
A Top Down Interpreter for LPAD and CP-logic

Fabrizio Riguzzi

Dip. di Ingegneria – Università di Ferrara – Via Saragat, 1 – 44100 Ferrara, Italy.
fabrizio.riguzzi,@unife.it

Abstract. Logic Programs with Annotated Disjunctions and CP-logic
are two different but related languages for expressing probabilistic in-
formation in logic programming. The paper presents a top down inter-
preter for computing the probability of a query from a program in one
of these two languages when the program is acyclic. The algorithm is
based on the one available for ProbLog. The performances of the algo-
rithm are compared with those of a Bayesian reasoner and with those of
the ProbLog interpreter. On programs that have a small grounding, the
Bayesian reasoner is more scalable, but programs with a large grounding
require the top down interpreter. The comparison with ProbLog shows
that, even if the added expressiveness effectively requires more compu-
tation resources, the top down interpreter can still solve problem of sig-
nificant size.

1 Introduction

Logic Programs with Annotated Disjunctions (LPADs) [9] and CP-logic [8] are
two recent formalism combining logic and probability. They are interesting for
the simplicity and clarity of their semantics that makes the reading of their
programs very intuitive.

Even if the semantics of these two formalisms were defined in a different way,
there exists a syntactic transformation that makes CP-logic programs equivalent
to a large subset of LPADs.

The LPADs and CP-logic semantics assigns a probability value to logic
queries. In this paper, we consider the problem of computing this probability
given a program and a query. In particular, we propose a top down interpreter
that computes derivations for a query and then computes the probability of the
query by using binary decision diagrams. The algorithm is based on the top
down interpreter for ProbLog presented in [4]. This interpreter is highly opti-
mized and answers queries from programs containing thousands of clauses. Due
to the difference between ProbLog and LPADs, it was not possible to use all the
optimizations.

We also present an algorithm for answering conditional queries, i.e., comput-
ing the probability of a query given another query. The algorithm uses the top
down interpreter in a way that prevents it from repeating computations.

Besides the interpreter, we consider an approach that exploits the possibility
of translating an LPAD into a Bayesian network shown in [9]. The approach
allows the use of Bayesian network reasoners on the problem.

In order to compare the algorithm with the Bayesian approach and with the
ProbLog interpreter, we performed a number of experiments on a simple game
of dice and on graphs of biological concepts. For the first problem the grounding
of the program is small and the Bayesian reasoner is more scalable. For the
second problem, the grounding is so large that the Bayesian approach could not
be applied. As expected, the size of problems that were successfully solved is
smaller than the one of ProbLog but still large enough for the problems to be
considered non trivial.

The paper is organized as follows. In Section 2 we present the syntax and
semantics of ProbLog, LPADs and CP-logic. Section 3 describes the top down
interpreter for ProbLog presented in [4]. Section 4 presents the top down inter-
preter for LPADs and CP-logic. Section 6 illustrates the translation into Bayesian
networks. In Section 7 we discuss the experiments performed and in Section 8
we conclude and present directions for future work.

2 Preliminaries

A ProbLog program [4] T is a set of clauses of the form

α : h← b1, . . . , bn (1)

where α is a real number between 0 and 1 and h and b1, . . . , bn are atoms.
The semantics of such programs is defined in terms of instances: an instance

is a definite logic program obtained by selecting a subset of the clauses and
removing the α. Its probability is given by the product of the α factor for all
the clauses that are included in the instance and of 1 − α for all the clauses
not included. The probability PTPB(Q) of a query Q according to program T is
given by the sum of the probabilities of the instances that have the query as a
consequence according to the least Herbrand model semantics.

A Logic Program with Annotated Disjunctions T [9] consists of a set of
formulas of the form

h1 : α1 ∨ . . . ∨ hn : αn ← b1, . . . bm (2)

In such a clause the hi are logical atoms, the bi are logical literals and the αi
are real numbers in the interval [0, 1] such that

∑n
i=1 αi = 1. An LPAD is range

restricted if all the variables appearing in the head appear also in the body.
The semantics of LPADs is given as well in terms of instances: an instance is

a ground normal program obtained by selecting for each clause of the grounding
of T one of the heads and by removing the αi. The probability of the instance
is given by the product of the α factors associated with the heads selected. The
probability PTLP (Q) of a formula Q according to program T is given by the sum
of the probabilities of the instances that have the formula as a consequence
according to the well founded [7] semantics.

