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Abstract. We consider the problem of learning both the structure and
the parameters of Probabilistic Description Logics under the DISPONTE
semantics. DISPONTE is based on the distribution semantics for Prob-
abilistic Logic Programming and assigns a probability to assertional and
terminological axioms. The system EDGE, given a DISPONTE knowl-
edge base (KB) and sets of positive and negative examples in the form
of concept assertions, returns the value of the probabilities associated
with axioms. We present the system LEAP that learns both the struc-
ture and the parameters of DISPONTE KBs explotiting EDGE. LEAP
is based on the system CELOE for ontology engineering and exploits its
search strategy in the space of possible axioms. LEAP uses the axioms
returned by CELOE to build a KB so that the likelihood of the examples
is maximized. We present experiments showing the potential of EDGE
and LEAP.

1 Introduction

Recently, the problem of representing uncertainty in Description Logics (DLs)
has received an increasing attention due to the ubiquity of uncertain information
in real world domains. Various authors have studied the use of probabilistic
DLs and many proposals have been presented for allowing DLs to represent
uncertainty [13, 28, 10, 17, 16].

In addition, some works have started to appear about learning the probabil-
ities or the whole structure of probabilistic ontologies. These arise, on one hand,
from the fact that specifying the values of the probabilities is a difficult task for
humans and data is usually available that could be leveraged for tuning them,
and, on the other hand, from the fact that in some domains there exist poor-
structured knowledge bases which could be improved [13, 14]. A knowledge base
with a refined structure and instance data coherent with it allows more powerful
reasoning, better consistency checking and improved querying possibilities.

In [2, 18, 19, 23] we proposed an approach for the integration of probabilistic
information in DLs called DISPONTE for “DIstribution Semantics for Proba-
bilistic ONTologiEs”. DISPONTE applies the distribution semantics for proba-
bilistic logic programming [25] to DLs.



In this paper we present an approach for learning the structure of proba-
bilistic DLs following the DISPONTE semantics. The approach is based on the
algorithm EDGE for “Em over bDds for description loGics paramEter learning”
[21, 22] that starts from examples of instances and non-instances of concepts and
learns the parameters of a probabilistic theory. EDGE builds Binary Decision
Diagrams (BDDs) for representing the explanations of the examples from the
theory. The parameters are then tuned using an EM algorithm [8] in which the
required expectations are computed directly on the BDDs in an efficient way.

The algorithm for learning the structure is called LEAP for “LEArning
Probabilistic description logics” and combines the learning system CELOE with
EDGE. The former provides a method to build new (equivalence and subsump-
tion) axioms that can be added to the KB, the latter is used to learn the pa-
rameters of these probabilistic axioms.

We provide a performance evaluation of both EDGE and LEAP. For EDGE,
we extend the evaluation of [21] with a new dataset and that of [22] by including
a cross-validation result. For LEAP, we present a comparison between a theory
before and after applying LEAP. The experiments with EDGE show that it
achieves statistically significant greater areas under the Precision Recall and
the Receiver Operating Characteristics curves (AUCPR and AUCROC) with
respect to a theory where the probabilities are obtained from an Association
Rule learner. The experiments with LEAP show that it improves the AUCPR
and AUCROC of the theory with the difference being statistically significant for
AUCROC.

The paper is organized as follows. Section 2 introduces Description Logics
and the DISPONTE semantics. Section 3 describes EDGE. In Section 4 we
introduce LEAP. Section 5 discusses related works and Section 6 shows the
results of experiments for both systems. Section 7 concludes the paper.

2 Description Logics and the DISPONTE semantics

Description Logics (DLs) are knowledge representation formalisms that are par-
ticularly useful for representing ontologies. Their syntax is usually based on
concepts and roles. A concept corresponds to a set of individuals of the domain
while a role corresponds to a set of couples of individuals of the domain. In the
following we consider and describe ALC [26].

