
Learning Logic Programs with Annotated
Disjunctions

Fabrizio Riguzzi

Dipartimento di Ingegneria, Università di Ferrara, Via Saragat 1
44100 Ferrara, Italy,

friguzzi@ing.unife.it

Abstract. Logic Programs with Annotated Disjunctions (LPADs) pro-
vide a simple and elegant framework for integrating probabilistic reason-
ing and logic programming. In this paper we propose an algorithm for
learning LPADs. The learning problem we consider consists in starting
from a sets of interpretations annotated with their probability and find-
ing one (or more) LPAD that assign to each interpretation the associated
probability. The learning algorithm first finds all the disjunctive clauses
that are true in all interpretations, then it assigns to each disjunct in
the head a probability and finally decides how to combine the clauses
to form an LPAD by solving a constraint satisfaction problem. We show
that the learning algorithm is correct and complete.

1 Introduction

There has been recently a growing interest in the field of probabilistic logic pro-
gramming: a number of works have appeared that combine logic programming or
relational representations with probabilistic reasoning. Among these works, we
cite: Probabilistic Logic Programs [14], Bayesian Logic Programs [9, 10], Prob-
abilistic Relational Models [7], Context-sensitive Probabilistic Knowledge Bases
[15], Independent Choice Logic (ICL) [17] and Stochastic Logic Programs [13,
3].

One of the most recent approaches is Logic Programs with Annotated Dis-
junctions (LPADs) presented in [22, 21]. In this approach, the clauses of an LPAD
can have a disjunction in the head and each disjunct is annotated with a prob-
ability. The sum of the probabilities for all the disjuncts in the head of a clause
must be one. Clauses with disjunction in the head express a form of uncertain
knowledge, for example the clause

heads(Coin) ∨ tails(Coin)← toss(Coin)

expresses the fact that, if a coin is tossed, it can land on heads or tails but
we don’t know which. By annotating the disjuncts with a probability, we can
express probabilistic knowledge that we have regarding the facts in the head, for
example the clause

(heads(Coin) : 0.5) ∨ (tails(Coin) : 0.5)← toss(Coin),¬biased(Coin)

expresses the fact that, if the coin is not biased, it has equal probability of
landing on heads or on tails.

The semantics of LPADs is given in terms of a function π∗P that, given an
LPAD P , assigns a probability to each interpretation that is a subset of the
Herbrand Base of P . Moreover, given the function π∗P , a probability function for
formulas can be defined.

This formalism is interesting for the intuitive reading of its formulae that
makes the writing of LPADs simpler than other formalisms. Moreover, also the
semantics is simple and elegant. The formalism that is closest to LPADs is
ICL: in fact, in [21] the authors show that ICL programs can be translated into
LPADs and acyclic LPADs can be translated into ICL programs. Therefore, ICL
programs are equivalent to a large class of LPADs. However, ICL is more suited
for representing problems where we must infer causes from effects, like diagnosis
or theory revision problems, while LPADs are more suited for reasoning on the
effects of certain actions.

In this paper we propose the algorithm LLPAD (Learning LPADs) that learns
a large subclass of LPADs. We consider a learning problem where we are given a
set of interpretations together with their probabilities and a language bias and
we want to find an LPAD that assigns to each input interpretation its probability
according to the semantics.

LLPAD is able to learn LPADs that are sound and such that a couple of
clauses sharing a disjunct have mutually exclusive bodies, i. e., bodies that are
never both true in an interpretation I that has a non-zero probability.

LLPAD exploits techniques from the learning from interpretations setting: it
searches first for the definite clauses that are true in all the input interpretations
and are true in a non-trivial way in at least one interpretation, i. e., they have
the body true in the interpretation, and then it searches for disjunctive clauses
that are true in all the input interpretations, are non-trivially true in at least
one interpretations and have mutually exclusive disjuncts in the head. Once the
disjunctive clauses have been found, the probability of each disjunct in the head
is computed.

Finally, we must decide which of the found clauses belong to the target pro-
gram. To this purpose, we assign to each annotated disjunctive clause a Boolean
variable that represents the presence or absence of the clause in a solution. Then,
for each input interpretation, we impose a constraint over the variables of the
clauses that have the body true in the interpretation. The constraint is based on
the semantics of LPADs and ensures that the probability assigned to the inter-
pretation by the final program is the one given as input for that interpretation.

The paper is organized as follows. In section 2 we provide some preliminary
notions regarding LPADs together with the semantics of LPADs as given in [22].
In section 3 we discuss two properties of LPADs that are exploited by LLPAD.
In section 4 we introduce the learning problem we have defined and we describe
LLPAD. In section 5 we discuss related works and finally in section 6 we conclude
and present directions for future work.

2 LPADs

2.1 Preliminaries

A disjunctive logic program [12] is a set of disjunctive clauses. A disjunctive
clause is a formula of the form

h1 ∨ h2 ∨ . . . ∨ hn ← b1, b2, . . . , bm

where hi are logical atoms and bi are logical literals. The disjunction h1 ∨ h2 ∨
. . . ∨ hn is called the head of the clause and the conjunction b1 ∧ b2 ∧ . . . ∧ bm

is the called the body. Let us define the two functions head(c) and body(c) that,
given a disjunctive clause c, return respectively the head and the body of c. In
some cases, we will use the functions head(c) and body(c) to denote the set of
the atoms in the head or of the literals of the body respectively. The meaning
of head(c) and body(c) will be clear from the context.