A CP-logic program T [8] consists of a set of formulas of the form (2) where
it is imposed that

∑n
i=1 αi ≤ 1. The semantics of CP-logic was given in terms of

2

probabilistic processes. However, it was shown in [8] that this semantics, when it
is defined, is equivalent to the instance based semantics of the LPAD T ′ obtained
from the CP-logic program T by replacing each clause of the form (2) with the
clause

h1 : α1 ∨ . . . ∨ hn : αn ∨ none : 1−
n∑
i=1

αi ← b1, . . . bm (3)

where none is a special atom that does not appear in the body of any clause.
It was shown in [9] that an LPAD can be translated into a Bayesian Logic

Program (BLP) preserving the semantics. Since BLP encode Bayesian networks,
this provides a way of translating an LPAD into a Bayesian network. This means
that we can answer a query by using a Bayesian inference algorithm.

3 The Top Down Interpreter for ProbLog

In [4] a proof procedure was given for computing the probability of a query Q
from a ProbLog program T . The procedure involves the computation of all the
possible SLD derivations for Q.

Consider a single derivation d for Q that uses the set of clauses Cd = {α1 :
c1, . . . , αk : ck}. Let us assign a Boolean random variable Xi to every clause ci
of T . Xi assumes value 1 if the clause ci is selected and value 0 if the clause is
not selected. The probability

P (X1 = 1 ∧ . . . ∧Xk = 1)

is the sum of the probabilities of the instances containing these clauses, thus it is
the probability of Q if it has only derivation d. Since each clause is independent
from the other clauses, the probability above is given by

∏k
i=1 αi.

If Q has multiple derivations pr(Q) = {d1, . . . , dl}, then its probability can
be given by

P (
∨

d∈pr(Q)

∧
αi:ci∈Cd

Xi = 1)

Thus the problem of computing the probability of a query is reduced to the prob-
lem of computing the probability of a DNF formula. This problem is known to
be NP-hard. In order to solve it, the authors of [4] use Binary Decision Diagrams
(BDD) [2]. BDD represent a Boolean formula as a binary decision graph: one
can compute the value of the function given an assignment of the variables by
navigating the graph from the root to a leaf. The nodes of the graph are divided
into levels and each level is associated with a Boolean variable. The next node
is chosen on the basis of the value of the variable associated to that level: if the
variable is 1 the high child is chosen, if the value is 0 the low child is chosen. The
leaves are associated either with the value 1 or with the value 0: when we reach
a leaf we return the value stored there. For example, a BDD for the Boolean
function

X1,1 = 0∨X2,1 = 0∧X2,2 = 1∧X3,1 = 0∨X2,1 = 1∧X2,2 = 0∧X3,1 = 0 (4)

3

is represented in Figure 1, where all the Xi,j are Boolean variables, high children
are reached by solid edges, low children by dashed edges and the leaves are
represented by rectangular nodes.

Fig. 1. BDD

A BDD is built by first building a full binary decision tree having 2n nodes
for level n and then simplifying it by merging isomorphic subgraphs until no
further reduction is possible. Since the number of reductions depends on the
order chosen for the variables, practical BDD tools use sophisticated heuristics
for choosing a good order.

Given a BDD of a Boolean formula F , we can easily compute its probability
because F can be represented as F = (X = 1) ∧ F1 ∨ (X = 0) ∧ F0 where X
is the variable associated to the root of the BDD, F1 is the formula associated
to the high child and F0 is the formula associated to the low child. Since the
two disjuncts are now mutually disjoint, the probability of F can be computed
as P (F) = P (X = 1) · P (F1) + P (X = 0) · P (F0). The probabilities P (F1) and
P (F0) can then be computed recursively.

