
Fundamenta Informaticae XXI (2001) 1–38 1

IOS Press

SLGAD Resolution for Inference on Logic Programs with Annotated
Disjunctions

Fabrizio Riguzzi

ENDIF, Universit̀a di Ferrara, Via Saragat, 1, 44100 Ferrara, Italy

fabrizio.riguzzi@unife.it

Abstract. Logic Programs with Annotated Disjunctions (LPADs) allow to express probabilistic in-
formation in logic programming. The semantics of an LPAD is given in terms of the well-founded
models of the normal logic programs obtained by selecting one disjunct from each ground LPAD
clause.

Inference on LPADs can be performed using either the system Ailog2, that was developed for the
Independent Choice Logic, or SLDNFAD, an algorithm based onSLDNF. However, both of these
algorithms run the risk of going into infinite loops and of performing redundant computations.

In order to avoid these problems, we present SLGAD resolution that computes the (conditional)
probability of a ground query from a range-restricted LPAD and is based on SLG resolution for
normal logic programs. As SLG, it uses tabling to avoid some infinite loops and to avoid redundant
computations.

The performances of SLGAD are evaluated on classical benchmarks for normal logic programs
under the well-founded semantics, namely a 2-person game and the ancestor relation, and on games
of dice.

SLGAD is compared with Ailog2 and SLDNFAD on the problems in which they do not go into
infinite loops, namely those that are described by a modularly acyclic program.

The results show that SLGAD is sometimes slower than Ailog2 and SLDNFAD but, if the program
requires the repeated computations of the same goals, as forthe dice games, then SLGAD is faster
than both.

Keywords: Probabilistic Logic Programming, Well-Founded Semantics, Logic Programs with An-
notated Disjunctions, SLG Resolution.

1. Introduction

Effectively combining logic and probability would allow the exploitation of the advantages of both: on
the one side, the possibility, offered by logic, of representing in a simple waycomplex relationships



2 F. Riguzzi / SLGAD Resolution

among the entities of the domain, on the other side, the possibility, offered by probability theory, of
reasoning with uncertain and incomplete knowledge.

Many languages have been recently proposed that combine relational and statistical aspects, such
as the Independent Choice Logic [17], ProbLog [9], PRISM [25] and CLP(BN ) [23]. These languages
have different semantics that make them suitable for different domains: theidentification of the best
setting for each language is currently under study [15, 14].

When we are reasoning about actions and effects and we have causalindependence [32] among
different causes for the same effect, Logic Programs with Annotated Disjunctions (LPADs) [31] seem
particularly suitable. They extend logic programs by allowing clauses to be disjunctive and by annotating
each atom in the head with a probability. A clause can be causally interpreted by supposing that the truth
of the body causes the truth of one of the atoms in the head non-deterministicallychosen on the basis
of the annotations. The semantics of LPADs is given in terms of the well-founded models [28] of the
normal logic programs obtained by selecting one head for each ground disjunctive clause.

In order to compute the (conditional) probability of queries, various optionsare possible. [30] showed
that ground acyclic LPADs can be converted to Bayesian networks. However, the conversion requires
the complete grounding of the LPAD, thus making the technique impractical for all but trivial programs.

[30] also showed that acyclic LPADs can be converted to IndependentChoice Logic programs. Thus
inference can be performed by using the Ailog2 system [18]. An algorithmfor performing inference
directly with LPADs was proposed in [21]. The algorithm, that will be called SLDNFAD in the fol-
lowing, is an extension of SLDNF resolution and uses Binary Decision Diagrams, similarly to what is
presented in [9] for the ProbLog language. Both Ailog2 and SLDNFAD are sound for programs for
which the Clark’s completion semantics [7] and the well-founded semantics coincide, as for acyclic [1]
and modularly acyclic programs [22].

For programs that are not modularly acyclic, Ailog2 and SLDNFAD may go intoinfinite loops.
Moreover, they both run the risk of computing solutions to the same or similar queries more than once.
Therefore, we present SLGAD resolution that is able to perform inference on non-modularly acyclic
LPADs and to avoid redundant computations. SLGAD resolution is based onSLG resolution [6] for
normal logic programs under the well-founded semantics. We will present SLGAD resolution both at a
declarative level, as a set of operations to be applied to a particular data structure, and at a procedural
level, by presenting the procedures that implement the algorithm.

SLGAD is evaluated on classical benchmarks for inference algorithms under the well-founded se-
mantics, namely a 2-person game and the ancestor relation, and on games of dice. In the first two cases,
various extensional databases are considered, encoding linear, cyclic or tree-shaped relations. Of these
problems, the 2-person game with linear and tree-shaped relation, ancestor with a linear relation and the
games of dice are modularly acyclic.

The results show that SLGAD is able to deal with all of these problems. In order to compare it with
Ailog2 and SLDNFAD, we applied them to the programs that are modularly acyclic and right recursive.
On the 2-person game SLGAD was faster than SLDNFAD and Ailog2 exceptfor SLDNFAD on the
tree-shaped relation. On ancestor, SLGAD was slower than Ailog2 and SLDNFAD.

On the games of dice, Ailog2 and SLDNFA perform redundant computationsand SLGAD outper-
formed them by a large margin, thanks to its use of tabling to store the answers of already computed
subgoals.

The paper is organized as follows. Section 2 presents some preliminary notions on normal logic
programs and on LPADs while Section 3 describes SLG resolution. Section 4provides the declarative



F. Riguzzi / SLGAD Resolution 3

definition of SLGAD resolution. Section 5 contains its proof of soundness and Section 6 its procedural
implementation. Sections 7 and 8 discuss related works and experiments respectively. Section 9 presents
directions for future work and Section 10 concludes.

2. Preliminaries

2.1. Normal Logic Programs

A first order alphabetΣ is a set of predicate symbols and function symbols (or functors) together with
their arity. A functor with arity 0 is called aconstant.

A term is either a variable or a functor applied to a tuple of terms of length equal to the arity of the
functor. AnatomA is a predicate symbol applied to a tuple of terms of length equal to the arity of the
predicate. Aliteral L is either an atomA or its negation¬A. In the latter case it is called anegative
literal. In logic programming, Prolog conventions are common practice, and also in this work predicates
and constants are indicated with alphanumeric strings starting with a lowercasecharacter while variables
are indicated with alphanumeric strings starting with an uppercase character.

A normal logic programT is a set of of formulas of the form

H : −B1, . . . , Bb

calledclauseswhereH is an atom and all theBis are literals.H is called theheadof the clause and
B1, . . . , Bb is called thebody. If the body is empty the clause is called afact. In the following, by
programwe mean a normal logic program. Programs containing only functors with arity 0will be called
functor-free programs.

A term, atom, literal or clause isground if it does not contain variables. Asubstitutionθ is an
assignment of variables to terms:θ = {V1/t1, . . . , Vn/tn}. Theapplication of a substitution to a term
atom, literal or clauseC, indicated withCθ, is the replacement of the variables appearing inC and inθ
with the terms specified inθ. Cθ is called aninstanceof C.

A normal logic program isrange-restrictedif all the variables appearing in the head of clauses also
appear in positive literals in the body.

The Herbrand universeHU (T ) is the set of all the ground terms that can be built with function
symbols appearing inT . TheHerbrand baseHB(T ) of a programT is the set of all the ground atoms
that can be built with predicates appearing inT and terms ofHU (T ). If T is functor-free, thenHB(T )
is finite, otherwise it is infinite. Agroundingof a clauseC is obtained by replacing all the variables of
C with terms fromHU (T ). Let g(C) be the set of groundings of clauseC. The groundingg(T ) of a
programT is the program obtained by replacing each clauseC with g(C). If the program is functor-free,
g(T ) is finite, otherwise it is infinite. AHerbrand interpretation overHB(T ) (or just interpretation) is a
set of ground atoms, i.e. a subset ofHB(T ). Let IT be the set of all the possible interpretations ofT .

An interpretationI for a set of predicatesS is a subset ofHB(T ) that contains only atoms whose
predicate is inS.

Let f ,u, t be truth values whereu is intended as the truth value “undefined”. Apartial Herbrand
interpretationI overHB(T ) (or justpartial interpretation) is a mapping fromHB(T ) to {f ,u, t}. I can
be represented by means of two sets,Pos(I) andNeg(I), the set of atoms ofHB(T ) taking valuest
andf respectively. IfPos(I) ∪Neg(I) = HB(T ) we say thatI is total.



4 F. Riguzzi / SLGAD Resolution

Given a partial interpretationI and a ground atomA, A (¬A) is true (false) in I if A ∈ Pos(I), is
false(true) in I if A ∈ Neg(I) and isundefinedif A 6∈ Pos(U) andA 6∈ Neg(A).

A partial interpretationI is amodelof a programT iff for all the ground instances

H : −B1, . . . , Bb

of its clauses, if allBis are true inI thenH is true inI and ifH is false inI then at least one of theBis
is false inI.

If I andJ are partial interpretations, there are two natural orderings between them:

• Fitting ordering:I � J if Pos(I) ⊆ Pos(J) andNeg(I) ⊇ Neg(J). Models that are least in the
� ordering are calledleastmodels.

• Information ordering:I ⊆ J if Pos(I) ⊆ Pos(J) andNeg(I) ⊆ Neg(J). Models that are least
in the⊆ ordering are calledsmallestmodels.

Various semantics have been proposed for normal logic programs. In thispaper we consider the 3-valued
stable models semantics [19], the stable models semantics [13], the well-founded semantics [28] and the
Clark’s completion semantics [7].

Let us define 3-valued stable models.

Definition 2.1. ([19])
Let T be a program and letI be a partial interpretation. ThenTT (I) is a partial interpretation such that:

• A ∈ Pos(TT (I)) iff there is a clauseA : −B1, . . . , Bb in g(T ) and all theBis are true inI;

• A ∈ Neg(TT (I)) iff for every clauseA : −B1, . . . , Bb in g(T ), someBi is false inI

Let ∅ be the partial interpretation in which all the ground atoms are false. The powers ofTT are defined
as follows:

TT ↑ 0 = ∅

TT ↑ n = TT (TT ↑ (n− 1)) if n is a successor ordinal

= ⊔{TT ↑ k : k < n} if n is a limit ordinal
where⊔ is the least upper bound operation of interpretations with respect to the Fittingordering�.

A non-negative programis a finite set of clauses whose bodies do not contain any negative literals
but may contain the special ground atomu which is always undefined (i.e.,u 6∈ Pos(I) andu 6∈ Neg(I)
for any partial interpretationI).

Theorem 2.1. ([19])
Let T be a non-negative program. ThenT has a unique least 3-valued model, denoted byLPM(T ).
Furthermore,TT has a least fixed point which coincides withTT ↑ ω and withLPM(T ).

Definition 2.2. ([19])
Let T be a program and letI be a partial interpretation. Thequotient ofT moduloI, denoted byTI , is
the non-negative program obtained fromg(T ) by

• deleting every clause with a negative literal in the body that is false inI, and



F. Riguzzi / SLGAD Resolution 5

• deleting a negative literalL in the body of a clause ifL is true inI, and

• replacing a negative literalL in the body of a clause withu if L is undefined inI.

I is a3-valued stable modelof T if I is the least 3-valued modelLPM(TI ).

Every program has at least one 3-valued stable model but may have morethan one.
The stable model semantics [13] is 2-valued, i.e., its models are Herbrand interpretations. A program

can have any number of stable models, including the case of no stable models.
The well-founded semantics [28] is 3-valued and it assigns every programT a single partial interpre-

tationWF (T ) called thewell-founded partial model. To indicate that an atomA is true inWF (T ) we
write T |=WF A.

The following theorem shows the relationship between the stable models semantics and the well-
founded semantics via 3-valued stable models.

Theorem 2.2. ([19])
LetT be a normal logic program. ThenWF (T ) is the smallest 3-valued stable model ofT . If a 3-valued
stable model is total, then it coincides with a stable model as defined in [13].

Thus, ifWF (T ) is total, thenT has a single stable model equal toWF (T ).
We report here the definition of an acyclic [1] and modularly acyclic [22] program. Alevel mapping

for a programT is a function| | : HB(T ) → N from ground atoms to natural numbers. ForA ∈ HB(T ),
|A| denotes thelevelof A. If L = ¬A whereA ∈ HB(T ), we define|L| = |A|. A programT is called
acyclic with respect to a level mappingif for every ground instanceA : −B of a clause ofT , the level
of A is greater then the level of each literal inB. A programT is calledacyclic if there is some level
mapping such thatT is acyclic with respect to it.

A predicatep directly dependson a predicateq if q appears in the body of a rule that hasp in the
head. The relation “depends” is the transitive closure of the relation “directly depends”. A predicatep is
recursiveon a predicateq if p = q or if p depends onq andq depends onp.

