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Abstract. Logic Programs with Annotated Disjunctions (LPADs) allaeixpress probabilistic in-
formation in logic programming. The semantics of an LPADIigeg in terms of the well-founded
models of the normal logic programs obtained by selectirg disjunct from each ground LPAD
clause.

Inference on LPADs can be performed using either the systdog2, that was developed for the
Independent Choice Logic, or SLDNFAD, an algorithm base®bBNF. However, both of these
algorithms run the risk of going into infinite loops and of feeming redundant computations.

In order to avoid these problems, we present SLGAD resaiutiat computes the (conditional)
probability of a ground query from a range-restricted LPAR as based on SLG resolution for
normal logic programs. As SLG, it uses tabling to avoid soniiaite loops and to avoid redundant
computations.

The performances of SLGAD are evaluated on classical beadtsrfor normal logic programs
under the well-founded semantics, namely a 2-person gachtharancestor relation, and on games
of dice.

SLGAD is compared with Ailog2 and SLDNFAD on the problems ihigh they do not go into
infinite loops, namely those that are described by a modudaxjclic program.

The results show that SLGAD is sometimes slower than Ailag®2 aLDNFAD but, if the program
requires the repeated computations of the same goals, #wefdice games, then SLGAD is faster
than both.

Keywords: Probabilistic Logic Programming, Well-Founded Semanticgjic Programs with An-
notated Disjunctions, SLG Resolution.

1. Introduction

Effectively combining logic and probability would allow the exploitation of the atbages of both: on
the one side, the possibility, offered by logic, of representing in a simpleocsayplex relationships
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among the entities of the domain, on the other side, the possibility, offeredoalpility theory, of
reasoning with uncertain and incomplete knowledge.

Many languages have been recently proposed that combine relatiahataistical aspects, such
as the Independent Choice Logic [17], ProbLog [9], PRISM [25] @.P@BN) [23]. These languages
have different semantics that make them suitable for different domaindgdehéfication of the best
setting for each language is currently under study [15, 14].

When we are reasoning about actions and effects and we have aisaéndence [32] among
different causes for the same effect, Logic Programs with Annotatedrigisjuns (LPADs) [31] seem
particularly suitable. They extend logic programs by allowing clauses to umdisve and by annotating
each atom in the head with a probability. A clause can be causally interpyegeghposing that the truth
of the body causes the truth of one of the atoms in the head non-deterministizadign on the basis
of the annotations. The semantics of LPADs is given in terms of the well-fingdbdels [28] of the
normal logic programs obtained by selecting one head for each grojodatige clause.

In order to compute the (conditional) probability of queries, various opaoapossible. [30] showed
that ground acyclic LPADs can be converted to Bayesian networks.elwthe conversion requires
the complete grounding of the LPAD, thus making the technique impracticall fautarivial programs.

[30] also showed that acyclic LPADs can be converted to Indeper@iarite Logic programs. Thus
inference can be performed by using the Ailog2 system [18]. An algorfmperforming inference
directly with LPADs was proposed in [21]. The algorithm, that will be calledSIEAD in the fol-
lowing, is an extension of SLDNF resolution and uses Binary Decision Biagy similarly to what is
presented in [9] for the ProbLog language. Both Ailog2 and SLDNFA® sound for programs for
which the Clark’s completion semantics [7] and the well-founded semanticsidejras for acyclic [1]
and modularly acyclic programs [22].

For programs that are not modularly acyclic, Ailog2 and SLDNFAD may go infimite loops.
Moreover, they both run the risk of computing solutions to the same or similaiegumore than once.
Therefore, we present SLGAD resolution that is able to perform infereon non-modularly acyclic
LPADs and to avoid redundant computations. SLGAD resolution is basesl @resolution [6] for
normal logic programs under the well-founded semantics. We will predgBAB resolution both at a
declarative level, as a set of operations to be applied to a particular dattustr, and at a procedural
level, by presenting the procedures that implement the algorithm.

SLGAD is evaluated on classical benchmarks for inference algorithmaruhd well-founded se-
mantics, namely a 2-person game and the ancestor relation, and on garives bf the first two cases,
various extensional databases are considered, encoding lindar,aryitee-shaped relations. Of these
problems, the 2-person game with linear and tree-shaped relation, ane#ista linear relation and the
games of dice are modularly acyclic.

The results show that SLGAD is able to deal with all of these problems. krdodcompare it with
Ailog2 and SLDNFAD, we applied them to the programs that are modularlylia@md right recursive.
On the 2-person game SLGAD was faster than SLDNFAD and Ailog2 eXoeLDNFAD on the
tree-shaped relation. On ancestor, SLGAD was slower than Ailog2 abiNEAD.

On the games of dice, Ailog2 and SLDNFA perform redundant computaindsSLGAD outper-
formed them by a large margin, thanks to its use of tabling to store the ansfv@rsady computed
subgoals.

The paper is organized as follows. Section 2 presents some preliminarpsiotionormal logic
programs and on LPADs while Section 3 describes SLG resolution. Secpoovidles the declarative



F. Riguzzi/ SLGAD Resolution 3

definition of SLGAD resolution. Section 5 contains its proof of soundnadsSection 6 its procedural
implementation. Sections 7 and 8 discuss related works and experimentgikedpeSection 9 presents
directions for future work and Section 10 concludes.

2. Preliminaries

2.1. Normal Logic Programs

A first order alphabet is a set of predicate symbols and function symbols (or functors) togeitter w
their arity. A functor with arity 0 is called aonstant

A termis either a variable or a functor applied to a tuple of terms of length equal taitiie@athe
functor. Anatom A is a predicate symbol applied to a tuple of terms of length equal to the arity of the
predicate. Aliteral L is either an atom or its negation-A. In the latter case it is calledregative
literal. In logic programming, Prolog conventions are common practice, and alsis iwahk predicates
and constants are indicated with alphanumeric strings starting with a lowelt@aseter while variables
are indicated with alphanumeric strings starting with an uppercase character

A normal logic programil” is a set of of formulas of the form

H:—Bl,...,Bb

calledclauseswhere H is an atom and all thé;s are literals.H is called theheadof the clause and
By, ..., By is called thebody If the body is empty the clause is calledact In the following, by
programwe mean a normal logic program. Programs containing only functors with awtly Be called
functor-free programs

A term, atom, literal or clause iground if it does not contain variables. Aubstitutionf is an
assignment of variables to term&:= {V/t1,...,V,/t,}. Theapplication of a substitution to a term
atom, literal or clause”, indicated withC'd, is the replacement of the variables appearing'iand ind
with the terms specified if. C0 is called aninstanceof C'.

A normal logic program isange-restrictedf all the variables appearing in the head of clauses also
appear in positive literals in the body.

The Herbrand universef;(T') is the set of all the ground terms that can be built with function
symbols appearing ifi. TheHerbrand base z(T') of a program? is the set of all the ground atoms
that can be built with predicates appearindirand terms ofd;;(7T"). If T'is functor-free, thert 5(7T')
is finite, otherwise it is infinite. Agroundingof a clauseC is obtained by replacing all the variables of
C' with terms fromHy;(T'). Let g(C') be the set of groundings of clauéeé The groundingy(T") of a
programl is the program obtained by replacing each clauseith ¢(C). If the program is functor-free,
g(T) is finite, otherwise it is infinite. Aderbrand interpretation oveH 5(T') (or justinterpretation) is a
set of ground atoms, i.e. a subsetfdg (7). LetZy be the set of all the possible interpretationgof

An interpretation for a set of predicate$ is a subset of{z(7") that contains only atoms whose
predicate is inS.

Let f,u,t be truth values whera is intended as the truth value “undefined”. partial Herbrand
interpretation] over Hz(T') (or justpartial interpretatior) is a mapping fronHz(7") to {f, u,t}. I can
be represented by means of two sdtss(/) and Neg([), the set of atoms off 5(T") taking valuest
andf respectively. IfPos(I) U Neg(I) = Hp(T') we say thaf is total.
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Given a partial interpretatioh and a ground atomd, A (—A) istrue (falsg in I if A € Pos(I), is
false(true) in I if A € Neg(I) and isundefinedf A ¢ Pos(U) andA ¢ Neg(A).
A partial interpretatiory is amodelof a progranil” iff for all the ground instances

H:-Bi,....By

of its clauses, if allB;s are true i/ thenH is true inI and if H is false inI then at least one of thB;s
is false inf.
If I andJ are partial interpretations, there are two natural orderings between them:

e Fitting ordering:/ < J if Pos(I) C Pos(J)andNeg(I) O Neg(J). Models that are least in the
=< ordering are callettastmodels.

e Information ordering C J if Pos(I) C Pos(J)andNeg(l) C Neg(J). Models that are least
in the C ordering are calledmallesimodels.

Various semantics have been proposed for normal logic programs. |veih¥s we consider the 3-valued
stable models semantics [19], the stable models semantics [13], the well-fbsem@ntics [28] and the
Clark’s completion semantics [7].

Let us define 3-valued stable models.

Definition 2.1. ([19])
Let 7" be a program and ldtbe a partial interpretation. Théfy-(I) is a partial interpretation such that:

e Ac Pos(Tr(I)) iffthereisaclausel : —By,..., By in g(T) and all theB;s are true ir/;
e A€ Neg(Tr(I)) iff for every clauseA : —By, ..., By in g(T'), someB; is false in/

Let () be the partial interpretation in which all the ground atoms are false. Therp@i@; are defined
as follows:

Tr10 = 0

Trtn = Tp(TrT(n—1)) if nisasuccessor ordinal

= WTrtk:k<n} ifnisalimitordinal
wherell is the least upper bound operation of interpretations with respect to the Fitdegng=.
A non-negative prograrns a finite set of clauses whose bodies do not contain any negative literals

but may contain the special ground atarwhich is always undefined (i.a1, ¢ Pos(I) andu ¢ Neg(!)
for any partial interpretatiom).

Theorem 2.1. ([19])
Let T be a non-negative program. Th&hhas a unique least 3-valued model, denoted 3\ (T).
Furthermorer has a least fixed point which coincides with 1 w and withLPM (T).

Definition 2.2. ([19])
Let T be a program and lat be a partial interpretation. Thguotient of 7" modulo/, denoted by% is
the non-negative program obtained frgifi’) by

e deleting every clause with a negative literal in the body that is falge amd
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e deleting a negative literdl in the body of a clause if is true inZ, and
e replacing a negative literdl in the body of a clause with if L is undefined ir/.
I is a3-valued stable modeif 7" if I is the least 3-valued modélPM(%).

Every program has at least one 3-valued stable model but may havdhmarene.

The stable model semantics [13] is 2-valued, i.e., its models are Herbrarmr@tétions. A program
can have any number of stable models, including the case of no stable models.

The well-founded semantics [28] is 3-valued and it assigns everyamfra single partial interpre-
tation W F'(T') called thewell-founded partial modelTo indicate that an atom is true inW F(T") we
write T =y r A.

The following theorem shows the relationship between the stable models sesrardi¢he well-
founded semantics via 3-valued stable models.

Theorem 2.2. ([19])
Let 7" be a normal logic program. Thé# F'(T') is the smallest 3-valued stable modellofif a 3-valued
stable model is total, then it coincides with a stable model as defined in [13].