4 A Top Down Interpreter for LPAD and CP-logic

The notion of derivation presented above must be extended in three ways in order
to compute the probability of an LPAD query. First, we must take into account
the fact that clauses have more than one atom in the head, therefore each clause
is not represented by a Boolean variable but by a multivalued variable with as
many values as there are atoms in the head. Second, a variable is not associated
with a clause but with a grounding of a clause, thus we have different variables
for different groundings. Third, the body of LPAD clauses can contain negative
literals.

The interpreter we present is based on SLDNF and therefore is valid only for
programs for which the Clark’s completion semantics [3] and the well founded
semantics coincide, as for acyclic programs [1].

4

The interpreter is based on the notion of derivation: it is an extension of
SLDNF derivation in order to take into account the fact that the clauses can
have multiple atoms in the head and in order to store the clauses used in it
together with the head chosen for resolution at each step. Negative goals are
treated by computing all the possible derivations for the goal, by selecting, for
each derivation, a grounded clause and by including in the store of used clauses
the clause with a head different from the one used for deriving the negative goal.

In the following, we give an algorithmic definition of derivation. We adopt a
mixed pseudo code: we use procedural features, such as assignments and func-
tions, and declarative features, such as non-determinism, unification and corou-
tining (the predicate dif in particular).

A derivation from (G1, C1) to (Gn, Cn) in T of depth n is a sequence

(G1, C1), . . . , (Gn, Cn)

such that each Gi is a goal of the form ← l1, . . . , lk, Ci is a set of couples that
stores the instantiated clauses and the heads used and (Gi+1, Ci+1) is obtained
according to one of the following rules

– if l1 is built over a built-in predicate, then li is executed, Gi+i =← l2, . . . ,
lk and Ci+1 = Ci

– if l1 is a positive literal, then let c = h1 : α1 ∨ . . . ∨ hn : αn ← B be a fresh
copy of a clause of T that resolves with Gi on l1, let hj be a head atom of c
that resolves with l1 and let θ be the mgu substitution of l1 and hj . For every
couple (cδ,m) ∈ Ci such that m 6= j and cδ unifies with cθ, we impose the
constraint dif (cδ, cθ) so that further instantiations of cδ or cθ do not make
the two clauses equal. Then Gi+1 = r where r is the resolvent of hj ← B
with Gi on the literal l1 and Ci+1 = Ci ∪ {(cθ, j)}.

– if l1 is a negative literal ¬a1, then let C be the set of all the sets C such that
there exists a derivation from (← a1, ∅) to (←, C). Then Gi+1 =← l2, . . . , lk
and Ci+1 =Select(C, Ci), where Select is the function shown in Figure 2.

A derivation is successful if Gn =←.
From the set C of the all the C such that there exists a derivation from

(← Q, ∅) to (←, C) we can build the formula

F =
∨
C∈C

∧
(cθ,j)∈C

(Xcθ = j)

where Xcθ is the multivalued variable associated to the clause cθ. In order to
deal with multivalued variables using BDD, an approach [6] consists in using a
binary encoding: if multivalued variable Xi can assume p different values, we use
q = dlog2 pe binary variables Xi,1, . . . , Xi,q where Xi,1 is the most significant bit.
The equation Xi = j can be represented with binary variables in the following
way

Xi,1 = j1 ∧ . . . ∧Xi,q = jq

where j1 . . . jq is the binary representation of j. Once we have transformed all
multivalued equations into Boolean equations we can build the BDD.

5

Fig. 2. Function Select

function Select(
inputs : C : C sets for successful derivations of

the negative goal,
Ci : current set of used clauses

returns : Ci+1 : new set of used clauses)
Ci+1 := Ci

for each C ∈ C
select a (cθ, j) ∈ C// If the program is range restricted,

// cθ is ground, see the discussion below
for all δ such that (cδ, j) ∈ Ci+1 and cδ unifies with cθ

impose the constraint dif (cδ, cθ)
perform one of the following operations

1. select (cδ,m) ∈ Ci+1 such that m 6= j and cδ unifies with cθ,
then Ci+1 := Ci+1 \ {(cδ,m)} ∪ {(cθ,m)}