Recursiveness is an equivalence relation between predicates: it partitions the set of predicates of a
programT into equivalence classesQ1, . . . , QM . For each equivalence classQi, consider the setVi

containing the clauses ofT whose predicate of the atom in the head belongs toQi. V1, . . . , VM is a
partition of T and the setsV1, . . . , VM are calledcomponentsof T . We writeVj < Vi if there is a
predicate ofQi that directly depends on a predicate ofQj . We denote with⊳ the transitive closure of<.
The predicates ofSi =

⋃

Vj<Vi
Qj are called thepredicates used byVi.

Let Vi be a component of a programT and letSi be the set of predicates used byVi. Consider an
interpretationI for Si.

Thereduction ofVi moduloI, denoted withRI(Vi), is obtained in the following way:

• ground in all possible ways the rules ofVi obtainingg(Vi);

• delete fromg(Vi) all the rules having a literal in the body whose predicate is inSi, but which is
false inI;

• delete from the bodies of the remaining rules all the literals having predicates inSi (which are
true);

• setRI(Vi) to the set of remaining ground rules.



6 F. Riguzzi / SLGAD Resolution

A normal logic programT is modularly acyclicif for every componentVi of T 1)there exists a total
well-founded modelMi for the union of all the componentsVj ⊳ Vi, and 2) the reduction ofVi modulo
Mi is acyclic.

If a program is acyclic or modularly acyclic, the unique Herbrand model of Clark’s completion
and the well-founded partial model coincide [1, 22], so queries can be answered in the well-founded
semantics by means of SLDNF. If a program is not modularly acyclic, then SLG resolution [6] has to be
employed for answering queries.

Example 2.1. Consider a two-person game in which the players alternate and a positionX is winning
for a player if there is a move fromX to a positionY that is not winning for the opponent. Such a game
can be modeled with the famous normal logic program [10, 13, 12]:

win(X) : −move(X,Y ),¬win(Y ).

plus facts for themove relation, wheremove(a, b) means that there is a legal move from positiona to
positionb. This is one of the examples that lead to the formulation of both the well-foundedand the
stable model semantics.

In this game, a position is surely losing if there are no moves from it. If a positionleads to a surely
losing position, it is winning for the opponent and so on. An example of sucha game is checkers.

If move is acyclic1, the program has a single stable model and a total well-founded model and the
two models coincide. Ifmove is cyclic, the program can have no stable models or multiple stable models
and the well-founded model is in general not total.

Consider for example the following definition formove:
move(a, b). move(b, a). move(a, c).

Such a definition is cyclic but the program has the total well-founded model
{win(a),move(a, b),move(b, a),move(a, c)}

SLG resolution in this case assigns the value true to the querywin(a). This program is neither acyclic
nor modularly acyclic, so SLNDF resolution is not able to answer this query.In particular, SLDNF
resolution would go into an infinite loop for such a query.

2.2. Logic Programs with Annotated Disjunctions

A Logic Program with Annotated Disjunctions [31]T consists of a finite set of formulas of the form
(H1 : α1) ∨ (H2 : α2) ∨ . . . ∨ (Hh : αh) : −B1, B2, . . . Bb

called annotated disjunctive clauses. In such clauses, theHis are logical atoms, theBis are logical
literals and theαis are real numbers in the interval[0, 1] such that

∑h
i=1 αi ≤ 1. If

∑h
i=1 αi < 1, the

head of the clause implicitly contains an extra atomnull that does not appear in the body of any clause
and whose annotation is1−

∑h
i=1 αi.

If h = 1 andαh = 1, we write the clause as a definite clause of the form
H1 : −B1, B2, . . . Bb.

For an annotated disjunctive clauseC, we definehead(C) as{(Hi : αi)|1 ≤ i ≤ h} if
∑h

i=1 αi = 1

and as{(Hi : αi)|1 ≤ i ≤ h} ∪ {(null : 1 −
∑h

i=1 αi)} otherwise. Moreover, we definebody(C) as
{Bi|1 ≤ i ≤ b}, Hi(C) asHi andαi(C) asαi. LetHB(T ) be the Herbrand base ofT and letIT be the
set of all the possible Herbrand interpretations ofT .

1A binary relation isacyclic if its transitive closure is not reflexive.



F. Riguzzi / SLGAD Resolution 7

An LPAD is range-restrictedif all the variables appearing in the head of clauses also appear in
positive literals in the body.

In order to define the semantics of a non-groundT , we must generate its groundingg(T ). Each
ground annotated disjunctive clause represents a probabilistic choice among the ground non-disjunctive
clauses obtained by selecting only one head atom. The intuitive interpretation of a ground clause is that
the body represents an event that, when happening (i.e. when it becomestrue), causes an atom in the
head (an effect) to happen (i.e. to become true). If the atom selected isnull, this is equivalent to having
no effect.

The semantics of an LPAD, given in [31], requires the grounding to be finite, so the program must
be functor-free. In the following we will thus consider only functor-free programs.

By choosing a head atom for each ground clause of an LPAD we get a normal logic program called
an instanceof the LPAD. A probability distribution is defined over the space of instancesby assuming
independence among the choices made for each clause.

An atomic choiceχ is a triple(C, θ, i) whereC ∈ T , θ is a substitution that groundsC and i ∈
{1, . . . , |head(C)|}. (C, θ, i) means that, for ground clauseCθ, the headHi : αi was chosen. A set of
atomic choicesκ is consistentif (C, θ, i) ∈ κ, (C, θ, j) ∈ κ ⇒ i = j, i.e., only one head is selected for
a ground clause. A consistent set of atomic choices is called acomposite choice.

A composite choice is aselectionσ if, for each clauseCθ in g(T ), there exists a triple(C, θ, i) in σ.
We denote the set of all selections of a programT byRT .

A composite choiceκ identifies a normal logic programTκ = {(Hi(C) : −body(C))θ|(C, θ, i) ∈ κ}
that is called asub-instanceof T . If σ is a selection,Tσ is called aninstance. For a composite choice
κ, letU(κ) be the set of instances that are supersets ofTκ, i.e., the set of instancesTσ with σ a selection
such thatσ ⊇ κ.

TheprobabilityPκ of a composite choiceκ is the product of the probabilities of the individual atomic
choices, i.e.,Pκ =

∏

(C,θ,i)∈κ αi(C). Theprobability of instanceTσ is Pσ.
The meaning of the instances of an LPAD is given by the well-founded semantics. For each instance

Tσ, we require thatWF (Tσ) is total, since we want to model uncertainty solely by means of disjunctions.
An LPAD T is calledsoundiff, for each selectionσ in RT , WF (Tσ) is total. In the following we
consider only sound LPADs.

The probability of a formulaQ is given by the sum of the probabilities of the instances in which
the formula is true according to the well-founded semantics:PT (Q) =

∑

σ∈RT ,Tσ |=WFQ Pσ. The con-
ditional probability of a formulaQ given another formulaE can be defined as usual asPT (Q|E) =
PT (Q∧E)
PT (E) . From these definition, it is clear that, ifg(T ) is infinite, then the semantics is not well-defined.

In fact, the probabilityPσ for an instance would be an infinite product of numbers all smaller than 1, i.e.,
it would be 0. Therefore, alsoPT (Q) would be 0. An extension of the semantics to handle LPADs with
function symbols of arity greater than 0 is subject of future work.

Example 2.2. Consider the dependency of a person’s itching from him having allergy or measles:
C1 : strong itching(X) : 0.3 ∨moderate itching(X) : 0.5 : −measles(X).

C2 : strong itching(X) : 0.2 ∨moderate itching(X) : 0.6 : −allergy(X).
C3 : allergy(david).
C4 : measles(david).

ClausesC1 andC2 have three alternatives in the head, while clausesC3 andC4 have only a single
alternative. This program models the fact that itching can be caused by allergy or measles. Measles



8 F. Riguzzi / SLGAD Resolution

causes strong itching with probability 0.3, moderate itching with probability 0.5 andno itching with
probability1−0.3−0.5 = 0.2; allergy causes strong itching with probability 0.2, moderate itching with
probability 0.6 and no itching with probability1− 0.2− 0.6 = 0.2.

In order to provide a semantics to the program, we must generate its grounding. The only constant is
davidso the above program has the following grounding:

C ′
1 : strong itching(david) : 0.3 ∨moderate itching(david) : 0.5 : −measles(david).

C ′
2 : strong itching(david) : 0.2 ∨moderate itching(david) : 0.6 : −allergy(david).

C ′
3 : allergy(david).

C ′
4 : measles(david).

By picking in all possible ways one head atom fromC ′
1 and one fromC ′

2 we get 9 instances, one of
which is

strong itching(david) : −measles(david).

moderate itching(david) : −allergy(david).

allergy(david).

measles(david).

whose probability is0.3 · 0.6 · 1 · 1 = 0.18.
strong itching(david) is true in 5 of the 9 instances of the program and its probability is

PT (strong itching(david)) = 0.3 · 0.2 + 0.3 · 0.6 + 0.3 · 0.2 + 0.5 · 0.2 + 0.2 · 0.2 = 0.44

LPADs show patterns ofcausal independence[32]: each ground clause with atomA in the head is
a potential cause ofA that is activated when the body becomes true. Each cause is independentof
the others so they combine with the noisy-or law [16]. Such a law states that, if there aren causes
(represented by binary variablesc1, . . . , cn) for an effectE (a binary variable) and the probabilities of
happening of the causes (i.e. of assuming the value 1) arep1, . . . , pn, the probability of happening of the
effect (i.e. of assuming the value 1) is given by1−

∏n
i=1(1− pi).

In the above example, if only one cause of strong itching happens, the probability of the effect is
given by the parameter in the head. If more than one cause happens, the probability of the effect is given
by the noisy-or relation.

For strong itching(david), there are two causes, namelyallergy(david) andmeasles(david).
The probability computed by noisy-or is1− (1− 0.3) · (1− 0.2) = 0.44.

Example 2.3. Consider the program encoding the 2-person game of Example 2.1. Suppose that the
game is probabilistic: a positionX is winning with 80% probability for a player if there is a move from
X to a positionY that is not winning for the opponent. This game can be modeled with the LPAD

win(X) : 0.8 : −move(X,Y ),¬win(Y ).

plus facts for themove predicate. Ifmove is acyclic, then the program is sound. Otherwise, there may
be instances that do not have a total well-founded model.

Let us now see other properties of LPADs.

Lemma 2.1. Given an LPADT and a composite choiceκ, Pκ is the sum of the probability of the
instances ofU(κ) i.e. Pκ =

∑

Tσ∈U(κ) Pσ



F. Riguzzi / SLGAD Resolution 9

Proof:
Let g(T ) be{C1, . . . , Cp}, letκ = {(C1, ∅, i1), . . . , (Ck, ∅, ik)} with k ≤ p and let a genericσ such that
Tσ ∈ U(κ) be{(C1, ∅, i1), . . . , (Ck, ∅, ik), (Ck+1, ∅, iσ,k+1), . . . , (Cp, ∅, iσ,p)}. We can write

∑

Tσ∈U(κ)

Pσ =
∑

Tσ∈U(κ)

k
∏

l=1

αil(Cl)

p
∏

m=k+1

αiσ,m(Cm)

The set of instances ofU(κ) is obtained by selecting in all possible ways the head atoms of the clauses
Ck+1, . . . , Cp, so, ifNm = {1 . . . |head(Cm)|} andNm = Nk+1 × . . . × Nm for m = k + 1, . . . , p,
then

∑

Tσ∈U(κ)

Pσ =
∑

(nk+1,...,np)∈Np

k
∏

l=1

αil(Cl)

p
∏

m=k+1

αnm(Cm)

=

(

k
∏

l=1

αil(Cl)

)

∑

(nk+1,...,np)∈Np

p
∏

m=k+1

αnm(Cm) (1)

=

(

k
∏

l=1

αil(Cl)

)

∑

(nk+1,...,np−1)∈Np−1

∑

np∈Np

(

p−1
∏

m=k+1

αnm(Cm)

)

αnp(Cp)

=

(

k
∏

l=1

αil(Cl)

)

∑

(nk+1,...,np−1)∈Np−1

(

p−1
∏

m=k+1

αnm(Cm)

)

∑

np∈Np

αnp(Cp) (2)

=

(

k
∏

l=1

αil(Cl)

)

∑

(nk+1,...,np−1)∈Np−1

(

p−1
∏

m=k+1

αnm(Cm)

)

· 1 (3)

=

(

k
∏

l=1

αil(Cl)

)

∑

(nk+1,...,np−1)∈Np−1

p−1
∏

m=k+1

αnm(Cm)

=

(

k
∏

l=1

αil(Cl)

)

∑

(nk+1,...,np−2)∈Np−2

p−nt
∏

m=k+1

αnm(Cm)

...

=
k
∏

l=1

αil(Cl) = (4)

= Pκ

Formula 1 is obtained because
∏k

l=1 αil(Cl) does not depend on the index of the summation. Formula
2 is obtained because

∏p−1
m=k+1 αnm(Cm) does not depend on the index of the innermost summation.

Since the probabilities in the head of an LPAD clause sum up to 1 we get Formula3. By repeating the
above processp− k times, we get Formula 4 which isPκ by definition. ⊓⊔

A composite choiceκ is anexplanation for a goalQ if Tσ |=WF Q for all Tσ ∈ U(κ).



