
Un confronto di sistemi di ILP sul dataset Sisyphus
A Comparison of ILP Systems on the Sisyphus Dataset

Fabrizio Riguzzi
Dipartimento di Ingegneria, Università di Ferrara,

Via Saragat 1, 44100 Ferrara, Italy
friguzzi@ing.unife.it



SOMMARIO/ABSTRACT

In questo articolo presentiamo un confronto tra due
sistemi di Inductive Logic Programming (ILP) sul dataset
Sisyphus. L’obiettivo del confronto è di indagare sul
comportamento di due sistemi allo stato dell’arte dell’ILP
su un dataset di “grandi” dimensioni. Il confronto mostra
che le limitazioni dei sistemi di ILP riguardano principal-
mente il tempo di calcolo piuttosto che l’occupazione di
memoria.

In this paper we present a comparison between two In-
ductive Logic Programming (ILP) systems on the Sisyphus
dataset. The aim of this comparison is to investigate the
behaviour of two state of the art ILP systems on a “large”
dataset. The comparison shows that the limitations of ILP
systems regards mainly the execution time rather then the
memory requirements.

Keywords: Machine Learning, Inductive Logic Program-
ming, Relational Databases.

1 Introduction

In this paper we present a comparison of two Induc-
tive Logic Programming (ILP) systems on the Sisyphus
dataset. The aim of the comparison is to show how the
systems behave on a large dataset. The considered systems
are Aleph and Tilde. Both systems have an unacceptable
execution time on the whole dataset, so they are run over
samples extracted from the dataset.

The comparison shows that, on average, Tilde finds
more accurate theories in a smaller time.

The paper is organized as follows: section 2 presents
the field of ILP, section 3 describes the Sisyphus dataset, in
section 4 we illustrate the main feature of Aleph, in section
5 the Tilde system is presented, in section 6 we report on
the performed experiments, in section 7 we discuss related
works and finally in section 8 we conclude.

2 Inductive Logic Programming

ILP [5] is a research field at the intersection of Machine
Learning and Logic Programming. Its objective is the so-
lution of a learning problem where the language used for
describing both the instances and the concept to be learned
is logic programming. In particular, the main aim of ILP is
to devise algorithms that solve the following problem:
Given:� a setE+ of positive examples (ground facts)� a setE� of negative examples (ground facts)� a background knowledgeB (logic program)� a hypothesis spaceH described by a language biasL
Find: a logic programP 2 H such that� 8e+ 2 E+; B [ P j= e+� 8e� 2 E�; B [ P 6j= e�

Nowadays ILP is a mature field, many algorithms have
been proposed and they have been successfully applied to
many domains. Examples of ILP systems are FOIL [8],
Progol [6], Tilde [2] and Aleph [10]. ILP techniques have
been successfully applied to problems in engineering, nat-
ural language processing, environmental sciences and life
sciences.

Recently, ILP has been the subject of great interest due
to the fact that ILP techniques can be used for Data Mining
from relational databases. In fact, a relational database can
be seen as a Prolog program: each relation can be repre-
sented by a Prolog predicate and each tuple is represented
by a ground Prolog fact. In this way, ILP can be used
to mine knowledge from databases containing more than
one relation, differently from traditional Machine Learn-
ing techniques that require the data to be stored in a single
table.



3 The Sisyphus Dataset

The Sisyphus dataset was made available through the web
by the insurance company Swiss Life in 1998. It was sup-
posed to be the subject of a workshop in ECML98. The
workshop was later cancelled due to too few submissions.
The dataset was removed from the web a few years later
and now it is not publicly available.

The Sisyphus dataset is an extract of the data warehouse
of Swiss Life, and contains information regarding life in-
surances and pension schemes of its clients. The dataset
is multi-relational and is composed of 8 tables, for a total
of 336.266 tuples. The number of tuples and attributes of
each relation is indicated in table 1.

Table Tuples Attributes
vvert 34.986 18
parrol 111.077 5
part 17.267 8
eadr 505 3
padr 17.970 4
tfkomp 73.502 26
tfrol 73.332 8
taska 17.627 2

Total 336.266 74

Table 1: Tables of the Sisyphus Dataset.