Thus, ifWF(T) is total, therll" has a single stable model equalltoF' (7).

We report here the definition of an acyclic [1] and modularly acyclic [2Bppam. Alevel mapping
for a progranil’ is a function| | : Hg(T') — N from ground atoms to natural numbers. Poe Hp(T),
|A| denotes théevelof A. If L = -A whereA € Hp(T'), we definglL| = |A|. A programT is called
acyclic with respect to a level mappini§ for every ground instancd : —B of a clause off’, the level
of A is greater then the level of each literalih A program7 is calledacyclicif there is some level
mapping such thdt’ is acyclic with respect to it.

A predicatep directly depend®n a predicate if ¢ appears in the body of a rule that haf the
head. The relationdependsis the transitive closure of the relation “directly depends”. A predigaite
recursiveon a predicate if p = ¢ or if p depends o andg depends om.

Recursiveness is an equivalence relation between predicates: it parthi® set of predicates of a
program’ into equivalence class€g,, ..., Q. For each equivalence clags, consider the sev;
containing the clauses @ whose predicate of the atom in the head belong@toVi,...,Vy is a
partition of 7" and the setd/, ..., Vy, are calledcomponent®f 7. We write V; C V; if there is a
predicate ofp); that directly depends on a predicate(pf. We denote witha the transitive closure af .
The predicates of; = Uvjzv;- Q; are called thpredicates used by;.

Let V; be a component of a prografand letS; be the set of predicates used By Consider an
interpretation/ for S;.

Thereduction ofl; modulo!, denoted withR;(V;), is obtained in the following way:

e ground in all possible ways the rules6f obtainingg(V;);

e delete fromg(V;) all the rules having a literal in the body whose predicate iS;inbut which is
false inI;

e delete from the bodies of the remaining rules all the literals having predicatgs(imhich are
true);

e setR;(V;) to the set of remaining ground rules.
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A normal logic programl” is modularly acyclicif for every componen¥; of T 1)there exists a total
well-founded model/; for the union of all the component§ < V;, and 2) the reduction df; modulo
M; is acyclic.

If a program is acyclic or modularly acyclic, the unique Herbrand model lafk& completion
and the well-founded partial model coincide [1, 22], so queries camb&eared in the well-founded
semantics by means of SLDNF. If a program is not modularly acyclic, thé&h@kolution [6] has to be
employed for answering queries.

Example 2.1. Consider a two-person game in which the players alternate and a paXiti®nvinning
for a player if there is a move froo¥ to a positionY” that is not winning for the opponent. Such a game
can be modeled with the famous normal logic program [10, 13, 12]:

win(X) : —move(X,Y), ~win(Y).
plus facts for thenove relation, wherenove(a,b) means that there is a legal move from positioto
positionb. This is one of the examples that lead to the formulation of both the well-fouadédhe
stable model semantics.

In this game, a position is surely losing if there are no moves from it. If a podé#mbs to a surely
losing position, it is winning for the opponent and so on. An example of augdme is checkers.

If move is acyclid, the program has a single stable model and a total well-founded modele@nd th
two models coincide. Ifnove is cyclic, the program can have no stable models or multiple stable models
and the well-founded model is in general not total.

Consider for example the following definition fetove:

move(a,b). move(b,a). move(a,c).

Such a definition is cyclic but the program has the total well-founded model

{win(a), move(a, b), move(b, a), move(a, c)}

SLG resolution in this case assigns the value true to the quérya). This program is neither acyclic
nor modularly acyclic, so SLNDF resolution is not able to answer this quieryparticular, SLDNF
resolution would go into an infinite loop for such a query.

2.2. Logic Programs with Annotated Disjunctions

A Logic Program with Annotated Disjunctions [31] consists of a finite set of formulas of the form
(Hl : 041)\/ (H2 : Ckg)\/...\/(Hh : ah) :—B1,Bs,... By
called annotated disjunctive clausedn such clauses, thé&l;s are logical atoms, th&;s are logical
literals and they;s are real numbers in the interjal 1] such thatZ?:1 a; < 1. If Z?Zl a; < 1, the
head of the clause implicitly contains an extra ateail that does not appear in the body of any clause
and whose annotation is— - «;.

If h =1andqy, = 1, we write the clause as a definite clause of the form

H1 . *Bl, BQ, PN Bb-
For an annotated disjunctive clauSe we definehead(C) as{(H; : a;)|1 < i < h} if Z?Zl o =1
and as{(H; : ;)1 <i < h}U{(null : 1 — 31 o;)} otherwise. Moreover, we defiredy(C) as
{Bi|]1 <i<b}, H;(C)asH; anda;(C) asa;. Let Hg(T') be the Herbrand base @fand letZ be the
set of all the possible Herbrand interpretation§of

LA binary relation isacyclicif its transitive closure is not reflexive.
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An LPAD is range-restrictedif all the variables appearing in the head of clauses also appear in
positive literals in the body.

In order to define the semantics of a non-grodndwe must generate its groundingg?’). Each
ground annotated disjunctive clause represents a probabilistic choicgydah®ground non-disjunctive
clauses obtained by selecting only one head atom. The intuitive interpretagraund clause is that
the body represents an event that, when happening (i.e. when it betmmgsauses an atom in the
head (an effect) to happen (i.e. to become true). If the atom selected/jghis is equivalent to having
no effect.

The semantics of an LPAD, given in [31], requires the grounding to b figo the program must
be functor-free. In the following we will thus consider only functoreffgrograms.

By choosing a head atom for each ground clause of an LPAD we get@ahtogic program called
aninstanceof the LPAD. A probability distribution is defined over the space of instahgeassuming
independence among the choices made for each clause.

An atomic choicey is a triple (C,0,i) whereC € T, 6 is a substitution that grounds and: €
{1,...,|head(C)|}. (C,0,i) means that, for ground claus®, the headH; : «; was chosen. A set of
atomic choices: is consistentf (C,0,i) € x, (C,0,j) € k = i = j, i.e., only one head is selected for
a ground clause. A consistent set of atomic choices is caléetrgosite choice

A composite choice is selectior if, for each claus&€’d in g(T'), there exists a tripléC, 6,4) in o.

We denote the set of all selections of a progfAroy R .

A composite choice identifies a normal logic prograffi, = {(H;(C) : —body(C))0|(C,0,1) € k}
that is called asub-instanceof T'. If o is a selection]} is called aninstance For a composite choice
k, letU(k) be the set of instances that are supersef; pi.e., the set of instancds, with o a selection
such that D .

Theprobability P, of a composite choiceis the product of the probabilities of the individual atomic
choices, i.e.P; =[] (¢ 0,i)ex @i(C). Theprobability of instancel, is P .

The meaning of the instances of an LPAD is given by the well-founded d@saRor each instance
T, we require thatV F'(T,) is total, since we want to model uncertainty solely by means of disjunctions.
An LPAD T is calledsoundiff, for each selections in Ry, W F(T,) is total. In the following we
consider only sound LPADs.

The probability of a formula) is given by the sum of the probabilities of the instances in which
the formula is true according to the well-founded semantiéstQ) = >_,cx,. 7, =y 0 Fo- The con-
ditional probability of a formula® given another formuld can be defined as usual & (Q|E) =
Pg(TQgE). From these definition, it is clear that,gifT") is infinite, then the semantics is not well-defined.
In fact, the probabilityP, for an instance would be an infinite product of numbers all smaller than 1, i.e.,
it would be 0. Therefore, alsBr(Q) would be 0. An extension of the semantics to handle LPADs with
function symbols of arity greater than 0 is subject of future work.

Example 2.2. Consider the dependency of a person’s itching from him having allergyeasles:

C : strong_itching(X) : 0.3 V moderate_itching(X) : 0.5 : —measles(X).

Cy : strong_itching(X) : 0.2 V moderate_itching(X) : 0.6 : —allergy(X).

Cs : allergy(david).

Cy : measles(david).
ClausesC; and C; have three alternatives in the head, while clauSesand C; have only a single
alternative. This program models the fact that itching can be caused bgyatie measles. Measles
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causes strong itching with probability 0.3, moderate itching with probability 0.5nanidching with
probabilityl — 0.3 — 0.5 = 0.2; allergy causes strong itching with probability 0.2, moderate itching with
probability 0.6 and no itching with probability — 0.2 — 0.6 = 0.2.

In order to provide a semantics to the program, we must generate its grguiitiie only constant is
david so the above program has the following grounding:

C] : strong_itching(david) : 0.3 V moderate_itching(david) : 0.5 : —measles(david).

CY, : strong_itching(david) : 0.2 V moderate_itching(david) : 0.6 : —allergy(david).

C4 : allergy(david).

C} : measles(david).
By picking in all possible ways one head atom fr@rh and one fromC’, we get 9 instances, one of
which is

strong_itching(david) : —measles(david).

moderate_itching(david) : —allergy(david).

allergy(david).

measles(david).
whose probability i$).3-0.6-1-1 = 0.18.

strong_itching(david) is true in 5 of the 9 instances of the program and its probability is

Pr(strong_itching(david)) = 0.3-0.2+0.3-0.6 +0.3-0.2+0.5-0.2+0.2-0.2 = 0.44

LPADs show patterns ofausal independend@2]: each ground clause with atorh in the head is
a potential cause oAl that is activated when the body becomes true. Each cause is indepefhdent
the others so they combine with the noisy-or law [16]. Such a law states thagrd #ren causes
(represented by binary variables . . ., ¢,) for an effectE (a binary variable) and the probabilities of
happening of the causes (i.e. of assuming the value Ijare. , p,,, the probability of happening of the
effect (i.e. of assuming the value 1) is givenby [[;", (1 — p;).

In the above example, if only one cause of strong itching happens, thalglity of the effect is
given by the parameter in the head. If more than one cause happenglhbifity of the effect is given
by the noisy-or relation.

For strong_itching(david), there are two causes, namefyergy(david) and measles(david).
The probability computed by noisy-oris— (1 — 0.3) - (1 — 0.2) = 0.44.

Example 2.3. Consider the program encoding the 2-person game of Example 2.1. sufipd the

game is probabilistic: a positioN is winning with 80% probability for a player if there is a move from

X to a positionY” that is not winning for the opponent. This game can be modeled with the LPAD
win(X) : 0.8 : —move(X,Y), ~win(Y).

plus facts for thenove predicate. lfmowve is acyclic, then the program is sound. Otherwise, there may

be instances that do not have a total well-founded model.

Let us now see other properties of LPADs.

