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Abstract. Logic Programs with Annotated Disjunctions (LPADs) allow
to express probabilistic information in logic programming. The semantics
of an LPAD is given in terms of well founded models of the normal logic
programs obtained by selecting one disjunct from each ground LPAD
clause. The paper presents SLGAD resolution that computes the (con-
ditional) probability of a ground query from an LPAD and is based on
SLG resolution for normal logic programs. SLGAD is evaluated on classi-
cal benchmarks for well founded semantics inference algorithms, namely
the stalemate game and the ancestor relation. SLGAD is compared with
Cilog2 and SLDNFAD, an algorithm based on SLDNF, on the programs
that are modularly acyclic. The results show that SLGAD deals correctly
with cyclic programs and, even if it is more expensive than SLDNFAD
on problems where SLDNFAD succeeds, is faster than Cilog2 when the
query is true in an exponential number of instances.

Topics: Probabilistic Logic Programming, Well Founded Semantics, Logic
Programs with Annotated Disjunctions, SLG resolution.

1 Introduction

The combination of logic and probability is a long standing problem in phi-
losophy and artificial intelligence. Recently, the work on this topic has thrived
leading to the proposal of novel languages that combine relational and statistical
aspects. Each of these languages has a different semantics that makes it suitable
for different domains.

When we are reasoning about actions and effects and we have causal in-
dependence among different causes for the same effect, Logic Programs with
Annotated Disjunctions (LPADs) [1] seem particularly suitable. They extend
logic programs by allowing program clauses to be disjunctive and by annotating
each atom in the head with a probability. A clause can be causally interpreted
in the following way: the truth of the body causes the truth of one of the atoms
in the head non-deterministically chosen on the basis of the annotations. The
semantics of LPADs is given in terms of the well founded model of the normal
logic programs obtained by selecting one head for each disjunctive clause.

[2] showed that acyclic LPADs can be converted to Independent Choice Logic
(ICL) [3] programs. Thus inference can be performed by using the Cilog2 system



[4]. An algorithm for performing inference directly with LPADs was proposed in
[5]. The algorithm, that will be called SLDNFAD in the following, is an extension
of SLDNF derivation and uses Binary Decision Diagrams. Both Cilog2 and SLD-
NFAD are complete and correct for programs for which the Clark’s completion
semantics and the well founded semantics coincide, as for acyclic and modularly
acyclic programs [6], but can go into a loop for cyclic programs.

In this paper we present the SLGAD top-down procedure for performing
inference with possibly (modularly) cyclic LPADs. SLGAD is based on the SLG
procedure [7] for normal logic programs and extends it in a minimal way.

SLGAD is evaluated on classical benchmarks for well founded semantics in-
ference algorithms, namely the stalemate game and the ancestor relation. In
both cases, extensional databases encoding linear, cyclic or tree-shaped rela-
tions are considered. SLGAD is compared with Cilog2 and SLDNFAD on the
modularly acyclic programs. The results show that SLGAD is able to deal with
cyclic programs and, while being more expensive than SLDNFAD on problems
where SLDNFAD succeeds, is faster than Cilog2 when the query is true in an
exponential number of instances.

2 Preliminaries

A Logic Program with Annotated Disjunctions [1] T consists of a finite set of
formulas of the form (H1 : α1) ∨ (H2 : α2) ∨ . . . ∨ (Hn : αn) : −B1, B2, . . . Bm

called annotated disjunctive clauses. In such a clause the Hi are logical atoms,
the Bi are logical literals and the αi are real numbers in the interval [0, 1] such
that

∑n

i=1 αi ≤ 1. The head of LPAD clauses implicitly contains an extra atom
null that does not appear in the body of any clause and whose annotation is
1 −

∑n

i=1 αi.
In order to define the semantics of a non-ground T , we must generate the

grounding T ′ of T . By choosing a head atom for each ground clause of an LPAD
we get a normal logic program called an instance of the LPAD. A probability
distribution is defined over the space of instances by assuming independence
among the choices made for each clause.

A choice κ is a set of triples (C, θ, i) where C ∈ T , θ is a substitution that
grounds C and i ∈ {1, . . . , |head(C)|}. (C, θ, i) means that, for ground clause Cθ,
the head Hi : αi was chosen. A choice κ is consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈
κ ⇒ i = j, i.e. only one head is selected for a ground clause. A consistent choice is
a selection σ if for each clause Cθ in the grounding T ′ of T there is a triple (C, θ, i)
in σ. We denote the set of all selections of a program T by ST . A consistent choice
κ identifies a normal logic program Tκ = {(Hi(C) : −body(C))θ|(C, θ, i) ∈ κ}
that is called a sub-instance of T . If σ is a selection, Tσ is called an instance.

The probability of a consistent choice κ is the product of the probabilities
of the individual choices made, i.e. Pκ =

∏
(C,θ,i)∈κ αi(C). The probability of

instance Tσ is Pσ. The semantics of the instances of an LPAD is given by the
well founded semantics (WFS). Given a normal program T , we call WFM(T ) its
well founded partial model. For each instance Tσ, we require that WFM(Tσ) is



two-valued, since we want to model uncertainty solely by means of disjunctions.
We call sound such a program.

The probability of a formula χ is given by the sum of the probabilities
of the instances where the formula is true according to the WFS: PT (χ) =∑

Tσ|=W F Sχ Pσ

3 SLGAD Resolution Algorithm

In this section we present Linear resolution with Selection function for Gen-

eral logic programs with Annotated Disjunctions (SLGAD) that extends SLG
resolution [8, 7] for dealing with LPADs.