10 F. Riguzzi / SLGAD Resolution

For the case of Example 2.2, the following composite choices
κ1 = {(C1, {X/david}, 1)}
κ2 = {(C2, {X/david}, 1)}
κ3 = {(C1, {X/david}, 1), (C2, {X/david}, 1)}

are explanation forstrong itching(david).
A set of explanationsK = {κ1, . . . , κn} is covering with respect to a queryQ if, for every instance

Tσ such thatTσ |=WF Q, Tσ ∈
⋃n

i=1 U(κi). The sets of explanations
K1 = {κ1, κ2}
K2 = {κ1, {(C1, {X/david}, 2), (C2, {X/david}, 1)}, {(C1, {X/david}, 3), (C2, {X/david}, 1)}}

are covering forstrong itching(david) butK3 = {κ1} is not.
Two composite choicesκ1 andκ2 areincompatibleif there exists a couple(C, θ) such that(C, θ, i) ∈

κ1, (C, θ, j) ∈ κ2 and i 6= j. In this caseU(κ1) andU(κ2) are disjoint, so
∑

Tσ∈U(κ1)∪U(κ2)
Pσ =

Pκ1 + Pκ2 A set of composite choicesK = {κ1, . . . , κn} is mutually incompatibleif every couple of
composite choicesκi andκj of K is incompatible. For example,K1 above is not mutually incompatible
whileK2 is.

If K is mutually incompatible, then
∑

Tσ∈
⋃n

i=1 U(κi)
Pσ =

∑n
i=1 Pκi If a set of explanationsK is

covering for a queryQ and is mutually incompatible, thenPT (Q) =
∑

κ∈K Pκ. For the case of Example
2.2, PT (strong itching(david)) =

∑

κ∈K2
Pκ = 0.3 + 0.5 · 0.2 + 0.2 · 0.2 = 0.44 An LPAD is

(modularly) acyclicif all of its instances are (modularly) acyclic.

3. SLG Resolution Algorithm

SLG resolution [5, 4, 6] is a partial deduction procedure for query evaluation under the well-founded
semantics. SLG resolution repeatedly applies operations to a data structure obtaining a final structure
that contains all the answers to the query. The most distinctive feature of SLG resolution in comparison
with SLDNF resolution is its ability to avoid going into some infinite loops and the possibility of avoiding
redundant computations. SLG achieves this by using tabling.

In this section we will describe SLG resolution using the formulation presentedin [27] that is clearer
and easier to understand than the original formulation in [6].

SLG resolution takes as input a query in the form of an atom and producesa derivation that is
a sequence of forests of trees. In the following,subgoalwill be a synonym for atom. Each forest
is obtained from the previous one by applying an operation. The nodes ofthe trees have the form
AnswerTemplate : −DelaySet|GoalList that is calledX-clause. In it, AnswerTemplate is an atom
that is used to store bindings for a subgoal that have been obtained during the derivation,DelaySet is a
set of literals that have been “delayed”, i.e., whose evaluation has been suspended, whileGoalList is the
list of literals yet to be selected for resolution. The selection of literals inGoalList is performed using
an arbitrary but fixed computations rule, such as “left to right”.

Each tree in the forest has a root of the formA : −|A whereA is a subgoal. X-clauses are then
resolved with clauses from the program to obtain new nodes for the trees.When a node with an empty
GoalList is found, we have an answer for the subgoal in the root node. Answers for a subgoal may be
returned to other nodes in which the selected literal is built over that subgoal. When a positive literal
is selected, if we have an answer for the literal, resolution is performed between the X-clause and the
answer. When a ground negative literal¬A is selected, the literal is removed from the clause ifA has



F. Riguzzi / SLGAD Resolution 11

been completely evaluated and no answer has been found, as predicatedby negation as failure. IfA has
been completely evaluated and has been found true, the node is considered as failed. However, in the
presence of loops through negation, it may be necessary to proceed withthe computation even ifA has
not yet been completely evaluated. In this case SLG resolution chooses to ”delay” the selected literal, in
the hope that its truth value can be ascertained later.

Definition 3.1. (X-Clause)
An X-clauseis a clause of the formAnswerTemplate : −DelaySet|GoalListwhereAnswerTemplate
is an atom,DelaySet is a sequence of delayed literals (see Definition 3.3) andGoalList is a sequence
of literals. IfGoalList is empty, the X-clause is called ananswerclause. If theDelaySet of an answer
is empty it is termed anunconditional answer, otherwise, it is aconditional answer.

Definition 3.2. (SLG Trees and Forest)
An SLG forestis a set ofSLG trees. The nodes of an SLG tree are either an X-clause orfail. The latter
form is called afailure node. The root node of an SLG tree may be marked with the tokencompleted. In
this case, we also say that the subgoalA in the rootA : −|A of the tree iscompleted.

We call a nodeN an answer(unconditional answer, conditional answer) when the corresponding
X-clause is an answer (unconditional answer, conditional answer).

If an SLG forestF has an SLG tree with rootA : −|A, we call it thetree forA and we say thatA
belongstoF . If A belongs toF , letF(A) be the SLG tree forA.

Definition 3.3. (Delayed Literals)
A negative delayed literalin theDelaySet of a nodeN has the form¬A whereA is a ground atom.
Positive delayed literalshave the formDCall

Answer, whereD is an atom whose truth value depends on the
truth value of some answerAnswer for the subgoalCall. If θ is a substitution, then(DCall

Answer)θ =
(Dθ)Call

Answer. A delayed literal of the formDCall
Answer is groundif D is ground.

Delayed literals are used in order to store information regarding suspended computations so that they can
be later simplified away. We now define resolution between an X-clause and an answer so that delayed
literals are taken into account.

Definition 3.4. (SLG Answer Resolution)
Let N be a node of the formA : −D|L1, . . . , Ln wheren > 0 and letLj be the selected atom. Let
Ans = A′ : −D′| be an answer whose variables have been standardized apart fromN . N is SLG
answer resolvable withAns if Lj andA′ are unifiable with an mguθ. The SLG answer resolvent
of N andAns on Lj has the form(A : −D|L1, . . . , Lj−1, Lj+1, . . . , Ln)θ if D′ is empty and(A :

−D,D|L1, . . . , Lj−1, Lj+1, . . . , Ln)θ otherwise, whereD = Lj if Lj is negative, andD = Lj
Lj

A′

otherwise.

The following definition states when no more answers can be produced fora subgoal.

Definition 3.5. (Completely evaluated)
A setA of subgoals belonging to a forestF is completely evaluatedif at least one of the following
conditions holds for eachA ∈ A:

1. The tree forA contains an answerA : −|; or



12 F. Riguzzi / SLGAD Resolution

2. For each nodeN in the tree forA:

(a) The selected literalL of N is completed or inA; or

(b) There are no applicableNEW SUBGOAL, PROGRAM CLAUSE RESOLUTION, POSITIVE RE-
TURN, DELAYING or NEGATIVE RETURN operations (see Definition 3.9).

In certain cases the propagation of delayed answers may lead to a set of unsupported answers, i.e. con-
ditional answers of completely evaluated goals that can be removed.

Definition 3.6. (Supported answer)
Let F be an SLG forest,A a subgoal belonging toF andAnswer an atom that occurs in the head of
some answer ofA. ThenAnswer is supported byA in F if and only if:

1. A is not completely evaluated; or

2. There exists an answer nodeAnswer : −DelaySet| of A such that, for every positive delayed
literalDCall

Ans , Ans is supported byCall.

Therefore,Answer is unsupported byA in F if and only if A is completely evaluated and, for each
answer nodeAnswer : −DelaySet| of A, there is a positive delayed literalDCall

Ans such thatAns is
unsupported byCall.

An SLG derivation consists of a possibly transfinite sequence of SLG forests. Since we consider only
functor-free programs, an SLG derivation is a finite sequence of SLG forests.

Definition 3.7. (SLG Derivation)
Given a programT , an atomic queryQ and a set of tabling operations (from Definition 3.9), anSLG
derivationD for Q in T is a sequence of SLG forestsF0, . . . ,Fn such that:

• F0 is the forest containing the only treeQ : −|Q.

• For each integerm < n, Fm+1 is obtained byFm by the application of an operation from Defini-
tion 3.9.

If no operation is applicable toFn, Fn is called afinal forestof D. If Fm contains a leaf node with a
non-ground selected negative literal, the derivation isfloundered. If a derivationD is not floundered and
Fn is a final forest, we say thatD is completeand thatFn is complete.

Definition 3.8. Given an SLG forestF , an atomA is successfulin F if the tree forA has an uncon-
ditional answerA. A is failed in F if A is completely evaluated inF and the tree forA contains no
answer. A negative delayed literal¬D is successful(failed) in F if D is failed (successful) inF . A
positive delayed literalDCall

Ans is successfulin F if Call has an unconditional answerAns : −| in F and
is failed if Call is completed and it has no answers.

In the following we define the set of operations that can be applied to SLG forests.

Definition 3.9. (SLG Operations)
Given a forestFn of an SLG derivation for a queryQ in a programT , Fn+1 is produced by one of the
following operations:



F. Riguzzi / SLGAD Resolution 13

1. NEW SUBGOAL: Let Fn contain a non-root nodeN = Ans : −DelaySet|G,GoalList where
G is the selected literalA or ¬A. AssumeFn contains no tree with rootA. Then add the tree
A : −|A toFn.

2. PROGRAM CLAUSE RESOLUTION: Let Fn contain a root nodeN = A : −|A and letC be a
program clauseHead : −Body such thatHead unifies withA with mguθ. Assume that, inFn,
N does not have a childNchild = (A : −|Body)θ. Then addNchild as a child ofN .

3. POSITIVE RETURN: Let Fn contain a non-root nodeN whose selected literalL is positive. Let
Ans be an answer node forL in Fn andNchild be the SLG answer resolvent ofN andAns onL.
Assume that, inFn, N does not have a childNchild. Then addNchild as a child ofN .

4. NEGATIVE RETURN: Let Fn contain a leaf nodeN = Ans : −DelaySet|¬A,GoalList whose
selected literal¬A is ground. Then apply one of the following operations:

(a) NEGATION SUCCESS: If A is failed inFn, then letNchild beAns : −DelaySet|GoalList
and addNchild as a child forN .

(b) NEGATION FAILURE: If A is succeessful inFn, then create a child forN of the formfail.

5. DELAYING : Let Fn contain a leaf nodeN = Ans : −DelaySet|¬A,GoalList such thatA
is ground butA is neither successful nor failed inFn. Then create a child forN of the form
Ans : −DelaySet,¬A|GoalList

6. SIMPLIFICATION: LetFn contain a leaf nodeN = Ans : −DelaySet|, and letL ∈ DelaySet:

(a) if L is failed inFn, then create a childfail for N ;

(b) if L is successful inFn, then letNchild = Ans : −DelaySet′| whereDelaySet′ =
DelaySet− L. If N does not have a childNchild, then addNchild as a child ofN .

7. COMPLETION: Given a completely evaluated setA of subgoals (Definition 3.5), mark the roots of
the trees for all subgoals inA as completed.

8. ANSWER COMPLETION: Given a set of unsupported answerUA, add a failure node as a child of
each answerAns ∈ UA.

Let us illustrate the various operations by means of an example.

Example 3.1. Consider an extension of the 2-person game from Example 2.1 in which a position X is
winning for a player if there is a move fromX to a positionY that is not winning for the opponent and
Y satisfies a certain propertyp:

C1 = win(X) : −move(X,Y ),¬win(Y ), p(Y ).
Supposemove andp have the following definitions:

C2 = move(a, b). C3 = move(b, a). C4 = move(a, c).
C5 = p(b). C6 = p(c).

Suppose the query iswin(a) and that the literals are selected in the body of clauses from left to right.
Figure 1 shows the forest that is built by SLG. In it, the number associated tonodes indicate the step at
which the node is added.



14 F. Riguzzi / SLGAD Resolution

0 win(a) : −|win(a)

��

28 completed
2 move(a, Y ) : −|

move(a, Y )

||xx
xx

xx
xx

xx
x

""
FF

FF
FF

FF
FF

F

14 completed

1 win(a) : −|move(a, Y ),

¬win(Y ), p(Y )

wwpppppppppppppp

''NNNNNNNNNNNNNN

3 move(a, b) : −| 4 move(a, c) : −|

5 win(a) : −|¬win(b), p(b)

��

6 win(a) : −|¬win(c), p(c)

��

11 move(b, Y ) : −|

move(b, Y )

��

14 completed

23 win(a) : −|p(b)

��

16 win(a) : −|p(c)

��

12 move(b, a) : −|

27 win(a) : −| 20 win(a) : −|
13 move(c, Y ) : −|

move(c, Y )
14 completed

7 win(b) : −|win(b)

��

22 completed 17 p(c) : −|p(c)

��

19 completed

8 win(b) : −|move(b, Y ),

¬win(Y ), p(Y )

��

18 p(c) : −|

15 win(b) : −|¬win(a), p(a)

��

24 p(b) : −|p(b)

��

26 completed

21 fail 25 p(b) : −|

9 win(c) : −|win(c)

��

14 completed

10 win(c) : −|move(c, Y ),

¬win(Y ), p(Y )

Figure 1. SLG derivation tree for Example 2.3.



