
Learning DecSerFlow Models from Labeled Traces

Evelina Lamma evelina.lamma@unife.it

Fabrizio Riguzzi fabrizio.riguzzi@unife.it

Sergio Storari sergio.storari@unife.it

ENDIF, Università di Ferrara, Via Saragat, 1, 44100 Ferrara, Italy

Paola Mello pmello@deis.unibo.it

Marco Montali mmontali@deis.unibo.it

DEIS, Università di Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy

Abstract

We present the system DecMiner that in-
duces DecSerFlow models from positive and
negative traces. The approach we follow con-
sists in first inducing SCIFF constraints and
then converting them into DecSerFlow ones.

1. Introduction

DecSerFlow (van der Aalst & Pesic, 2006) is a recent
language for expressing process models in a declara-
tive way: DecSerFlow captures what is the high-level
process behaviour without expressing how it is pro-
cedurally executed, hence giving a concise and easily
interpretable feedback to the business manager.

In this paper, we propose an approach for mining Dec-
SerFlow models starting from a set of execution traces,
previously labeled as compliant or not to the process.
The approch consists in first inducing logical formulas
in the SCIFF language (Alberti et al., 2007) and then
converting these formulas into DecSerFlow.

SCIFF is a declarative language based on computa-
tional logic and abductive logic programming in par-
ticular, which was originally developed for the specifi-
cation and verification of global interaction protocols.
SCIFF models interaction patterns with integrity con-
straints that state what is expected to be performed or
what is forbidden when a given condition, expressed in
terms of already performed activities, holds. SCIFF
theories can be used to classify a trace as compliant
or not with the model. The trace is represented by an
interpretation.

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

An important advantage of adopting a computational
logic representation is that it is possible to exploit the
techniques developed in the field of Inductive Logic
Programming for learning models from examples and
background knowledge. In this work, we adapt the sys-
tem ICL (De Raedt & Van Laer, 1995) to the problem
of learning a simplified version of SCIFF constraints.
In fact, a SCIFF theory can be seen as a set of clauses
each of which must be true in a trace for it to be clas-
sified as compliant. In order to apply ICL, we defined:
a simple procedure for testing the truth of a SCIFF
clause, a generality relation between constraints and
a refinement operator. We called the resulting system
DecMiner (Declarative Miner).

The conversion from SCIFF to DecSerFlow is perform-
ing by inverting the translation from DecSerFlow to
SCIFF proposed in (Chesani et al., 2007). By follow-
ing this approach we do not mine a complete process
model, but rather discover a set of common declarative
patterns and constraints.

The language bias we consider in this work is defined
in terms of a set of templates, each of which specifies
which literals can be added or removed from SCIFF
formulas. Each template refers to a DecSerFlow con-
straint. When the learning terminates, the integrity
constraints can be automatically translated into Dec-
SerFlow constraints.

We demonstrate the viability of the approach by ap-
plying it to a cervical cancer screening process.

2. An Overview of the SCIFF

Framework

The SCIFF framework (Alberti et al., 2007) was orig-
inally developed for the specification and verification
of agent interaction protocols within open and hetero-



Learning DecSerFlow Models from Labeled Traces

geneous societies. The framework is based on abduc-
tion, a reasoning paradigm which allows to formulate
hypotheses (called abducibles) accounting for observa-
tions. In most abductive frameworks, integrity con-

straints are imposed over possible hypotheses in order
to prevent inconsistent explanations. SCIFF considers
a set of interacting peers as an open society, formal-
izing interaction protocols by means of a set of global
rules which constrain the external and observable be-
haviour of participants (for this reason, global rules
are called Social Integrity Constraints).

To represent that an event ev happened (i.e. an atomic
activity has been executed) at a certain time T , we
use the atom ev(T ) where T is an integer. If there
are arguments for the event, they are included in the
atom. Hence, an execution trace is modeled as a set of
atoms. For example, we could formalize that bob has
performed activity a at time 5 as follows: a(bob, 5).

In this paper, we consider a syntax of ICs that is a
subset of the one in (Alberti et al., 2007). In this
simplified syntax, a Social Integrity Constraint, C, is
a logical formula of the form

Body →∃(ConjP1) ∨ . . . ∨ ∃(ConjPn)∨

∀¬(ConjN1) ∨ . . . ∨ ∀¬(ConjNm)
(1)

where Body, ConjPi i = 1, . . . , n and ConjNj j =
1, . . . ,m are conjunctions of literals built over event
atoms, over predicates defined in the background or
over built-in predicates. The quantifiers in the head
apply to all the variables not appearing in the body.
The variables of the body are implicitly universally
quantified with scope the entire formula.

