from one of the networks above and then trying to
learn back the network using K2, K2-rules using FindAllowableParents (K2-r-
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K2 K2-r-FAP K2-r-FAPA TPDA

Data Set MA EA LS NN MA EA LS NN MA EA LS NN MA EA

1,000 0 4 66 2280 1 2 52 1980 1 2 52 1980 1 0

5,000 0 2 61 1608 0 1 50 1416 0 1 50 1416 1 0

10,000 0 1 57 1224 1 0 40 900 1 2 44 960 1 0

20,000 0 1 57 1224 1 0 39 852 1 1 47 1020 1 0

Table 1
Comparison of K2, K2-r-FAP and K2-r-FAPA on the Visit-to-Asia network.

K2 K2-r-FAP K2-r-FAPA TPDA

Data Set MA EA LS NN MA EA LS NN MA EA LS NN MA EA

1,000 3 9 396 21705 4 6 270 16710 4 9 331 20679 8 0

5,000 1 7 395 26817 2 2 214 17631 1 7 325 24375 6 0

10,000 1 7 395 26817 2 1 201 16716 1 5 334 24837 7 0

20,000 1 7 395 26817 1 0 206 17490 1 4 311 23745 6 0

Table 2
Comparison of K2, K2-r-FAP and K2-r-FAPA on the Car diagnosis network.

K2 K2-r-FAP K2-r-FAPA TPDA

Data Set MA EA LS NN MA EA LS NN MA EA LS NN MA EA

1,000 3 13 1793 252120 23 3 143 11919 2 1 937 155178 37 37

5,000 1 11 1771 204462 27 4 119 20163 1 0 685 91572 37 36

10,000 1 11 1771 204462 22 3 148 23782 1 0 771 95235 37 35

Table 3
Comparison of K2, K2-r-FAP and K2-r-FAPA on the ALARM network.

FAP), K2-rules using FindAllowableParents All (K2-r-FAPA) and TPDA. The
learned networks are compared to the original network in tables 1, 2, 3 and 4.
For each algorithm we indicate: the numbers of missing and extra arcs (MA and
EA, respectively); the Log Score (LS) indicating the number of computations of
the function g(i, π(Vi)); the number of computation of Nijk (NN). The last two
parameters represent the computational resources needed by the K2, K2-r-FAP
and K2-r-FAPA algorithms.

Analyzing these experimental results we can observe that K2-r-FAP and K2-
r-FAPA have a number of missing arcs comparable with that of K2 (apart from
K2-r-FAP applied to ALARM) but have lower numbers of extra arcs. Moreover,
the computational costs of both K2-rules algorithms are significantly lower than
those required for K2. In particular, K2-r-FAP is more selective than K2-r-FAPA
so it requires the least amount of resources.

Comparing K2-r-FAP and K2-r-FAPA with TPDA we can observe the following:
TPDA underestimates the probabilistic relations so it produces a high number of
missing arcs while K2-r-FAP and K2-r-FAPA overestimate the probabilistic rela-
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K2 K2-r-FAP K2-r-FAPA TPDA

Data Set MA EA LS NN MA EA LS NN MA EA LS NN MA EA

1000 10 3 554 1194 10 1 196 4056 10 1 196 4056 13 1

5,000 7 2 585 14244 7 0 172 4068 7 0 176 4140 12 0

10,000 7 4 601 15732 8 2 199 5136 7 2 202 5284 13 0

20,000 7 4 615 17172 8 3 161 4320 7 3 268 4500 12 0

Table 4
Comparison of K2, K2-r-FAP and K2-r-FAPA on the Boelarge network.

tions so they produce a low number of missing arcs but introduce some extra arcs.
The total number of erroneous (missing and extra) arcs of TPDA is higher than
the one of the new K2-rules algorithms (especially K2-r-FAPA) except for Visit to
Asia and the first two datasets of Car diagnosis.

6. Related Works

In this paper we present an approach for exploiting parameters related to as-
sociation rules in order to improve the performance of an algorithm for learning
Bayesian networks. Such an approach is not limited to the K2 algorithm only. In
fact, in [21], we have applied the same methodology to the TPDA algorithm [13]
that is based on an information theory approach rather than on a search and score
methodology. In particular, we have exploited association rules parameters for im-
proving the drafting phase of TPDA. This phase is devoted to learn an initial sketch
of the network structure.

In [21] we have used the parameters leverage, conviction, lift, Pearson X2 and
Cramer index. We have tested our algorithm (called BNL-rules) with each param-
eter on four networks together with TPDA. In each test three dimensions of the
database were considered: 5,000, 20,000 and 100,000. Of all the algorithm tested,
BNL-rules with Pearson X2 gave the best results outperforming TPDA in five cases
in terms of number of missing and extra arcs, equating it in six cases and having a
lower performance in only one case.

7. Conclusions

In this work we describe a method for improving K2, one of the most known
algorithm for learning Bayesian network, by exploiting association rules parameters.

The K2 algorithm starts by assuming that a node has no parents, after which
in every step it incrementally adds the parent whose addition mostly increases
the probability of the resulting structure. K2 stops adding parents to the nodes
when the addition of a single parent cannot increase the probability of the resulting
network structure given the data.
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In this work, we propose a method for improving the K2 algorithm, reducing
the set of allowable parents from which the algorithm selects actual parents and
avoiding extra arc insertions. This new methodology uses data mining techniques,
and in particular the computation of association rules parameters from a database
of examples, in order to learn the structure of a Bayesian network. Association rules
describe correlation of events, and are characterized by several parameters that can
be used in structure learning. We have presented the K2-rules algorithm (K2 with
association rules) that exploits the leverage parameter of association rules in order
to improve the performance of the K2 algorithm.

Experiments discussed in the paper have shown that the proposed approach solves
the problem of extra arcs and also notably reduces the computational cost. They
also showed the validity of the new algorithms with respect to TPDA.

In future, we plan to compare K2-rules with MDL [10] and other Bayesian net-
work learning algorithms.
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