The tablepart contains the data of all the clients (part-
ners). Tableseadr andpadr describe respectively their
electronic and postal addresses. Each partner has a role in
one or more insurance policies (tablevvert) that is de-
scribed in the tableparrol. An insurance contract can
have many components (e.g., a component in the case in
which the insured person becomes disabled). Each com-
ponent (tabletfkomp) is correlated with a record in the
tabletfrol that specifies further properties of the tariffs
applied to the partner. For this dataset, a class is assigned
to every partner, described in thetaska table .

A diagram describing the schema of the database is
shown in Figure 1.

The dataset is distributed in the form of
Prolog facts, each record being of type:
table name(attribute1,...,attributen).
Every table is contained in a different file. In order to
reduce the dimension of the files, the table names have
been abbreviated by using a single letter. The dimensions
in bytes of the obtained files is indicated in table 2.

The dataset is interesting due to its dimension: in fact its
dimension is large if compared to usual ILP datasets, that
are of the order of a few hundred Kilobytes. However, it is
not so large for it not to be contained in main memory of
even an entry level personal computer. The time required
to load the whole database (excluding tabletaska) into
memory is 56.13 seconds with Sicstus Prolog 3.11.0 and
13.17 seconds with Yap Prolog 4.4.4, on a personal com-

Table File dimension (bytes)
tfkomp 7,163,578
parrol 3,470,099
tfrol 2,852,867
vvert 2,504,030
part 512,154
padr 395,505
eadr 8,014
taska 239,004

Total 17,145,251

Table 2: Dimension of the Sisyphus dataset tables.

puter with a 1133 MHz Pentium III Mobile, 512 MB of
Ram and the Windows 2000 operating system.

Apart from the dimension, the dataset is not particularly
problematic for ILP systems: it is a typical example of a
dataset from a financial domain, where each client is con-
nected to the set of his/her transactions, each described by
a number of attributes. The ILP system will find a theory
that contains tests on the attributes comparing them with
constants. The possible tests differ depending on the type
of attributes: for nominal attributes only equality tests will
be used, while for numerical attributes, besides equality
tests, also smaller than and greater than tests will be used.

4 Aleph

Aleph [10] implements a learning algorithm similar to Pro-
gol. It is a sequential covering algorithm (also called a sep-
arate and conquer algorithm) because it learns clauses one
by one and, at each step, it removes the positive examples
covered by the clause. The main cycle is the following

function Aleph(E+: pos. ex. ,E�: neg. ex. ,B: back. kn.)P := 0
repeat /* covering cycle */

select one positive examplee+i
build most specific clause?iC :=GenerateClause(?i; E+; E�; B)P := P [ fCg
remove fromE+ the positive examples covered byC

until E+ = ;
returnP
The function GenerateClause returns a clause that is more
general than?i and that covers a number of positive ex-
amples and no (or a few) negative examples.

The function GenerateClause searches the space of
clauses top-down, i.e., it starts from the most general
clause (p(X)  if p is the predicate to be learned) and
gradually refines it by adding literals taken from?i. The
search is performed by means of a branch and bound algo-
rithm.



Figure 1: Database schema of the Sisyphus Dataset.

function GenerateClause(?; E+; E�; B)best
lause := anything; bests
ore := �inf ; i := 0a
tive := fp(X) g
while a
tive is not empty andi � n

/* specialization cycle */
remove the first clauseD from a
tive
let SD = fD1; : : : ; Dkg be the set of

specializations ofD
compute the evaluation functionhj for each

clause inSD
compute an upper bounduj of the evaluation

function for each clause inSD
for j := 1 to k

if uj � bests
ore then
pruneDj

else
if Dj is a complete solution andhj � bests
ore thenbest
lause := Dj ; bests
ore := hj

prune nodes in active with upper bound
lower thanhj

addDj to a
tivei := i+ 1
returnbest
lause
The nodes ina
tive are ordered according to a dual search
key. The value of this search key depends on the settings
imposed by the user for the search strategy and evaluation
function. For example, with breadth first as search strategy

and coverage for the evaluation function (the default set-
tings), the primary and secondary keys are respectivelyL
andP �N , whereL is the number of literals in the clause,P is the number of positive examples covered by the clause
andN is the number of negative examples covered by the
clause. This means that shorter clauses will be higher up
in a
tive and, among clauses with equal length, those with
a higher differenceP �N will be higher up.