We will use Body(C) to indicate Body and Head(C) to
indicate the formula ∃(ConjP1) ∨ . . . ∨ ∃(ConjPn) ∨
∀¬(ConjN1) ∨ . . . ∨ ∀¬(ConjNm) and call them re-
spectively the body and the head of C. We will call
P conjunction each ConjPi for i = 1, . . . , n and N

conjunction each ConjNj for j = 1, . . . ,m. We will
call P disjunct each ∃(ConjPi) for i = 1, . . . , n and N

disjunct each ∀¬(ConjNj) for j = 1, . . . ,m.

An example of an IC is

a(bob, T ) ∧ T < 10

→∃T1 (b(alice, T1) ∧ T < T1)

∨

∀T1¬(c(mary, T1) ∧ T < T1 ∧ T1 < T + 10)

(2)

The interpretation of an IC is the following: if there
exists a substitutions of variables such that the body
is true in an interpretation representing a trace, then
at least one of the disjuncts in the head must be true.

The meaning of the IC (2) is the following: if bob has
executed action a at a time T < 10, then we expect
alice to execute action b at a time later than T or we
expect that mary does not execute action c within 9
time units after T .

3. A Brief Description of DecSerFlow

In this section we will briefly introduce the Declarative
Service Flow language (DecSerFlow). For a detailed
description of the language and its mapping to Linear
Temporal Logic, see (van der Aalst & Pesic, 2006).

DecSerFlow is a graphical language that adopts a
declarative style of modeling: the user does not spec-
ify possible process flows but only a set of constraints
(namely policies or business rules) among activities.

The basic intuitive concepts of DecSerFlow are: activ-
ities (atomic units of work) and constraints among ac-
tivities, to model policies/business rules and constrain
their execution.

Constraints are given as relationships between two (or
more) activities. Each constraint is then expressed as
an LTL formula, hence the name “formulae” to indi-
cate DecSerFlow relationships.

DecSerFlow core relationships are grouped into three
families: existence formulae, unary relationships used
to constrain the cardinality of activities; relation for-

mulae, which define (positive) relationships and depen-
dencies between two (or more) activities, and negation

formulae, the negated version of relation formulae (as
in SCIFF, DecSerFlow follows an open approach, i.e.,
the model should express not only what has to be done
but also what is forbidden).

The intended meaning of DecSerFlow formulae can be
expressed by using SCIFF. In (Chesani et al., 2007),
the authors propose a preliminary translation by map-
ping atomic DecSerFlow activities to SCIFF events
and formulae to corresponding integrity constraints.

Each DecSerFlow pattern is translated into one or
more ICs. For example, let us consider the response
relation response(a,b), shown in Figure 1(a), whose
meaning is: every time a is performed, b should be
performed after it. This relation is formalized into the
following Integrity Constraint:

a(Ta) → ∃Tb(b(Tb) ∧ Tb > Ta). (3)

Another example is the succession relation
succession(a,b), shown in Figure 1(b), whose
meaning is: every execution of a should be followed

by the execution of b and each b should be preceded

by a. This relation is formalized into two Integrity



Learning DecSerFlow Models from Labeled TracesA B
(a) DecSerFlow response rela-
tion.A B
(b) DecSerFlow succession re-
lation.

Figure 1. Two different DecSerFlow service relations.

Constraints, IC (3) and:

b(Tb) → ∃Ta(a(Ta) ∧ Ta < Tb). (4)

4. Learning DecSerFlow Models

This work starts from the idea that there is a similarity
between learning a SCIFF theory, composed by a set
of Social Integrity Constraints, and learning a clausal
theory as described in the learning from interpretation
setting of Inductive Logic Programming. In fact, as a
SCIFF theory, a clausal theory can be used to classify
a set of atoms (i.e., an interpretation) by returning
positive unless there is at least one clause that is false
in the interpretation.

An algorithm that solves the learning from interpreta-
tion problem is ICL (De Raedt & Van Laer, 1995). It
performs a covering loop in which negative interpreta-
tions are progressively ruled out and removed from the
training set. At each iteration of the loop a new clause
is added to the theory. Each clause rules out some neg-
ative interpretations. The loop ends when there are no
more negative examples or when no clause is found.

The clause to be added in every iteration of the cover-
ing loop is found by using beam search with p(⊖|C) as
a heuristic function, where p(⊖|C) is the probability
that an example interpretation is classified as negative
given that it is ruled out by the clause C. This heuris-
tic is computed as the number of ruled out negative
interpretations over the total number of ruled out in-
terpretations (positive and negative). Thus we look for
clauses that cover as many positive interpretations as
possible and rule out as many negative interpretations
as possible.

The generality order that is used is the θ-subsumption
order. The literals that can possibly be added to a
clause for refining it are specified in the language bias,

a collection of statements in an ad hoc language that
prescribe which refinements have to be considered.

In (Lamma et al., 2007b) we have proposed an ap-
proach for applying ICL to the problem of learning
ICs. Each IC is seen as a clause that must be true on
all the positive traces and false on some negative ones.
The theory composed of all the ICs must be such that
all the ICs are true when considering a positive trace
and at least one IC is false when considering a negative
one.