The Herbrand base HB(P) of a disjunctive logic program P is the set of all
the atoms constructed with the predicate, constant and functor symbols appear-
ing in P . A Herbrand interpretation is a subset of HB(P). Let us denote the
set of all Herbrand interpretations by IP . In this paper we will consider only
Herbrand interpretations and in the following we will drop the word Herbrand.
A disjunctive clause c is true in an interpretation I if for all grounding substi-
tution θ of c: body(c)θ ⊂ I → head(c)θ ∩ I 6= ∅. As was observed by [4], the
truth of a clause c in an interpretation I can be tested by running the query
? − body(c), not head(c) on a database containing I. If the query succeeds c is
false in I. If the query finitely fails c is true in I. A clause c θ-subsumes a clause d
if and only if there exists a substitution θ such that cθ ⊆ d and we write c ≥θ d.

A Logic Program with Annotated Disjunctions consists of a set of formulas
of the form

(h1 : p1) ∨ (h2 : p2) ∨ . . . ∨ (hn : pn)← b1, b2, . . . bm

called annotated disjunctive clauses. In such a clause the hi are logical atoms,
the bi are logical literals and the pi are real numbers in the interval [0, 1] such
that

∑n
i=1 pi = 1. For a clause c of the form above, we define head(c) as the set

{(hi : pi)|1 ≤ i ≤ n} and body(c) as the set {bi|1 ≤ i ≤ m}. If head(c) contains a
single element (a : 1) we will simply denote the head as a. The set of all ground
LPAD defined over a first order alphabet is denoted by PG .

Let us see an example of LPAD taken from [22].

(heads(Coin) : 0.5) ∨ (tails(Coin) : 0.5)← toss(Coin),¬biased(Coin).
(heads(Coin) : 0.6) ∨ (tails(Coin) : 0.4)← toss(Coin), biased(Coin).

(fair(Coin) : 0.9) ∨ (biased(Coin) : 0.1).
toss(Coin).

2.2 Semantics of LPADs

The semantics of an LPAD was given in [22]. We report it here for the sake
of completeness. It is given in terms of its grounding. Therefore we restrict our
attention to ground LPADs, i.e., LPADs belonging to PG . For example, the
grounding of the LPAD given in the previous section is

(heads(coin) : 0.5) ∨ (tails(coin) : 0.5)← toss(coin),¬biased(coin).
(heads(coin) : 0.6) ∨ (tails(coin) : 0.4)← toss(coin), biased(coin).

(fair(coin) : 0.9) ∨ (biased(coin) : 0.1).
toss(coin).

Each annotated disjunctive clause represents a probabilistic choice between a
number of non-disjunctive clauses. By choosing a head for each clause of an
LPAD we get a normal logic program called an instance of the LPAD. For
example, the LPAD above has 2 · 2 · 2 · 1 = 8 possible instances one of which is

heads(coin)← toss(coin),¬biased(coin).
heads(coin)← toss(coin), biased(coin).
fair(coin).
toss(coin).

A probability is assigned to all instances by assuming independence between the
choices made for each clause. Therefore, the probability of the instance above is
0.5 · 0.6 · 0.9 · 1 = 0.27.

An instance is identified by means of a selection function.

Definition 1 (Selection function). Let P be a program in PG. A selection σ
is a function which selects one pair (h : α) from each rule of P , i.e. σ : P →
(HB(P) × [0, 1]) such that, for each r in P , σ(r) ∈ head(r). For each rule r,
we denote the atom h selected from this rule by σatom(r) and the probability α
selected by σprob(r). Furthermore, we denote the set of all selections σ by SP .

Let us now give the formal definition of an instance.

Definition 2 (Instance). Let P be a program in PG and σ a selection in SP .
The instance Pσ chosen by σ is obtained by keeping only the atom selected for r
in the head of each rule r ∈ P , i.e. Pσ = {“σatom(r)← body(r)”|r ∈ P}.

We now assign a probability to a selection function σ and therefore also to the
associated program Pσ.

Definition 3 (Probability of a selection). Let P be a program in PG. The
probability of a selection σ in SP is the product of the the probability of the
individual choices made by that selection, i.e.

Cσ =
∏
r∈P

σprob(r)

The instances of an LPAD P are normal logic program. Their semantics can be
given by any of the semantics defined for normal logic programs (e.g. Clark’s
completion [2], Fitting semantics [5], stable models [6], well founded semantics
[20]). In this paper we will consider only the well founded semantics, the most
skeptical one. Since in LPAD the uncertainty is modeled by means of the anno-
tated disjunctions, the instances of an LPAD should contain no uncertainty, i.e.
they should have a single two-valued model. Therefore, given an instance Pσ, its
semantics is given by its well founded model WFM(Pσ) and we require that it
is two-valued.