The specialization of a clauseD are obtained by using a
refinement operator. Aleph adopts as a default the refine-
ment operator of Progol that uses the most specific clause?i for selecting literals to be added toD. In this way it
ensures that all the refinements will be more general than?i and therefore will cover at least the positive example
used to generate?i.

The computation of the upper bound depends on the
search strategy and evaluation function. In cases where no
upper bound can easily be obtained it is taken to be+inf ,
resulting in minimal pruning.

A solution is complete when it satisfies two constraints:
it has a minimum accuracy (number of positive examples
covered over the total number of examples covered, 0 by
default) and it covers a maximum number of negative ex-
amples (0 by default).

5 Tilde

Tilde solves a learning problem slightly different from the
typical ILP problem:
Given:



� a setE of examples (ground facts for a target predi-
catep=n)� an argument ofp=n to be predicted (e.g. C inp(X; C))� a background knowledgeB (logic program)� a hypothesis spaceH described by a language biasL

Find: a first order logical decision treeT 2 H such that� T assigns to each examplep(x; 
) the class
.
A first order logical decision tree (FOLDT) is a binary de-
cision tree in which: (1) the internal nodes of the tree con-
tain a conjunction of literals (2) different internal nodes
may share variables under the following restriction: a vari-
able that is introduced in a node (which means it does not
occur in higher nodes) must not occur in the right branch
of that node.

An example of a FOLDT is:

machine(A,B)
worn(A,C) ?
+--yes: not_replaceable(C) ?
| +--yes: [sendback] [6.0/6.0]
| +--no: [fix] [6.0/6.0]
+--no: [ok] [3.0/3.0]

This tree can be interpreted as follows: we first test
whether a machine A has a part C that is worn. If so then
we test whether C is non repleaceable. If so then the class
of the machine (argument B) is sendback, otherwise it is
fix. If A does not have a part C that is worn, that the class
is ok.

We use the following notation: a FOLDTT is ei-
ther a leaf of class
, in which case we writeT =leaf (
), or it is an internal node with conjunction
onj,
left child l and right child r, in which case we writeT = inode(
onj; l; r).

A FOLDT can be used to classify an examplep(x; C) in
two ways: by adopting a specialized classification function
that employs the tree or by first translating the FOLDT into
a logic program and then running the queryp(x; C) against
it plus the background knowledge, wherex stands for a
vector of constants.

Tilde learns FOLDT by upgrading to a first order setting
the c4.5 [7] learning algorithm. Therefore it performs a
simultaneous covering algorithm: it does not try to cover
a number of examples in order to remove them from the
training set but it tries to cover all the examples at once.

The algorithm performs a standard recursive partitioning
approach and is shown below (we assume thatp(X; C) is
the target predicate):

function Tilde(E: set of examples)T :=GrowTree(E; true)
return Prune(T )

function GrowTree(E: set of examples,Q: query)Qb := OptimalSplit(�(Q); E)
if StopCrit(Qb; E) then

returnleaf (Info(E))
else
onj := Qb �QE1 := fe 2 EjB [ fp(X; C) Qbg j= egE2 := fe 2 EjB [ fp(X; C) Qbg 6j= egT := inode(
onj;

GrowTree(E1; Qb);GrowTree(E2; Q)
returnT

The function�(Q), given a conjunctionQ, returns the set
of all the specializations ofQ according to the refinement
operator. The function OptimalSplit, given a set of con-
junctions and a set of exampleE, returns the conjunction
that best discriminates the examples of the various classes.
The amount of discrimination is computed by using the
gain ratio heuristic function [7] of c4.5.