Let A, R and I be sets of atomic concepts, roles and individuals, respectively.
Concepts are defined by induction as follows. Each A ∈ A is a concept and ⊥
and > are concepts. If C, C1 and C2 are concepts and R ∈ R, then (C1 u C2),
(C1tC2) and ¬C are concepts, as well as ∃R.C and ∀R.C. A TBox T is a finite
set of concept inclusion axioms C v D, where C and D are concepts; we use
C ≡ D to abbreviate C v D and D v C. An ABox A is a finite set of concept
membership axioms a : C, role membership axioms (a, b) : R, equality axioms
a = b and inequality axioms a 6= b. A knowledge base (KB) K = (T ,A) consists
of a TBox T and an ABox A.

2



A knowledge base K is usually assigned a semantics in terms of set-theoretic
interpretations and models of the form I = (∆I , ·I), where ∆I is a non-empty
domain and ·I is the interpretation function that assigns an element in ∆I to
each a ∈ I, a subset of ∆I to each C ∈ A and a subset of ∆I×∆I to each R ∈ R.
The mapping ·I is extended to all concepts (where RI(x) = {y|(x, y) ∈ RI}) as:

>I = ∆I

(¬C)I = ∆I \ CI
(C1 t C2)I = CI1 ∪ CI2

(∃R.C)I = {x ∈ ∆I |RI(x) ∩ CI 6= ∅}

⊥I = ∅
(C1 u C2)I = CI1 ∩ CI2

(∀R.C)I = {x ∈ ∆I |RI(x) ⊆ CI}

A query over a knowledge base is an axiom for which we want to test the entail-
ment from the knowledge base. The entailment test may be reduced to checking
the unsatisfiability of a concept in the knowledge base, i.e., the emptiness of the
concept.

DISPONTE applies the distribution semantics [25] to probabilistic ontolo-
gies. In DISPONTE a probabilistic knowledge base K is a set of certain and
probabilistic axioms: certain axioms take the form of regular DL axioms, proba-
bilistic axioms take the form p :: E, where p is a real number in [0, 1] and E is a
DL axiom. The probability p can be interpreted as an epistemic probability, i.e.,
as the degree of our belief in axiom E. A DISPONTE KB defines a distribution
over DL KBs called worlds. Each world w is obtained by including every certain
axiom. For each probabilistic axiom, we decide whether or not to include it in
w. A world therefore is a non probabilistic KB that can be assigned a semantics
in the usual way. By multiplying the probability of the choices made to obtain
a world we can assign a probability to it. The probability of a query is then the
sum of the probabilities of the worlds where the query holds true.

The system BUNDLE [18, 24, 19, 20, 23] computes the probability of a query
w.r.t. ontologies that follow the DISPONTE semantics by first computing all the
explanations for the query and then building a Binary Decision Diagram (BDD)
that represents them. A set of explanations for a query Q is a set of sets of pairs
(Ei, k) where Ei is the ith probabilistic axiom and k ∈ {0, 1} indicates whether
Ei is chosen to be included in a world (k = 1) or not (k = 0). Given the set of
explanations K for a query Q, we can define the Disjunctive Normal Form (DNF)
Boolean formula fK as fK(X) =

∨
κ∈K

∧
(Ei,1)

Xi

∧
(Ei,0)

Xi. The variables X =

{Xi|(Ei, k) ∈ κ, κ ∈ K} are independent Boolean random variables and the
probability that fK(X) takes on value 1 is equal to the probability of Q. A BDD
for a function of Boolean variables is a rooted graph that has one level for each
Boolean variable. A node n has two children: one corresponding to the 1 value
of the variable associated with the level of n, indicated with child1(n), and one
corresponding to the 0 value of the variable, indicated with child0(n). When
drawing BDDs, the 0-branch - the one going to child0(n) - is distinguished from
the 1-branch by drawing it with a dashed line. The leaves store either 0 or 1.
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Explanations are found by using the Pellet reasoner [27] and are then trans-
lated into a BDD that allows to compute the probability of Q with a dynamic
programming algorithm in polynomial time in the size of the diagram [7].

The system TRILL [29] implements the BUNDLE’s inference algorithm in
Prolog and compute the probability of a query w.r.t. KBs that follow the DISPONTE
semantics.