Definition 4 (Sound LPAD). An LPAD P is called sound iff for each selec-
tion σ in SP , the well founded model WFM(Pσ) of the program Pσ chosen by
σ is two-valued.

For example, if the LPAD is acyclic (meaning that all its instances are acyclic)
then the LPAD is sound. We denote with Pσ |=WFM F the fact that the formula
F is true in the well founded model of Pσ.

We now define the probability of interpretations.

Definition 5 (Probability of an interpretation). Let P be a sound LPAD
in PG. For each of its interpretations I in IP , the probability π∗P (I) assigned by
P to I is the sum of the probabilities of all selections which lead to I, i.e. with
S(I) being the set of all selection σ for which WFM(Pσ) = I:

π∗P (I) =
∑

σ∈S(I)

Cσ

For example, consider the interpretation {toss(coin), fair(coin), heads(coin)}.
This interpretation is the well founded model of two instance of the example
LPAD, one is the instance shown above and the other is the instance:

heads(coin)← toss(coin),¬biased(coin).
tails(coin)← toss(coin), biased(coin).
fair(coin).
toss(coin).

The probability of this instance is 0.5·0.4·0.9·1 = 0.18. Therefore, the probability
of the interpretation above is 0.5·0.4·0.9·1+0.5·0.6·0.9·1 = 0.5·(0.4+0.6)·0.9·1 =
0.45.

3 Properties of LPADs

We now give a definition and two theorems that will be useful in the following.
The first theorem states that, under certain conditions, the probabilities of

the head disjuncts of a rule can be computed from the probabilities of the in-
terpretations. In particular, the probability of a disjunct hi is given by the sum

of the probabilities of interpretations where the body of the clause and hi are
true divided by the sum of the probabilities of interpretations where the body
is true.

The second theorem states that, given an interpretation, under certain condi-
tions, all the selection σ in the set S(I) agree on all the rules with the body true
and that the probability of I can be computed by multiplying the probabilities
of the head disjuncts selected by a σ ∈ S(I) for all the clauses with the body
true.

Definition 6 (Mutually exclusive bodies). Clauses H1 ← B1 and H2 ← B2

have mutually exclusive bodies over a set of interpretations J if, ∀I ∈ J , B1 and
B2 are not both true in I.

Theorem 1. Consider a sound LPAD P and a clause c ∈ P of the form

c = h1 : p1 ∨ h2 : p2 ∨ . . . hm : pm ← B.

Suppose you are given the function π∗P and suppose that all the couples of clauses
of P that share an atom in the head have mutually exclusive bodies over the set
of interpretations J = {I|π∗σ(I) > 0}. The probabilities pi can be computed with
the following formula:

pi =

∑
I∈IP ,I|=B,hi

π∗P (I)∑
I∈IP ,I|=B π∗P (I)

Proof. Let us first expand the numerator:∑
I∈IP ,I|=B,hi

π∗P (I) =
∑

I∈J,I|=B,hi

∑
σ∈S(I)

∏
r∈P

σprob(r)

A selection σ such that WFM(Pσ) = I for an I such that I |= B, hi is
a selection such that Pσ |=WFM B, hi. Therefore the above expression can be
written as ∑

σ∈T

∏
r∈P

σprob(r)

where T = {σ|Pσ |=WFM B, hi}. Since clause c has a mutually exclusive body
over the set of interpretations J with all the other clauses of P that contain hi

in the head, the truth of hi in Pσ can be obtained only if σ(c) = (hi : pi) for all
σ ∈ T , therefore the numerator becomes∑

σ∈T

pi

∏
r∈P\{c}

σprob(r) = pi

∑
σ∈T

∏
r∈P\{c}

σprob(r)

Let us expand the denominator in a similar way∑
I∈IP ,I|=B

π∗P (I) =
∑
σ∈Q

∏
r∈P

σprob(r)

where Q = {σ|Pσ |=WFM B}. Clause c expresses the fact that, if B is true, then
either h1, h2, ... or hm is true, i.e., these cases are exhaustive. Moreover, they
are also exhaustive. Therefore we can write Q in the following way:

Q = {σ|Pσ |=WFM B, h1} ∪ {σ|Pσ |=WFM B, h2} ∪ . . . ∪ {σ|Pσ |=WFM B, hm}

Let Qj = {σ|Pσ |=WFM B, hj}, then Qj ∩Qk = ∅ for all j, k = 1, . . . m, j 6= k.
Since clause c has a mutually exclusive body over the set of interpretations

J with all the other clauses of P , the truth of hj in Pσ can be obtained only if
σ(c) = hj : pj for all σ ∈ Qj , therefore the denominator becomes

m∑
j=1

pj

∑
σ∈Qj

∏
r∈P\{c}

σprob(r)

Given a selection σT in T , consider a selection σQj that differs from σT only
over clause c, i.e., σT (c) = (hi : pi) while σQj (c) = (hj : pj). From PσT |=WFM B
follows that PσQj |=WFM B because B can not depend on the truth of literal
hi since otherwise there would be a loop and B would not be true in the well-
founded model of PσT . From PσQj |=WFM B follows that PσQj |=WFM B, hj

because B can not depend on ¬hj since otherwise there would be a loop through
negation and the LPAD P would not be sound, in contradiction with the hypoth-
esis. Therefore σQj is in Qj . The same reasoning can be applied in the opposite
direction. As a consequence∑