F. Riguzzi / SLGAD Resolution 15

In step 0, the tree forwin(a) is created with root nodewin(a) : −|win(a). ThenPROGRAM CLAUSE

RESOLUTION is applied with clauseC1 obtaining the only childwin(a) : −|move(a, Y ),¬win(Y ),
p(Y ) of win(a) : −|win(a). In step 2NEW SUBGOAL is applied creating a new tree formove(a, Y )
with root nodemove(a, Y ) : −|move(a, Y ). In steps 3 and 4PROGRAM CLAUSE RESOLUTIONis
applied with clausesC2 andC4 respectively, producing the two children ofmove(a, Y ) : −|move(a, Y ).
These are answers for the subgoalmove(a, Y ). At this point POSITIVE RETURNcan be applied twice
to win(a) : −|move(a, Y ),¬win(Y ), p(Y ) obtaining the two children marked with 5 and 6. In step
7 NEW SUBGOAL is applied creating the root nodewin(b) : −|win(b). The application ofPROGRAM

CLAUSE RESOLUTIONleads to nodewin(b) : −|move(b, Y ),¬win(Y ), p(Y ).
In step 9NEW SUBGOAL is applied to nodewin(a) : −|¬win(c), p(c) obtaining the new root node

win(c) : −|win(c). By PROGRAM CLAUSE RESOLUTIONwe getwin(c) : −|move(c, Y ),¬win(Y ),
p(Y ).

Then NEW SUBGOAL is applied towin(b) : −|move(b, Y ),¬win(Y ), p(Y ) leading to root node
move(b, Y ) : −|move(b, Y ) that is resolved with clauseC3 by PROGRAM CLAUSE RESOLUTION.
In step 13NEW SUBGOAL is applied towin(c) : −|move(c, Y ),¬win(Y ), p(Y ) obtaining the root
nodemove(c, Y ) : −|move(c, Y ). At this point the subgoalsmove(a, Y ),move(b, Y ),move(c, Y )
andwin(c) are completely evaluated, the first three because no operation is applicableand the fourth
because the selected literal of the only child in its tree ismove(c, Y ). ThereforeCOMPLETION is applied
and the root of the trees for these subgoals are marked as completed.

In step 15, the operationPOSITIVE RETURNis applied to nodewin(b) : −|move(b, Y ),¬win(Y ),
p(Y ) with answermove(b, a) : −| leading towin(b) : −|¬win(a), p(a). In step 16NEGATIVE RETURN

is applied to nodewin(a) : −|¬win(c), p(c) and, sincewin(c) is failed, the nodewin(a) : −|p(c) is
obtained.

By NEW SUBGOAL the root nodep(c) : −|p(c) is added. ThenPROGRAM CLAUSE RESOLUTIONis
applied obtaining the answerp(c) : −|. In step 19p(c) can be completed. The answerp(c) : −| is then
used byPOSITIVE RETURNon clausewin(a) : −|p(c) leading to the answerwin(a) : −|.

In step 21NEGATIVE RETURN adds the childfail to win(b) : −|¬win(a), p(a). win(b) can now be
completed because there is no applicable operation.

The childwin(a) : −|p(b) is produced fromwin(a) : −|¬win(b), p(b) by NEGATIVE RETURNsince
win(b) is failed. In step 24NEW SUBGOAL adds the root nodep(b) : −|p(b) which is then resolved with
C5 leading to the answerp(b) : −|. p(b) can now be completed since there is no applicable operation.

In step 27 the answerp(b) : −| is returned towin(a) : −|p(b) by POSITIVE RETURNobtaining the
answerwin(a) : −|. At this pointwin(a) can be completed leading to the final forest shown in Figure
1.

The operations that are not illustrated in this example, namelyDELAYING , SIMPLIFICATION and AN-
SWER COMPLETION, are those that deal with delayed literals. When a negative literal¬B is selected
in an active clause and it is neither successful nor failed, it is moved to the set of delayed literals with
a DELAYING operation. Later, if and when the truth value ofB becomes known, aSIMPLIFICATION

operation is applied. Example 4.1 in Section 4 will show an application of theDELAYING operation.
SLG resolution is sound with respect to the well-founded semantics.

Theorem 3.1. (Theorem 5.8 in [6])
LetT be a finite program,R be an arbitrary but fixed computation rule,Q be an atomic query andF be a
final forest forQ that is complete. Then, for every subgoalA in the root of a tree inF and every ground



16 F. Riguzzi / SLGAD Resolution

instanceB of A:

• B ∈ WF (T ) if and only ifB is an instance of the head of an unconditional answer ofA in F , and

• ¬B ∈ WF (T ) if and only ifB is not an instance of the head of any answer ofA in F .

Moreover, SLG resolution is search space complete with respect to the well-founded semantics [6]: if
the terms appearing in the forests of a derivation do not grow indefinitely, then a final forest is always
achieved. For the case of functor-free programs, all the terms appearing in a forest have size 1 so SLG
resolution always terminates.

4. SLGAD Resolution Algorithm

In this section we presentSLGAD resolution(Linear resolution with Selection function for General logic
programs with Annotated Disjunctions) that extends SLG resolution for dealing with LPADs. In the
following, letT be an LPAD.

In SLGAD, X-clauses are replaced by XD-clauses.

Definition 4.1. (XD-Clause)
An XD-clauseG is a quadruple(X,C, θ, i) whereX is an X-clause,C is a clause ofT , θ is a substitution
for the variables ofC andi ∈ {1, . . . , |head(C)|}. LetX beA : −D|B: if B is empty, the XD-clause is
called ananswer; if D andB are empty, the XD-clause is called anunconditional answer, if B is empty
andD is not empty, the XD-clause is called aconditional answer.

In SLGAD, SLG forests and trees are replaced by SLGAD systems, forests and trees.

Definition 4.2. (SLGAD Systems, Forests and Trees)
An SLGAD systemS is a couple(F , κ) whereF is an SLGAD forest andκ is a composite choice. An
SLGAD forestis a set ofSLGAD trees.

The root node of an SLGAD tree is an X-clause of the formA : −|A while the other nodes are either
XD-clauses orfail . The second form is called afailure node. The root node of an SLGAD tree may be
marked with the tokencompleted.

We call a nodeN an answer(unconditional answer, conditional answer) when the corresponding
XD-clause is an answer (unconditional answer, conditional answer).

If an SLGAD systemS (forestF) has an SLGAD tree with rootA : −A, we call it thetree forA
and we say thatA belongsto S (F). If A belongs toF , letF(A) be the SLG tree forA.

Given an SLGAD treeF(A) and a set of LPAD clausesC, letF(A) ∩ C be the tree containing only
the nodes(X,C, θ, i) such thatC ∈ C. Given an SLGAD forestF (treeF(A)), let s(F) (s(F(A))) be
the SLG forest (tree) obtained by replacing each XD-clause(X,C, θ, i) with the X-clauseX. Given an
SLGAD systemS = (F , κ), let s(S) = s(F).

The resolution between a root nodeA : −|A and a program clause inPROGRAM CLAUSE RESOLU-
TION is replaced by SLGAD goal resolution.

Definition 4.3. (SLGAD Goal Resolution)
LetA : −|A be an X-clause and letC be a clause ofT such thatA is unifiable with an atomH ′

i in the head
of C ′, whereC ′ is a variant ofC with variables renamed so thatA andC ′ have no variables in common.



F. Riguzzi / SLGAD Resolution 17

We say thatA : −|A is SLGAD goal resolvablewith C and the XD-clause((A : −|body(C ′))θ, C, θ, i)
is theSLGAD goal resolvent ofA with C on headHi, whereθ is the mgu ofA andH ′

i.

C is kept in the resolvent because we must be able to recover the ground program clause to which the
XD-clause refers.

SLG answer resolution between an X-clause and an answer X-clause inPOSITIVE RETURN is re-
placed by SLGAD answer resolution.

Definition 4.4. (SLGAD Answer Resolution)
Let G be an XD-clause(A : −D|L1, . . . , Ln, C, θ, i) with n > 0, and letLj be the selected atom. Let
Ans = (A′ : −D′|, E′, θ′, i′) be an answer XD-clause whose variables have been standardized apart
from G. If Lj andA′ are unifiable with an mguδ then we say thatG is SLGAD answer resolvable with
Ans. TheSLGAD answer resolvent ofG with Ans onLj has the form((A : −D|L1, . . . , Lj−1, Lj+1,
. . . , Ln)δ, C, θδ, i) if D′ is empty, and((A : −D,D|L1, . . . , Lj−1, Lj+1, . . . , Ln)δ, C, θδ, i) otherwise,

whereD = Lj if Lj is negative andD = Lj
Lj

A′ otherwise.

The definitions of delayed literals, completely evaluated set of subgoals andsupported answer are a
simple adaptation of those for SLG (definitions 3.3, 3.5 and 3.6).

We now provide a definition for an SLGAD derivation.

Definition 4.5. (SLGAD Derivation)
Given an LPADT , a ground atomic queryQ and a set of tabling operations (from Definition 4.6), an
SLGAD derivationD for Q in T is a tree of SLGAD systems such that: 1) the root systemS0 = (F0, κ0)
is such thatF0 contains a single treeQ : −|Q andκ0 = ∅; 2) the children of a systemSm are obtained
from Sm by the application of one of the operations from Definition 4.6.

If no operation is applicable to a systemSn, Sn is called afinal systemof D. If Sn contains a leaf
node with a non-ground selected negative literal, the derivation isfloundered. If a derivationD is not
floundered and a final system is reached in every branch ofD, we say thatD is completeand we call
completealso each final system.

The definition of successful and failed atom and of successful and failed delayed literal are a simple
generalization of those for SLG (Definition 3.8).

SLGAD resolution is defined by a number of operations that are applied to SLGAD systems to
produce one or more new systems. The initial systemS0 = (F0, κ0) is such thatF0 is obtained as in
SLG resolution whileκ0 is empty.

Definition 4.6. (SLGAD Operations)
SLGAD resolution contains the same operations of SLG.

NEW SUBGOAL, NEGATION FAILURE, DELAYING , SIMPLIFICATION, COMPLETION andANSWER

COMPLETION modify the SLGAD forest in the same way as they modify the SLG forest and leave the
composite choice unchanged.

PROGRAM CLAUSE RESOLUTION, POSITIVE RETURNandNEGATION SUCCESSare modified in the
following way: if N is the node to which they are applied andSm = (Fm, κm) is the system to which
N belongs, the generated clauseNchild is tested to see if it is answer. If not, thenNchild is added toN as
a child if it is not already a child. Otherwise, letNchild be(Ans : −DelaySet|, C, θ, i) and letA : −A
be the root ancestor ofN . Then one of the following operations is performed:



18 F. Riguzzi / SLGAD Resolution

1. if Ans : −| is already present inFm(A) then addfail as a child ofN and leaveκm unchanged;
otherwise

2. if (C, θ, j) ∈ κm with i 6= j then addfail as a child ofN and leaveκm unchanged; otherwise

3. if (C, θ, i) ∈ κm then addNchild as a child ofN if it is not already present and leaveκm un-
changed; otherwise

4. generateh branches, one for each atom in the head ofC. In theith branch, add(C, θ, i) to κm and
Nchild as a child ofN . In thejth branch withj 6= i, add(C, θ, j) to κm andfail as a child ofN .

SLGAD resolution for an atomic queryQ proceeds by building a tree of systems until a final system is
reached in every branch. When a new answerAns : −DelaySet| is found, SLGAD resolution checks
for the presence of an unconditional answerAns : −| in Fm(Ans). If it is present, the current answer is
redundant and the childfail is added. Otherwise, SLGAD resolution considers the atomic choice(C, θ, i)
that originated the current answer. If there is already an atomic choice for Cθ in κm, SLGAD resolution
either fails the tree branch, in case a different head has been selected,or adds the answer to the tree and
leavesκm unchanged. IfCθ does not appear inκm, we have a branching: SLGAD resolution generates
a different derivation branch for each atom in the head ofCθ. In theith branch it adds the answer to the
tree, while in the other branches it addsfail. Moreover, in thejth branch it adds the choice(C, θ, j) to
the composite choice.

We will prove in Section 5 that, ifT is range-restricted, each answer in an SLGAD forest is ground.
Let L(Q) be the set of final systems of a complete SLGAD derivation, i.e., those associated to the

leaves of the derivation tree. For each system inL(Q), SLGAD resolution checks whether there are only
conditional answers forQ. If so, SLGAD resolution returns the message “unsound” to the user.

Otherwise, SLGAD resolution builds the setK(Q) of the composite choices of the systems inL(Q)
that contain the unconditional answerQ : −| and returns the probability given by

∑

κ∈K(Q) Pκ.