Example 1. Let us consider the following knowledge base, inspired by the ontol-
ogy people+pets proposed in [15]:

∃hasAnimal.Pet v NatureLover
(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

(E1) 0.4 :: fluffy : Cat

(E2) 0.3 :: tom : Cat

(E3) 0.6 :: Cat v Pet

Individuals that own an animal which is a pet are nature lovers and kevin owns
the animals fluffy and tom. We believe in the fact that fluffy and tom are cats and
that cats are pets with the specified probability. This KB has eight worlds and the
query axiom Q = kevin : NatureLover is true in three of them, corresponding
to the following choices: {(E1, 1), (E2, 0), (E3, 1)}, {(E1, 0), (E2, 1), (E3, 1)},
{(E1, 1), (E2, 1), (E3, 1)}. The probability is therefore P (Q) = 0.4 ·0.7 ·0.6+0.6 ·
0.3 · 0.6 + 0.4 · 0.3 · 0.6 = 0.348. If we associate the random variables X1 to the
axiom E1, X2 to E2 and X3 to E3, the BDD representing the set of explanations
is shown in Figure 1.

X1 n1

X2 n2

X3 n3

1 0

Fig. 1. BDD for Example 1.

3 Parameter Learning of Probabilistic DLs

EDGE [21, 22] performs parameter learning of probabilistic ontologies under the
DISPONTE semantics and is inspired by the algorithm EMBLEM [4, 3], which
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was developed for learning the parameters of probabilistic logic programs under
the distribution semantics. The parameters correspond to the epistemic proba-
bilities previously introduced and are tuned using an Expectation Maximization
(EM) algorithm [8], an iterative method to estimate some unknown parameters
Θ of a model: in particular, it finds maximum likelihood or maximum a posteriori
(MAP) estimates of Θ. EM alternates between performing an Expectation (E)
step, where the missing data are estimated given the observed data and current
estimate of the model parameters, and a Maximization (M) step, which com-
putes the parameters maximizing the likelihood of the data given the sufficient
statistics on the data computed in the E step.

EDGE takes as input a DL KB and a number of examples that represent the
queries. Tipically, the queries are concept assertions and are divided into positive
examples (set E+) - representing true information, for which we would like to
get high probability - and negative examples (set E−) - representing false infor-
mation, for which we would like to get low probability. EDGE first computes, for
each query Q, the BDD encoding its explanations using the reasoner BUNDLE.
A limit on the maximum number of explanations to be found (NumE) or a time
limit for the search for explanations (TLE) can be possibly set for BUNDLE.
For negative examples, EDGE computes the explanations of the query, builds
the BDD and then negates it. For example, if the negative example is a : C,
EDGE executes the query a : C, finds the BDD and then negates it. Given the
knowledge base of Example 1 and the positive example kevin : NatureLover,
we obtain the BDD in Figure 1.

EDGE main procedure consists of the EM cycle in which the steps of Ex-
pectation and Maximization are repeated until the log-likelihood (LL) of the
examples reaches a local maximum, as shown in Algorithm 1. At each itera-
tion the LL of the example increases, i.e., the probability of positive examples
increases and that of negative examples decreases. The EM algorithm is guaran-
teed to find a local maximum, which however may not be the global maximum.
Procedure Expectation returns the LL of the data that is used in the stop-
ping criterion: EDGE stops when the difference between the LL of the current
iteration and the one of the previous iteration (LL0) drops below a threshold ε
or when this difference is below a fraction δ of the LL.

Algorithm 1 Function EDGE.

1: function EDGE(K, E+, E−, ε, δ, NumE, TLE)
2: Build BDDs . BUNDLE builds all the BDDs according to the limits NumE and TLE
3: LL = −inf
4: repeat
5: LL0 = LL
6: LL = Expectation(BDDs)
7: Maximization
8: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ
9: return (LL,K)
10: end function
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Procedure Expectation (shown in Algorithm 2) takes as input a list of
BDDs, one for each example Q, and computes the expectations E[ci0|Q] and
E[ci1|Q] for all axioms Ei directly over the BDDs. Let cix be the number of
times a Boolean random variable Xi takes on value x for x ∈ {0, 1}:

E[cix|Q] = P (Xi = x|Q).

