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Abstract. In this paper we present the system ALLPAD for learning
Logic Programs with Annotated Disjunctions (LPADs). ALLPAD mod-
ifies the previous system LLPAD in order to tackle real world learning
problems more effectively. This is achieved by looking for an approxi-
mate solution rather than a perfect one. ALLPAD has been tested on
the problem of classifying proteins according to their tertiary structures
and the results compare favorably with most other approaches.

1 Introduction

Logic Programs with Annotated Disjunctions [1] are a relatively new formalism
for representing probabilistic information in logic programming. They have been
recognized as one of the simplest and most expressive languages that combine
logic and probability [2].

In [3] the definition of a learning problem for LPADs has been proposed to-
gether with an algorithm for solving it called LLPAD. However, LLPAD does not
work well on non-toy problems because it relies on the exact solution of a large
constraint satisfaction problem. On real world problems such a solution may
not exist or may be too expensive to find. Therefore in this paper we propose
the system ALLPAD (Approximate Learning of Logic Programs with Anno-
tated Disjunctions) that modifies LLPAD in order to be able to solve real world
problems by looking for a solution that “approximately” satisfies the learning
problem.

2 ALLPAD

ALLPAD learns ground LPADs in five phases. The first and the third are the
same as those of LLPAD. The second and the fourth modify those of LLPAD
and the fifth one is new.

In the first and second phases ALLPAD looks respectively for definite and
disjunctive clauses that satisfy a number of constraints reported in [3]. In the
third phase the disjunctive clauses found in the second phase are annotated with
probabilities by exploiting theorem 1 of [3].

In the fourth phase ALLPAD solves an optimization problem in which a
subset of the found disjunctive clauses is selected so that the resulting program



assigns to the input interpretations a probability that is as close as possible to the
one given. This is done by exploiting theorem 2 of [3]. Since the optimization
problem can be expressed as a linear problem, we can use mixed-integer pro-
gramming (MIP) techniques. If no perfect solution exist, a non zero optimum
will be found.

However, the optimization problem is NP-hard and thus solvable only for
small instances. To overcome this problem, we exploit the possibility of setting
a time limit offered by many MIP packages. In this way, ALLPAD looks for the
best solution given the available time.

To make sure that an admissible solution will be found within the time limits,
the complete search in the space of bodies performed by LLPAD in the second
phase is given up for an incomplete search strategy, beam search. The heuristic
to be used for ranking bodies is the sum of the probabilities of the interpretations
where the body is true. This heuristic ensures that the clauses that apply only to
a small number of improbable interpretations are discarded and the dimension
of the optimization problem is reduced.

In the fifth phase, the definite clauses not mutually exclusive with the selected
disjunctive clauses are removed.

3 Experiments

ALLPAD was applied to the problem of predicting the tertiary structure of
proteins by classifying them into one of the SCOP classes [4]. Each protein is de-
scribed by a sequence of secondary structure elements. The elements are either of
the form he(Type,Length,Position) or of the form st(Orientation,Length,Position).
The last argument is an ordinal number indicating the position in the sequence.

The dataset available [5] (kindly provided by Kristian Kersting) has the fol-
lowing distribution of examples into classes (class,examples): (fold1, 721), (fold2,
360), (fold23, 274), (fold37, 441), (fold55, 290).

ALLPAD can be used for classification as other probabilistic model learners:
a model is learned for each class and an example is assigned the class whose
model gives the highest probability to the example.

In order to learn an LPAD that describes a class, the interpretations given
as input to the system are annotated each with the same probability given by 1
over the total number of interpretations in the training set.

Proteins are modeled with LPADs as stochastic processes: the structure at
position p is predicted on the basis of the structures in a number of previous
positions. To this purpose, ALLPAD learns programs containing rules having all
the possible structures with position equal to p in the head and a conjunction of
structures in the body with positions belonging to the set S(p, k) = {p − 1, p −
2, . . . , p − k} for a given k.

Since the constraint solving phase finds only an approximate solution, the
theories learned are tested in an approximate way: if for a sequence position no
learned rule is applicable, the marginal probability of the atom in the class is
used.



The accuracy of the learned LPAD is compared with the accuracy of a näıve
Bayes classifier obtained in the following way: the approximate testing procedure
is applied by using for all positions the marginal probability in the class.

Two experiments were performed using 10-fold cross validation.
In both experiments we used Xpress-Optimizer by Dash Optimization for

solving the MIP problem. The time limit has been set to 1 hour for each class in
the first experiment and to 100 minutes for each class in the second experiment.

The other important parameters are: the value of k (the number of previous
positions to consider), set to 4; the size of the beam, set to 100, and the maximum
number of bodies to be explored for each clause template, which has been set to
100 in the first experiment and to 125 in the second experiment. The experiments
have been performed on a PC with an Athlon XP 2600+ processor at 2138 Mhz,
1GB of RAM and Windows 2000.

In the two experiments ALLPAD reached respectively an average accuracy
of 85.14% and of 85.67%, while the naive Bayes approach reached an average
accuracy of 82.79%. A cross-validated paired two-tailed t test was performed
for comparing the accuracy of ALLPAD to that of näıve Bayes and the null
hypothesis of equivalence can be rejected with 98.3% probability for the first
experiment and with 98.6% probability for the second experiment.

The results available in the literature regarding accuracy on datasets in the
same domain are: 74% in [5], 83.6% in [6], 76% and 73% in [7] and 92.96% in
[8]. The results of ALLPAD compare favorably with all results apart from the
last one, even if the system is not specifically tailored to learning sequences.
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