2. select (cδ,m) ∈ Ci+1 such that m 6= j and cδ unifies with cθ,
then impose the constraint dif (cδ, cθ) and Ci+1 := Ci+1 ∪ {(cθ,m)}

3. select m 6= j such that 6 ∃cδ (cδ,m) ∈ Ci+1 with cδ that unifies with cθ,
then Ci+1 := Ci+1 ∪ {(cθ,m)}.

return Ci+1

In order to compute the probability of a multivalued formula represented by a
BDD, we exploit the possibility offered by many BDD packages of specifying that
the variables belonging to a certain set must be kept together and in the order
given when building the diagram. Therefore, for every multivalued variable, we
enclose in one such set all the binary variables associated to it.

Consider for example the program
c1 = a : 0.1. c2 = b : 0.3 ∨ c : 0.6. c3 = a : 0.2← ¬b.

This program has three successful derivations from (← a, ∅) to (←, C). Their C
sets are

C1 = {(c1∅, 0)}
C2 = {(c2∅, 1), (c3∅, 0)}
C2 = {(c2∅, 2), (c3∅, 0)}

These C sets produce the following formula with multivalued variables
X1 = 0 ∨X2 = 1 ∧X3 = 0 ∨X2 = 2 ∧X3 = 0

where Xi corresponds to ci∅. The formula is then converted into formula (4)
that produces the BDD of Figure 1.

The algorithm shown in Figure 3 computes the probability of a multivalued
formula encoded by a BDD. It consists of two mutually recursive functions, Prob
and ProbBool. The idea is that we call Prob in order to take into account a new
multivalued variable and we call ProbBool to consider the individual binary
variables. In particular, Prob(n) returns the probability of node n while the
calls of ProbBool build a binary tree with a level for each bit of the multivalued
variable, so that the last calls of ProbBool (the leaves) identify a single value and
are called with a node whose binary variable belongs to the next multivalued

6

variable. Then ProbBool calls Prob on the node to compute the probability of
the subgraph and returns the product of the result and the probability associated
to the value. The intermediate ProbBool calls sum up these partial results and
return them to the parent Prob call. Note that ProbBool builds a full binary tree
for a variable even if there is not a node for every binary variable (for example,
because the result is not influenced by the value of one bit). As in [4], Prob is
optimized by storing, for each computed node, the value of its probability, so
that if the node is visited again the probability can be retrieved.

Note that for the algorithm to behave correctly the program must be range
restricted. Consider for example the following CP-logic program T

c1 = a(1) : 0.3← p(X).

c1 = a(2) : 0.4← p(X).

c3 = p(X) : 0.5.

where the third clause (c3) is not range restricted.

The only derivation from (← a(1), ∅) to (←, C) has the following C set

C = {((c1∅, 0), (c3∅, 0)}
and thus gives a probability of 0.15. The grounding T ′ of T is

c1 = a(1) : 0.3← p(1). c2 = a(1) : 0.3← p(2).

c3 = a(2) : 0.4← p(1). c4 = a(2) : 0.4← p(2).

c5 = p(1) : 0.5. c6 = p(2) : 0.5.

thus there are two successful derivations of a(1) whose C sets are

C1 = {(c1∅, 0), (c5∅, 0)} C2 = {(c2∅, 0), (c6∅, 0)}
for a probability of 0.2775.

If the program is range restricted, every derivation from (← G, ∅) to (←, C)
will contain in C couples (j, cθ) such that cθ is ground and thus the above
problem does not appear.

However, the query can contain variables: from the program T ′, the algorithm
for the query a(X) would return probability 0.2775 for X = 1 and probability
0.36 for X = 2.

If the conditional probability of a query Q given another query E must
be computed, rather then computing PTLP (Q ∧ E) and PTLP (E) separately, an
optimization can be done: we first identify all successful derivations for E and
then we look for all successful derivations of Q starting from a derivation of E,
as shown in Figure 4.