Then it sums up the contributions of all examples: E[cix] =
∑
Q E[cix|Q]. Finally,

Algorithm 2 Function Expectation.
1: function Expectation(BDDs)
2: LL = 0
3: for all i ∈ Axioms do
4: E[ci0] = 0; E[ci1] = 0
5: end for
6: for all BDD ∈ BDDs do
7: for all i ∈ Axioms do
8: η0(i) = 0; η1(i) = 0
9: end for
10: for all variables X do
11: ς(X) = 0
12: end for
13: GetForward(root(BDD))
14: Prob=GetBackward(root(BDD))
15: T = 0
16: for l = 1 to levels(BDD) do
17: Let Xi be the variable associated with level l
18: T = T + ς(Xi)
19: η0(i) = η0(i) + T × (1− pi)
20: η1(i) = η1(i) + T × pi
21: end for
22: for all i ∈ Axioms do
23: E[ci0] = E[ci0] + η0(i)/Prob
24: E[ci1] = E[ci1] + η1(i)/Prob
25: end for
26: LL = LL+ log(Prob)
27: end for
28: return LL
29: end function

P (Xi = x|Q) is given by P (Xi=x,Q)
P (Q) . In this procedure we use ηx(i) to indicate

P (Xi = x,Q). Expectation first calls procedures GetForward and Get-
Backward that compute the forward and the backward probability of nodes
and ηx(i) for non-deleted paths only. These are the paths that have not been
deleted when building the BDDs. Forward and backward probabilities in each
node represent the probability mass of paths from the root to the node and that
of the paths from the node to the leaves respectively. The expression

P (Xi = x,Q) =
∑

n∈N(Q),v(n)=Xi

F (n)B(childx(n))πix,

with N(Q) the set of BDD nodes for query Q, v(n) the variable associated with
node n, πi1 = pi, πi0 = 1 − pi, F (n) the forward probability of n, B(n) the
backward probability of n, represents the probability mass of each path passing
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through each node associated with Xi and going down its x-branch. We use the
notation ex(n) to indicate the expression inside the sum. Computing the two
types of probability in the nodes requires two traversals of the graph, so its cost
is linear in the number of nodes.

Procedure GetForward computes the value of the forward probabilities
for every node. It traverses the diagram one level at a time starting from the
root level, where F (root) = 1, and for each node n computes its contribution
to the forward probabilities of its children. Then the forward probabilities of
both children are updated. Function GetBackward computes the backward
probability of nodes by traversing recursively the tree from the leaves to the root.
It returns the backward probability of the root corresponding to the probability
of the query P (Q), indicated as Prob at line 14 of Algorithm 2.

When the calls of GetBackward for both children of a node n return, we
compute the ex(n) and ηx(i) values for non-deleted paths. An array ς is used to
store the contributions of the deleted paths by starting from the root level and
accumulating ς(l) for the various levels l. See [22] for more details.

Expectations are updated for all axioms (lines 23-24) and finally the log-
likelihood of the current example is added to the overall log likelihood.

Procedure Maximization computes the parameters values for the next EM
iteration by relative frequency for all axioms Ei:

pi =
E[ci1]

E[ci0] + E[ci1]
.

4 Structure Learning of Probabilistic DLs

LEAP performs structure and parameter learning of probabilistic ontologies un-
der the DISPONTE semantics by exploiting: (1) CELOE [11] for the structure,
and (2) EDGE (Section 3) for the parameters. We first introduce CELOE before
describing LEAP.

4.1 CELOE

CELOE [11] stands for “Class Expression Learning for Ontology Engineering”
and is available in the Java open-source framework DL-Learner3 for OWL and
DLs.

Let us consider a knowledge base K and a class Target whose formal descrip-
tion we want to learn. Target has (inferred or asserted) instances in K. CELOE
can take as input a target class, a set of positive and negative examples (i.e.
individuals) or a set of positive only examples.

If Target is already described by a class expression C through axioms such
as Target v C or Target ≡ C, it is possible to learn a description for Target

by refining C or by relearning from scratch, as stated in Definition 1.