Lemma 2.1. Given an LPADT and a composite choice, P, is the sum of the probability of the
instances o/ (k) i.e. P = 1 cp(n) Fo
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Proof:
Letg(T) be{C1,...,Cp}, letk = {(C1,0,i1),...,(Ck,0,ix)} with k < p and let a generie such that
T, € U(k) be{(C1,0,41),...,(Ck,0,%), (Ckt1,0,i0k+1), - - -+ (Cp, 0, isp)}. We can write

k p
S Po= > Jlea@ I g (Cm)

To€U(k) T,eU(k) =1 m=k+1

The set of instances @f () is obtained by selecting in all possible ways the head atoms of the clauses
Cri1,---,Cp, 0, if Ny = {1...|head(Cy,)|} and Ny, = Nijqg X ... X Ny, form = k+1,...,p,
then

k p
Z P, = Z Hail(cl) H anm(cm)

T,€U (k) (Nkt1,e-mp) ENp =1 m=k+1

> T en.(Cn) 1)

(Mo 1,.smip) EN M=kt

p—1
Z Z ( H O‘nm(Cm)> o, (Cp)

(Mg 1se5mp—1)ENp—1 NpENp \m=k—+1

p—1
( H anm(cm)> Z 0, (Cp) 2)

(]

m=k+1 np€Np
k p—1
= a;, (C) > ( 11 anmwm)) 1 3)
=1 (Mpg1semp—1)ENp—1 \m=k+1
k p—1
= (JTeu() > I @ (Cn)
=1 (nk+1,...,np,1)€Np,1 m=k+1
k p—nt
= Haiz(cl) Z H n,, (Cm)

(1)
(1)
([
(1)
(1)

N
Il
,_.

(Nkg1ye-p—2)ENp_2 m=k+1

= Haiz(cl) = (4)
- P,

Formula 1 is obtained becauf’, «;,(C;) does not depend on the index of the summation. Formula
2 is obtained becausﬁfn_:lkH ap,, (Cp,) does not depend on the index of the innermost summation.
Since the probabilities in the head of an LPAD clause sum up to 1 we get FoBmBharepeating the

above procesg — k times, we get Formula 4 which B, by definition. O

A composite choice is anexplanation for a goa if 7, Fwr Q forall T, € U(k).
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For the case of Example 2.2, the following composite choices
k1 = {(C1,{X/david}, 1)}
ko = {(Cq,{X/david}, 1)}
k3 = {(C1,{X/david}, 1), (Cy, {X/david}, 1)}
are explanation fostrong_itching(david).

A set of explanationg’ = {x1, ..., k,} is covering with respect to a query if, for every instance
T, such thatl, =wr Q, T, € U, U(ki). The sets of explanations
Ky = {k1, ka}

Ky = {k1,{(C1,{X/david},?2), (Co,{X/david}, 1)}, {(C1,{X/david},3), (Cs,{ X /david}, 1)}}
are covering fostrong_itching(david) but K5 = {x1} is not.

Two composite choices; andx, areincompatibldf there exists a couplg”, #) such tha{C, 6, i) €
k1, (C,0,]) € ke andi # j. In this caselU (k1) andU(x2) are disjoint, SO 7 e,y (ny) Lo =
P., + P, A set of composite choiceB = {ki,..., Ky} is mutually incompatiblef every couple of
composite choices; andx; of K is incompatible. For examplés; above is not mutually incompatible
while K is.

If K is mutually incompatible, the[Tgeu?z1 U Po = 20021 Pe, If @ set of explanationss” is
covering for a query) and is mutually incompatible, thePy (Q) = >, . x Px. For the case of Example
2.2, Pr(strong_itching(david)) = > g, P« = 0.3+ 0.5-0.2+0.2-0.2 = 0.44 An LPAD is
(modularly) acycliaf all of its instances are (modularly) acyclic.

3. SLG Resolution Algorithm

SLG resolution [5, 4, 6] is a partial deduction procedure for queryuat@n under the well-founded
semantics. SLG resolution repeatedly applies operations to a data structairérg a final structure
that contains all the answers to the query. The most distinctive featuleG®fé&&solution in comparison
with SLDNF resolution is its ability to avoid going into some infinite loops and the piisgitf avoiding
redundant computations. SLG achieves this by using tabling.

In this section we will describe SLG resolution using the formulation presén{@d] that is clearer
and easier to understand than the original formulation in [6].

SLG resolution takes as input a query in the form of an atom and progudesivation that is
a sequence of forests of trees. In the followisgpbgoalwill be a synonym for atom. Each forest
is obtained from the previous one by applying an operation. The nod#tedfees have the form
AnswerTemplate : —DelaySet|Goal List that is calledX-clause In it, AnswerTemplate is an atom
that is used to store bindings for a subgoal that have been obtained theiderivation DelaySet is a
set of literals that have been “delayed”, i.e., whose evaluation has bepersled, whilé&oal List is the
list of literals yet to be selected for resolution. The selection of literalSdni List is performed using
an arbitrary but fixed computations rule, such as “left to right”.

Each tree in the forest has a root of the foAn: —|A where A is a subgoal. X-clauses are then
resolved with clauses from the program to obtain new nodes for the ¥¢esn a node with an empty
Goal List is found, we have an answer for the subgoal in the root node. Asdaea subgoal may be
returned to other nodes in which the selected literal is built over that sub@ézen a positive literal
is selected, if we have an answer for the literal, resolution is performecebatthe X-clause and the
answer. When a ground negative literall is selected, the literal is removed from the clausd ifias
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been completely evaluated and no answer has been found, as prebicaeghtion as failure. 1A has
been completely evaluated and has been found true, the node is considdedled. However, in the
presence of loops through negation, it may be necessary to proceetth&itbmputation even il has
not yet been completely evaluated. In this case SLG resolution choos#slay™the selected literal, in
the hope that its truth value can be ascertained later.

Definition 3.1. (X-Clause)

An X-clauses a clause of the forrAnswerTemplate : — DelaySet|Goal List whereAnswerT emplate
is an atom,DelaySet is a sequence of delayed literals (see Definition 3.3)@od List is a sequence
of literals. If Goal List is empty, the X-clause is called amswerclause. If theDelaySet of an answer
is empty it is termed aonconditional answertherwise, it is aonditional answer

Definition 3.2. (SLG Trees and Forest)
An SLG foresis a set ofSLG trees The nodes of an SLG tree are either an X-clauskibr The latter
form is called dailure node The root node of an SLG tree may be marked with the ta@mpletedin
this case, we also say that the subgéah the rootA : —| A of the tree icompleted

We call a nodeNV ananswer(unconditional answer, conditional answexhen the corresponding
X-clause is an answer (unconditional answer, conditional answer).

If an SLG forestF has an SLG tree with root : —|A, we call it thetree for A and we say thatl
belongsto F. If A belongs taF, let 7(A) be the SLG tree foA.

Definition 3.3. (Delayed Literals)
A negative delayed literah the DelaySet of a nodeN has the form-A where A is a ground atom.
Positive delayed literalsave the formDG%!, _ whereD is an atom whose truth value depends on the

truth value of some answetnswer for the subgoalCall. If ¢ is a substitution, theDGe! )0 =
(DO)Ge . A delayed literal of the fornrDG?! is groundif D is ground.

Answer"* Answer

Delayed literals are used in order to store information regarding suspendgutations so that they can
be later simplified away. We now define resolution between an X-clausersadisaver so that delayed
literals are taken into account.

Definition 3.4. (SLG Answer Resolution)

Let N be a node of the forrd : —D|L4,..., L, wheren > 0 and letL; be the selected atom. Let
Ans = A’ : —D’| be an answer whose variables have been standardized aparf\froii is SLG
answer resolvable wittAns if L; and A’ are unifiable with an mgé. The SLG answer resolvent
of N and Ans on L; has the form(A : —D|Ly,...,Lj—1,Lj41,...,Ly)0 if D' is empty and(A :
—D,D|Ly,...,Lj—1,Ljt1,...,Ly,)0 otherwise, whereD = L; if L; is negative, and) = Ljfj
otherwise.

The following definition states when no more answers can be producedsfdrgoal.

Definition 3.5. (Completely evaluated)
A set A of subgoals belonging to a fore$t is completely evaluated at least one of the following
conditions holds for eacH € A:

1. The tree forA contains an answet : —|; or
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2. For each nod&’ in the tree forA:

(&) The selected literdl of N is completed or ind; or

(b) There are no applicablEw SUBGOAL, PROGRAM CLAUSE RESOLUTION POSITIVE RE
TURN, DELAYING Or NEGATIVE RETURN operations (see Definition 3.9).

In certain cases the propagation of delayed answers may lead to a ssupported answers, i.e. con-
ditional answers of completely evaluated goals that can be removed.

Definition 3.6. (Supported answer)
Let F be an SLG forestA a subgoal belonging t& and Answer an atom that occurs in the head of
some answer ofl. ThenAnswer is supported by in F if and only if:

1. Ais not completely evaluated; or

2. There exists an answer nodexswer : —DelaySet| of A such that, for every positive delayed
literal DG, Ans is supported by all.

Therefore, Answer is unsupported by in F if and only if A is completely evaluated and, for each
answer nodednswer : —DelaySet| of A, there is a positive delayed literdl{! such thatAns is
unsupported by'all.

An SLG derivation consists of a possibly transfinite sequence of SL&&tarSince we consider only
functor-free programs, an SLG derivation is a finite sequence of Sk€3fs.

Definition 3.7. (SLG Derivation)
Given a prograni’, an atomic queryy) and a set of tabling operations (from Definition 3.9), 3G
derivationD for @ in T' is a sequence of SLG foresty, .. ., F,, such that:

e Fy is the forest containing the only trég: —|Q.

e For each integem < n, F,,11 is obtained byF,, by the application of an operation from Defini-
tion 3.9.

If no operation is applicable t&,,, F,, is called afinal forestof D. If F,, contains a leaf node with a
non-ground selected negative literal, the derivatiditoigndered If a derivationD is not floundered and
Fn is afinal forest, we say thd® is completeand thatF,, is complete

Definition 3.8. Given an SLG fores#, an atomA is successfuin F if the tree for A has an uncon-
ditional answerA. A is failed in F if A is completely evaluated iff and the tree ford contains no
answer. A negative delayed literalD is successfu(failed) in F if D is failed (successful) inF. A
positive delayed literaD$ ! is successfuin F if Call has an unconditional answens : —| in 7 and
is failed if Call is completed and it has no answers.

In the following we define the set of operations that can be applied to Ste5tfo

Definition 3.9. (SLG Operations)
Given a forestF,, of an SLG derivation for a quer§ in a programl’, F,,1 is produced by one of the
following operations:
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1. NEW SUBGOAL: Let F,, contain a non-root nod®& = Ans : —DelaySet|G, Goal List where
G is the selected literall or =A. AssumeF,, contains no tree with roafl. Then add the tree
A:—|Ato F,.

2. PROGRAM CLAUSE RESOLUTION Let F,, contain a root nodéV = A : —|A and letC be a
program clauséf ead : —Body such thatH ead unifies with A with mgué. Assume that, inF,,
N does not have a childy.;;;; = (A : —|Body)f#. Then addV,;;;4 as a child of V.

3. POSITIVE RETURN Let F,, contain a non-root nod& whose selected literdl is positive. Let
Ans be an answer node fdr in F,, andN_;4 be the SLG answer resolvent &fand Ans on L.
Assume that, iF,,, N does not have a chil& ;4. Then addV,;;4 as a child ofV.

4. NEGATIVE RETURN: Let F, contain a leaf nod& = Ans : —DelaySet|—A, Goal List whose
selected literat-A is ground. Then apply one of the following operations:

(a) NEGATION SUCCESS If A is failed in F,,, then letN.;q be Ans : —DelaySet|Goal List
and addN,_;,;;4 as a child forV.

(b) NEGATION FAILURE: If A is succeessful itF,,, then create a child fav of the formfail.