In [4] an algorithm was given for computing the probability of the query in
an approximate way, returning an upper and a lower bound of the probability.
This involves the use of iterative deepening: the SLD-tree is built only up to a
given depth d and at each iteration we increment the value of d. At the end of
each iteration we have a set of C sets of successful derivations Successful and a
set of C sets for still open derivations Open. The true probability PTPB(Q) of a
query is such that

P (F1) ≤ PTPB(Q) ≤ P (F1 ∨ F2)

where F1 (F2) is the formula corresponding to Successful (Open) Thus we have
an upper and a lower bound on PTPB(Q).

7

Fig. 3. Function Prob

function Prob(
inputs : n : BDD node,
returns : P : probability of the formula)

if n is the 1-terminal then return 1
if n is the 0-terminal then return 0
let mV ar be the multivalued variable

corresponding to the Boolean variable associated to n
P :=ProbBool(n, 0, 1,mV ar)
return P

function ProbBool(
inputs : n : BDD node,

value : index of the value of the multivalued variable
posBV ar : position of the Boolean variable, 1 most significant
mV ar : multivalued variable

returns : P : probability of the formula)
if posBV ar = mV ar.nBit+ 1 then // the last bit has been reached

let pvalue be the probability associated with value of index
value of variable mV ar

return pvalue×Prob(n)
else

let bn be the Boolean variable associated to n
let bp be the Boolean variable in position posBV ar of mV ar
if bn = bp

// variable bp is present in the BDD
let h and l be the high and low children of n
shift left 1 position the bits of value
P :=ProbBool(h, value+ 1, posBV ar + 1,mV ar)+

ProbBool(l, value, posBV ar + 1,mV ar)
return P

else
// variable bp is absent from the BDD
shift left 1 position the bits of value
P :=ProbBool(n, value+ 1, posBV ar + 1,mV ar)+

ProbBool(n, value, posBV ar + 1,mV ar)
return P

8

Fig. 4. Function SolveCond

function SolveCond(
inputs : Q : query

E : evidence
returns : PT

LP (Q|E) : probability of Q given E)
find all the derivations from (← E, ∅) to (←, CE)
let CE be the set of all such CE sets
find all the sets CQE obtained in the following way

select a set CE from CE
find a derivation from (← Q,CE) to (←, CQE)

let CQE be the set of such CQE sets
FE :=BuildFormula(CE)
FQE :=BuildFormula(CQE)
build the BDDs of formulas FE and FQE

let nE and nQE be the root nodes of the BDDs
PE :=Prob(nE)
PQE :=Prob(nQE)
if PE 6= 0 then

return
PQE

PE

else
return undefined

The cycle terminates when P (F1∨F2)−P (F1) ≤ ε, where ε is a used defined
precision.

However, this approach cannot be used for LPADs. In fact, consider the
following program

c1 = a : 0.1← p(X). c2 = p(1) : 0.9. c3 = p(2) : 0.9.

If we have the query a and a depth bound d = 1, then at the end of the first
iteration Successful is empty and Open contains the only set {(c1∅, 0)}. Thus
P (F1) = 0 and P (F1 ∨ F2) = 0.1. However PTLP (Q) is 0.1719 so P (F1 ∨ F2)
is not an upper bound on P (Q). In fact, there are two successful derivations
of a, one has the C set {(c1{X/1}, 0), (c2∅, 0)} and the other has the C set
{(c1{X/2}, 0), (c3∅, 0)}. Thus the formula F is

Xc1{X/1} = 0 ∧Xc2 = 0 ∨Xc1{X/2} = 0 ∧Xc3 = 0

Since the two disjunct are not mutually exclusive, we can use the law for the
probability of an or and obtain

0.1 · 0.9 + 0.1 · 0.9− 0.1 · 0.9 · 0.1 · 0.9 = 0.18− 0.0081 = 0.1719

This problem depends on the fact that, while in ProbLog we consider non ground
clauses, in LPAD we consider instantiated ones and a clause in a partial deriva-
tion may not be fully instantiated. When the derivation is continued, it may
generated more than one derivation with different instantiation of the clause.

9

5 Proof of Correctness

In this section we present a proof that the algorithm is correct for acyclic pro-
grams. We report here the definition of an acyclic normal logic program that
was given in [1].