3 http://dl-learner.org/Projects/DLLearner
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Definition 1 (Class Learning Problem). Let an existing named class Target
be in a knowledge base K. Let RK(C) be a retrieval reasoner operation that re-
turns the set of all instances of C. The class learning problem is to find an
expression C such that RK(Target) = RK(C).

CELOE finds a set of n class expressions Ci (1 ≤ i ≤ n) sorted according
to a heuristic. Such expressions are candidates for adding axioms of the form
Target ≡ Ci or Target v Ci.

On the other hand, if a set of positive and negative examples or a set of only
positive examples is given, CELOE can be seen as a learning algorithm that
solves a problem of learning from examples, as described in Definition 2.

Definition 2 (Learning from Examples Problem).
Given:

– a concept name Target;
– a knowledge base K not containing Target;
– a space of possible concepts C;
– a set of positive examples E+ with elements of the form a : Target (a ∈ I);
– a set of negative examples E− with elements of the form a : Target (a ∈ I);

Find a concept expression C ∈ C such that:

– Target does not occur in C (acyclic definition);
– ∀e+ ∈ E+,K ∪ {Target ≡ C} |= e+;
– ∀e− ∈ E−,K ∪ {Target ≡ C} 6|= e−.

If K′ = K∪{Target ≡ C} we say that a concept C covers an example e ∈ E+ ∪
E− if K′ |= e. We distinguish the two cases in which both sets E+ and E− of indi-
viduals are given or only the set E+ is given as Positive and Negative Examples
Learning Problem (LP ) and Positive Examples Learning Problem respec-
tively.

CELOE is a top-down algorithm that starts from the > concept and uses
the ALCQ refinement operator defined in [12]. Each generated class expression
is evaluated using one of five available heuristics, whose resulting value is used
to guide the search in the learning process. All these heuristics need a set of
examples in order to be computed; in the case the algorithm took as input only
the target class to be described, we can consider as positive examples the existing
instances (inferred or asserted) of the target class and the remaining instances
in the KB as negative examples.

4.2 LEAP

In order to learn an ontology, LEAP first finds good candidate axioms (sub-
sumption axioms) by means of CELOE, then it performs a greedy search in the
space of theories.

LEAP main procedure is shown in Algorithm 3: it takes as input the knowl-
edge base K and the type of learning problem LPtype; the maximum number
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of class expressions NumC and the time limit TLC for CELOE; the values
of ε and δ, the maximum number of explanations NumE and the time limit
TLE for the computation of the BDDs for each example for EDGE. Note that
CELOE’s default is NumC = 10 and TLC = 10 seconds and EDGE’s default is
NumE = TLE =∞.

In the first phase, a set of class expressions is generated by using CELOE
(line 2), then the sets of positive (PI) and negative (NI) individuals are extracted
according to the following rules:

– if a set of positive and negative individuals has been given as input to CELOE
(LPtype = Positive and Negative Examples Learning Problem), then no
extraction is necessary;

– if a set of positive only individuals has been given (LPtype = Positive
Examples Learning Problem), then the set of negative examples will be
composed of all the individuals of K except the positive ones;

– if a target class has been given (LPtype = Class Learning Problem, cf.
Definition 1), then we consider the existing instances (inferred or asserted)
of the target class as positive individuals and the remaining instances as
negative individuals.

After the extraction, the assertional axioms, which represent the examples (i.e.
queries) for EDGE, are created (see lines 4-9). Then EDGE is applied to the KB
to compute the initial value of the parameters and of the LL.

In the second phase, LEAP performs a greedy search in the space of theories,
described in lines 11-19. For each element of the class expressions set, one prob-
abilistic subsumption axiom at a time of the form p :: CE v Target is added to
the ontology K; p is either a random probabilistic value or the accuracy returned
by CELOE. After each addition, EDGE is run on the extended theory to com-
pute the log-likelihood of the data LL and the updated parameters (line 14). If
LL is better than the current best LL0, the new axiom is kept in the knowledge
base, otherwise the new axiom is discarded (lines 15-18). The final theory, ob-
tained from the union of the initial ontology and the probabilistic subsumption
axioms learned, is returned to the user.