5. DELAYING: Let F,, contain a leaf nodéV = Ans : —DelaySet|=A, Goal List such thatA
is ground butA is neither successful nor failed if,,. Then create a child foN of the form
Ans : —DelaySet, - A|Goal List

6. SIMPLIFICATION: Let F,, contain a leaf nod& = Ans : —DelaySet|, and letL, € DelaySet:

(a) if L is failed in F,,, then create a chilthil for V;

(b) if L is successful inF,, then letN ;4 = Ans : —DelaySet’| where DelaySet’ =
DelaySet — L. If N does not have a chil®¥.;;4, then addV,.,;;4 as a child of V.

7. COMPLETION: Given a completely evaluated sétof subgoals (Definition 3.5), mark the roots of
the trees for all subgoals iA as completed.

8. ANSWER COMPLETION Given a set of unsupported ansvi€rl, add a failure node as a child of
each answeAns € U A.

Let us illustrate the various operations by means of an example.

Example 3.1. Consider an extension of the 2-person game from Example 2.1 in whicliteopao¥ is
winning for a player if there is a move frod to a positionY” that is not winning for the opponent and
Y satisfies a certain property

Cy = win(X) : —move(X,Y), ~win(Y), p(Y).
Supposenove andp have the following definitions:

Cy = move(a,b). C3 = move(b,a). Cy = move(a,c).

05 = p(b) C(; = p(c).
Suppose the query isin(a) and that the literals are selected in the body of clauses from left to right.
Figure 1 shows the forest that is built by SLG. In it, the number associateod®s indicate the step at
which the node is added.
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0 win(a) :

1 win(a) : —|
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—|win(a) 28 completed

move(a,Y),

—win(Y),p(Y)

5 win(a) : —|—win(b), p(b) 6 win(a) : —|~win(c), p(c)
23 win(a) : —|p(b) 16 win(a) : —|p(c)
27 win(a) : —| 20 win(a) : —|
7 win(b) : —|win(b) 22 completed
8 win(b) : —|move(b,Y),
—win(Y), p(Y')
15 win(b) : —[~win(a), p(a)
21 fail

9 win(c) : —|win(c) 14 completed

10 win(c) : —|move(c,Y),

—win(Y),p(Y)

3 move(a,b) :

2move(a,Y) : = 4, completed
move(a,Y)

4 move(a,c) : —|

11 move(b,Y) : —|

14 completed
move(b,Y) P

12 movelb7 a): —|

13 move(c,Y) : —|

14 completed
move(c,Y) P

19 completed

17p(c) : =Ip(e)

18 p(c) : |

|

24 p(b) : —|p(b) 26 completed
25 p(b) : —|

Figure 1. SLG derivation tree for Example 2.3.
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In step 0, the tree fapin(a) is created with root nodein(a) : —|win(a). ThHeNPROGRAM CLAUSE

RESOLUTION is applied with claus€’; obtaining the only childvin(a) : —|move(a,Y), ~win(Y),
p(Y) of win(a) : —|win(a). In step 2NEW SUBGOAL is applied creating a new tree forove(a,Y')
with root nodemove(a,Y) : —|move(a,Y’). In steps 3 and 4ROGRAM CLAUSE RESOLUTIONIS

applied with clause€’y andC, respectively, producing the two childremabue(a,Y') : —|move(a,Y).
These are answers for the subgoalve(a, Y). At this pointPOSITIVE RETURNcan be applied twice
to win(a) : —|move(a,Y), ~win(Y), p(Y") obtaining the two children marked with 5 and 6. In step
7 NEW SUBGOAL is applied creating the root nodein(b) : —|win(b). The application o0PROGRAM
CLAUSE RESOLUTIONIeads to nodevin(b) : —|move(b,Y"), ~win(Y),p(Y).

In step ONEW SUBGOAL is applied to nodevin(a) : —|-win(c), p(c) obtaining the new root node
win(c) : —|win(c). By PROGRAM CLAUSE RESOLUTIONWe getwin(c) : —|move(c,Y), ~win(Y),
p(Y).

ThenNEW SUBGOAL is applied towin(b) : —|move(b,Y), ~win(Y),p(Y) leading to root node
move(b,Y) : —|move(b,Y) that is resolved with claus€’s by PROGRAM CLAUSE RESOLUTION
In step 13NEW SUBGOAL is applied towin(c) : —|move(c,Y), mwin(Y'), p(Y") obtaining the root
nodemove(c,Y) : —|move(c,Y). At this point the subgoalgwove(a,Y'), move(b,Y'), move(c,Y)
andwin(c) are completely evaluated, the first three because no operation is apphcabthe fourth
because the selected literal of the only child in its treedige(c, V). ThereforecoOMPLETIONIS applied
and the root of the trees for these subgoals are marked as completed.

In step 15, the operatiomOSITIVE RETURNIS applied to nodevin(b) : —|move(b,Y), ~win(Y"),
p(Y') with answenmnove(b, a) : —| leading towin(b) : —|—win(a), p(a). In step LBNEGATIVE RETURN
is applied to nodevin(a) : —|—win(c), p(c) and, sincewin(c) is failed, the nodevin(a) : —|p(c) is
obtained.

By NEW SUBGOAL the root nodes(c) : —|p(c) is added. TheRPROGRAM CLAUSE RESOLUTIONS
applied obtaining the answetc) : —|. In step 19(c) can be completed. The answer) : —| is then
used byPOSITIVE RETURNON clausewin(a) : —|p(c) leading to the answebin(a) : —|.

In step 2INEGATIVE RETURN adds the childail to win(b) : —|-win(a), p(a). win(b) can now be
completed because there is no applicable operation.

The childwin(a) : —|p(b) is produced fromwin(a) : —|—win(b), p(b) by NEGATIVE RETURNSINCE
win(b) is failed. In step 24 EW SUBGOAL adds the root node(b) : —|p(b) which is then resolved with

C5 leading to the answer(b) : —|. p(b) can now be completed since there is no applicable operation.
In step 27 the answer(b) : —| is returned tavin(a) : —|p(b) by POSITIVE RETURNObtaining the
answerwin(a) : —|. At this pointwin(a) can be completed leading to the final forest shown in Figure

1.

The operations that are not illustrated in this example, namelAYING, SIMPLIFICATION and AN-

SWER COMPLETION are those that deal with delayed literals. When a negative liteBals selected

in an active clause and it is neither successful nor failed, it is moved tcethef slelayed literals with

a DELAYING operation. Later, if and when the truth value Bfbecomes known, &IMPLIFICATION

operation is applied. Example 4.1 in Section 4 will show an application abEheyING operation.
SLG resolution is sound with respect to the well-founded semantics.

Theorem 3.1. (Theorem 5.8 in [6])
Let T be a finite programR be an arbitrary but fixed computation ru{g be an atomic query anfl be a
final forest for@ that is complete. Then, for every subgahin the root of a tree iF and every ground
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instanceB of A:
e B e WF(T)ifand only if B is an instance of the head of an unconditional answet iof 7, and
e B € WF(T) ifand only if B is not an instance of the head of any answedafi F.

Moreover, SLG resolution is search space complete with respect to théowetded semantics [6]: if

the terms appearing in the forests of a derivation do not grow indefinitely, ahfinal forest is always

achieved. For the case of functor-free programs, all the terms apgéama forest have size 1 so SLG
resolution always terminates.

4. SLGAD Resolution Algorithm

In this section we prese@®LGAD resolutiorfLinear resolution with Selection function for General logic
programs with Annotated Disjunctions) that extends SLG resolution for dgalith LPADs. In the
following, letT be an LPAD.

In SLGAD, X-clauses are replaced by XD-clauses.

Definition 4.1. (XD-Clause)

An XD-clause is a quadruplé X, C, 6, i) whereX is an X-clause('is a clause of’, ¢ is a substitution
for the variables o€ andi € {1, ..., |head(C)|}. Let X be A : —D|B: if B is empty, the XD-clause is
called ananswer if D andB are empty, the XD-clause is called anconditional answelif B is empty
andD is not empty, the XD-clause is calleccanditional answer

In SLGAD, SLG forests and trees are replaced by SLGAD systemstfoaad trees.

Definition 4.2. (SLGAD Systems, Forests and Trees)
An SLGAD systens is a couple(.F, k) whereF is an SLGAD forest and is a composite choice. An
SLGAD forests a set ofSLGAD trees

The root node of an SLGAD tree is an X-clause of the fotm—| A while the other nodes are either
XD-clauses offail. The second form is calledfailure node The root node of an SLGAD tree may be
marked with the tokenompleted

We call a nodeV ananswer(unconditional answer, conditional answeshen the corresponding
XD-clause is an answer (unconditional answer, conditional answer).

If an SLGAD systemS (forestF) has an SLGAD tree with roaofl : — A, we call it thetree for A
and we say thatl belongsto S (F). If A belongs taF, let 7(A) be the SLG tree foA.

Given an SLGAD treer(A) and a set of LPAD clausé&s let 7(A) N C be the tree containing only
the nodes X, C, 0,4) such thatC € C. Given an SLGAD foresf (tree F(A)), lets(F) (s(F(A))) be
the SLG forest (tree) obtained by replacing each XD-clausg”, 6, i) with the X-clauseX. Given an
SLGAD systemS = (F, k), lets(S) = s(F).

The resolution between a root node: —| A and a program clause FPROGRAM CLAUSE RESOLUY
TION is replaced by SLGAD goal resolution.

Definition 4.3. (SLGAD Goal Resolution)
Let A : —| A be an X-clause and I€t be a clause df’ such that4 is unifiable with an aton#/; in the head
of C’, whereC’ is a variant ofC' with variables renamed so thdtandC’ have no variables in common.
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We say thatd : —| A is SLGAD goal resolvablaith C' and the XD-clausé(A : —|body(C"))6,C, 6, 1)
is theSLGAD goal resolvent ol with C' on headH;, wheref is the mgu of4 and H.

C is kept in the resolvent because we must be able to recover the groug@umr clause to which the
XD-clause refers.

SLG answer resolution between an X-clause and an answer X-clawsesimIVE RETURNIS re-
placed by SLGAD answer resolution.

Definition 4.4. (SLGAD Answer Resolution)

Let G be an XD-claus¢A : —D|Lq, ..., L,,C,6,i) withn > 0, and letL; be the selected atom. Let
Ans = (A’ : =D'|,E',0',i') be an answer XD-clause whose variables have been standardizéd apa
from G. If L; and A" are unifiable with an mgud then we say thaf? is SLGAD answer resolvable with
Ans. TheSLGAD answer resolvent 6f with Ans on L; has the form((A : —D|Ly, ..., L;j_1,Lj41,

ooy Ly)6,C,06,4) if D'is empty, and(A : —D, D|L1,...,Lj_1,Lj1,...,Ly,)d,C,08,i) otherwise,
whereD = L; if L; is negative and) = Ljfﬁ' otherwise.

The definitions of delayed literals, completely evaluated set of subgoalsuppmbrted answer are a
simple adaptation of those for SLG (definitions 3.3, 3.5 and 3.6).
We now provide a definition for an SLGAD derivation.