Definition 1 (Acyclic programs).

– A level mapping for a program T is a function | | : HB(T) → N of ground
atoms to natural numbers. For A ∈ HB(T) |A| is the level of A.

– Given a level mapping | |, we extend it to ground negative literals by putting
|¬A| = |A|.

– A clause of T is called acyclic with respect to a level mapping | |, if for every
ground instance A← B of it, the level of A is greater then the level of each
literal in the body.

– A program T is called acyclic with respect to a level mapping | |, if all
its clauses are. T is called acyclic if it is acyclic with respect to some level
mapping.

We extend this definition to LPADs by requiring that the level of each atom in
the head is greater than the level of each literal in the body. This ensures that
each instance of the LPAD is an acyclic logic program.

In order to prove the correctness we first need the following lemma.

Lemma 1. Let D = (Q,C1), . . . , (←, Cn) be a successful derivation for Q in the
program T and let TD be {h ← B| where h is the j-th head of a ground clause
cθ of T and B is the body of cθ where (cθ, j) ∈ Cn}. Then, for every instance Ti
of T such that Ti ⊇ TD we have that Q is a consequence of Ti according to the
well founded semantics.

Proof. Given the definition of derivation, it is clear that we can derive Q from TD
using SLDNF derivation. This means that Q is a consequence of TD according to
Clark’s completion. Moreover, because of the way in which the Select function is
defined, for each SLDNF derivation E for a negated goal in D we have in TD a
clause used in E with a head different from the one used in E. This means that
we can extend TD to an instance Ti of T in a way that makes Q non derivable by
SLDNF from Ti. So Q is a consequence of Ti according to Clark’s completion.

In [1] it was proved that for acyclic programs Clark’s completion and the
well founded semantics coincide, so Q is a consequence of Ti also according to
the well founded semantics.

We are now ready to prove the correctness theorem.

Theorem 1. If T is an acyclic LPAD and Q is a query, the top down interpreter
returns PTLP (Q).

Proof. Let C be the set of all the Cn set for the successful derivations of Q.
Consider the BDD E built from C before any merging of isomorphic subgraphs
is performed. If C contains n different clauses, E will have n levels. Each leaf of

10

E associated with a 1 corresponds to a different successful derivation D of Q
and a path from the root to the leaf identifies the program TD.

We can build the instances of T by extending E into a new BDD F : we add
m levels where m is the number of ground clauses of T not appearing in C. Each
leaf of F represents a different instance. If the leaf of F is a descendant of the
leaf of E corresponding to TD, then the leaf of F is associated to an instance Ti
such that Ti ⊇ TD.

The probability of a leaf L of E is obtained by multiplying the probabilities
of each individual choice from the root to L. It is clear that this probability is
also the sum of the probabilities of the leaves of F that are descendants of L in
F .

The probability returned by the interpreter is the sum of the probabilities
of all the leaves of E associated to a 1. These are the leaves associated with a
successful derivation of Q. This is also the sum of the probabilities of all the
leaves of F that are descendants of the leaves of E associated to a 1. So this is
also the sum of the probabilities of all the instances that have Q as a consequence
so it is PTLP (Q).

6 Conversion to Bayesian Networks

It was shown in [9] that an LPAD can be translated into a Bayesian Logic
Program (BLP) preserving the semantics. Since BLP encode Bayesian networks,
this provide a way of translating an LPAD into a Bayesian network. This means
that we can answer a query by using a Bayesian inference algorithm.

We report here the technique. Given an LPAD T , we build a Bayesian network
by associating each atom a in HB(T) with a binary variable a with values true
(t) and false (f). Moreover, for each rule r of the form

h1 : α1 ∨ . . . ∨ hn : αn ← b1, . . . bm,¬c1, . . . ,¬cl
in the grounding of T we add to the Bayesian network a new variable choicer
that has b1, . . . , bm, c1, . . . , cl as parents and has the values h1, . . ., hn and none.
The conditional probability table (CPT) of choicer is

choicer = h1 . . . choicer = hn choicer = none
. . . 0.0 0.0 1.0

b1 = t, . . . , bm = t, α1 αn 0
c1 = f , . . . , cl = f

. . . 0.0 0.0 1.0

Moreover, each variable a with a ∈ HB(P) has as parents all the variables choicer
of rules r that have a in the head. The CPT for a is the following:

a = t a = f
at least one parent equal to a 1.0 0.0

remaining rows 0.0 1.0

CP-logic programs can be translated into Bayesian networks by first translat-
ing them into LPADs and then into Bayesian networks. However, this introduces

11

an extra unnecessary none atom in the head of rules. A direct translation can
be performed in a way similar to the one above.