The function StopCrit evaluates the split of the examples
generated byQb and decides whether it is the case of stop-
ping the tree growth. A typical case in which the growth
is stopped is when one of the sets obtained from the split
contains less than a predefined number of examples (2 by
default).

The function Info(E) returns the most common class in
the set of examplesE.

The function Prune(T ) returns the treeT after the same
pruning as in c4.5 is performed.

6 Experiments

We consider a learning task that consists in predicting
the class of the clients. The class is represented in table
taska and can assume the values:� ‘0’: not applicable;� ‘1’: belonging to the class of interests;� ‘2’: not belonging to the class of interests;

We are particularly interested in correctly classifying
clients of class ‘1’.

The distribution of values is shown in table 3. To this

Class Examples %

1 10.723 62,10%
2 2.599 15,05%
0 3.945 22,85%

Total 17.267

Table 3: Class distribution in the Sisyphus dataset.

task we applied Aleph version 5 and Tilde version 2.2.
Aleph is implemented in Prolog and uses the Yap Prolog



compiler version 4.4.4. The implementation of Tilde that
has been used is the one contained in the ACE suite of ILP
systems version 1.2.6.

All the experiments have been performed on a personal
computer with a 1133 MHz Pentium III Mobile, 512 MB
of Ram and the Windows 2000 operating system.

No other transformation was necessary because the
dataset is already distributed as prolog facts directly usable
by Aleph and Tilde.

For Aleph, we decided to consider examples belong-
ing to class 1 as positive examples and those belonging
to classes 0 and 2 as negative, instead of opting for a sep-
arate classification of the three classes. The predicate to
be learned is thereforetaska(X) whereX is the iden-
tifier of the client. For Tilde, we learned the predicate
taska(X,C) whereX is the identifier of the client andC
is the class.C is indicated as the argument to be predicted
by Tilde.

Let us now discuss the settings used for the experiments.
The parameters of the two systems were chosen by running
repeatedly each system on a sample of the data with differ-
ent parameters and by testing the learned theory on the rest
of the data. The parameters that gave the best results for
each system were chosen.

For Aleph we seti to 6,minpos to 2, 
lauselength to
8 andnoise to 2. The parameteri indicates the maximum
depth of the new variables that can appear in the body of
clauses.minpos sets the minimum number of positive ex-
amples that a clause can cover in order to be added to the
current hypothesis.
lauselength is the maximum num-
ber of literals that can be present in a clause.noise is the
maximum number of negative examples that a clause can
cover. All the other parameters assume their default value.

For Tilde each parameter assumes its default value, since
these settings were found to yield the best results.

The language bias that is used in both systems allows
the database relations to be chained according to the for-
eign key links represented in the database schema. More-
over, additional background predicates were used, namely
the binary relations equal (eq/2), smaller or equal than
(smeq/2) and greater or equal than (greq/2). These
predicates are intensionally defined in the background and
are used in order to compare the attributes of database re-
lations that are not keys (primary or foreign) with con-
stants. In particular, for nominal attributes, only the pred-
icate equal is used, while for numeric attributes (reals or
integers) all the three predicates are used. The constants
that can appear as the second argument of these predicates
are taken from those appearing in the extensional database
relations. In the case of Tilde, they are obtained by running
a query on the database and collecting the results, while in
the case of Aleph they are obtained by building the “bot-
tom clause”.

For Tilde, it was necessary to specify also lookahead
statements. They are used by the refinement operator in
order to specialize the current node by adding a conjunc-

tion of literals instead of a single literal. In particular,with
the lookahead statements we force Tilde to add, besides
a database predicate, also a test on one of its arguments
(equal, smaller or equal or greater or equal).

Without these lookahead statements, Tilde would not be
able to learn because the addition of a database predicate
alone would not produce any improvement in the gain ra-
tio.

We tried to run the two systems over the whole dataset.
Unfortunately, the training over the whole dataset was such
a hard task that after 24 hours of CPU time no system had
given an answer. As a consequence, we decided to extract
small random samples from the whole dataset, to apply the
algorithm to them and then to average the results, in order
to filter away variations due to randomness.