σ∈T

∏
r∈P\{c}

σprob(r) =
∑

σ∈Qj

∏
r∈P\{c}

σprob(r)

for all j = 1, . . . ,m. Thus, the fraction becomes

pi

∑
σ∈T

∏
r∈P\{c} σprob(r)(∑m

j=1 pj

)∑
σ∈T

∏
r∈P\{c} σprob(r)

= pi

ut

Theorem 2. Consider an interpretation I and an LPAD P such that all the
couples of clauses that share an atom in the head have mutually exclusive bodies
with respect to the set of interpretations {I}. Then all the selection σ ∈ S(I)
agree on the clauses with body true in I and

π∗P (I) =
∏

r∈P,I|=body(r)

σprob(r)

where σ is any element of S(I).

Proof. We prove the theorem by induction on the number n of clauses with the
body false in I.

Case n = 0. For each atom A ∈ I, there is only one clause c that has it in
the head for the assumption of mutual exclusion. Therefore, for A to be in I, σ

must select atom A for clause c. Moreover, all the clauses have the body true,
therefore for each clause one atom in the head must be in I. Therefore there is
a single σ in S(I) and the theorem holds.

We assume that the theorem holds for a program Pn−1 with n − 1 clauses
with the body false in I. We have to prove that the theorem holds for a program
Pn obtained from Pn−1 by adding a clause rn with the body false. Suppose that
the rn is

h1 : p1 ∨ h2 : p2 ∨ . . . ∨ hm : pm ← B

Let Sn−1(I) (Sn(I)) be the set of all selections σ such that WFM(Pn−1
σ) = I

(WFM(Pn
σ = I)). Moreover, let Sn−1(I) be {σ1, σ2, . . . , σk}.

Since B is false in I, any head disjunct in rn can be selected and rn will be
true anyway in I. Therefore, for each σi ∈ Sn−1(I), there are m σi,j in Sn(I).
Each σi,j agrees with σi on all the rules of Pn−1. σi,j extends σi by selecting
the jth disjunct in clause rn, i.e σi,j(rn) = (hj : pj). We can write:

π∗P n(I) =
∑

σ∈Sn(I)

∏
r∈P n

σprob(r) =

=
∑

σ∈Sn(I)

∏
r∈P n−1

σprob(r)σprob(rn) =

=
∏

r∈P n−1

σ1,1
prob(r)p1 +

∏
r∈P n−1

σ1,2
prob(r)p2 + . . . +

∏
r∈P n−1

σ1,m
prob(r)pm +

+ . . .

+
∏

r∈P n−1

σk,1
prob(r)p1 +

∏
r∈P n−1

σk,2
prob(r)p2 + . . . +

∏
r∈P n−1

σk,m
prob(r)pm =

= p1

(∏
r∈P n−1

σ1,1
prob(r) +

∏
r∈P n−1

σ2,1
prob(r) + . . . +

∏
r∈P n−1

σk,1
prob(r)

)
+

+ . . .

+ pm

(∏
r∈P n−1

σ1,m
prob(r) +

∏
r∈P n−1

σ2,m
prob(r) + . . . +

∏
r∈P n−1

σk,m
prob(r)

)

Since σi,j extends σi only on clause rn, then
∏

r∈P n−1 σi,j
prob(r) =

∏
r∈P n−1 σi

prob(r).
Therefore

π∗pn(I) = (p1 + p2 + . . . + pm)×

×

(∏
r∈P n−1

σ1
prob(r) +

∏
r∈P n−1

σ2
prob(r) + . . . +

∏
r∈P n−1

σk
prob(r)

)
=

=
∑

σ∈Sn−1(I)

∏
r∈P n−1

σprob(r)

which, for the hypothesis for n− 1, becomes∏
r∈P n,I|=body(r)

σprob(r)

ut

The hypothesis of mutual exclusion of the bodies is fundamental for this theorem
to hold. In fact, consider the following example:

P1 = a : a1 ∨ b : b1.

a : a2 ∨ b : b2.

Then π∗P1
({a, b}) = a1b2 + a2b1.

One may think that is enough to have mutually exclusive bodies only when
two clauses have the same disjunct in the head. But this is not true as the
following example shows:

P2 = a : a1 ∨ b : b1 ∨ c : c1.

a : a2 ∨ c : c2 ∨ d : d2.

a : a3 ∨ b : b3 ∨ d : d3.

Then π∗P2
({a, b, c}) = a1c2b3 + b1c2a3 + c1a2b3.

4 Learning LPADs

We consider a learning problem of the following form:
Given:

– a set E of examples that are couples (I, Pr(I)) where I is an interpretation
and Pr(I) is its associated probability

– a space of possible LPAD S (described by a language bias LB)

Find:

– an LPAD P ∈ S such that ∀(I, Pr(I)) ∈ E π∗P (I) = Pr(I)

Instead of a set of couples (I, Pr(I)), the input of the learning problem can be a
multiset E′ of interpretations. From this case we can obtain a learning problem
of the form above by computing a probability for each interpretation in E′. The
probability can be computed in the obvious way, by dividing the number of
occurrences of the interpretation by the total number of interpretations in E′.