LEAP is a client-server Java RMI application. The server side contains a
class called EDGERemote, which performs the EDGE algorithm. The client side,
instead, runs a modified version of CELOE called ProbCELOE and a class called
EDGE that invokes the remote methods of EDGERemote in order to compute
the log-likelihood and the parameters. Figure 2 illustrates the communication
between the LEAP client and the server.

5 Related Work

GoldMiner [28, 10] is an algorithm that exploits Association Rules (ARs) for
building ontologies. GoldMiner extracts information about individuals, named
classes and roles using SPARQL queries. From these data, it builds two trans-
action tables: one that stores the classes to which each individual belongs and
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Algorithm 3 Function LEAP.
1: function LEAP(K, LPtype, NumC, TLC, ε, δ,NumE, TLE)
2: ClassExpressions = up to NumC or until TLC is reached . generated by CELOE
3: (PI , NI) = ExtractIndividuals(LPtype)
4: for all ind ∈ PI do . PI : set of positive individuals
5: Add ind : Target to PE . PE : set of positive examples
6: end for
7: for all ind ∈ NI do . NI : set of negative individuals
8: Add ind : Target to NE . NE : set of negative examples
9: end for
10: (LL0,K) = EDGE(K, PE , NE , ε, δ, NumE, TLE)
11: for all CE ∈ ClassExpressions do
12: Axiom = p :: CE v Target
13: K′ = K ∪ {Axiom}
14: (LL,K′) = EDGE(K′, PE , NE , ε, δ, NumE, TLE)
15: if LL > LL0 then
16: K = K′
17: LL0 = LL
18: end if
19: end for
20: return K
21: end function
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Fig. 2. LEAP as a client-server Java RMI application.
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one that stores the roles to which each couple of individuals belongs. Finally, the
APRIORI algorithm [1] is applied to each table in order to find ARs. Implica-
tions of the form A⇒ B can be converted to subclass axioms of the form A v B.
Moreover, the confidence p of an AR can be interpreted as the probability of the
axiom p :: A v B. So GoldMiner can be used to obtain a probabilistic knowledge
base.

The structure learner LEAP is inspired to SLIPCOVER, an algorithm pro-
posed for learning probabilistic logic programs based on distribution semantics
[5]. LEAP shares with it the search strategy and the use of the log-likelihood
of the data as the score of the learnt theories. Like SLIPCOVER, it divides the
search between learning promising axioms and building in a greedy way a theory
whose parameters are optimized by relying on a parameter learning algorithm.

A work that integrates parameter and structure learning for a probabilistic
extension of ALC, named crALC, is [13]. crALC allows statistical axioms of
the form P (C|D) = α, meaning that for any element x in D, the probability
that it is in C given that is in D is α, and of the form P (R) = β, meaning that
for each couple of elements x and y in D, the probability that x is linked to y
by the role R is β. crALC does not allow to express a degree of belief in axioms
as DISPONTE. An algorithm is presented in [13] that learns parameters and
structure of crALC KBs. It starts from positive and negative examples for a
single concept and from the general concept > in the root of a search tree to be
refined. For a set of candidate concept definitions, their probabilistic parameters
are learned using an EM algorithm and a score is assigned to the corresponding
node. If the best score in the tree is above a threshold, a deterministic concept
definition is returned, otherwise a probabilistic inclusion Ci is searched on a
weighted spanning tree, where the target concept is added as a parent of each
vertex and probabilities are learned as P (Ci|Parents(Ci)). We share the top-
down procedure for building axioms (CELOE) but we exploit the BDD structures
instead of resorting to inference in a graphical model to compute the expected
counts for EM.