Definition 4.5. (SLGAD Derivation)

Given an LPADT, a ground atomic querg) and a set of tabling operations (from Definition 4.6), an
SLGAD derivatiorD for @ in T' is a tree of SLGAD systems such that: 1) the root sys$gra (Fo, xo)

is such thatF, contains a single tre@ : —|Q andxy = 0; 2) the children of a systei,, are obtained
from S,,, by the application of one of the operations from Definition 4.6.

If no operation is applicable to a systes, S, is called afinal systenof D. If S,, contains a leaf
node with a non-ground selected negative literal, the derivatidlousidered If a derivationD is not
floundered and a final system is reached in every brandh, afe say thatD is completeand we call
completaalso each final system.

The definition of successful and failed atom and of successful aledi fdelayed literal are a simple
generalization of those for SLG (Definition 3.8).

SLGAD resolution is defined by a nhumber of operations that are applied @ABLsystems to
produce one or more new systems. The initial sysfm= (Fy, ko) is such thatF, is obtained as in
SLG resolution whilesg is empty.

Definition 4.6. (SLGAD Operations)
SLGAD resolution contains the same operations of SLG.

NEW SUBGOAL, NEGATION FAILURE, DELAYING, SIMPLIFICATION, COMPLETION and ANSWER
comMPLETION modify the SLGAD forest in the same way as they modify the SLG forest ane liee
composite choice unchanged.

PROGRAM CLAUSE RESOLUTIONPOSITIVE RETURNaNdNEGATION successare modified in the
following way: if N is the node to which they are applied aig = (F.,, k) is the system to which
N belongs, the generated clauSg,;;4 is tested to see if it is answer. If not, théh,,;;4 is added taV as
a child if it is not already a child. Otherwise, 18,4 be (Ans : —DelaySet|,C,0,7) and letA : — A
be the root ancestor @¥. Then one of the following operations is performed:
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1. if Ans : —| is already present iif,,,(A) then addf«il as a child ofN and leaves,, unchanged;
otherwise

2. if (C,0,j) € ky, with i £ j then addail as a child ofNV and leaves,,, unchanged; otherwise

3. if (C,0,i) € Kk, then addN,,;;4 as a child of N if it is not already present and leavg, un-
changed; otherwise

4. generaté branches, one for each atom in the head’ofn theith branch, addC, 6, i) to x,,, and
N.pniq as a child ofN. In the jth branch withj # ¢, add(C, 6, ) to ,,, andfail as a child ofN .

SLGAD resolution for an atomic queKy proceeds by building a tree of systems until a final system is
reached in every branch. When a new answes : —DelaySet| is found, SLGAD resolution checks
for the presence of an unconditional answers : —| in F,,,(Ans). If it is present, the current answer is
redundant and the chifdil is added. Otherwise, SLGAD resolution considers the atomic ctiGlo, ;)

that originated the current answer. If there is already an atomic chai¢gfm ,,,, SLGAD resolution
either fails the tree branch, in case a different head has been selmcteldls the answer to the tree and
leavesk,,, unchanged. 16 does not appear in,,, we have a branching: SLGAD resolution generates
a different derivation branch for each atom in the hea@f In theith branch it adds the answer to the
tree, while in the other branches it addd. Moreover, in thejth branch it adds the choid€’, ¢, j) to

the composite choice.

We will prove in Section 5 that, if" is range-restricted, each answer in an SLGAD forest is ground.
Let L(Q) be the set of final systems of a complete SLGAD derivation, i.e., thoseiatsbto the
leaves of the derivation tree. For each systerh(i@)), SLGAD resolution checks whether there are only

conditional answers fap. If so, SLGAD resolution returns the message “unsound” to the user.
Otherwise, SLGAD resolution builds the 961 Q) of the composite choices of the systemd.i{@))
that contain the unconditional answ@r: —| and returns the probability given @HGK(Q) P..

Example 4.1. Let us now show the application of SLGAD resolution to the program of Exay3:

C1 = win(X) : 0.8 : —move(X,Y), ~win(Y),p(Y).

Cy = move(a,b). C3 = move(b,a). Cy = move(a,c).

Cs = p(b). Cs = p(c).

Let the query bewin(a). The first 19 steps are the same as those of SLG resolution (see Example
2.1) with X-clauses replaced by XD-clauses, obtaining the systgnshown in Figure 2 where the
triples (Clause, Substitution, Index) are omitted for definite clauses. The syst8ip has an empty
composite choice.

ThenpPoOSITIVE RETURNIS applied to(win(a) : —|p(c), C1,{X/a,Y/c}, 1) with answermp(c) : —|.
Since the result of the SLGAD answer resolution is the answer(a) : —|, branching is performed
obtaining two branche®; and D, shown respectively in Figures 3 and 4. In brangh, the child
(win(a) : —|,C1,{X/a,Y/c},1) is obtained andC1, {X/a,Y/c}, 1) is added to the composite choice
of the system. In branch, the childfail is obtained andC, { X/a,Y/c}, 2) is added to the composite
choice of the system.

Let us now consider branch;. In step 2INEGATIVE RETURN is applied obtaining the chiléhil
of (win(b) : —|~win(a),p(a),C1,{X/b,Y/a},1). win(b) can now be completed because there is no
applicable operation.
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0 win(a) : —|win(a) 2 myg”;i“(a Y;) ~|' 14 completed

1 (win(a) : —|move(a,Y), L movs(a.c) « —

~win(¥), p(¥), €1, {X/a}, 1 Smovela) s | fmovela,e) s |

5 (win(a) : —|—win(b), 6 (win(a) : —[-win(c), 11 move(b,Y) : —| 14 completed
p(b),C1,{X/a,Y/b},1) p(c),C1,{X/a,Y/c},1) move(b,Y)

16 (win(a) : —|p(c),

12 b s -
. {X/a,Y/e}, 1) movetb,a) : |

13 move(c,Y) : —|
move(c,Y)

14 completed

7 win(b) : —|win(b) 17 p(c) : —|p(¢) 19 completed

8 (win(b) : —|move(b,Y),

—win(Y),p(Y),C1,{X/b},1) 18 p(e) : —|

15 (win(b) : —|~win(a), p(a),
C1,{X/b,Y/a},1)

9 win(c) : —|win(c)

10 (win(c) : —|move(c,Y),
—win(Y),p(Y),C1,{X/c},1)

Figure 2. Systen®,q of the SLGAD derivation tree for Example 2.3.
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NEGATIVE RETURN adds the childwin(a) : —|p(b),C1,{X/a,Y/b},1) sincewin(b) is failed.
NEW SUBGOAL adds the root nodg(b) : —|p(b) which is then resolved witl’; leading to the answer
p(b) : —|. p(b) can now be completed since there is no applicable operation.

In step 27PoSITIVE RETURNIs applied to(win(a) : —|p(b), C1,{X/a,Y/b},1). Since the result
is an answetvin(a) : —| that is already present in the tree foin(a), no branching is performed, the
composite choice is left unaltered and the clfélifl is added. At this pointin(a) can be completed and
the derivation along the branch ends.

In branchDy, DELAYING is applied to(win(b) : —|-win(a),p(a),C1,{X/b,Y/a},1) obtaining
(win(b) : —win(a)|p(a),C1,X/b,Y/a,1) in step 30.

Then, in step 31, byew SUBGOAL, the rootp(a) : —|p(a) is added and, since there is no applicable
operation, it is marked as completed, together wiil(b). Sincewin(b) is now failed, byNEGATIVE
RETURNthe nodgwin(a) : —|p(b),C1,{X/a,Y/b}, 1) is added.

In step 34 the root nodg(b) : —|p(b) is created byNEw SUBGOAL and is resolved with clausé;
obtaining the answer(b) : —|. COMPLETION s then applied to the s€p(b)}.

By PosITIVE RETURNapplied to(win(a) : —|p(b), C1,{X/a,Y/b}, 1) we get an answer so branch-
ing is performed obtaining the branchBs ; and Dy 5.

In Dy, the answeftwin(a) : —|,C1,{X/a,Y/b}, 1) is obtained and the atomic choi¢€1, { X/a,
Y/b}, 1) is added to composite choicein(a) can now be completed, the derivation along the branch
ends and the forest in Figure 4 is obtained.

In Dy 5, (win(a) : —|p(b), C1,{X/a,Y/b}, 1) has childfail and the atomic choicg’, {X/a, Y /b},

2) is added to the composite choicein(a) can now be completed and the derivation ends. The forest
that is obtained differs from the one in Figure 4 only in the composite choiténathe node associated
to 37 which isfail.

The derivation tree that is built by SLGAD resolution for this example is shiowrigure 5. The set
L(Q) of final systems in the leaves of the treg{&s, S35, S10}. None of these systems contains only
conditional answers fapin(a) so “unsound” is not returned to the usefin(a) is an answer ib2g and
Ss3g but not inSyg SOK(Q) = {Rgg, Iﬁgg} andPT(wz'n(a)) = P, + P,..g38 =0.8+0.2-0.8=0.96.

5. Proof of Soundness

The proof of soundness of SLDAG with respect to the LPAD semanticssecban Theorem 3.1. In
order to prove the soundness we need the following definition and lemmas.

An XD-clauseH : —D|B is range-restrictedif all the variables appearing i#/ also appear in
positive literals ofB. An answer XD-clausel : —D| is groundif A andD are ground.

Lemma 5.1. Let T be a range-restricted LPAD) be a ground atom ari® be an SLGAD derivation for
Q in T that is not floundered. Then all nodes in every system of each SLG&Dation branch for)
are range-restricted. Moreover, all answers in every system avadyr

Proof:
We will prove this lemma by induction on the systems in each derivation brawch. £ 0, Sy contains
the only node?) : —|@ which is range-restricted.
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2 move(a,Y) : —|

0 win(a) : —|win(a) 28 completed
move(a,Y)

14 completed

1 (win(a) : —|move(a,Y),

—win(Y),p(Y),C1,{X/a},1) 3 move(a,b) : —| 4 move(a,c) : —|

RO T oo O, L/t oy | 14 completed
23 (win(a) : —[p(b), 16 (win(a) : —|p(c), 12 movelb,a) : —|
C1,{X/a,Y/b},1) C1,{X/a,Y/c},1)

27 fail 021(? E;’/’;(@/C}_ll) 13 ”;;’:;e((cci)) 114 completed
7 win(b) : —|win(b) 22 completed 17p(c) : —|p(c) 19 completed
8 (win(b) : —|move(b, Y), -

—win(Y),p(Y),C1,{X/b},1)

15 (win(b) : —|—~win(a), p(a),

Cr {X/b, Y a},1) 24 p(b) : —|p(b) 26 completed

21 fail 25 p(b) : —|

9 win(c) : —|win(c) 14 completed

10 (win(c) : —|move(c,Y),
—win(Y),p(Y),C1,{X/c},1)

k= {(C1,{X/a,Y/c},1)}

Figure 3. BranchD; of the SLGAD derivation for Example 2.3.
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5 (win(a) : —|~win(b),
p(b), C1, {X/a,Y/b}, 1)

33 (win(a) : —|p(b),
C1,{X/a,Y/b},1)

37 (win(a) : —|,C1,
{X/a,Y/b},1)

F. Riguzzi/ SLGAD Resolution

0 win(a) : —|win(a)

1 (win(a) : —|move(a,Y),

—win(Y),p(Y), C1,{X/a},1)

7 win(b) : —|win(b)

8 (win(b) : —|move(d,Y),
—win(Y),p(Y), C1,{X/b},1)

15 (win(b) : —|—~win(a), p(a),
C1,{X/b,Y/a},1)

30 (win(b) : —win(a)|p(a),
C1,{X/b,Y/a},1)

9 win(c) : —|win(c)

10 (win(c) : —|move(c,Y),
—win(Y),p(Y),C1,{X/c}, 1)

r={(C1,{X/a,Y/c},2),(C1,{X/a,Y/b}, 1)}

38 completed

3 move(a,b) :

6 (win(a) : —|~win(c),

p(c), C1,{X/a,Y/c}, 1)

16 (win(a) : —|p(c),
C1,{X/a,Y/c},1)

29 fail

32 completed

14 completed

2 move(a,Y) : —|

move(a,Y)

11 move(b,Y) : —|

move(b,Y)

14 completed

4 move(a,c) : —|

14 completed

12 move(b,a) : —|

13 move(c,Y) : —|

move(c,Y)

17 p(c) : =|p(e)

18 p(e) :

31p(a) : —|p(a)

34 p(b) : —[p(b)

35 p(b) :

Figure 4. BranclD, ; of the SLGAD derivation for Example 2.3.