Before discussing the learning algorithm, let us first provide some prelimi-
naries.

Definition 7 (Clause non-trivially true in an interpretation (adapted
from [4])). A clause c is non-trivially true in an interpretation I if c is true
in I and there exist at least one grounding substitution θ of c such that both
body(c)θ and head(c)θ are true in I.

Definition 8 (Refinement of a body). The refinement of a body B of a
clause is a body B′ such that B ≥θ B′ and there does not exist a body B′′ such
that B ≥θ B′′ and B′′ ≥θ B′.

Refining the body of a clause c can make c non-trivially true in less interpreta-
tions.

Definition 9 (Refinement of a head). The refinement of a head H of a
clause is a head H ′ such that H ′ ≥θ H and there does not exist a head H ′′ such
that H ′ ≥θ H ′′ and H ′′ ≥θ H.

Definition 10 (Mutually exclusive disjuncts). The disjuncts in the head of
a clause are mutually exclusive with respect to a set of interpretations J if there
is no interpretation I ∈ J such that two or more disjuncts are true in I.

Let us suppose that the language bias LB is given in the form of set of couples
(ALH, ALB) where ALH is the set of literals allowed in the head and ALB is
the set of literals allowed in the body.

The algorithm (see figure 1) proceeds in three stages. In the first, it searches
for all the definite clauses allowed by the language bias

– that are true in all interpretations,
– that are non-trivially true in at least one interpretation.

The reason for searching separately for definite clauses will be explained in the
following.

In the second stage, the algorithm searches for all the non-annotated disjunc-
tive clauses allowed by the language bias

– that are true in all interpretations,
– that are non-trivially true in at least one interpretation,
– whose disjuncts in the head are mutually exclusive.

When it finds one such clause, it annotates the head disjuncts with a probability.
In the third stage, a constraint satisfaction problem is solved in order to find

subsets of the annotated disjunctive clauses that form programs that assign to
each interpretation the associated probability.

The search for clauses in the first stage is repeated for each couple (ALH,
ALB) in LB. For each literal L in ALH, a search is started from clause L ←
true (function Search Definite, not shown for brevity). The body is refined until
it is true in 0 interpretations, in which case the search stops, or in the case where
the head is true in all the interpretations in which the body is true, in which
case the clause is returned.

The search for clauses in the second stage is repeated for each couple (ALH,
ALB) in LB. The search is performed by first searching breadth-first for bodies
that are true in at least one interpretation (function Search Body, see figure 2).
Every time a body is true in at least one interpretation, the algorithm searches
breadth-first for all the heads that are true in the interpretations where the body
is true (set EB) and whose disjuncts are mutually exclusive with respect to EB
(function Search Head, see figure 3).

Search Body is initially called with a body equal to true. Since such a body is
true in all interpretations, the function Search Head is called with an initial head

Head containing all the literals allowed by the bias (ALH). The clauses returned
by Search Head are then added to the current set of clauses and Search Body is
called recursively over all the refinements of true. This is done because different
bodies may have different heads.

In Search Head the head is tested to find out the interpretations of EB
where the head is true. If the head is not true in all the interpretations of EB,
the search is stopped and the empty set of clauses is returned because there
is no way to refine the head in order to make the clause true. Instead, if the
head is true in all the interpretations of EB, Head is tested to see whether the
disjuncts are mutually exclusive. If so, the head disjuncts that are false in all the
interpretations are removed, the probabilities of the remaining head disjuncts are
computed and the clause is returned by Search Head. If the disjuncts are not
mutually exclusive, all the refinements of Head are considered and Search Head
is called recursively on each of them.

The probabilities of the disjuncts in the head are computed according to
theorem 1: the probability of a disjunct is given by the sum of the probabilities
of the interpretations in EB where the disjunct is true divided by the sum of
probabilities of the interpretations in EB. The function Compute Probabilities
takes a disjunction of atoms and returns an annotated disjunction.

Example 1. Consider the coin problem presented in section 2.1. The set of cou-
ples (I, Pr(I)) is:

I1 = {heads(coin), toss(coin), fair(coin)} Pr(I1) = 0.45
I2 = {tails(coin), toss(coin), fair(coin)} Pr(I2) = 0.45
I3 = {heads(coin), toss(coin), biased(coin)} Pr(I3) = 0.06
I4 = {tails(coin), toss(coin), biased(coin)} Pr(I4) = 0.04

Given the above set E and the language bias LB = {({heads(coin), tails(coin),
toss(coin), biased(coin), fair(coin)}, {toss(coin), biased(coin), fair(coin)})}, the
algorithm generates the following definite clause:

d1 = toss.

and the following set of annotated disjunctive clauses SC:

c1 = biased(coin) : 0.1 ∨ fair(coin) : 0.9.

c2 = heads(coin) : 0.51 ∨ tails(coin) : 0.49.

c3 = biased(coin) : 0.1 ∨ fair(coin) : 0.9← toss(coin).
c4 = heads(coin) : 0.51 ∨ tails(coin) : 0.49← toss(coin).
c5 = heads(coin) : 0.6 ∨ tails(coin) : 0.4← toss(coin), biased(coin).
c6 = heads(coin) : 0.5 ∨ tails(coin) : 0.5← toss(coin), fair(coin).
c7 = heads(coin) : 0.6 ∨ tails(coin) : 0.4← biased(coin).
c8 = heads(coin) : 0.5 ∨ tails(coin) : 0.5← fair(coin).