Example 4.1. Let us now show the application of SLGAD resolution to the program of Example 2.3:
C1 = win(X) : 0.8 : −move(X,Y ),¬win(Y ), p(Y ).

C2 = move(a, b). C3 = move(b, a). C4 = move(a, c).

C5 = p(b). C6 = p(c).

Let the query bewin(a). The first 19 steps are the same as those of SLG resolution (see Example
2.1) with X-clauses replaced by XD-clauses, obtaining the systemS19 shown in Figure 2 where the
triples (Clause, Substitution, Index) are omitted for definite clauses. The systemS19 has an empty
composite choice.

ThenPOSITIVE RETURNis applied to(win(a) : −|p(c), C1, {X/a, Y/c}, 1) with answerp(c) : −|.
Since the result of the SLGAD answer resolution is the answerwin(a) : −|, branching is performed
obtaining two branchesD1 andD2 shown respectively in Figures 3 and 4. In branchD1, the child
(win(a) : −|, C1, {X/a, Y/c}, 1) is obtained and(C1, {X/a, Y/c}, 1) is added to the composite choice
of the system. In branchD2 the childfail is obtained and(C1, {X/a, Y/c}, 2) is added to the composite
choice of the system.

Let us now consider branchD1. In step 21NEGATIVE RETURN is applied obtaining the childfail
of (win(b) : −|¬win(a), p(a), C1, {X/b, Y/a}, 1). win(b) can now be completed because there is no
applicable operation.



F. Riguzzi / SLGAD Resolution 19

0 win(a) : −|win(a)

��

2 move(a, Y ) : −|

move(a, Y )

||xx
xx

xx
xx

xx
x

""
FF

FF
FF

FF
FF

F

14 completed

1 (win(a) : −|move(a, Y ),

¬win(Y ), p(Y ), C1, {X/a}, 1)

wwnnnnnnnnnnn

''PPPPPPPPPPP

3 move(a, b) : −| 4 move(a, c) : −|

5 (win(a) : −|¬win(b),

p(b), C1, {X/a, Y/b}, 1)

6 (win(a) : −|¬win(c),

p(c), C1, {X/a, Y/c}, 1)

��

11 move(b, Y ) : −|

move(b, Y )

��

14 completed

16 (win(a) : −|p(c),

C1, {X/a, Y/c}, 1)
12 move(b, a) : −|

13 move(c, Y ) : −|

move(c, Y )
14 completed

7 win(b) : −|win(b)

��

17 p(c) : −|p(c)

��

19 completed

8 (win(b) : −|move(b, Y ),

¬win(Y ), p(Y ), C1, {X/b}, 1)

��

18 p(c) : −|

15 (win(b) : −|¬win(a), p(a),

C1, {X/b, Y/a}, 1)

9 win(c) : −|win(c)

��

10 (win(c) : −|move(c, Y ),

¬win(Y ), p(Y ), C1, {X/c}, 1)

κ = ∅

Figure 2. SystemS19 of the SLGAD derivation tree for Example 2.3.



20 F. Riguzzi / SLGAD Resolution

NEGATIVE RETURN adds the child(win(a) : −|p(b), C1, {X/a, Y/b}, 1) sincewin(b) is failed.
NEW SUBGOAL adds the root nodep(b) : −|p(b) which is then resolved withC5 leading to the answer
p(b) : −|. p(b) can now be completed since there is no applicable operation.

In step 27POSITIVE RETURNis applied to(win(a) : −|p(b), C1, {X/a, Y/b}, 1). Since the result
is an answerwin(a) : −| that is already present in the tree forwin(a), no branching is performed, the
composite choice is left unaltered and the childfail is added. At this pointwin(a) can be completed and
the derivation along the branch ends.

In branchD2, DELAYING is applied to(win(b) : −|¬win(a), p(a), C1, {X/b, Y/a}, 1) obtaining
(win(b) : −¬win(a)|p(a), C1, X/b, Y/a, 1) in step 30.

Then, in step 31, byNEW SUBGOAL, the rootp(a) : −|p(a) is added and, since there is no applicable
operation, it is marked as completed, together withwin(b). Sincewin(b) is now failed, byNEGATIVE

RETURN the node(win(a) : −|p(b), C1, {X/a, Y/b}, 1) is added.
In step 34 the root nodep(b) : −|p(b) is created byNEW SUBGOAL and is resolved with clauseC5

obtaining the answerp(b) : −|. COMPLETION is then applied to the set{p(b)}.
By POSITIVE RETURNapplied to(win(a) : −|p(b), C1, {X/a, Y/b}, 1) we get an answer so branch-

ing is performed obtaining the branchesD2,1 andD2,2.
In D2,1, the answer(win(a) : −|, C1, {X/a, Y/b}, 1) is obtained and the atomic choice(C1, {X/a,

Y/b}, 1) is added to composite choice.win(a) can now be completed, the derivation along the branch
ends and the forest in Figure 4 is obtained.

InD2,2, (win(a) : −|p(b), C1, {X/a, Y/b}, 1) has childfail and the atomic choice(C1, {X/a, Y/b},
2) is added to the composite choice.win(a) can now be completed and the derivation ends. The forest
that is obtained differs from the one in Figure 4 only in the composite choice and in the node associated
to 37 which isfail.

The derivation tree that is built by SLGAD resolution for this example is shownin Figure 5. The set
L(Q) of final systems in the leaves of the tree is{S28,S38,S40}. None of these systems contains only
conditional answers forwin(a) so “unsound” is not returned to the user.win(a) is an answer inS28 and
S38 but not inS40 soK(Q) = {κ28, κ38} andPT (win(a)) = Pκ28 + Pκ38 = 0.8 + 0.2 · 0.8 = 0.96.

5. Proof of Soundness

The proof of soundness of SLDAG with respect to the LPAD semantics is based on Theorem 3.1. In
order to prove the soundness we need the following definition and lemmas.

An XD-clauseH : −D|B is range-restrictedif all the variables appearing inH also appear in
positive literals ofB. An answer XD-clauseA : −D| is groundif A andD are ground.

Lemma 5.1. LetT be a range-restricted LPAD,Q be a ground atom andD be an SLGAD derivation for
Q in T that is not floundered. Then all nodes in every system of each SLGAD derivation branch forQ
are range-restricted. Moreover, all answers in every system are ground.

Proof:
We will prove this lemma by induction on the systems in each derivation branch. For n = 0, S0 contains
the only nodeQ : −|Q which is range-restricted.



F. Riguzzi / SLGAD Resolution 21

0 win(a) : −|win(a)

��

28 completed
2 move(a, Y ) : −|

move(a, Y )

||xx
xx

xx
xx

xx
x

""
FF

FF
FF

FF
FF

F

14 completed

1 (win(a) : −|move(a, Y ),

¬win(Y ), p(Y ), C1, {X/a}, 1)

wwnnnnnnnnnnn

''PPPPPPPPPPP

3 move(a, b) : −| 4 move(a, c) : −|

5 (win(a) : −|¬win(b),

p(b), C1, {X/a, Y/b}, 1)

��

6 (win(a) : −|¬win(c),

p(c), C1, {X/a, Y/c}, 1)

��

11 move(b, Y ) : −|

move(b, Y )

��

14 completed

23 (win(a) : −|p(b),

C1, {X/a, Y/b}, 1)

��

16 (win(a) : −|p(c),

C1, {X/a, Y/c}, 1)

��

12 move(b, a) : −|

27 fail
20 (win(a) : −|,

C1, {X/a, Y/c}, 1)

13 move(c, Y ) : −|

move(c, Y )
14 completed

7 win(b) : −|win(b)

��

22 completed 17 p(c) : −|p(c)

��

19 completed

8 (win(b) : −|move(b, Y ),

¬win(Y ), p(Y ), C1, {X/b}, 1)

��

18 p(c) : −|

15 (win(b) : −|¬win(a), p(a),

C1, {X/b, Y/a}, 1)

��

24 p(b) : −|p(b)

��

26 completed

21 fail 25 p(b) : −|

9 win(c) : −|win(c)

��

14 completed

10 (win(c) : −|move(c, Y ),

¬win(Y ), p(Y ), C1, {X/c}, 1)

κ = {(C1, {X/a, Y/c}, 1)}

Figure 3. BranchD1 of the SLGAD derivation for Example 2.3.



22 F. Riguzzi / SLGAD Resolution

0 win(a) : −|win(a)

��

38 completed
2 move(a, Y ) : −|

move(a, Y )

||xx
xx

xx
xx

xx
x

""
FF

FF
FF

FF
FF

F

14 completed

1 (win(a) : −|move(a, Y ),

¬win(Y ), p(Y ), C1, {X/a}, 1)

wwnnnnnnnnnnn

''PPPPPPPPPPP

3 move(a, b) : −| 4 move(a, c) : −|

5 (win(a) : −|¬win(b),

p(b), C1, {X/a, Y/b}, 1)

��

6 (win(a) : −|¬win(c),

p(c), C1, {X/a, Y/c}, 1)

��

11 move(b, Y ) : −|

move(b, Y )

��

14 completed

33 (win(a) : −|p(b),

C1, {X/a, Y/b}, 1)

��

16 (win(a) : −|p(c),

C1, {X/a, Y/c}, 1)

��

12 move(b, a) : −|

37 (win(a) : −|, C1,

{X/a, Y/b}, 1)
29 fail

13 move(c, Y ) : −|

move(c, Y )
14 completed

7 win(b) : −|win(b)

��

32 completed 17 p(c) : −|p(c)

��

19 completed

8 (win(b) : −|move(b, Y ),

¬win(Y ), p(Y ), C1, {X/b}, 1)

��

18 p(c) : −|

15 (win(b) : −|¬win(a), p(a),

C1, {X/b, Y/a}, 1)

��

31 p(a) : −|p(a) 32 completed

30 (win(b) : −¬win(a)|p(a),

C1, {X/b, Y/a}, 1)
34 p(b) : −|p(b)

��

36 completed

9 win(c) : −|win(c)

��

14 completed 35 p(b) : −|

10 (win(c) : −|move(c, Y ),

¬win(Y ), p(Y ), C1, {X/c}, 1)

κ = {(C1, {X/a, Y/c}, 2), (C1, {X/a, Y/b}, 1)}

Figure 4. BranchD2,1 of the SLGAD derivation for Example 2.3.



F. Riguzzi / SLGAD Resolution 23

ONMLHIJKS1

...
��ONMLHIJKS19

D1

}}zz
zz

zz
zz D2

!!
DD

DD
DD

DD

ONMLHIJKS20

...
��

ONMLHIJKS30

...
�� ��ONMLHIJKS28

ONMLHIJKS36
D2,1

}}zz
zz

zz
zz Db2,2

!!
DD

DD
DD

DD

ONMLHIJKS37

��

ONMLHIJKS39

��ONMLHIJKS38
ONMLHIJKS40

Figure 5. SLGAD derivation tree for Example 2.3.

In the inductive case, we will prove that all the operations that can be applied to Sn−1 preserve
the property. ForPROGRAM CLAUSE RESOLUTION, since the node and the program clauses are range-
-restricted, the result of the resolution is range-restricted. Moreover,if an answer is obtained, it has an
empty set of delayed literal and, since it is range-restricted, it is ground.

For NEW SUBGOAL we get a new tree whose root is range-restricted.COMPLETION andANSWER

COMPLETION do not have influence on the property.NEGATIVE RETURN deletes a literal from the body
only if is ground. ForPOSITIVE RETURN, by the inductive hypothesis the answerAns = H : −D| is
ground, therefore the child node has the property.

DELAYING moves a ground negative literal to the delay set, so it keeps the property.
SIMPLIFICATION removes a literalL from the delay set if it is successful. IfL is negative, then it is

ground. IfL is a positive literalACall
Ans , Call has an unconditional answerAns : −| that, by the inductive

hypothesis, is ground. ⊓⊔

Lemma 5.2. If G = (H : −D|B,C, θ, i) appears anywhere in a system of a non-floundered SLGAD
derivation branch for a ground atomQ, the variables appearing inCθ are those appearing inH : −D|B.

Proof:
We will prove this lemma by induction on the systems in a derivation branch. Forn = 0, no XD-clause
G = (H : −D|B,C, θ, i) appears inS0 so the property holds.

In the inductive case, ifSn is obtained byNEGATIVE RETURN, DELAYING , COMPLETION or AN-
SWER COMPLETIONthe property holds trivially because no variables are removed fromH : −D|B. If
PROGRAM CLAUSE RESOLUTIONis applied toSn−1, for the definition of the operation the lemma holds.
For POSITIVE RETURN, SLGAD answer resolution keeps the property because the mgu substitutionδ



24 F. Riguzzi / SLGAD Resolution

is composed withθ in the result of SLGAD answer resolution. ForSIMPLIFICATION, if L is negative it
must be ground so no variables are removed fromH : −D|B. If L isDCall

Ans and is successful, this means
thatAns : −| is an answer forCall andD is an instance ofAns. Since answers are ground, so isD and
no variables are removed fromH : −D|B.