14 completed

19 completed

32 completed

36 completed
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Figure 5. SLGAD derivation tree for Example 2.3.

In the inductive case, we will prove that all the operations that can bkedpi S,,_; preserve
the property. FOPROGRAM CLAUSE RESOLUTION since the node and the program clauses are range-
-restricted, the result of the resolution is range-restricted. Moret\aan, answer is obtained, it has an
empty set of delayed literal and, since it is range-restricted, it is ground.

For NEW SUBGOAL we get a new tree whose root is range-restricledMPLETION and ANSWER
COMPLETIONdO not have influence on the propemeGATIVE RETURN deletes a literal from the body
only if is ground. ForPOSITIVE RETURN by the inductive hypothesis the answéts = H : —D| is
ground, therefore the child node has the property.

DELAYING moves a ground negative literal to the delay set, so it keeps the property.

SIMPLIFICATION removes a literall from the delay set if it is successful. Ifis negative, then it is
ground. IfL is a positive Iiteramgg’j, Call has an unconditional answdmns : —| that, by the inductive
hypothesis, is ground. O

Lemma5.2.If G = (H : —D|B,C,0,1i) appears anywhere in a system of a non-floundered SLGAD
derivation branch for a ground ato@ the variables appearing {if are those appearing i : —D|B.

Proof:
We will prove this lemma by induction on the systems in a derivation branchz Fef, no XD-clause
G = (H :—-D|B,C,0,1i) appears ir§y so the property holds.

In the inductive case, if,, is obtained byNEGATIVE RETURN, DELAYING, COMPLETION OfF AN-
SWER COMPLETIONthe property holds trivially because no variables are removed fiom-D|B. If
PROGRAM CLAUSE RESOLUTIONS applied taS,,_1, for the definition of the operation the lemma holds.
For POSITIVE RETURN SLGAD answer resolution keeps the property because the mgu substitution
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is composed witl# in the result of SLGAD answer resolution. FRIMPLIFICATION, if L is negative it
must be ground so no variables are removed ffém—D|B. If L is DS and is successful, this means
that Ans : —| is an answer fo€all andD is an instance ofins. Since answers are ground, sdisand
no variables are removed frof : —D|B.

0

Lemma 5.3. If T"is a range-restricted LPAD ard’, 6, i) belongs to the composite choigén a leaf of
a branch of a non-floundered SLGAD derivation for a ground afhrthenCd is ground.

Proof:

Each triple(C, 0, ) is inserted intas only in PROGRAM CLAUSE RESOLUTION POSITIVE RETURNOY
NEGATIVE RETURN that produce an answer XD-clauée= (H : —D|,C,0,i). SinceH : —D| is
ground, by Lemma 5.176 is ground by Lemma 5.2. O

Lemma 5.4. Given a ground atory and a ground LPALY", for every complete SLG derivation fg} in
an instancd,, with final forestF, there exists a branch of a complete SLGAD derivatiortfon 7" with
final system(F’, k) such thatc C o and the set of answers f@f in 7 and 7' is the same. Vice-versa,
for every branch of a complete SLGAD derivation fQrin 7" with final system(F’, ), there exists a
selectiono with k C o and a complete SLG derivation f@F in T, with final forestF such that the set
of answers foKQ in 7' and.F is the same.

Proof:

Consider the first part. L be a complete SLG derivation f@p in T, and letR,,_; be the operation
applied to foresfF,_; in D to get forestF,,. We will build a sequence of systemisthat is a branch of
the SLGAD derivation forQ in 7' and in which operatio®], _, is applied to the systei,,_; to getsS,,.

We will prove by induction that, for ever§,, € D, S,, = (F},, k) € D is such that(F)) = F,
andk, C 0. Forn = 0, let 7, be equal taF, and letx, = (. Suppose now that the property holds
forn — 1. If 7, is obtained by an operation different fraPlROGRAM CLAUSE RESOLUTION POSITIVE
RETURNandNEGATION SUCCESSthe same operation is applied alsa&tp 1, producing aS,, such that
s(Sn) = Fn.

If R,_1 IS PROGRAM CLAUSE RESOLUTION POSITIVE RETURNOIr NEGATION SUCCESSand an
answer is not obtained, the same operation is appliéti tg producing aS,, such thats(S,,) = F,.

If an answer is obtained, suppose the answer is a descendant of afchitdot obtained byRro-
GRAM CLAUSE RESOLUTIONwith the clause?;(C') : —Body(C') of T,,. There exists one branch of the
SLGAD derivation in which the answer is obtained as well, un(€s9), j) € x,,—1 with j # 4, but this
case can be ruled out becausg ; C o, the clausé H;(C) : —body(C)) is in T, ando is consistent.

Sinces(F]) = F, for all n, the final systen{F’, x) of D contains every answer f@ that the final
forest.F of D contains.

Consider the second part. LBtbe a SLGAD derivation branch 6} in T, let R}, _, be the operation
applied to the systetfi,,_; in D to get systend,,. Consider a selection such that O «. We will build
a derivationD that is a valid SLG derivation fa@ in T,, provided that we add mo opoperation to SLG
resolution that keeps the forest unaltered. Hebe the set of atoms that appear in the head of rules of
1.

We will prove by induction that, for everg,, € D whereS,, = (F),, k), Fn € D is such that
Fn(A) = s(F',(A) NT,) for every A € H and that only clauses ifi, are used in operations of type
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PROGRAM CLAUSE RESOLUTIONON F,,. Forn = 0, let 7/ = Fy. Suppose now that the property
holds forn — 1. If S,, is obtained by an operation that is applied to a ngidle —D|B, C, 0, ) such that
(C,0,i) & o let R,,_1=NO OP. In this case the property is kept.

Otherwise, ifR],_, is PROGRAM CLAUSE RESOLUTION suppose SLGAD goal resolution is per-
formed with program claus€ on headH;(C). If (C,0,:) & o, let R,_1 =NO oPr. If (C,0,i) € o,
let R,,_1 =PROGRAM CLAUSE RESOLUTIONwith the clauseH;(C) : —Body(C). In both cases, the
operation keeps the property.

If R/, is applied to an XD-clauseH : —D|B, C, 0, ) such thafC,0,i) € o letR,—1 = R},_;.
If R/,_, is POSITIVE RETURN the answer that is used is obtained from an XD-cldu$e —D|, C, ), i)
such tha{C, 0, i) €  so the operation keeps the property. SimilarlyN@GATION SUCCESS

If S,, is obtained bycoMPLETION applied to a se#d, then letR,,_; be COMPLETION with the set
ANH. If the tree forA € AN H contains an answet : —|in F,_,(A) , thenF,,_(A) also contains
the answerd : —|. Otherwise, consider an XD-clauégin F,,_,(A) and letL be the selected atom.

If L € H, then the tree foll belongs taF,,_;. If L is completed inS,,_; or L isin A, thenL is
completed inF,,_1 or L is in AN H. If there are no applicablsEw SUBGOAL, PROGRAM CLAUSE
RESOLUTION, POSITIVE RETURN DELAYING Or NEGATIVE RETURNoOperations to every nod¥ in the
tree forL in | _,, then these operations are not applicable as well ia F,,_;.

If L & H, then there is no clause fdérin T,,, so L is completed inF,, ;.

If S,, is obtained byANSWER CcOMPLETIONapplied to a set/ A, then letR,,_; be ANSWER COM
PLETION applied to the sa¥ A N H.

Let us prove that/.4A NH is unsupported idF,_1 by induction on the levels of unsupportedness: the
atoms of level 0 are those that are completed and that have no answeatgrtiseof level are those
that are completed and whose answer have an unsupported delayéd/ljtesach thatl, belongs to
levels0,1,... orn — 1. In the base casel does not have any answer fff,_,. This means that is
unsupported also i, 1.

In the recursive case, for very answér: —DelaySet’|, there exists a delayed literaF such that
L is unsupported by. in 7/ _,. If L € UANH, thenL is unsupported by the inductive hypothesis. If
L € UA\ H, thenL cannot be an answer, against the hypothesislt,@etlelongs to the delay set.

SoD is a valid SLG derivation irff,. Moreover, since(F,,(A) N T,) = F,(A) for all n and all
A € H, then the final fores# of D contains every answer fa@p that the final systenmd7’, <) of D
contains. O

Lemma 5.5. Let T be a range-restricted LPARQ(T) be its grounding an@ be a ground atom. If the
SLGAD derivation forQ in T is not floundered, the probabilities @freturned by SLGAD resolution in
T and ing(T') are the same.

Proof:

Let D be an SLGAD derivation fo) in 7" and letD’ be an SLGAD derivation fo in g(7"). Since only
ground answers are obtained botiirand inD’ and branching is performed only when a new answer
is obtained, there is a one to one correspondence between the brah€hasdD’. Moreover, the set

of answers in a brancP of D is the same as that in the corresponding brathf D’. O

Theorem 5.1. If T'is a range-restricted LPALL) is a ground atom and the SLGAD derivation fgrin
T is not floundered, then the derivation retufds(Q).
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Proof:
By lemmas 5.4 and 5.5, for every instari¢esuch that) is true inT, there exists an SLGAD derivation
branch forQ) whose final system has a composite chaicich thav O x, SOK (Q) is covering.
Also by lemmas 5.4 and 5.5, for every composite choicguch thatx € K(Q) and for every
instanced,, such that: O x, we have tha@) is true in7,,. SoK(Q) is a set of explanations fap.
MoreoverK (@) is mutually incompatible because, given two composite choigesdrs in K(Q),
we can identify a ground clauged for which (C, 0,7) € k1, (C, 0, j) € k2 andi # j by going back to
the node of the derivation tree that is the least common ancestor of the éepoesated with; andxs.
Therefore, the probability of the query can be obtained by summing thelpitii of all the composite
choices inK (Q). 0

6. SLGAD Implementation

In this section we present a description of an algorithm for performing/AL@solution that is based
on the SLG resolution algorithm described in [4].