In the third stage, we have to partition the found disjunctive clauses in
subsets that are solutions of the learning problem. This is done by assigning to

function LLPAD(
inputs : E : set of couples (I, Pr(I)),

A language bias LB in the form of a set of couples (ALH, ALB),
where ALH is a list of literals allowed in the head,
and ALB is a list of literals allowed in the body)

returns : SP : a set of learned LPAD

SD := ∅
ES := {(∅, I)|(I, Pr(I)) ∈ E}
ES′ := {(∅, I, Pr(I))|(I, Pr(I)) ∈ E}
for all couples (ALH, ALB) do

for all literals L in ALH
SD := SD∪Search Definite(ALB, L← true,ES)

end for
end for
SC := ∅
for all couples (ALH, ALB) do

Body :=true
SC := SC∪Search Body(ALH, ALB, Body, ES′)

end for
for all ci ∈ SC

assert the constraint xi ∈ [0, 1]
end for
for all couples (ci, cj) of clauses of SC

if ci and cj do not have mutually exclusive bodies over
the set of interpretations E then
assert the constraint xi + xl ≤ 1

end if
end for
for all couples (I, Pr(I)) ∈ E

assert the following constraint∑
ci∈SC(I)

xi log pi = log Pr(I)

where SC(I) is the set of clauses of SC whose body is
true in I and pi is the probability associated with
the head disjunct of ci that is true in I

end for
SP := ∅
for all solutions of the resulting CSP

let P be the LPAD that contains all the clauses ci for which
xi = 1

SP := SP ∪ {P ∪ SD}
end for
return SP

Fig. 1. Function LLPAD

function Search Body(
inputs : ALH : set of literals allowed in the head,

ALB : set of literals allowed in the body,
Body : current body,
E: set of triples (Θ, I, Pr(I)))

returns : SC : a set of disjunctive clauses

SC := ∅
Test Body over E
let EB be a set containing elements of the form (Θ, I, Pr(I)) where I is

an interpretation where Body is true and Θ is the set of substitutions with
which Body is true in I

if Body is true in 0 interpretations then
return ∅

else
Head := ALH
SC := SC∪Search Head(ALH, Head, Body, EB)
for all refinements Body′ of Body

SC := SC∪Search Body(ALH, ALB, Body′, EB)
end for

end if
return SC

Fig. 2. Function Search Body

each clause ci found in the second stage a variable xi that is 0 if the clause is
absent from a solution P and is 1 if the clause is present in a solution. Then
we must ensure that the couples of clauses that share a literal in the head have
mutually exclusive bodies over the set of interpretations E. This is achieved by
testing, for each couple of clauses, if they share a literal in the head and, if so,
if the intersections of the two sets of interpretations where their body is true
is non-empty. In this case, we must ensure that the two clauses are not both
included in a solution. To this purpose, we assert the constraint xi + xj ≤ 1 for
all such couples of clauses (ci, cj). Finally we must ensure that P assigns the
correct probability to each interpretation. For each interpretation we thus have
the constraint: ∏

ci∈SC(I)

pxi
i = Pr(I)

where SC(I) is the subset of SC of all the disjunctive clauses whose body is
true in I and pi is the probability of the single head of ci that is true in I. This
constraint is based on theorem 2.

The definite clauses are not considered in the constraints because they would
contribute only with a factor 1xj that has no effect on the constraint for any
value of xj . Therefore, for each assignment of the other variables, xj can be either
0 or 1. This is the reason why we have learned the definite clauses separately.

function Search Head(
inputs : ALH : set of literals allowed in the head,

Head : current head,
Body : current body,
E: set of triples (Θ, I, Pr(I)))

returns : SC : a set of disjunctive clauses

SC := ∅
if Head and Body share one or more literals then

% the clause is a tautology
for all refinements Head′ of Head

SC := SC∪Search Head(ALH, Head′, Body, E)
end for
return SC

else
test Head over E
if, for all (Θ, I, Pr(I)) ∈ E, Head is true in I with every substitution θ ∈ Θ

then
if the disjuncts are mutually exclusive then

% a good clause has been found
obtain Head′ by removing from Head all the literals that are

false in all the interpretations
Head′′ :=Compute Probabilities(Head′, Body, EB)
return {Head′′ ← Body}

else
% Head has to be refined
for all refinements Head′ of Head

SC := SC∪Search Head(ALH, Head′, Body, E)
end for
return SC

end if
else

% Head is false in some interpretations
return ∅

end if
end if

Fig. 3. Function Search Head

If we take the logarithm of both members we get the following linear con-
straint: ∑

ci∈SC(I)

xi log pi = log Pr(I)

We can thus find the solutions of the learning problem by solving the above
constraint satisfaction problem.