We considered samples containing 360 partners. The
number was chosen for historical reasons: we had already
available from previous experiments one such sample on
which the learning times were acceptable.

We have randomly selected 360 facts from the relation
taska. The remaining facts where included in the testing
set. The background knowledge of each sample has been
obtained by including in it all the facts that were related to
the chosen partners. Five samples were extracted.

The average dimension of the file containing just the ex-
amples is 5 Kilobytes. The average dimension of the file
containing the background knowledge is 463 Kilobytes.

The theory learned on the reduced dataset was tested on
the examples from the testing set. The background knowl-
edge used for testing was the complete database (excluding
the relationtaska).

The average number of positive and negative examples
of the training and testing sets is reported in table 4. The

Examples Training Sets Test SetsjE+j 223.4 62% 10,499.6 62%jE�j 136.6 38% 6,407.4 38%jEj 360 16907

Table 4: Example distribution for the experiments.

results of experiments are compared in terms of accuracy.
Such a measure is defined as the number of positive test
examples covered by the theory plus the number of nega-
tive test examples not covered by the theory over the total
number of test examples.

The average learning times obtained by Aleph and Tilde
on the five training sets is shown in table 5 together with
the average accuracies over the testing sets. In parentheses
is indicated the standard deviation. The testing time was
11.60 hours on average for the theory learned by Aleph
and 5.78 hours on average for the theory learned by Tilde.
Testing was performed using Yap 4.4.4.

Let us also distinguish the types of errors performed by
the two systems. Table 6 shows the rate of errors of com-
mission (negative examples classified as positive over the



Algorithm Av. Time (hours) Av. Accuracy (%)
Aleph 9.13 (3.73) 68.92% (2.56%)
Tilde 0.96 (0.07) 86.82% (0.84%)

Table 5: Average execution time and accuracy obtained by
applying Aleph and Tilde to the Sisyphus dataset (standard
deviation in parenthesis).

total number of negative examples) and the rate of errors
of omission (positive example classified as negative over
the total number of positive examples).

Algorithm Commission (%) Omission (%)

Aleph 35.8% 28.2%
Tilde 20.9% 8.4%

Table 6: Average commission and omission error rates.

Some of the clauses learned by Aleph are shown in Fig-
ure 2. Part of the tree learned by Tilde in the same fold
is shown in Figure 3. In order to test the theory learned
by Tilde on the testing set, we used the Prolog program
equivalent to the learned tree. Moreover, in order to com-
pare the results of Tilde with those of Aleph, we added to
the equivalent Prolog program the following clause

taska(X):-taska(X,Y),Y=1.

In this way, we could use testing sets composed of facts for
thetaska(X) predicate.

The application of Aleph and Tilde to the Sisyphus
dataset shows that, even if the dataset can fit in main mem-
ory, the execution times are too large to apply the systems
to the whole dataset. This suggests that the current limita-
tions of ILP systems regard the execution times rather than
the memory space. Even with a dataset that is 2 % of the
original dataset, the execution times are of the order of a
few hours.

The comparison between Aleph and Tilde over the con-
sidered sample shows that Tilde is superior both in terms
of the accuracy of the learned theory and of the execution
times. In particular, if we compute the two series of ac-
curacies with at-test [3], we obtain 19.2 as the value of
thet statistics, that means that the difference in accuracy is
significant at more than a 99.99% level.

The superiority in terms of execution time is not surpris-
ing, since Tilde implements a “simultaneous covering” al-
gorithm in which the conditions of multiple rules are cho-
sen at once. Moreover, once a condition is chosen, it is
never retracted. On the contrary, Aleph implements a “se-
quential covering” algorithm where the conditions of each
rule are chosen separately. Moreover, Aleph keeps a set of
clauses in its search, therefore, after the addition of a con-
dition to a clause, it can still consider clauses without that
condition.