SLGAD resolution, as SLG resolution, only specifies the set of possibleatipes, it does not
specify in what order they should be applied. In particutaaL AYING delays ground negative literals
so that the computation can proceed even if there are loops through megdtwever, if we delay a
literal too early, we may incur in the computation of irrelevant subgoal thaskav down the procedure.
Moreover,COMPLETION has to detect subgoals that have been completely evaluated in orderlte reso
their negative counterparts.

In order to overcome these problems, [4] proposed an algorithm fairkgdracks of the depen-
dencies among subgoals. The algorithm uses a number of global datarssuor storing the state of
the computation. It keeps a “tabl§” where it stores, for each subgod) the set of answerdnss(A)
found so far forA, a list of clausesPoss(A) in which A is selected and that wait for its answers, a list
of clausesVegs(A) in which—A is selected and that wait for its answers and a Booleanftagp(A)
that stores whether the subgoal has been completely evaluated. Mpiie&eeps a stacls on which
new subgoals encountered during the search are pushed. The siaekl i order to keep track of the
dependencies of the subgoals and to perforncthePLETION operation correctly and efficiently.

The pseudocode for the SLGAD algorithm is very similar to that of SLG: iedsfffrom it mainly
because it adds non-deterministic choice points corresponding to casbiina new answer is found
by the operationeROGRAM CLAUSE RESOLUTION POSITIVE RETURNOr NEGATION SUCCESS

The main function of the algorithm is shown in Figure 6. It takes as input angratom¢) and an
LPAD T and it keeps four global variables. The first three are shared with 8ig3ableT, the stack
of subgoalsS and the counter Count, used to keep track of dependencies amongksubbee fourth
variable is specific to SLGAD and is a composite choiceWe assume that the global variables are
copied to the different branches of the search tree generated bydite gwoints, so that a modification
in a branch does not influence the other branches.

The SLGAD algorithm is composed of the same procedures as SLG plusdorecADD CHOICE
that implements the operations specific to SLGAD resolution. We refer to 4 fetailed description
of the individual SLG procedures, here we report only the diffeeanthat are indicated in italics in the
figures. Procedure SLEGUBGOAL (see Figure 7) is called to take into account a new subgoalitiecsd
from that of SLG because in line 3 each SLGAD goal resolvent is coresidather than each resolvent.
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Figure 6. Procedure SLGAD

1 function SLGAD(Q,T)

2 begin

3 Initialize Count, 7, S, DFN, PosMin and NegMin as in SLG;

4 Kk:=0;

5 let K (Q) be the set of all the values farafter a call of

6 SLG_.SUBGOAL(Q,PosMin,NegMin) such th&t contains) as an answer;

8 if @) appears only in conditional answers in a derivation braheh return unsound;
9 elsereturn}_, . xq) P

10end;

Procedure SLGNEWCLAUSE (see Figure 7) considers the selected literal and it addssavea if the
body is empty. SLANEWCLAUSE is the same as in SLG with X-clauses replaced by XD-clauges. T
main difference is in procedure SLBNSWER (see Figure 8) where a call to ADDHOICE is added
in line 3.

ADD_CHOICE takes as input a subgodl and an XD-clause&s and returns a Boolean variable
Derivable. IfG = (Ans : —D|,C,0,1) , ADD_CHOICE checks whether the answéns : —| is already
contained in the table entry fot or if x contains an atomic choice inconsistent with ¢, 7). If so, it sets
Derivable to false and leavesunchanged. Otherwise, it checks whethealready containgC, 6, i). If
so, it sets Derivable to true and leavesnchanged. Otherwise it generatgsad(C')| search branches.
In the jth branch, it add$C, 6, j) to x and, if j = i, it sets Derivable to true, otherwise it sets Derivable
to false.

In SLG.ANSWER, if Derivable is set to true by ADIZHOICE, G is added to the table as an answer.
Otherwise nothing is done.

Procedure SLGOSITIVE, that performs resolution on a positive literal, modifies the orfiel &
by replacing SLG answer resolution with SLGAD answer resolution. Therd#hG procedure are
modified simply by replacing X-clauses with XD-clauses.

If the conditional probability of a ground ato@ given another ground atofi must be computed,
rather then computingr(Q A E) and Pr(E) separately, an optimization can be done: we first identify
the explanations foE' and then we look for the explanations f@rstarting from an explanation fdt,
as shown in Figure 10.

7. Related Works

LPADs share with many other languages the basic approach for defirpngbabilistic semantics: a
theory in the language defines a probability distribution over normal logigrams and the probability
of a query is given by the sum of the probabilities of the programs whemgutbigy is true. This approach
was called “distribution semantics” in [24].

Other languages that follow a distribution semantics include: probabilistic laggrgms [8], the
Independent Choice Logic (ICL) [17], pD [11], PRISM [26] andBLog [9].

[8] introduced the distribution semantics for probabilistic logic programs. Jdmer discusses a
functor-free language in which you can have normal clauses analpifigic disjunctive clauses as in
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Figure 7. Procedures SLGUBGOAL and SLGNEWCLAUSE

1 procedure SLG_SUBGOAL(A,PosMin,NegMin)

2 begin

3 for each SLGAD goal resolventr of A with some claus€’ € T" on the head?; do begin
4 SLG.NEWCLAUSE(A, G,PosMin,NegMin);

5 end,

6 SLG.COMPLETE(A,PosMin,NegMin);

7 end

8

9 procedure SLG.NEWCLAUSE(A, G,PosMin,NegMin)
10 begin

11 if G has no body literals on the right pthen

12 SLGANSWER(A, G,PosMin,NegMin);

13 elseifG has a selected atom then

14 SLGPOSITIVE(, G, B,PosMin,NegMin);

15 else ifG has a selected ground negative literd} then
16 SLGNEGATIVE(A, G, B,PosMin,NegMin);

17 else/* G has a selected non-ground negative literal */
18 halt with an error message;

19 eng

20 end,

LPADs. However, disjunctive clauses are restricted to have an empty bidte algorithm proposed
for computing the probability of a query first finds all the explanations ferghery and then computes
the probability by using the inclusion-exclusion formula that returns thegtitity of a propositional
formula given the probabilities of the individual propositions. Howevaes jticlusion-exclusion formula
works only for very small programs because it requires the computatidheoprobability of every
possible conjunction of explanations.

ICL [17] allows normal clauses and disjunctive clauses with an empty bedgy@babilistic logic
programs but it allows function symbols by defining the probability of a guretgrms of its explanations
rather than in terms of complete instances. However, the definite part ofralgeam is required to
be acyclic. ICL is equipped with a reasoning system called Ailog2 [18]. 8}sif first finds all the
explanations for the query and then it computes the probability. It usesrativiéealgorithm for making
the explanations incompatible so that the probability can be computed as a suodaotts. Even if
the semantics of ICL has been defined for acyclic programs, it can bedexteéo modularly acyclic
programs and Ailog2 already handles correctly such a semantics.

[30] showed that acyclic functor-free LPADs can be converted to p@&igrams in a way that pre-
serves the semantics. Thus inference on LPADs can be performedtgdiiverting them to ICL and
then using Ailog2. The semantics of ICL can be defined also for modulayigliagrograms and the
mapping from LPADs can be applied also for modularly acyclic LPADs, sog&loan be used for
inference on this kind of LPADs.

pD [11] is a Datalog language very similar to LPADs, in which probability distidns are defined
over the heads of rules. The proposed inference algorithm computtee axplanations for a goal
and then uses the inclusion-exclusion formula for computing the probabilitiyeodlisjunction of the
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Figure 8. Procdure SLANSWER

29

1 procedure SLG.ANSWER, G,PosMin,NegMin)
2 begin

3 ADD_CHOICEA, G,Derivable);

5 if Derivablethen begin

6 insertG into Anss(A);

7 if G has no delayed literatben begin

8 resetNegs(A) to empty;

9 let L be the list of all pair§ B, H'), where(B, H) € Poss(A) andH’
10 is theSLGAD answer resolveof H with G;

11 for each(B, H') in L do begin

12 SLGNEWCLAUSE(B,H’,PosMin,NegMin);

13 end;

14 end else begin* G has a non empty delay */

15 if no other answer inlnss(A) has the same head &sdoesthen

16 begin

17 let L be the list of all pair§ B, H'), where(B, H) € Poss(A) andH’
18 is theSLGAD answer resolvent H with G;

19 for each(B, H') in L do begin

20 SLGNEWCLAUSE(B, H',PosMin,NegMin);

21 end,

22 end

23 end;

24 end

25 end,
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Figure 9. Procedure ADIZHOICE

1 procedure ADD_CHOICE(A, G,Derivable)
2 begin

3 letG be(Ans : —D|,C, 6,1);

4 if 7 containsAns : —| in Anss(A) or
5 (C,0,7) € kwith j # i then begin
6 Derivable:= false;

7 end else begin

8 if (C,0,1) € kthen

9 Derivable:= true;

10 end else begin

11 choose an indexfrom {1, ..., |head(C)|} (choice point);
12 if ¢ = j then begin

13 Derivable:= true;

14 end else begin

15 Derivable:= false;

16 end

17 k:=rU{(C,0,5)};

18 end

19 end

20 end

Figure 10. Procedure SLGADOND

1 procedure SLGAD_COND(Q, E,T)

2 begin

3 Initialize Count,T, S, DFN, PosMin and NegMin as in SLG;

4 k=0,

5 let K (F) be the set of all the values farafter a call of

6 SLG.SUBGOAL(F,PosMin,NegMin) such thaf containsE as an answer;

7 if £ appears only in conditional answers in a derivation braheh return unsound;
8 elseify, c k(g P = 0 then return undefined;

9 else begin

10 Initialize Count,T", S, DFN, PosMin and NegMin as in SLG;

11 let K(Q) be the set of all the values efafter a call of

12 begin

13 pick a choice:’ from K (FE);

14 K =K

15 let K(Q) be the set of all the values farafter a call of

16 SLG SUBGOAL(Q,PosMin,NegMin) such thaf contains) as an answer;
17 end;

18 if () appears only in conditional answers in a derivation braheh return unsound;
_ Yinek(@) P,

19 elsereturn P(Q|E) = S e P

20 end
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explanations. As already noted for [8], this approach is infeasible ittipea

PRISM [26] is a language that follows the distribution semantics and assighalglities to ground
facts. The algorithm proposed for inference requires the bodies ofitee for the same ground atom
to be mutually exclusive, i.e., no couple of bodies can be true in the same imstans making it
inapplicable to the problems considered in Section 8.

ProbLog [9] is a language in which each clause can be annotated witlhakility p. A probability
distribution over normal logic programs is defined by picking each clause prithability p and by
leaving out the clause with probability— p. ProbLog differs from LPADs because an LPAD clause
encodes more than two possibilities but especially because the selectioffoisnger directly on the
clauses of the program rather than on their grounding. [9] propasedference algorithm that first
finds the explanations for queries and then computes the probability usiagyBdecision Diagrams.
In principle the ProbLog inference algorithm could be applied to LPAD bist wWould required the
complete grounding of the LPAD which is too large for all but the smallestrprog.