⊓⊔

Lemma 5.3. If T is a range-restricted LPAD and(C, θ, i) belongs to the composite choiceκ in a leaf of
a branch of a non-floundered SLGAD derivation for a ground atomQ, thenCθ is ground.

Proof:
Each triple(C, θ, i) is inserted intoκ only in PROGRAM CLAUSE RESOLUTION, POSITIVE RETURNor
NEGATIVE RETURN that produce an answer XD-clauseG = (H : −D|, C, θ, i). SinceH : −D| is
ground, by Lemma 5.1,Cθ is ground by Lemma 5.2. ⊓⊔

Lemma 5.4. Given a ground atomQ and a ground LPADT , for every complete SLG derivation forQ in
an instanceTσ with final forestF , there exists a branch of a complete SLGAD derivation forQ in T with
final system(F ′, κ) such thatκ ⊆ σ and the set of answers forQ in F andF ′ is the same. Vice-versa,
for every branch of a complete SLGAD derivation forQ in T with final system(F ′, κ), there exists a
selectionσ with κ ⊆ σ and a complete SLG derivation forQ in Tσ with final forestF such that the set
of answers forQ in F ′ andF is the same.

Proof:
Consider the first part. LetD be a complete SLG derivation forQ in Tσ and letRn−1 be the operation
applied to forestFn−1 in D to get forestFn. We will build a sequence of systemsD that is a branch of
the SLGAD derivation forQ in T and in which operationR′

n−1 is applied to the systemSn−1 to getSn.
We will prove by induction that, for everyFn ∈ D, Sn = (F ′

n, κn) ∈ D is such thats(F ′
n) = Fn

andκn ⊆ σ. Forn = 0, let F0 be equal toF ′
0 and letκ0 = ∅. Suppose now that the property holds

for n− 1. If Fn is obtained by an operation different fromPROGRAM CLAUSE RESOLUTION, POSITIVE

RETURN andNEGATION SUCCESS, the same operation is applied also toSn−1, producing aSn such that
s(Sn) = Fn.

If Rn−1 is PROGRAM CLAUSE RESOLUTION, POSITIVE RETURNor NEGATION SUCCESSand an
answer is not obtained, the same operation is applied toSn−1 producing aSn such thats(Sn) = Fn.

If an answer is obtained, suppose the answer is a descendant of a childof a root obtained byPRO-
GRAM CLAUSE RESOLUTIONwith the clauseHi(C) : −Body(C) of Tσ. There exists one branch of the
SLGAD derivation in which the answer is obtained as well, unless(C, ∅, j) ∈ κn−1 with j 6= i, but this
case can be ruled out becauseκn−1 ⊆ σ, the clause(Hi(C) : −body(C)) is in Tσ andσ is consistent.

Sinces(F ′
n) = Fn for all n, the final system(F ′, κ) of D contains every answer forQ that the final

forestF of D contains.
Consider the second part. LetD be a SLGAD derivation branch ofQ in T , letR′

n−1 be the operation
applied to the systemSn−1 in D to get systemSn. Consider a selectionσ such thatσ ⊇ κ. We will build
a derivationD that is a valid SLG derivation forQ in Tσ provided that we add aNO OPoperation to SLG
resolution that keeps the forest unaltered. LetH be the set of atoms that appear in the head of rules of
Tσ.

We will prove by induction that, for everySn ∈ D whereSn = (F ′
n, κn), Fn ∈ D is such that

Fn(A) = s(F ′
n(A) ∩ Tσ) for everyA ∈ H and that only clauses inTσ are used in operations of type



F. Riguzzi / SLGAD Resolution 25

PROGRAM CLAUSE RESOLUTIONon Fn. For n = 0, let F ′
0 = F0. Suppose now that the property

holds forn− 1. If Sn is obtained by an operation that is applied to a node(H : −D|B,C, ∅, i) such that
(C, ∅, i) 6∈ σ letRn−1=NO OP. In this case the property is kept.

Otherwise, ifR′
n−1 is PROGRAM CLAUSE RESOLUTION, suppose SLGAD goal resolution is per-

formed with program clauseC on headHi(C). If (C, ∅, i) 6∈ σ, let Rn−1 =NO OP. If (C, ∅, i) ∈ σ,
let Rn−1 =PROGRAM CLAUSE RESOLUTIONwith the clauseHi(C) : −Body(C). In both cases, the
operation keeps the property.

If R′
n−1 is applied to an XD-clause(H : −D|B,C, ∅, i) such that(C, ∅, i) ∈ σ let Rn−1 = R′

n−1.
If R′

n−1 is POSITIVE RETURN, the answer that is used is obtained from an XD-clause(H : −D|, C, ∅, i)
such that(C, ∅, i) ∈ κ so the operation keeps the property. Similarly forNEGATION SUCCESS.

If Sn is obtained byCOMPLETION applied to a setA, then letRn−1 be COMPLETION with the set
A ∩H. If the tree forA ∈ A ∩H contains an answerA : −| in F ′

n−1(A) , thenFn−1(A) also contains
the answerA : −|. Otherwise, consider an XD-clauseG in F ′

n−1(A) and letL be the selected atom.
If L ∈ H, then the tree forL belongs toFn−1. If L is completed inSn−1 or L is in A, thenL is

completed inFn−1 or L is in A ∩ H. If there are no applicableNEW SUBGOAL, PROGRAM CLAUSE

RESOLUTION, POSITIVE RETURN, DELAYING or NEGATIVE RETURNoperations to every nodeN in the
tree forL in F ′

n−1, then these operations are not applicable as well toN in Fn−1.
If L 6∈ H, then there is no clause forL in Tσ, soL is completed inFn−1.
If Sn is obtained byANSWER COMPLETIONapplied to a setUA, then letRn−1 be ANSWER COM-

PLETION applied to the setUA ∩H.
Let us prove thatUA∩H is unsupported inFn−1 by induction on the levels of unsupportedness: the

atoms of level 0 are those that are completed and that have no answers, theatoms of leveln are those
that are completed and whose answer have an unsupported delayed literal LL

L such thatL belongs to
levels0, 1, . . . or n − 1. In the base case,A does not have any answer inF ′

n−1. This means thatA is
unsupported also inFn−1.

In the recursive case, for very answerA : −DelaySet′|, there exists a delayed literalLL
L such that

L is unsupported byL in F ′
n−1. If L ∈ UA ∩ H, thenL is unsupported by the inductive hypothesis. If

L ∈ UA \ H, thenL cannot be an answer, against the hypothesis thatLL
L belongs to the delay set.

SoD is a valid SLG derivation inTσ. Moreover, sinces(F ′
n(A) ∩ Tσ) = Fn(A) for all n and all

A ∈ H, then the final forestF of D contains every answer forQ that the final system(F ′, κ) of D
contains. ⊓⊔

Lemma 5.5. Let T be a range-restricted LPAD,g(T ) be its grounding andQ be a ground atom. If the
SLGAD derivation forQ in T is not floundered, the probabilities ofQ returned by SLGAD resolution in
T and ing(T ) are the same.

Proof:
LetD be an SLGAD derivation forQ in T and letD′ be an SLGAD derivation forQ in g(T ). Since only
ground answers are obtained both inD and inD′ and branching is performed only when a new answer
is obtained, there is a one to one correspondence between the branchesof D andD′. Moreover, the set
of answers in a branchD of D is the same as that in the corresponding branchD′ of D′. ⊓⊔

Theorem 5.1. If T is a range-restricted LPAD,Q is a ground atom and the SLGAD derivation forQ in
T is not floundered, then the derivation returnsPT (Q).



26 F. Riguzzi / SLGAD Resolution

Proof:
By lemmas 5.4 and 5.5, for every instanceTσ such thatQ is true inTσ, there exists an SLGAD derivation
branch forQ whose final system has a composite choiceκ such thatσ ⊇ κ, soK(Q) is covering.

Also by lemmas 5.4 and 5.5, for every composite choiceκ such thatκ ∈ K(Q) and for every
instancesTσ such thatσ ⊇ κ, we have thatQ is true inTσ. SoK(Q) is a set of explanations forQ.

MoreoverK(Q) is mutually incompatible because, given two composite choicesκ1 andκ2 in K(Q),
we can identify a ground clauseCθ for which (C, θ, i) ∈ κ1, (C, θ, j) ∈ κ2 andi 6= j by going back to
the node of the derivation tree that is the least common ancestor of the leavesassociated withκ1 andκ2.
Therefore, the probability of the query can be obtained by summing the probability of all the composite
choices inK(Q). ⊓⊔

6. SLGAD Implementation

In this section we present a description of an algorithm for performing SLGAD resolution that is based
on the SLG resolution algorithm described in [4].

SLGAD resolution, as SLG resolution, only specifies the set of possible operations, it does not
specify in what order they should be applied. In particular,DELAYING delays ground negative literals
so that the computation can proceed even if there are loops through negation. However, if we delay a
literal too early, we may incur in the computation of irrelevant subgoal that can slow down the procedure.
Moreover,COMPLETION has to detect subgoals that have been completely evaluated in order to resolve
their negative counterparts.

In order to overcome these problems, [4] proposed an algorithm for keeping tracks of the depen-
dencies among subgoals. The algorithm uses a number of global data structures for storing the state of
the computation. It keeps a “table”T where it stores, for each subgoalA, the set of answersAnss(A)
found so far forA, a list of clausesPoss(A) in whichA is selected and that wait for its answers, a list
of clausesNegs(A) in which¬A is selected and that wait for its answers and a Boolean flagComp(A)
that stores whether the subgoal has been completely evaluated. Moreover, it keeps a stackS on which
new subgoals encountered during the search are pushed. The stack isused in order to keep track of the
dependencies of the subgoals and to perform theCOMPLETION operation correctly and efficiently.

The pseudocode for the SLGAD algorithm is very similar to that of SLG: it differs from it mainly
because it adds non-deterministic choice points corresponding to cases inwhich a new answer is found
by the operationsPROGRAM CLAUSE RESOLUTION, POSITIVE RETURNor NEGATION SUCCESS.

The main function of the algorithm is shown in Figure 6. It takes as input a ground atomQ and an
LPAD T and it keeps four global variables. The first three are shared with SLG: the tableT , the stack
of subgoalsS and the counter Count, used to keep track of dependencies among subgoals. The fourth
variable is specific to SLGAD and is a composite choiceκ. We assume that the global variables are
copied to the different branches of the search tree generated by the choice points, so that a modification
in a branch does not influence the other branches.

The SLGAD algorithm is composed of the same procedures as SLG plus procedure ADDCHOICE
that implements the operations specific to SLGAD resolution. We refer to [4] for a detailed description
of the individual SLG procedures, here we report only the differences, that are indicated in italics in the
figures. Procedure SLGSUBGOAL (see Figure 7) is called to take into account a new subgoal and differs
from that of SLG because in line 3 each SLGAD goal resolvent is considered rather than each resolvent.



F. Riguzzi / SLGAD Resolution 27

Figure 6. Procedure SLGAD

1 function SLGAD(Q,T )
2 begin
3 Initialize Count,T , S, DFN, PosMin and NegMin as in SLG;
4 κ := ∅;
5 letK(Q) be the set of all the values forκ after a call of
6 SLG SUBGOAL(Q,PosMin,NegMin) such thatT containsQ as an answer;
8 if Q appears only in conditional answers in a derivation branchthen return unsound;
9 else return

∑

κ∈K(Q) Pκ;
10 end;

Procedure SLGNEWCLAUSE (see Figure 7) considers the selected literal and it adds an answer if the
body is empty. SLGNEWCLAUSE is the same as in SLG with X-clauses replaced by XD-clauses. The
main difference is in procedure SLGANSWER (see Figure 8) where a call to ADDCHOICE is added
in line 3.

ADD CHOICE takes as input a subgoalA and an XD-clauseG and returns a Boolean variable
Derivable. IfG = (Ans : −D|, C, θ, i) , ADD CHOICE checks whether the answerAns : −| is already
contained in the table entry forA or if κ contains an atomic choice inconsistent with(C, θ, i). If so, it sets
Derivable to false and leavesκ unchanged. Otherwise, it checks whetherκ already contains(C, θ, i). If
so, it sets Derivable to true and leavesκ unchanged. Otherwise it generates|head(C)| search branches.
In thejth branch, it adds(C, θ, j) to κ and, ifj = i, it sets Derivable to true, otherwise it sets Derivable
to false.

In SLG ANSWER, if Derivable is set to true by ADDCHOICE,G is added to the table as an answer.
Otherwise nothing is done.

Procedure SLGPOSITIVE, that performs resolution on a positive literal, modifies the one ofSLG
by replacing SLG answer resolution with SLGAD answer resolution. The other SLG procedure are
modified simply by replacing X-clauses with XD-clauses.

If the conditional probability of a ground atomQ given another ground atomE must be computed,
rather then computingPT (Q ∧ E) andPT (E) separately, an optimization can be done: we first identify
the explanations forE and then we look for the explanations forQ starting from an explanation forE,
as shown in Figure 10.