In order to convert an LPAD into a Bayesian network, its grounding must be
generated. Grounding each clause with every possible constants may generate
a very large and cyclic network. Therefore, the user must guide the grounding
so that the resulting program is acyclic and contains as few clauses as possible
with the body certainly false.

Moreover, the built-in predicates in the body of clauses must be dealt with:
once a grounding of a clause is generated, all the built-in predicates in the
body must be executed. If any of them fails, the grounding is not considered for
translation, if all succeed they are removed from the grounding.

7 Experiments

We report here on two experiments performed in order to evaluate the perfor-
mances of the top down interpreter: the first involves a game of dice and the
second graphs of biological concepts. All the experiments were performed on a
Linux machine with a 3.40 GHz Pentium D processor and 1 GB of RAM.

In the first experiment we consider two versions of a dice game proposed in
[9]: the player throws a die a number of times and stops only when a certain
number comes out. We want to predict the probability of a given outcome at a
given time point.

The two versions differ only for the number of faces of the (idealized) die:
the first version considers a two face die and the second version a three face die.
The LPAD describing the first version is shown below:

on(0, 1) : 1/2 ∨ on(0, 2) : 1/2.
on(T, 1) : 1/2 ∨ on(T, 2) : 1/2← T1 is T − 1, T1 >= 0, on(T1, 1).

Atom on(T,N) means that at time T we rolled a die and face N came out. The
first rule states that at time 0 (the beginning of the game) we rolled a die and
we got a 1 or a 2 with equal probability. The second rule states that at time T
we roll a die if a die was rolled at the previous time point and we got a 1. If we
roll a die, we get a 1 or a 2 with equal probability. Thus, we stop when we get
a 2.

The LPAD describing the second version is similar to the one above and
states that we stop throwing dice only when we get a 3.

These programs have an infinite grounding because the set of integers is
infinite. Therefore, the current version of the semantics of LPADs is not able
to assign a meaning to the program. However, if we consider the correspond-
ing Bayesian network, we see that the probability of a query can be computed
considering only the part of the network that includes all the nodes up to and
including the nodes containing the maximum time that appears in the query.
The top-down interpreter in these cases returns exactly the same probability as
computed by a Bayesian reasonrer on the corresponding network. This happens
because the interpreter considers only groundings of the clauses with T and T1
instantiated to all the integers smaller or equal than the maximum time that

12

appears in the query. This provides support for the fact that the semantics can
be extended also to programs with an infinite grounding. Such an extension is
subject of future work.

For the top down interpreter we used an implementation of it in Yap Prolog1

that uses CUDD2 as the BDD manipulation package.
For the Bayesian reasoner, we used the implementation of the junction tree

inference algorithm [5] available in BNJ3 version 2 release 7 2004.
The query on(T, 1) was tried against both programs with T ranging from 0 to

15. The execution times of the top down interpreter (cplint) and of the Bayesian
reasoner (bnj) are shown in Figures 5(a) and 5(b) for the two sided die and for
the three sided die respectively.

When generating the ground program to be translated into a Bayesian net-
work, only the constants relevant to the query were considered. So, for example,
if the query was on(3, 1), only constants 0, 1, 2 and 3 were considered for T and
T1. For N , the constants 1 and 2 were considered for the first program and 1, 2
and 3 for the second program.

For the point not shown for cplint in Figure 5(b), the system started thrashing
and the computation was interrupted after four hours.

(a) Two sided die. (b) Three sided die.

Fig. 5. Execution times for the die programs.