In order to apply ICL, a generality order and a re-
finement operator for ICs must be defined. The gen-
erality order is the following: an IC C is more gen-
eral than an IC D (written C ≥ D) if there exists a
substitution θ for the variables of body(D) such that
body(D)θ ⊆ body(C) and, for each conjunction d in the
head of D: if d is positive, then there exist a positive
conjunction c in the head of C such that dθ ⊇ c, if d

is negative, then there exist a negative conjunction c

in the head of C such that dθ ⊆ c

A refinement operator can be obtained in the following
way: given an IC C, obtain a refinement D by: adding
a literal to the body, adding a disjunct to the head,
removing a literal from a positive disjunct in the head
or adding a literal to a negative disjunct in the head.

We have chosen to provide the language bias in the
form of a set of templates that are couples (BS,HS):
BS is a set that contains the literals that can be added
to the body and HS is a set that contains the dis-
juncts that can be added to the head. Each element of
HB is a couple (Sign, Literals) where Sign is either
+ for a positive disjunct or - for a negative disjunct,
and Literals contains the literals that can appear in
the disjunct. We will have a set of templates for each
DecSerFlow constraint, where each template in the set
is an application of the constraint to a set of activi-
ties. A preliminary version of this approach appears
in (Lamma et al., 2007a). We call the system imple-
menting this approach DecMiner.

5. Experiments

As a case study for exploiting the potentialities of
our approach we choose the process of cervical can-
cer screening (CERV, 2007) proposed by the sanitary
organization of the Emilia Romagna region of Italy.
Cervical cancer is a disease in which malignant (can-
cer) cells form in the tissues of the cervix of the uterus.
The screening program proposes several tests in order
to early detect and treat cervical cancer. It is usually
composed by five phases: Screening planning; Invita-
tion management; First level test with pap-test; Sec-



Learning DecSerFlow Models from Labeled Traces

examExecution(papTest) refusalresultPosting(positive, papTest) examExecution(colposcopy)
invitation

resultPosting(doubtful,colposcopy) examExecution(biopsy)
Figure 2. Mined DecSerFlow representation.

Table 1. Results of the experiments.
Experiment DecMiner α algorithm
Screening 97.44 % 96.15 %

ond level test with colposcopy, and eventually biopsy.

For the screening process, we have a total of 55 pos-
itive traces and 102 negative traces. Five fold cross
validation was performed.

The results are compared with those of the α algorithm
(van der Aalst & van Dongen, 2002). The average
accuracy of the two approaches is shown in Table 1.
Since the α algorithm learns from positive traces only,
the accuracy was measured by learning from positive
traces only and then applying the mined model to both
the positive and the negative test traces.

Moreover, we have applied DecMiner to the whole
dataset and we have manually translated the mined
patterns to DecSerFlow. The resulting model is shown
in Figure 2.

In the future we plan to automate this translation pro-
cess. This will require an appropriate tuning of the
language bias in order to learn constraints very close to
the form of the template constraints used in (Chesani
et al., 2007).

6. Acknowledgements

This work has been partially supported by the PRIN
2005 project “Specification and verification of agent
interaction protocols” and by the FIRB project “TO-
CAI.IT”.

References

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E.,
Mello, P., & Torroni, P. (2007). Verifiable agent
interaction in abductive logic programming: the
SCIFF framework. ACM Trans. on Computational

Logics. Accepted for publication.

CERV (2007). Cervical cancer screening web site.
Available at: http://www.cancer.gov/cancertopics/
pdq/screening/cervical/healthprofessional.

Chesani, F., Mello, P., Montali, M., & Storari, S.
(2007). Towards a DecSerFlow declarative seman-

tics based on computational logic (Technical Report
DEIS-LIA-07-002). DEIS.

De Raedt, L., & Van Laer, W. (1995). Inductive con-
straint logic. Proc. of the 6th Conf. on Algorithmic

Learning Theory. Springer Verlag.

Lamma, E., Mello, P., Montali, M., Riguzzi, F., &
Storari, S. (2007a). Inducing declarative logic-based
models from labeled traces. Proceedings of the 5th

International Conference on Business Process Man-

agement. Springer.

Lamma, E., Mello, P., Riguzzi, F., & Storari, S.
(2007b). Applying inductive logic programming to
process mining. Proceedings of the 17th Interna-

tional Conference on Inductive Logic Programming.
Springer.

van der Aalst, W. M. P., & Pesic, M. (2006). Dec-
SerFlow: Towards a truly declarative service flow
language. Proc. of the 3rd Int. Workshop on Web

Services and Formal Methods. Springer.

van der Aalst, W. M. P., & van Dongen, B. F.
(2002). Discovering workflow performance models
from timed logs. First International Conference on

Engineering and Deployment of Cooperative Infor-

mation Systems (pp. 45–63).