7. Related Works

LPADs share with many other languages the basic approach for defining aprobabilistic semantics: a
theory in the language defines a probability distribution over normal logic programs and the probability
of a query is given by the sum of the probabilities of the programs where thequery is true. This approach
was called “distribution semantics” in [24].

Other languages that follow a distribution semantics include: probabilistic logic programs [8], the
Independent Choice Logic (ICL) [17], pD [11], PRISM [26] and ProbLog [9].

[8] introduced the distribution semantics for probabilistic logic programs. Thepaper discusses a
functor-free language in which you can have normal clauses and probabilistic disjunctive clauses as in



28 F. Riguzzi / SLGAD Resolution

Figure 7. Procedures SLGSUBGOAL and SLGNEWCLAUSE

1 procedureSLG SUBGOAL(A,PosMin,NegMin)
2 begin
3 for each SLGAD goal resolventG of A with some clauseC ∈ T on the headHi do begin
4 SLG NEWCLAUSE(A,G,PosMin,NegMin);
5 end;
6 SLG COMPLETE(A,PosMin,NegMin);
7 end;
8
9 procedureSLG NEWCLAUSE(A,G,PosMin,NegMin)
10 begin
11 if G has no body literals on the right of| then
12 SLGANSWER(A,G,PosMin,NegMin);
13 else ifG has a selected atomB then
14 SLGPOSITIVE(A,G,B,PosMin,NegMin);
15 else ifG has a selected ground negative literal¬B then
16 SLGNEGATIVE(A,G,B,PosMin,NegMin);
17 else/* G has a selected non-ground negative literal */
18 halt with an error message;
19 end;
20 end;

LPADs. However, disjunctive clauses are restricted to have an empty body. The algorithm proposed
for computing the probability of a query first finds all the explanations for the query and then computes
the probability by using the inclusion-exclusion formula that returns the probability of a propositional
formula given the probabilities of the individual propositions. However, the inclusion-exclusion formula
works only for very small programs because it requires the computation ofthe probability of every
possible conjunction of explanations.

ICL [17] allows normal clauses and disjunctive clauses with an empty body as probabilistic logic
programs but it allows function symbols by defining the probability of a queryin terms of its explanations
rather than in terms of complete instances. However, the definite part of the program is required to
be acyclic. ICL is equipped with a reasoning system called Ailog2 [18]. As [8], it first finds all the
explanations for the query and then it computes the probability. It uses an iterative algorithm for making
the explanations incompatible so that the probability can be computed as a sum ofproducts. Even if
the semantics of ICL has been defined for acyclic programs, it can be extended to modularly acyclic
programs and Ailog2 already handles correctly such a semantics.

[30] showed that acyclic functor-free LPADs can be converted to ICLprograms in a way that pre-
serves the semantics. Thus inference on LPADs can be performed by first converting them to ICL and
then using Ailog2. The semantics of ICL can be defined also for modularly acyclic programs and the
mapping from LPADs can be applied also for modularly acyclic LPADs, so Ailog2 can be used for
inference on this kind of LPADs.

pD [11] is a Datalog language very similar to LPADs, in which probability distributions are defined
over the heads of rules. The proposed inference algorithm computes allthe explanations for a goal
and then uses the inclusion-exclusion formula for computing the probability ofthe disjunction of the



F. Riguzzi / SLGAD Resolution 29

Figure 8. Procdure SLGANSWER

1 procedureSLG ANSWER(A,G,PosMin,NegMin)
2 begin
3 ADD CHOICE(A,G,Derivable);
5 if Derivablethen begin
6 insertG intoAnss(A);
7 if G has no delayed literalsthen begin
8 resetNegs(A) to empty;
9 letL be the list of all pairs(B,H ′), where(B,H) ∈ Poss(A) andH ′

10 is theSLGAD answer resolventof H with G;
11 for each(B,H ′) in L do begin
12 SLGNEWCLAUSE(B,H’,PosMin,NegMin);
13 end;
14 end else begin/* G has a non empty delay */
15 if no other answer inAnss(A) has the same head asG doesthen
16 begin
17 letL be the list of all pairs(B,H ′), where(B,H) ∈ Poss(A) andH ′

18 is theSLGAD answer resolventof H with G;
19 for each(B,H ′) in L do begin
20 SLGNEWCLAUSE(B,H ′,PosMin,NegMin);
21 end;
22 end;
23 end;
24 end;
25 end;



30 F. Riguzzi / SLGAD Resolution

Figure 9. Procedure ADDCHOICE

1 procedureADD CHOICE(A,G,Derivable)
2 begin
3 letG be(Ans : −D|, C, θ, i);
4 if T containsAns : −| in Anss(A) or
5 (C, θ, j) ∈ κ with j 6= i then begin
6 Derivable:= false;
7 end else begin
8 if (C, θ, i) ∈ κ then
9 Derivable:= true;
10 end else begin
11 choose an indexj from {1, . . . , |head(C)|} (choice point);
12 if i = j then begin
13 Derivable:= true;
14 end else begin
15 Derivable:= false;
16 end
17 κ := κ ∪ {(C, θ, j)};
18 end
19 end
20 end

Figure 10. Procedure SLGADCOND

1 procedureSLGAD COND(Q,E,T )
2 begin
3 Initialize Count,T , S, DFN, PosMin and NegMin as in SLG;
4 κ := ∅;
5 letK(E) be the set of all the values forκ after a call of
6 SLG SUBGOAL(E,PosMin,NegMin) such thatT containsE as an answer;
7 if E appears only in conditional answers in a derivation branchthen return unsound;
8 else if

∑

κ∈K(E) Pκ = 0 then return undefined;
9 else begin
10 Initialize Count,T , S, DFN, PosMin and NegMin as in SLG;
11 letK(Q) be the set of all the values ofκ after a call of
12 begin
13 pick a choiceκ′ fromK(E);
14 κ = κ′;
15 letK(Q) be the set of all the values forκ after a call of
16 SLGSUBGOAL(Q,PosMin,NegMin) such thatT containsQ as an answer;
17 end;
18 if Q appears only in conditional answers in a derivation branchthen return unsound;

19 else returnP (Q|E) =
∑

κ∈K(Q) Pκ
∑

κ∈K(E) Pκ
;

20 end;



F. Riguzzi / SLGAD Resolution 31

explanations. As already noted for [8], this approach is infeasible in practice.
PRISM [26] is a language that follows the distribution semantics and assigns probabilities to ground

facts. The algorithm proposed for inference requires the bodies of therules for the same ground atom
to be mutually exclusive, i.e., no couple of bodies can be true in the same instance, thus making it
inapplicable to the problems considered in Section 8.

ProbLog [9] is a language in which each clause can be annotated with a probability p. A probability
distribution over normal logic programs is defined by picking each clause withprobability p and by
leaving out the clause with probability1 − p. ProbLog differs from LPADs because an LPAD clause
encodes more than two possibilities but especially because the selection is performed directly on the
clauses of the program rather than on their grounding. [9] proposed an inference algorithm that first
finds the explanations for queries and then computes the probability using Binary Decision Diagrams.
In principle the ProbLog inference algorithm could be applied to LPAD but this would required the
complete grounding of the LPAD which is too large for all but the smallest programs.

In order to avoid completely grounding an LPAD for performing inference, [21] proposed SLFNFAD
that adopts an approach similar to the one of ProbLog to LPADs. SLDNFAD thus uses Binary Decision
Diagrams for making the explanations incompatible. SLDNFAD is sound and complete for programs for
which the Clark’s completion semantics [7] and the well-founded semantics coincide, as for acyclic [1]
and modularly acyclic programs [22].

SLGAD resolution generates explanations that are automatically mutually incompatible. Therefore,
it can simply sum up the probabilities of individual explanations, differently from Ailog2, where an
iterative algorithm is applied, and from SLDNFAD, where Binary Decision Diagrams are used.

[29] presents the CP-logic language that is syntactically a superset of LPADs but differs in the def-
inition of the semantics: a CP-logic theory defines a probabilistic process thatspecifies a sequence of
events in a way that respects a number of axioms on causal influence. [29] then shows that the CP-logic
semantics, when it is defined, is equivalent to the LPAD semantics. However, there are LPADs that are
not valid CP-logic theories, i.e., for which the CP-logic semantics is not defined.

8. Experiments

We tested SLGAD on some synthetic problems that were used as benchmarks for SLG [4, 3]:win, lanc
andranc. Moreover, we tested it on programs that encode games of dice similar to the one presented in
[31].

win is an implementation of the 2-person game of Example 2.3 and contains the clause

win(X):0.8 :- move(X,Y),\+ win(Y).

lanc andranc model the ancestor relation with left and right recursion respectively:

lancestor(X,Y):0.8 :- move(X,Y).

lancestor(X,Y):0.8 :- lancestor(X,Z),move(Z,Y).

rancestor(X,Y):0.8 :- move(X,Y).

rancestor(X,Y):0.8 :- move(X,Z),rancestor(Z,Y).

Various definitions ofmove are considered: a linear and acyclic relation, containing the tuples(1, 2), . . . ,
(N − 1, N), a linear and cyclic relation, containing the tuples(1, 2), . . . , (N − 1, N), (N, 1), and a tree



32 F. Riguzzi / SLGAD Resolution

5 10 15 20

10
−2

10
0

10
2

N

T
im

e
 (

s)

 

 

SLGAD
Ailog2
SLDNFAD

(a) Linearmove.

5 10 15 20 25

10
−2

10
0

10
2

N

T
im

e
 (

s)

 

 

SLGAD

(b) Cyclicmove.

Figure 11. Execution times forwin.

1 2 3 4

10
−2

10
−1

10
0

N

T
im

e
 (

s)

 

 

SLGAD
Ailog2
SLDNFAD

Figure 12. Execution times forwin with treemove.

relation, that represents a complete binary tree of heightN , containing2N+1 − 1 tuples. Forwin, all the
move relations are used, while forlanc andranc only the linear ones.

SLGAD was compared with Ailog2 and SLDNFAD. For SLGAD and SLDNFAD we used the im-
plementations in Yap Prolog2 available in thecplint suite3. The SLGAD code was developed starting
from the code of the SLG system4. For Ailog2 we ported the code available on the web5 to Yap. All the
experiments were performed on Linux machines with an Intel Core 2 Duo E6550 (2,333 MHz) processor
and 4 GB of RAM. Yap version 6.0.0 was used in all cases except where indicated.

The execution times for the querywin(1) to thewin program are shown in Figures 11(a)6, 11(b)
and 12 as a function ofN for linear, cyclic and treemove respectively. The time axis is logarithmic in
these figures. Figures 13 and 14 show the execution time for the queryancestor(1,N) to the programs
lanc andranc respectively.

win has an exponential number of instances where the query is true and the graphs show the combi-
natorial explosion. On the ancestor dataset, there is only one instance where the query is true, the one
obtained by always selecting the non-null head. In such an instance, a goal-oriented proof procedure

2http://www.ncc.up.pt/~vsc/Yap/
3http://www.ing.unife.it/software/cplint/, also included in the development version of Yap
4http://engr.smu.edu/~wchen/slg.html
5http://www.cs.ubc.ca/~poole/aibook/code/ailog/ailog man.html
6Yap version 5.1.3 was used in this experiments for SLDNFAD because itgave better results than Yap version 6.0.0.



F. Riguzzi / SLGAD Resolution 33

0.1 0.5 0.9 1.3 1.7
x 10

4

0

1000

2000

3000

4000

5000

N

T
im

e
 (

s)

 

 

SLGAD

(a) Linearmove.

0.1 0.5 0.9 1.3 1.7
x 10

4

0

1000

2000

3000

4000

N
T

im
e

 (
s)

 

 

SLGAD

(b) Cyclicmove.

Figure 13. Execution times forlanc.

0.1 0.5 0.9 1.3 1.7
x 10

4

0

1000

2000

3000

4000

5000

6000

7000

N

T
im

e
 (

s)

 

 

SLGAD
Ailog2
SLDNFAD

(a) Linearmove.

0.1 0.5 0.9 1.3 1.7
x 10

4

0

2000

4000

6000

8000

10000

N

T
im

e
 (

s)

 

 

SLGAD

(b) Cyclicmove.

Figure 14. Execution times forranc.



34 F. Riguzzi / SLGAD Resolution

builds a search tree composed of a single branch with a number of nodes proportional toN . However,
the execution time of SLGAD increases more than linearly as a function ofN because each derivation
step requires a lookup and an insert in the tableT that is implemented as a tree-like data structure (2-3
tree [2] in the SLG system). Each insert and lookup take logarithmic time.

SLGAD is compared with Ailog2 and SLDNFAD on the problems that are modularlyacyclic and
right recursive, i.e.win with linear and treemove andranc with linearmove. On the other problems
a comparison was not possible because Ailog2 and SLDNFAD would go into an infinite loop. Inwin
all the algorithm show the combinatorial explosion (see figures 11(a) and 12), with SLGAD performing
better than Ailog2 and SLDNFAD for linearmove and better than Ailog2 and worse than SLDNFAD for
treemove. Onranc with linearmove (Figure 14(a)), SLGAD takes longer than Ailog2 and SLDNFAD,
with Ailog2 being particularly fast, probably due to the peculiarity of its incompatibility algorithm.