SLG uses X-clauses to represent resolvents with delayed literals: an X-clause

X is a clause of the form A : −D|B where A is an atom, D is a sequence of
ground negative literals and (possibly unground) atoms and B is a sequence of
literals. Literals in D are called delayed literals. If B is empty, an X-clause is
called an X-answer clause. An ordinary program clause is seen as a X-clause
with an empty set of delayed literals.

SLG is based on the operation of SLG resolution and SLG factoring on X-
clauses. In particular, SLG resolution is performed between an X-clause A : −|A
and a program clause or between an X-clause and an X-answer.

In SLGAD, X-clauses are replaced by XD-clauses: an XD-clause G is a
quadruple (X,C, θ, i) where X is an X-clause, C is a clause of T , θ is a sub-
stitution for the variables of C and i ∈ {1, . . . , |head(C)|}. Let X be A : −D|B:
if B is empty, the XD-clause is called an XD-answer clause. With XD-clauses
we keep track not only of the current resolvent but also of the clauses and head
that originated it.

In SLGAD, SLG resolution between an X-clause A : −|A and a program
clause is replaced by SLGAD goal resolution and SLG resolution between an X-
clause and an X-answer is replaced by SLGAD answer resolution. SLG factoring
is replaced by SLGAD factoring.

We report here the definition for SLGAD goal resolution. Let A be a subgoal
and let C be a clause of T such that A is unifiable with an atom Hi in the head
of C. Let C ′ be a variant of C with variables renamed so that A and C ′ have no
variables in common. We say that A is SLGAD goal resolvable with C and the
XD-clause ((A : −|body(C ′))θ, C ′, θ, i) is the SLGAD goal resolvent of A with C

on head Hi, where θ is the most general unifier of A and H ′
i.

SLGAD answer resolution and SLGAD factoring differ from SLG answer
resolution and SLG factoring because they produce an XD-clause that contains
the clause and head index of the starting XD-clause while the substitution is
updated. We refer to [9] for the details of these operators.

With respect to SLG, SLGAD keeps an extra global variable that is a choice
κ to record all the clauses used in the SLGAD derivation together with the
head selected. This extra global variable is updated by ADD CLAUSE that is
the only procedure of SLGAD not present in SLG. ADD CLAUSE is called
when an answer for a subgoal has been found and generates different derivation



branches for different choices of atoms in the head of the ground clause Cθ that
contains the answer in the head. ADD CLAUSE first checks whether the clause
Cθ already appears in the current choice κ with a head index different from i: if
so, it fails the derivation. Otherwise, it non-deterministically selects a head index
j from {1, . . . , |head(C)|}: if j = i this means that the subgoal in the head is
derivable in the sub-instance represented by κ, so the calling procedure can add
the answer to the table. If j 6= i, then the table is not altered. In backtracking, all
elements of {1, . . . , |head(C)|} are selected. Since an answer ia added to the table
only when an XD-clause is reduced to an answer and eventually all XD-clauses
for successful derivations will reduce to answers, it is sufficient to consider the
available choices only at this point.

With this approach, SLGAD is able to exploit all the techniques used by SLG
to avoid loops: the delaying of literals, the use of a global stack of subgoals, the
recording of the “depth” of each subgoal and the tracking, for each subgoal A, of
the deepest subgoal in the stack that may depend on A positively or negatively.
For the full details of the algorithm, we refer the reader to [9].

SLGAD is sound and complete with respect to the LPAD semantics and the
proof is is based on the theorem of partial correctness of SLG [8, 10]: SLG is
sound and complete given an arbitrary but fixed computation rule when it does
not flounder.

4 Experiments

We tested SLGAD on some synthetic problems that were used as benchmarks for
SLG [7, 11]: win, ranc and lanc. win is an implementation of the stalemate game
and contains the clause win(X) : 0.8 : −move(X,Y ),¬win(Y ). ranc and lanc

model the ancestor relation with right and left recursion respectively. Various
definitions of move are considered: a linear and acyclic relation, containing the
tuples (1, 2), . . . , (N − 1, N), a linear and cyclic relation, containing the tuples
(1, 2), . . . , (N − 1, N), (N, 1), and a tree relation, that represents a complete
binary tree of height N , containing 2N+1+1 tuples. For win, all the move relations
are used, while for ranc and lanc only the linear ones.

SLDAG was compared with Cilog2 and SLDNFAD. Cilog2 [4] computes prob-
abilities by identifying consistent choices on which the query is true, then it
makes them mutually incompatible with an iterative algorithm. SLDNFAD [5]
extends SLDNF in order to store choices and computes the probability with an
algorithm based on Binary Decision Diagrams. For SLGAD and SLDNFAD we
used the implementations in Yap Prolog available in the cplint suite1. SLGAD
code is based on the SLG system. For Cilog2 we ported the code available on
the web to Yap.

The computation time of the queries win(1) and ancestor(1,N) were record-
ed as a function of N for win, ranc and lanc respectively. win has an exponential
number of instances where the query is true and the experimental results show

1 http://www.ing.unife.it/software/cplint/



the combinatorial explosion. On the ancestor datasets, the proof tree has only
one branch with a number of nodes proportional to N . However, the execution
time of SLGAD increases roughly as O(N log N) because each derivation step
requires a lookup and an insert in the table T that take logarithmic time.

Cilog2 and SLDNFAD are applied only to the problems that are modularly
acyclic and right recursive, i.e. win with linear and tree move and ranc with linear
move, because on the other problems they would go into a loop. In win all the
algorithms show the combinatorial explosion, with SLGAD performing better
than Cilog2 and worse than SLDNFAD. On ranc with linear move, SLGAD
takes longer than Cilog2 and SLDNFAD: the execution times for N = 20, 000
are 4726.8, 8.3 and 1165.4 seconds respectively. Thus the added complexity of
avoiding cycles has a computational cost. However, this cost is unavoidable when
we are not sure whether the program under analysis is (modularly) acyclic or
not.
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