In order to avoid completely grounding an LPAD for performing inferefi2z&] proposed SLFNFAD
that adopts an approach similar to the one of ProbLog to LPADs. SLDNFABukes Binary Decision
Diagrams for making the explanations incompatible. SLDNFAD is sound andleterfpr programs for
which the Clark’s completion semantics [7] and the well-founded semanticsideiras for acyclic [1]
and modularly acyclic programs [22].

SLGAD resolution generates explanations that are automatically mutually intibrepd herefore,
it can simply sum up the probabilities of individual explanations, differermiynf Ailog2, where an
iterative algorithm is applied, and from SLDNFAD, where Binary Decisidagbams are used.

[29] presents the CP-logic language that is syntactically a supersetddd But differs in the def-
inition of the semantics: a CP-logic theory defines a probabilistic processbaifies a sequence of
events in a way that respects a number of axioms on causal influeng¢éhg2%hows that the CP-logic
semantics, when it is defined, is equivalent to the LPAD semantics. Hovibeee are LPADs that are
not valid CP-logic theories, i.e., for which the CP-logic semantics is not defined

8. Experiments

We tested SLGAD on some synthetic problems that were used as benchore®k€[4, 3]:win, lanc
andranc. Moreover, we tested it on programs that encode games of dice similar togtresented in
[31].

win is an implementation of the 2-person game of Example 2.3 and contains the clause

win(X):0.8 :- move(X,Y),\+ win(Y).

lanc andranc model the ancestor relation with left and right recursion respectively:

lancestor(X,Y):0.8 :- move(X,Y).
lancestor(X,Y):0.8 :- lancestor(X,Z),move(Z,Y).
rancestor(X,Y):0.8 :- move(X,Y).

rancestor(X,Y):0.8 :- move(X,Z),rancestor(Z,Y).

Various definitions ohove are considered: a linear and acyclic relation, containing the tgples, . . .
(N —1,N), alinear and cyclic relation, containing the tup(és2),...,(N —1,N), (N, 1), and a tree
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relation, that represents a complete binary tree of hé\ghtontaining2V+! — 1 tuples. Fotwin, all the
move relations are used, while faanc andranc only the linear ones.

SLGAD was compared with Ailog2 and SLDNFAD. For SLGAD and SLDNFA[® wsed the im-
plementations in Yap Prolégvailable in thecplint suite’. The SLGAD code was developed starting
from the code of the SLG systémFor Ailog2 we ported the code available on the wabYap. All the
experiments were performed on Linux machines with an Intel Core 2 Dub®EE5333 MHz) processor
and 4 GB of RAM. Yap version 6.0.0 was used in all cases except whaicaied.

The execution times for the quewmin (1) to thewin program are shown in Figures 11al1(b)
and 12 as a function @V for linear, cyclic and treaove respectively. The time axis is logarithmic in
these figures. Figures 13 and 14 show the execution time for the gnesgtor (1,N) to the programs
lanc andranc respectively.

win has an exponential number of instances where the query is true andge ghow the combi-
natorial explosion. On the ancestor dataset, there is only one instance thbejuery is true, the one
obtained by always selecting the non-null head. In such an instanagl-@igented proof procedure

*http://www.ncc.up.pt/ vsc/Yap/

http://www.ing.unife.it/software/cplint/, also included in the development version of Yap
*http://engr.smu.edu/ wchen/slg.html

Shttp://www.cs.ubc.ca/ poole/aibook/code/ailog/ailog man.html

SYap version 5.1.3 was used in this experiments for SLDNFAD becagsait better results than Yap version 6.0.0.
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builds a search tree composed of a single branch with a number of naxfestpnal to/N. However,
the execution time of SLGAD increases more than linearly as a functiowi bécause each derivation
step requires a lookup and an insert in the tabléhat is implemented as a tree-like data structure (2-3
tree [2] in the SLG system). Each insert and lookup take logarithmic time.

SLGAD is compared with Ailog2 and SLDNFAD on the problems that are moduksyglic and
right recursive, i.e.win with linear and treenove andranc with linearmove. On the other problems
a comparison was not possible because Ailog2 and SLDNFAD would go imiafiaite loop. Inwin
all the algorithm show the combinatorial explosion (see figures 11(a) 2navith SLGAD performing
better than Ailog2 and SLDNFAD for lineaiove and better than Ailog2 and worse than SLDNFAD for
treemove. Onranc with linearmove (Figure 14(a)), SLGAD takes longer than Ailog2 and SLDNFAD,
with Ailog2 being particularly fast, probably due to the peculiarity of its incoml#tialgorithm.

The peaks of SLGAD omranc are due to an uneven behavior of garbage collection due to the fact
that Yap 6.0.0 is still a development version.

SLGAD was tested also on programs encoding games of dice in which the,@yréng from time
0, repeatedly throws a die at each time point and stops only when a cetbaigt sfithe faces comes up.
We want to compute the probability that a certain face is obtained at a certaindinte p

To model this problem, we use a predicate(T,F) that states that the die was thrown at tithand
faceF was obtained. If we consider a three-sided die, the problem can bdesheath the following
LPAD:

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
on(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 :-
T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3).

The first clause states that, at time 0, one of the three faces is obtained watlpeapability. The second
clause states that, at tinTe a face is obtained with equal probability if, at the previous time point, the
die was thrown¢n (T1,F)) and face 3 was not obtaineg{ on(T1,3)).

Note that this program uses integers and so its grounding is potentially infioitsuch programs the
semantics of LPADs is not defined. To overcome this difficulty we genegataehd programs from the
one above by considering a finite set of integers, ftotm NV, and by pre-evaluating the built predicates
in the body. So, for example, fa¥ = 2 we get the programiei:

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
on(1,1):1/3 ; on(1,2):1/3 ; on(1,3):1/3 :- on(0,F), \+ on(0,3).
on(2,1):1/3 ; on(2,2):1/3 ; on(2,3):1/3 :- on(1,F), \+ on(1,3).

In this way, we are able to answer only queries of the fer(iT ,F) with T smaller or equal taV.

We generated these programs for increasing value¥ @ind, from each of them, we query the
probability ofon (NN, 1). The execution times of SLGAD, SLDNFAD and Ailog2 for increasing values
of V are shown in Figure 15, where theaxis is logarithmic. In this case, SLGAD clearly outperforms
the other systems, due to the use of tabling: when computir{@, 1), the subgoabn(T-1,F) will
be evaluated which will, in turn, computa.(T-2,F) andon(T-2,3). Then\+ on(T-1,3) will be
considered and resolved with the recursive clause giving a boay@f2,F) ,\+ on(T-2,3): both of
these subgoal have already been evaluated so their answers cdrabtedxXrom the table.

On the other hand, Ailog2 and SLDNFAD have to go back to time zero each timeetizduate
on(T-2,F),\+ on(T-2,3).
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To further investigate the advantages of tabling, we considered two gamscim a four-sided die
is used. In the first, we stop as soon as we get 3 @id4d), in the second we stop as soon as we get 4
(die3). The first program is

on(0,1):1/4 ; on(0,2):1/4 ; on(0,3):1/4 ; on(0,4):1/4.
on(T,1):1/4 ; on(T,2):1/4 ; on(T,3):1/4 ; on(T,4):1/4 :-
T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3), \+ on(T1,4).

Again, we generated the grounding of the programs for increasingsv/afié and we measured the time
required to answer the quesy (N, 1) . Figure 16 shows the execution times of SLGAD, SLDNFAD and
Ailog2 on the two problems. In this figure théaxis is logarithmic These results confirm those of Figure
15.

9. Future Work

The version of SLG resolution that we have presented here is Gall€d,,,iqncc iN [27] because, in the
definition of the operations, it checks whether two formulas are variamisabf otherto avoid redundant

"Two formulas are variants of each other if one can be obtained frontliee loy variable renaming only.
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computations. In particular, the following operations are affected:
e NEW SUBGOAL adds a new tree if a tree for a variant of the selected literal is not alraadgm;

e PROGRAM CLAUSE RESOLUTIONandPOSITIVE RETURNdO not add a child node to the current
nodeN if N has already a child that is a variant of the one to add;

e SIMPLIFICATION checks for success or failure of a variant of a delay literal and adtiddif a
variant of it is not already present.

In [27] the author also proposesLG s psumption that replaces the variance relation on atoms with a
subsumption relation in order to avoid more redundant computations. Spigific

e NEW SUBGOALIs applied only if the new subgoal is not subsumed by any subgoal in tbstfor

e PROGRAM CLAUSE RESOLUTIONANdPOSITIVE RETURNadd a child node to the current node
only if N does not have a child that subsumes the one to add;

e subsumption can be employed alsGiMPLIFICATION to remove or fail a delay literal;
e COMPLETIONCcan be applied to a subgoal if it is subsumed by a subgoal that is alreaxghated.

At the moment SLGAD resolution, &L G ,qriance, USES @ variance relation to avoid redundant compu-
tations. In particularNEw SUBGOAL is applied only if the new subgoal is not a variant of any subgoal
in F,, andPROGRAM CLAUSE RESOLUTIONPOSITIVE RETURNandNEGATION SUCCESSwhen a new
answerAns : —| for a subgoald is found, check for its presence #,(A).

In the future, we plan to improve SLGAD resolution by using subsumption idsigariance: for
example NEw suBGOAL will not be applied if a subgoal that subsumes the one to be added is presen
Moreover, InPROGRAM CLAUSE RESOLUTIONPOSITIVE RETURNandNEGATION SUCCESSwe will
check whetherns : —| is already an answer for any subgoal in the SLGAD forest.

These two optimizations will avoid branching in cases in which it is not neetlesl latter optimiza-
tion will require to be able to access the taffleon the basis of the answers present in the trees or the
maintenance of a separate data structure for storing found answers.

Another optimization consists in completing ground subgoals as soon as @andititmal answer is
found for them. In fact, new answers will not add any new information Bpdompletion, we can avoid
branch exploration.

Other research directions for the future include the possibility of ansg/gtieries in an approximate
way, similarly to what is done in [9] and the extension of the algorithm for icleming also aggregates.
Moreover, we plan to apply the techniques of [20] to LPADs and to investigere closely the perfor-
mances of SLGAD and the algorithms based on Binary Decision Diagrams.

10. Conclusions

Logic Programs with Annotated Disjunctions are a powerful languagesfmesenting probabilistic in-
formation in logic. However, all previously existing approaches for amsw queries from LPADs are
not able to deal with programs containing loops. Moreover, they run thefrrecomputing explanations
for the same query.
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For normal logic programs, SLG resolution uses tabling to avoid some loogsimypositive and/or
negative literals and to avoid recomputing answers for the same subgoal.

In this paper we have proposed an extension of SLG resolution, call@édBLresolution, for per-
forming inference on LPADs. SLGAD resolution is defined as a partialidiéggh approach in which a
number of operations are repeatedly applied to a data structure callechsy$te operations are those
of SLG resolution modified in order to take into account probabilistic disjuaatiauses. Once expla-
nations for a goal have been obtained, the probability of the query catysampomputed by summing
the probabilities of the individual explanations, since they are mutually inctiohpéy construction.

SLGAD resolution has been experimentally evaluated on a number of prab@mghose that are
modularly acyclic and right recursive, SLGAD has been compared withg&ilend SLDNFAD. The
experimental results show that SLGAD is able to outperform the other systhetsit is necessary to
compute answers to queries more than once.
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