The paper [14] presents a Statistical Relational Learning system for learning
terminological näıve Bayesian classifiers, which estimate the probability that an
individual a belongs to a certain target concept given its membership to a set
of induced DL (feature) concepts. The classifier consists of a Bayesian Network
(BN) modelling the dependency relations between the feature concepts and the
target one. The learning process handles three different assumptions that can be
made about the lack of knowledge (under OWA) regarding concept-membership,
reflecting in the adoption of different scoring functions and search strategies
of the optimal network and parameters. Under one of the assumptions - the
probability of concept-membership of a depends on the knowledge on a available
in K - the EM method is proposed to train the BN parameters. The classifier
can be seen as a learner of probabilistic assertional axioms, while LEAP learns
probabilistic terminological axioms. We exploit BDDs instead of BNs, while we
share with them the use of EM.
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6 Experiments

In order to test the performances of EDGE and of LEAP we performed several
experiments. First we have executed two tests on EDGE which are inspired
by the ones presented in [21, 22]. Then, once shown that EDGE achieves good
results, we have done a preliminary test for comparing LEAP with it.

6.1 Parameter Learning

EDGE has been compared with Association Rules (ARs) [21, 22] over two real
world datasets from the Linked Open Data cloud: educational.data.gov.uk4

and an extract of DBPedia5. We extend the experiments from [21] by including
the DBPedia dataset and those of [22] by presenting the results of a cross-
validation rather than of a single training-test split.

In the experiments, we wanted to simulate the situation in which an expert
provides the structure of the ontology together with information on a set of in-
dividuals. The ontologies were obtained with GoldMiner: we extracted 10,000
individuals and 5,545 axioms for educational.data.gov.uk and 7,200 indi-
viduals and 6,228 axioms for DBPedia and we learned ARs from the resulting
transaction tables. The ARs were then converted into subclass axioms.

In order to generate a set of examples (queries) for EDGE, for each extracted
individual a we sampled three named classes: A and B were sampled from the
named classes to which a explicitly belonged, while C was sampled from the
named classes to which a did not explicitly belong but that exhibited at least
one explanation for the query a : C. The axiom a : A is added to the KB, while
a : B is considered as a positive example and a : C as a negative example.
We used a 5-fold cross validation to test the system. In the training phase, we
ran EDGE on the ontology obtained by GoldMiner where we consider all the
axioms as probabilistic. We randomly set the initial values of the parameters.
EDGE, for handling 5,000 examples, took about 15,000 seconds in average for
DBPedia, about 3 seconds per example, and about 173,000 seconds in average for
educational.data.gov.uk, about 43 seconds per example. Most of the runtime
was spent finding the explanations and building the BDDs, while the execution of
the EM iterations took only about 6 seconds for DBPedia and about 2 seconds for
educational.data.gov.uk. In the testing phase, we computed the probability
of the queries using BUNDLE. For a negative example of the form a : C we
compute the probability p of a : C and we assign probability 1 − p to the
example.

We compare the parameters learned by EDGE with ARs’ confidence. For
each AR corresponding to the subclass axiom A v B, we computed the confi-
dence by running two SPARQL queries over the training KBs, one for finding all
the individuals that belong to AuB and one for those that belong to A. The con-
fidence is then given by the ratio of the number of individuals in AuB over those

4 http://education.data.gov.uk/
5 http://dbpedia.org/About
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in A. We created 330 different SPARQL queries for educational.data.gov.uk
and 2,243 for DBPedia.

In the testing phase, we computed the probability of the examples in the
test set using BUNDLE, according to the theory learned by EDGE and to the
theory composed of the ARs with the confidence as probability. We drew the
Precision-Recall (PR) and the Receiver Operating Characteristics (ROC) curves
and computed the Area Under the Curve (AUCPR and AUCROC) following the
methods of [6, 9]. Table 1 shows the AUCPR, the AUCROC, the execution times
averaged over the five folds and the p-value of a paired two-tailed t-test at the
5% significance level of the difference in AUCROC and AUCPR. The times are
referred to the learning time for EDGE and to the SPARQL queries execution
time for ARs. Note that the elapsed time for EDGE depends on the number
of executed queries and the number of different explanations involved in each
query, while the elapsed time for ARs depends on the number of classes in the
KB. EDGE achieves greater areas in a time that is of the same or lower order
of magnitude with respect to ARs. For both areas and KBs, the differences are
statistically significant at the 5% level.