The superiority in terms of accuracy is more surpris-
ing, especially since the two system are given the same

language bias. It can be probably explained by the way
in which the two system generate the constants to be in-
serted in comparison operators. While Aleph uses the con-
stants appearing in the bottom clause generated from a sin-
gle example, Tilde extracts the constants directly from the
database. So, while Aleph can insert in a single clause only
constants relative to a single example, Tilde can insert con-
stants appearing in more than one example.

Looking at the error rates, we can observe that both sys-
tems have higher commission error rates, thus showing that
the learned theories in both cases are over-general. This is
probably due to the fact that the number of negative exam-
ples in the training sets is not sufficient to accurately model
the negative concept.

7 Related Works

The application of data mining techniques to the Sisyphus
dataset has been the subject of [4]. This paper reports the
application of a number of propositional learning system
to the dataset. In order to apply propositional system to
Sisyphus, the dataset has been transformed into a proposi-
tional form, i.e., into a database containing a single table
where each original example is represented by a single row.
The paper does not describe the details of the proposition-
alization performed but the standard technique consists in
aggregating the attributes of the tables connected with the
example table by a many to one relationship. For example,
the tabletfrol is connected by a many to one relation-
ship to the tableparrol that in its turn is connected by
a many one relationship to the tabletaska. The attribute
TRTECEINAL of tabletfrol is the age at contract agree-
ment: in the single table, for each client, the minimum, the
maximum and the average of this attribute for all the tuples
related to the client will be included.

In [4] the experimentation on the Sisyphus dataset was
performed by first removing the examples with class 0. In
this way, roughly 80% of the examples are positive and
20% are negative. Then the authors randomly split the ex-
amples in a training set containing 70% of the instances
and a testing set containing 30 % of the instances. The
accuracy obtained by a number of propositional learner is
shown in table 7. The AllPos algorithm is an algorithm

Algorithm Accuracy (%)

J48 89.7%
Naive Bayes 81.8%
Linear SVM 89.9%
WBCSVM 80.0%
OneR 83.4%
AllPos 80.5%

Table 7: Accuracy of propositional learner on the Sisyphus
dataset.

that classifies all the examples as positive.



taska(A) :-
part(A,B,C,D,E,F,G,H), smeq(B,55), eq(G,2).

taska(A) :-
parrol(B,A,C,D,E), eq(E,1), tfrol(F,B,G,H,I,J,K,L), eq(H,32).

taska(A) :-
parrol(A,B,C,D,E,F,G,H), eq(D,1941).

Figure 2: Some of the rules learned by Aleph from one of the samples.

taska(A,B)
parrol(C,A,D,E,F),eq(E,11) ?
+--yes: parrol(G,A,H,I,J),eq(I,17) ?
| +--yes: [2] [16.0/16.0]
| +--no: tfkomp(L,D,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1),eq(M,6) ?
| +--yes: padr(A,I1,J1,K1),eq(K1,89411) ?
| | +--yes: [1] [2.0/2.0]

....
+--no: [0] [76.0/76.0]

Figure 3: Part of the tree learned by Tilde from one of the samples.

The results can be compared with ours with caution for
two reasons. The first is that the authors use a dataset with
a different ratio of positive and negative examples. In fact,
by classifying all the examples as positive they get an accu-
racy of 80.5%, while we get an average accuracy of 62.1%.
The second is that propositionalization requires a manual
intervention in order to choose the different aggregating
functions to be applied, while ILP looks for interesting fea-
tures by using brute force.

[4] reports also the result of applying Tilde to the dataset
with the same settings (no 0 examples, 70% training, 30%
testing): the achieved accuracy is 94.7% (they do not report
execution time). The difference with our results is due to
two factors: the different experimental settings and the fact
that we do not have used the discretization feature of Tilde.
The reason why we did not use discretization is that we
wanted to try the simplest approach and also that Aleph
does not offer it, so the comparison would not have been
totally fair.

8 Discussion and Conclusion

Sisyphus is an interesting data because of its size, that is
one order of magnitude larger than that of the average ILP
dataset.

To this dataset we have applied two state of the art ILP
systems: Aleph and Tilde. Aleph learns logic programs,
while Tilde learns first order logical decision trees.