Even if the variables have finite domains, it is not possible to use a CLP(FD)
solver because the coefficients of the linear equations are irrational. Therefore
we solve a relaxation of the above problem where the variables are real numbers
belonging to the interval [0, 1].

Example 2 (Continuation of example 1). In the third stage, we use the CLP(R)
solver [8] of Sicstus Prolog and we obtain the following answer:

x2 = 0, x4 = 0, x1 = 1− x3, x5 = 1− x7, x6 = 1− x8

meaning that c2 and c4 are absent, if c1 is present c3 must be absent and vicev-
ersa, if c5 is present c7 must be absent and viceversa and if c6 is present c8 must
be absent and viceversa. By labeling the variables in all possible ways we get
eight solutions, which is exactly the number that can be obtained by considering
the three double choices. The original program is among the eight solutions.

We now show that the algorithm is correct and complete.
The algorithm is correct because all the disjunctive clauses that are found

are true in all the interpretations, are non-trivially true in at at least one inter-
pretation and have mutually exclusive disjuncts in the head. The probabilities
of the head literals are correct because of theorem 1 and a solution of the con-
straint satisfaction problem is a program for which clauses which share a literal
have mutually exclusive bodies for all the interpretations in E and that assigns
to each interpretation in E the correct probability because of theorem 2.

The algorithm is also complete, i.e. if there is an LPAD in the language bias
that satisfies the above conditions, then LLPAD will find it, since it searches the
space of possible clauses in a breadth first way.

The algorithm can be made heuristic by relaxing some of the constraints
imposed: for example, we can require that the clauses must be non-trivially true
in more than one interpretation. In this way, we can prune a clause as soon as
its bodies is true in less than the minimum number of interpretations. However,
in this case the constraint satisfaction problem must not be solved in an exact
way but rather in an approximate way.

5 Related Works

To the best of our knowledge, this paper is the first published attempt to learn
LPADs. Therefore, the only works related to ours are those that deal with the
learning of other forms of probabilistic models.

In [21] the authors compare LPAD with Bayesian Logic Programs (BLP) [9,
10]. They show that every BLP can be expressed as an LPAD with a semantics
that matches that of the BLP. Moreover, they also show that a large subset of
LPADs can be translated into BLPs in a way that preserves the semantics of
the LPADs. Such a subset is the set of all ground LPADs that are acyclic and
where each ground atom depends only on a finite number of atoms. Therefore,
the techniques developed in [11] for learning BLPs can be used for learning this
class of LPADs as well. However, the technique proposed in this paper are not
based on a greedy algorithm as that in [11], therefore it should be less likely to
incur in a local maxima.

In [7] the authors propose a formalism called Probabilistic Relational Models
(PRM) that extends the formalism of Bayesian networks to be able to model
domains that are described by a multi-table relational database. Each attribute
of a table is considered as a random variable and its set of parents can contain
other attributes of the same table or attributes of other tables connected to the
attribute table by foreign key connections. The relationship between PRM and
LPADs is not clear. For sure they have a non empty intersection: the PRM that
do not contain attributes that depend on aggregate functions of attributes of
other tables can be expressed as LPADs. Moreover, LPADs are not a subset
of PRM since they can express partial knowledge regarding the dependence of
an attribute from other attributes, in the sense that with LPADs it is possible
to specify only a part of a conditional probability table. Therefore the learning
techniques developed in [7] can not be used in substitution of the techniques
proposed in this paper.

[1] and [18] propose two logic languages for encoding in a synthetic way com-
plex Bayesian networks. They are both very much related to PRM. Differently
from PRM they offer some of the advantages of logic programming: the combi-
nation of function symbols and recursion, non-determinism and the applicability
of ILP techniques for learning. LPADs offer as well this features. Moreover, with
LPADs partial decision tables can be encoded.

Stochastic Logic Programs (SLPs) [3, 13] are another formalism integrating
logic and probability. In [21] the authors have shown that a SLP can be translated
in LPAD, while whether the opposite is possible is not known yet. Therefore, it
is not clear at the moment whether the techniques used for learning SLPs can
be used for learning LPADs.

PRISM [19] is a logic programming language in which a program is composed
of a set of facts and a set of rules such that no atom in the set of facts appears in
the head of a rule. In a PRISM program, each atom is seen as a random variable
taking value true or false. A probability distribution for the atoms appearing
in the head of rules is inferred from a given probability distribution for the set
of facts. PRISM differs from LPADs because PRISM assigns a probability dis-
tribution to ground facts while LPADs assign a probability distribution to the
literals in the head of rules. PRISM programs resemble programs of ICL, in the
sense that PRISM facts can be seen as ICL abducibles. In [19] the author also
proposes an algorithm for learning the parameters of the probability distribution

of facts from a given probability distribution for the observable atoms (atoms
in the head of rules). However, no algorithm for learning the rules of a PRISM
program has been defined. Inferring the parameters of the distribution is per-
formed in LLPAD analytically by means of theorem 1 rather than by means of
the EM algorithm as in PRISM.