We consider now two programs with the same meaning as those above but
that use negation. The one for the three sided die is

on(0, 1) : 1/3 ∨ on(0, 2) : 1/3 ∨ on(0, 3) : 1/3.
on(T, 1) : 1/3 ∨ on(T, 2) : 1/3 ∨ on(T, 3) : 1/3←

T1 is T − 1, T1 >= 0, on(T1, N),¬on(T1, 3).
The computation times are shown in Figures 6(a) and 6(b) respectively under
the same experimental settings discussed before.

The points not shown for cplint in Figure 6(b) are those for which Yap
stopped returning an “out of database space” error.

1 http://www.ncc.up.pt/∼vsc/Yap/
2 http://vlsi.colorado.edu/∼fabio/
3 http://sourceforge.net/projects/bndev

13

(a) Two sided die. (b) Three sided die.

Fig. 6. Execution times for the die programs with negation.

The second experiment involves computing the probability of a path between
two nodes in a graph. This experiment was chosen in order to compare the re-
sults with those [4] where the authors use the ProbLog interpreter for evaluating
the probability of paths between nodes in a network of biological concepts. The
dataset was kindly provided by the authors of [4] and is the same as the one
used in the paper. The dataset consists of a number of subgraphs G1, G2, . . . Gn
extracted from a complete graph built around four Alzheimer genes. The com-
plete graph contains 11530 edges and 5220 nodes. The subgraphs are obtained
by subsampling, they have respectively 200, 400, . . ., 5000 edges and are such
that G1 ⊂ G2 ⊂ . . . ⊂ Gn. Subsampling was repeated 10 times.

The query can reach(620, 983) was issued on every subgraph, where 620 and
683 are the identifiers of a couple of genes and can reach is defined recursively
with definite clauses in the usual way

The computation time for the probability of the query is shown in Figure 7(a)
in seconds as a function of the number of edges. The time shown is the average
computation time on the subgraphs on which the interpreter was successful.
Figure 7(b) shows the number of graphs for which the computation succeeded:
for the other graphs, the computer did not return an answer after 10 hours.

(a) Execution times. (b) Number of successes.

Fig. 7. Biological graph experiments.

14

A comparison with bnj was not possible because the conversion program
exhausted the available memory: the grounding of the definition for can reach
was too large.

These experiments show that, for small problems, Bayesian inference is more
scalable. However, when problems with many constants are considered, using
Bayesian inference is not possible. Comparing cplint with the ProbLog inter-
preter of [4], we see that the added expressiveness of LPAD and CP-Logic has
an impact on performances, since the ProbLog interpreter was able to answer the
query for up to 4600 edges. However, we can still solve problems of a significant
size.

8 Conclusions

We have presented a top down interpreter for computing the probability of
LPADs and CP-logic queries that is inspired to the one presented in [4].

We have experimentally compared the algorithm with a Bayesian inference
algorithm and with the ProbLog interpreter.

In the future, we plan to extend the interpreter by considering also aggregates
and the possibility of having the probabilities in the head depend on literals in
the body. Moreover, we plan to extend the LPAD and CP-logic semantics to
programs with an infinite grounding.

References

1. K. R. Apt and M. Bezem. Acyclic programs. New Generation Comput., 9(3/4):335–
364, 1991.

2. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. on Computers, 35(8):677–691, 1986.

3. K. L. Clark. Negation as failure. In Logic and Databases. Plenum Press, 1978.
4. L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic prolog and

its application in link discovery. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pages 2462–2467, 2007.

5. S. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society, B, 50(2):157–224, 1988.

6. D. M. Miller and R. Drechsler. On the construction of multiple-valued decision
diagrams. In Proceedings 32nd IEEE International Symposium on Multiple-Valued
Logic, pages 245–253, 2002.

7. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620–650, 1991.

8. J. Vennekens, M. Denecker, and M. Bruynooghe. Representing causal information
about a probabilistic process. In 10th European Conference on Logics in Artificial
Intelligence, JELIA 2006, LNAI. Springer, September 2006.

9. J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated
disjunctions. In The 20th International Conference on Logic Programming (ICLP
2004), 2004.

15