The peaks of SLGAD onranc are due to an uneven behavior of garbage collection due to the fact
that Yap 6.0.0 is still a development version.

SLGAD was tested also on programs encoding games of dice in which the player, starting from time
0, repeatedly throws a die at each time point and stops only when a certain subset of the faces comes up.
We want to compute the probability that a certain face is obtained at a certain time point.

To model this problem, we use a predicateon(T,F) that states that the die was thrown at timeT and
faceF was obtained. If we consider a three-sided die, the problem can be encoded with the following
LPAD:

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.

on(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 :-

T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3).

The first clause states that, at time 0, one of the three faces is obtained with equal probability. The second
clause states that, at timeT, a face is obtained with equal probability if, at the previous time point, the
die was thrown (on(T1,F)) and face 3 was not obtained (\+ on(T1,3)).

Note that this program uses integers and so its grounding is potentially infinite.For such programs the
semantics of LPADs is not defined. To overcome this difficulty we generatedground programs from the
one above by considering a finite set of integers, from0 to N , and by pre-evaluating the built predicates
in the body. So, for example, forN = 2 we get the programdie1:

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.

on(1,1):1/3 ; on(1,2):1/3 ; on(1,3):1/3 :- on(0,F), \+ on(0,3).

on(2,1):1/3 ; on(2,2):1/3 ; on(2,3):1/3 :- on(1,F), \+ on(1,3).

In this way, we are able to answer only queries of the formon(T,F) with T smaller or equal toN .
We generated these programs for increasing values ofN and, from each of them, we query the

probability ofon(N,1). The execution times of SLGAD, SLDNFAD and Ailog2 for increasing values
of N are shown in Figure 15, where theY axis is logarithmic. In this case, SLGAD clearly outperforms
the other systems, due to the use of tabling: when computingon(T,1), the subgoalon(T-1,F) will
be evaluated which will, in turn, computeon(T-2,F) andon(T-2,3). Then\+ on(T-1,3) will be
considered and resolved with the recursive clause giving a body ofon(T-2,F),\+ on(T-2,3): both of
these subgoal have already been evaluated so their answers can be extracted from the table.

On the other hand, Ailog2 and SLDNFAD have to go back to time zero each time they evaluate
on(T-2,F),\+ on(T-2,3).



F. Riguzzi / SLGAD Resolution 35

0 5 10 15
10

−4

10
−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s)
 

 

SLGAD
Ailog2
SLDNFAD

Figure 15. Execution times for a three sided die

0 5 10 15

10
−2

10
0

10
2

10
4

N

T
im

e
 (

s)

 

 

SLGAD
Ailog2
SLDNFAD

(a) 3 and 4 to stop.

0 2 4 6 8 10 12
10

−4

10
−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s)

 

 

SLGAD
Ailog2
SLDNFAD

(b) 4 to stop.

Figure 16. Execution times for a four-sided die.

To further investigate the advantages of tabling, we considered two games inwhich a four-sided die
is used. In the first, we stop as soon as we get 3 or 4 (die2), in the second we stop as soon as we get 4
(die3). The first program is

on(0,1):1/4 ; on(0,2):1/4 ; on(0,3):1/4 ; on(0,4):1/4.

on(T,1):1/4 ; on(T,2):1/4 ; on(T,3):1/4 ; on(T,4):1/4 :-

T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3), \+ on(T1,4).

Again, we generated the grounding of the programs for increasing values ofN and we measured the time
required to answer the queryon(N,1). Figure 16 shows the execution times of SLGAD, SLDNFAD and
Ailog2 on the two problems. In this figure theY axis is logarithmic These results confirm those of Figure
15.

9. Future Work

The version of SLG resolution that we have presented here is calledSLGvariance in [27] because, in the
definition of the operations, it checks whether two formulas are variants ofeach other7 to avoid redundant

7Two formulas are variants of each other if one can be obtained from the other by variable renaming only.



36 F. Riguzzi / SLGAD Resolution

computations. In particular, the following operations are affected:

• NEW SUBGOAL adds a new tree if a tree for a variant of the selected literal is not already present;

• PROGRAM CLAUSE RESOLUTIONandPOSITIVE RETURNdo not add a child node to the current
nodeN if N has already a child that is a variant of the one to add;

• SIMPLIFICATION checks for success or failure of a variant of a delay literal and adds achild if a
variant of it is not already present.

In [27] the author also proposesSLGsubsumption that replaces the variance relation on atoms with a
subsumption relation in order to avoid more redundant computations. Specifically:

• NEW SUBGOAL is applied only if the new subgoal is not subsumed by any subgoal in the forest;

• PROGRAM CLAUSE RESOLUTIONandPOSITIVE RETURNadd a child node to the current nodeN
only if N does not have a child that subsumes the one to add;

• subsumption can be employed also inSIMPLIFICATION to remove or fail a delay literal;

• COMPLETIONcan be applied to a subgoal if it is subsumed by a subgoal that is already completed.

At the moment SLGAD resolution, asSLGvariance, uses a variance relation to avoid redundant compu-
tations. In particular,NEW SUBGOAL is applied only if the new subgoal is not a variant of any subgoal
in Fn andPROGRAM CLAUSE RESOLUTION, POSITIVE RETURNandNEGATION SUCCESS, when a new
answerAns : −| for a subgoalA is found, check for its presence inFn(A).

In the future, we plan to improve SLGAD resolution by using subsumption instead of variance: for
example,NEW SUBGOAL will not be applied if a subgoal that subsumes the one to be added is present.
Moreover, inPROGRAM CLAUSE RESOLUTION, POSITIVE RETURNandNEGATION SUCCESS, we will
check whetherAns : −| is already an answer for any subgoal in the SLGAD forest.

These two optimizations will avoid branching in cases in which it is not needed.The latter optimiza-
tion will require to be able to access the tableT on the basis of the answers present in the trees or the
maintenance of a separate data structure for storing found answers.

Another optimization consists in completing ground subgoals as soon as an unconditional answer is
found for them. In fact, new answers will not add any new information and, by completion, we can avoid
branch exploration.

Other research directions for the future include the possibility of answering queries in an approximate
way, similarly to what is done in [9] and the extension of the algorithm for considering also aggregates.
Moreover, we plan to apply the techniques of [20] to LPADs and to investigate more closely the perfor-
mances of SLGAD and the algorithms based on Binary Decision Diagrams.

10. Conclusions

Logic Programs with Annotated Disjunctions are a powerful language for representing probabilistic in-
formation in logic. However, all previously existing approaches for answering queries from LPADs are
not able to deal with programs containing loops. Moreover, they run the risk of recomputing explanations
for the same query.



F. Riguzzi / SLGAD Resolution 37

For normal logic programs, SLG resolution uses tabling to avoid some loops involving positive and/or
negative literals and to avoid recomputing answers for the same subgoal.

In this paper we have proposed an extension of SLG resolution, called SLGAD resolution, for per-
forming inference on LPADs. SLGAD resolution is defined as a partial deduction approach in which a
number of operations are repeatedly applied to a data structure called system. The operations are those
of SLG resolution modified in order to take into account probabilistic disjunctive clauses. Once expla-
nations for a goal have been obtained, the probability of the query can simply be computed by summing
the probabilities of the individual explanations, since they are mutually incompatible by construction.

SLGAD resolution has been experimentally evaluated on a number of problems. On those that are
modularly acyclic and right recursive, SLGAD has been compared with Ailog2 and SLDNFAD. The
experimental results show that SLGAD is able to outperform the other systemswhen it is necessary to
compute answers to queries more than once.

11. Acknowledgements

The author would like to thank Evelina Lamma, Paola Mello and Sergio Storari for many interesting
discussions on the topics of this paper.

References

[1] Apt, K. R., Bezem, M.: Acyclic Programs,New Gener. Comput., 9(3/4), 1991, 335–364.

[2] Bratko, I.: PROLOG Programming for Artificial Intelligence, Addison-Wesley Longman, 1990.

[3] Castro, L. F., Swift, T., Warren, D. S.: Suspending and Resuming Computations in Engines for SLG Evalua-
tion, Practical Aspects of Declarative Languages, 2257, Springer, 2002.

[4] Chen, W., Swift, T., Warren, D. S.: Efficient Top-Down Computation of Queries under the Well-Founded
Semantics,J. Log. Program., 24(3), 1995, 161–199.

[5] Chen, W., Warren, D. S.: Query Evaluation under the Well Founded Semantics,Principles of Database
Systems, ACM Press, 1993.

[6] Chen, W., Warren, D. S.: Tabled Evaluation With Delayingfor General Logic Programs,J. ACM, 43(1),
1996, 20–74.

[7] Clark, K. L.: Negation as Failure,Logic and Data Bases, Plenum Press, 1977.

[8] Dantsin, E.: Probabilistic Logic Programs and their Semantics,Russian Conference on Logic Programming,
592, Springer, 1991.

[9] De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A Probabilistic Prolog and Its Application in Link
Discovery.,International Joint Conference on Artificial Intelligence, 2007.

[10] van Emden, M. H., Clark, K. L.: The logic of two-person games, in: Micro-PROLOG: Programming in
Logic, Prentice-Hall, 1984, 320–340.

[11] Fuhr, N.: Probabilistic datalog: Implementing logical information retrieval for advanced applications,J. of
the Am. Soc. for Information Science, 51(2), 2000, 95–110.

[12] Gelder, A. V., Ross, K. A., Schlipf, J. S.: Unfounded Sets and Well-Founded Semantics for General Logic
Programs,Principles of Database Systems, ACM Press, 1988.



38 F. Riguzzi / SLGAD Resolution

[13] Gelfond, M., Lifschitz, V.: The Stable Model Semanticsfor Logic Programming,International Conference
on Logic Programming, MIT Press, 1988.

[14] Jaeger, M.: Model-Theoretic Expressivity Analysis,Probabilistic Inductive Logic Programming - Theory
and Applications, 4911, Springer, 2008.

[15] Jaeger, M., Lidman, P., Mateo, J. L.: Comparative Evaluation of PL languages,Mining and Learning with
Graphs, 2007.

[16] Pearl, J.:Probabilistic Reasoning in Intelligent Systems: Networksof Plausible Inference, Morgan Kauf-
mann, 1988, ISBN 1558604790.

[17] Poole, D.: The Independent Choice Logic for Modelling Multiple Agents under Uncertainty,Artif. Intell.,
94(1–2), 1997, 7–56.

[18] Poole, D.: Abducing through negation as failure: stable models within the independent choice logic,J. Log.
Program., 44(1-3), 2000, 5–35.

[19] Przymusinski, T. C.: The Well-Founded Semantics Coincides with the Three-Valued Stable Semantics,Fun-
dam. Inform., 13(4), 1990, 445–463.

[20] Riguzzi, F.: Extended Semantics and Inference for the Independent Choice Logic,Log. J. IGPL, , in press.

[21] Riguzzi, F.: A Top Down Interpreter for LPAD and CP-logic, Congress of the Italian Association for Artificial
Intelligence, 4733, Springer, 2007.

[22] Ross, K. A.: Modular acyclicity and tail recursion in logic programs,Principles of Database Systems, ACM
Press, 1991, ISBN 0-89791-430-9.

[23] Santos Costa, V., Page, D., Qazi, M., Cussens, J.: CLP(BN ): Constraint Logic Programming for Probabilistic
Knowledge,Uncertainty in Artificial Intelligence, Morgan Kaufmann, 2003.

[24] Sato, T.: A Statistical Learning Method for Logic Programs with Distribution Semantics,International
Conference on Logic Programming, MIT Press, 1995.

[25] Sato, T., Kameya, Y.: PRISM: A Language for Symbolic-Statistical Modeling, International Joint Confer-
ence on Artificial Intelligence, Morgan Kaufmann, 1997.

[26] Sato, T., Kameya, Y.: Parameter Learning of Logic Programs for Symbolic-Statistical Modeling,J. Artif.
Intell. Res., 15, 2001, 391–454.

[27] Swift, T.: A New Formulation of Tabled Resolution with Delay, Portuguese Conference on Artificial Intelli-
gence, 1695, Springer, 1999.

[28] Van Gelder, A., Ross, K. A., Schlipf, J. S.: The Well-founded Semantics for General Logic Programs,J. of
the ACM, 38(3), 1991, 620–650.

[29] Vennekens, J., Denecker, M., Bruynooghe, M.: Representing Causal Information about a Probabilistic Pro-
cess,European Conference on Logics in Artificial Intelligence, 4160, Springer, September 2006.

[30] Vennekens, J., Verbaeten, S.:Logic Programs With Annotated Disjunctions, Technical Report CW386, K. U.
Leuven, 2003.

[31] Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs With Annotated Disjunctions,International
Conference on Logic Programming, 3131, Springer, 2004.

[32] Zhang, N. L., Poole, D.: Exploiting Causal Independence in Bayesian Network Inference,J. Artif. Intell.
Res., 5, 1996, 301–328.