We have already observed that a large class of LPADs is equivalent to ICL,
namely the class of acyclic LPADs. Another formalism very related to ICL and
LPADs is Probabilistic Disjunctive Logic Programs (PDLP) [16]. PDLP are not
required to be acyclic and therefore all LPADs can be translated into PDLP and
all PDLP can be translated into an LPAD. However, it remains to be checked
whether the transformation preserves the semantics. Moreover, in [16] the author
does not propose an algorithm for learning PDLP.

6 Conclusion and Future Works

We have defined a problem of learning LPADs and an algorithm that is able
to solve it by means of learning from interpretations and constraint solving
techniques. The algorithm has been implemented in Sicstus Prolog 3.9.0 and is
available on request from the author.

In the future we plan to adopt more sofisticated language bias, for example
the Dlab formalism or the mode predicates of Progol and Aleph. Moreover,
we plan to use extra information in order to be able to select among the set of
learned clauses. An example of this extra information is negative interpretations,
i.e., interpretations where the clauses have to be false.

7 Acknowledgements

This work was partially funded by the IST programme of the EC, FET under the
IST-2001-32530 SOCS project, within the Global Computing proactive initiative
and by the Ministero dell’Istruzione, della Ricerca e dell’Università under the
COFIN2003 project “La gestione e la negoziazione automatica dei diritti sulle
opere dell’ingegno digitali: aspetti giuridici e informatici”. The author would like
to thank Evelina Lamma and Lùıs Moniz Pereira for many interesting discussions
on the topic of this paper.

References

1. Hendrik Blockeel. Prolog for first-order bayesian networks: A meta-intepreter ap-
proach. In Multi-Relational Data Mining (MRDM03), 2003.

2. K. L. Clark. Negation as failure. In Logic and Databases. Plenum Press, 1978.
3. James Cussens. Stochastic logic programs: Sampling, inference and applications. In

Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2000),
pages 115–122, San Francisco, CA, 2000. Morgan Kaufmann.

4. L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26(2–3):99–146,
1997.

5. M. Fitting. A kripke-kleene semantics for logic programs. Journal of Logic Pro-
gramming, 2(4):295–312, 1985.

6. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. A. Bowen, editors, Proceedings of the 5th Int. Conf. on
Logic Programming, pages 1070–1080. MIT Press, 1988.

7. L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic rela-
tional models. In Saso Dzeroski and Nada Lavrac, editors, Relational Data Mining.
Springer-Verlag, Berlin, 2001.

8. C. Holzbaur. OFAI clp(q,r) manual, edition 1.3.3. Technical Report TR-95-09,
Austrian Research Institute for Artificial Intelligence, Vienna, 1995.

9. K. Kersting and L. De Raedt. Bayesian logic programs. In Work-in-Progress
Reports of the Tenth International Conference on Inductive Logic Programming
(ILP2000), London, UK, 2000.

10. K. Kersting and L. De Raedt. Bayesian logic programs. Technical Report 151,
Institute for Computer Science, University of Freiburg, Freiburg, Germany, April
2001.

11. K. Kersting and L. De Raedt. Towards combining inductive logic programming
and bayesian networks. In C. Rouveirol and M. Sebag, editors, Eleventh Interna-
tional Conference on Inductive Logic Programming (ILP-2001), Strasbourg, France,
September 2001, number 2157 in LNAI. Springer-Verlag, 2001.

12. J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Program-
ming. MIT Press, Cambridge, Massachusetts, 1992.

13. S. H. Muggleton. Learning stochastic logic programs. Electronic Transactions in
Artificial Intelligence, 4(041), 2000.

14. R. T. Ng and V. S. Subrahmanian. Probabilistic logic programming. Information
and Computation, 101(2):150–201, 1992.

15. L. Ngo and P. Haddaway. Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 171(1–2):147–177, 1997.

16. Liem Ngo. Probabilistic disjunctive logic programming. In Proceedings of the
12th Annual Conference on Uncertainty in Artificial Intelligence (UAI-96), pages
397–404, San Francisco, CA, 1996. Morgan Kaufmann Publishers.

17. D. Poole. The Independent Choice Logic for modelling multiple agents under
uncertainty. Artificial Intelligence, 94(1–2):7–56, 1997.

18. V. Santos Costa, D. Page, M. Qazi, and J. Cussens. Clp(BN): Constraint logic
programming for probabilistic knowledge. In Uncertainty in Artificial Intelligence
(UAI03), 2003.

19. T. Sato. A statistical learning method for logic programs with distribution seman-
tics. In 12th International Conference on Logic Programming (ICLP95), pages
715–729, 1995.

20. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

21. J. Vennekens and S. Verbaeten. Logic programs with annotated disjunctions.
Technical Report CW386, K. U. Leuven, 2003. http://www.cs.kuleuven.ac.be/
∼joost/techrep.ps.

22. J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with anno-
tated disjunctions. In The 20th International Conference on Logic Programming
(ICLP04), 2004.