Datasets EDGE ARs p-value

educational.data.gov.uk
PR 0.9702 ± 0.0289 0.8804 ± 0.0165 0.0051
ROC 0.9796 ± 0.0166 0.9158 ± 0.0171 0.0093
Time (s) 173,528 10,490

DBPedia
PR 0.9784 ± 0.0483 0.5916 ± 0.0999 0.0013
ROC 0.9902 ± 0.0219 0.4346 ± 0.1319 0.0007
Time (s) 14,883 578,420

Table 1. Areas under the ROC and PR curves with standard deviation, execution
times and p-value of a paired two-tailed t-test at the 5% significance level for EDGE
and Association Rules.

6.2 Structure Learning

LEAP has been evaluated on the Carcinogenesis6 KB which contains 22,372
individuals and 74,405 axioms.

We randomly selected 180 individuals, 103 of which representing positive
examples for the class Compound (PE), i.e. individuals that belong to the class
Compound, and 77 representing negative examples (NE), i.e. individuals that do
not belong to the class Compound. We assigned a random probability to every
axiom of the KB and we applied a 5-fold cross validation.

In the training phase, we first ran EDGE on the original KB for learning
the parameters associated with the probabilistic axioms, with NumE = 3 and
TLE = ∞ for the call to BUNDLE (cf. Alg. 1) in order to limit the runtime.

6 http://dl-learner.org/wiki/Carcinogenesis

13



Then, we separately ran LEAP on the original KB for learning probabilistic
subsumption axioms for the class Compound and the associated parameters,
with LPtype = Positive and Negative Examples Learning Problem. LEAP
learned 1 probabilistic subsumption axiom. For CELOE, we set NumC = 3 and
a timeout TLC for its execution of 120 seconds: when the timeout expires or 3
class expressions are found, the current set of them is returned to the caller. For
EDGE, we set NumE and TLE as before.

In the testing phase, we computed the probability of the examples (queries) in
the test set according to the KB learnt by LEAP and the original one, by applying
BUNDLE. We drew the PR and ROC curves and computed the AUCPR and
AUCROC. Table 2 shows the AUCPR and the AUCROC averaged over the
folds together with the standard deviation. Table 3 reports the learning time in
seconds, most of which was spent by EDGE for computing the explanations of
the examples and building the corresponding BDDs.

Original KB LEAP
AUCPR AUCROC AUCPR AUCROC

0.534 ± 0.1082 0.4452 ± 0.0510 0.8006 ± 0.2399 0.798 ± 0.2463

Table 2. Results of the experiments in terms of AUCPR and AUCROC averaged over
the folds. Standard deviations are also shown.

Time (s)

ProbCELOE 139
EDGE 1,765
Other 0.206
Total 1,905

Table 3. Learning time in seconds for LEAP, divided into stages. ‘Other’ refers to
the initialization of the systems and the time spent for sending information between
ProbCELOE and EDGE.

The p-value of a paired two-tailed t-test of the difference in AUCPR and
AUCROC between the LEAP ontology and the initial one is 0.0603 for AUCPR
and 0.0360 for AUCROC, thus showing that LEAP can achieve better areas
under both the PR and ROC curves, with the difference in AUCROC being
statistically significant at the 5% significance level.
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7 Conclusions

We have discussed two algorithms for learning the parameters and the structure
of probabilistic DLs following the DISPONTE semantics. EDGE applies an EM
algorithm for learning the parameters. It exploits the BDDs that are built dur-
ing inference to efficiently compute the expectations for hidden variables. The
experiments over two real world datasets show that EDGE achieves larger ar-
eas both under the PR and the ROC curve with respect to an algorithm based
on Association Rules in a comparable or smaller time, thus demonstrating that
EDGE is a viable alternative to ARs.

LEAP learns the structure by first performing a search in the space of promis-
ing axioms, by exploiting CELOE to learn class expressions of target concepts,
and then a greedy search in the space of the ontologies. In this second phase
the probabilities of the new axioms are computed by EDGE. The experiments
over a real world dataset show that LEAP, by learning the target class expres-
sions, achieves larger areas under both the PR and the ROC curve than a single
execution of EDGE. Both EDGE and LEAP are available for download from
http://sites.unife.it/ml/.
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