The application of the two systems to the whole dataset
was impossible: after 24 hours of CPU time none of the
systems responded. Therefore we have applied the sys-
tems to samples from the dataset. We extracted five sam-
ples composed of 360 examples, we ran Aleph and Tilde
on each sample and we averaged the results over the five

samples.
The results show that Tilde is both faster (around 1 hour

on average against around 9 hours) and significantly more
accurate (86.82% against 68.92%). The speed of Tilde is
not surprising, since in building the tree it applies a greedy
algorithm for choosing the conjunction that gives the op-
timal split: once a conjunction is selected, it is never re-
tracted. The difference in accuracy is instead surprising
given that in [1] Tilde is reported to have accuracy results
that are comparable (not superior) with those of FOIL and
Progol.

The experiments show that the main limitations of ILP
systems regards execution times rather than memory re-
quirements. A preliminary analysis shows that most of the
time is spent checking the coverage of examples, there-
fore we think that methods of stochastic matching, such
as those used in [9], are particularly useful and should be
integrated with these ILP systems.

Another approach that could speed up Tilde (but not
Aleph) is the use of its discretization algorithm that should
reduce the number of constants that are tried for inclusion
in conjunctions.

An interesting line of future research would be to in-
vestigate how many more examples are needed for obtain-
ing good classifiers (i.e., with more than 90% accuracy).
This requires the execution of multiple experiments with
increasing number of examples. For this to be accom-
plished a faster machine and speeding up techniques for
the two systems are needed.

REFERENCES

[1] H. Blockeel.Top-down Induction of First Order Log-
ical Decision Trees. PhD thesis, Department of Com-



puter Science, Katholieke Universiteit Leuven, 1998.

[2] Hendrik Blockeel and Luc De Raedt. Top-down in-
duction of first order logical decision trees.Artificial
Intelligence, 101(1-2):285–297, June 1998.

[3] T. G. Dietterich. Approximate statistical tests for
comparing supervised classification learning algo-
rithms. Neural Computation, 10(7):1895–1924,
1998.

[4] Thomas Gärtner, Shaomin Wu, and Peter A. Flach.
Data mining on the sisyphus dataset: Evaluation and
integration of results. In Christophe Giraud-Carrier,
Nada Lavrač, and Steve Moyle, editors,Integrating
Aspects of Data Mining, Decision Support and Meta-
Learning, pages 69–80. ECML/PKDD’01 workshop
notes, September 2001.

[5] S. Muggleton. Inductive logic programming. InPro-
ceedings of the 1st Conference on Algorithmic Learn-
ing Theory, pages 43–62. Ohmsma, Tokyo, Japan,
1990.

[6] S. Muggleton. Inverse entailment and Progol.New
Generation Computing, Special issue on Inductive
Logic Programming, 13(3-4):245–286, 1995.

[7] J. R. Quinlan.C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, San Francisco, USA, 1988.

[8] J.R. Quinlan. Learning logical definitions from rela-
tions. Machine Learning, 5:239–266, 1990.

[9] Michele Sebag and Celine Rouveirol. Resource-
bounded relational reasoning: Induction and deduc-
tion through stochastic matching.Machine Learning,
38(1/2):41–62, January 2000.

[10] Ashwin Srinivasan. Aleph, 2004.
http://web.comlab.ox.ac.uk/oucl/research/areas/mach
learn/Aleph/alephtoc.html.



9 Contacts

Fabrizio Riguzzi
Dipartimento di Ingegneria, Università di Ferrara,
Via Saragat 1, 44100 Ferrara, Italy
++39 0532974836
friguzzi@ing.unife.it

10 Biography

He is Assistant Professor at he Dipartimento di Ingegneria,Università di Ferrara. He graduated in Computer Engineering
at the University of Bologna in 1995 and attained his Ph.D. from the University of Bologna in 1999. He has been a visiting
researcher at the University of Cyprus and at the New University of Lisbon. His research interest include: data mining
(and in particular methods for learning from multirelational data), machine learning and software engineering. He is a
member of the AI*IA.


